Document downloaded from:
http://hdl.handle.net/10251/42188
This paper must be cited as:
Peris Manguillot, A.; Jiménez-Munguía, RR.; Martínez-Avendaño, RA. (2013). Some questions about subspace-hypercyclic operators. Journal of Mathematical Analysis and Applications. 408:209-212. doi:10.1016/j.jmaa.2013.05.068.

The final publication is available at
http://dx.doi.org/10.1016/j.jmaa.2013.05.068

Copyright
Elsevier

Some questions about subspace-hypercyclic operators

R. R. Jiménez-Munguía ${ }^{1}$, R. A. Martínez-Avendaño ${ }^{2}$ and A. Peris ${ }^{3}$

Abstract

A bounded linear operator T on a Banach space X is called subspace-hypercyclic for a subspace M if $\operatorname{Orb}(T, x) \cap M$ is dense in M for a vector $x \in M$. We show examples that answer some questions posed by H. Rezaei [7]. In particular, we provide an example of an operator T such that $\operatorname{Orb}(T, x) \cap M$ is somewhere dense in M, but it is not everywhere dense in M.

Keywords:

hypercyclic operators, subspace-hypercyclic operators
2010 MSC: 47A16

1. Introduction

An operator on a Banach space is called hypercyclic if there is a vector whose orbit under the operator is dense in the space; such a vector is called a hypercyclic vector for the operator. Hypercyclic operators have been studied for more than twenty years (for more information see [1] and [4]). Recently, B. F. Madore and R. A. Martínez-Avendaño introduced in [6] the concept of subspace-hypercyclic operators.

Definition 1. A bounded linear operator $T: X \rightarrow X$ is called subspace-hypercyclic for a nonzero subspace M of X if there exists a vector $x \in X$ such that $\operatorname{Orb}(x, T) \cap M$ is dense in M. The vector x is then called a subspace-hypercyclic vector for T.

Rezaei shows in [7] that, if a bounded linear operator T acting on a Banach space X is subspace-hypercyclic for some subspace M of X and p is complex polynomial, then $\operatorname{ker}\left(p\left(T^{*}\right)\right) \subseteq M^{\perp}$, which provides an affirmative answer to question (v) of [6]. Also, he proves as a consequence that, under general additional conditions, a subspace-hypercyclic operator T for a subspace M of X has a dense linear manifold of M consisting entirely, except for zero, of vectors that are subspace-hypercyclic for T. More examples and results of subspace-hypercyclic operators can be found in $[5,6,7]$.

In the present paper we answer negatively the following questions from [7]:
Question 1. Let M be a nontrivial subspace of a Banach space X and $x \in M$. Does $\operatorname{Orb}(x, T) \cap M$ being somewhere dense in M imply that it is everywhere dense in M ?

[^0]Question 3. Let $T \in L(X), M$ be an infinite dimensional subspace and $x \in M$. Does the density of $\operatorname{Orb}(x, T)$ in M, i.e., $M \subseteq \overline{\operatorname{Orb}(x, T)}$ imply that T is subspacehypercyclic for M?

Question 4. Does there exist a subspace-hypercyclic operator T for a nontrivial subspace M such that we have neither $T^{n}(M) \subseteq M$ nor $M \subseteq T^{n}(M)$ for each $n \geq 1$?

We introduce some notation. We denote by $\ell^{2}(v)$ the Hilbert space defined by

$$
\ell^{2}(v):=\left\{\left(x_{i}\right)_{i \in \mathbb{N}}: \sum_{i=1}^{\infty}\left|x_{i}\right|^{2} v_{i}<\infty\right\},
$$

where v is the weight sequence $v=\left(v_{j}\right)_{j \in \mathbb{N}}=\left(2^{-j}\right)_{j \in \mathbb{N}}$. We denote, as usual, by B the unilateral backward shift on $\ell^{2}(v)$ and by S the unilateral forward shift on $\ell^{2}(v)$.

Observe that

$$
\|S x\|=\frac{1}{\sqrt{2}}\|x\|,
$$

and hence for every $n \geq 0$

$$
\begin{equation*}
\left\|S^{n} x\right\|=\frac{1}{2^{n / 2}}\|x\| \tag{1}
\end{equation*}
$$

2. Counterexamples

We know from [2] that, for linear operators, any somewhere dense orbit is everywhere dense. The following is an example of a subspace-hypercyclic operator T for certain subspace M so that there exists a vector $y \in M$ such that its orbit is somewhere dense in M but it is not everywhere dense in M; i.e. we construct a subspace M, a vector $y \in M$, and a subset $U \subset M$ with non empty interior, such that $\operatorname{Orb}(y, T)$ is dense in U but it is not dense in M, which provides a negative answer to Question 1. This operator will have the additional property that

$$
T^{n}(M) \not \subset M \text { and } M \not \subset T^{n}(M)
$$

for every $n \in \mathbb{N}$, which provides a negative answer to Question 4.
Example 2. Let B be the backward shift on $\ell^{2}(v)$, and let

$$
A:=\left\{j \in \mathbb{N} ; \exists n \in \mathbb{N} \text { with } 2^{n}-2<j \leq 3 \cdot 2^{n-1}-2\right\}=\{1,3,4,7,8,9,10,15, \ldots\}
$$

and

$$
M:=\left\{\left(x_{j}\right)_{j \in \mathbb{N}} \in \ell^{2}(v) ; x_{j}=0 \text { if } j \in A\right\} .
$$

We consider the increasing sequence $\left(B_{j}\right)_{j \in \mathbb{N}}$ of subsets of A^{c} given by

$$
B_{j}=A^{c} \cap\left[1,2^{j+1}-2\right], \quad j \in \mathbb{N} .
$$

Let

$$
U:=M \cap\left\{x \in \ell^{2}(v) ;\left|x_{2}\right| \leq 1\right\} .
$$

We will construct a vector $y \in U$ which has dense orbit in U but it is not dense in M.
We can find vectors $y(j) \in U$, for every $j \in \mathbb{N}$, satisfying
(i) $\overline{\{y(j): j \in \mathbb{N}\}}=U$,
(ii) $y(j)_{k} \neq 0$ if and only if $k \in B_{j}$,
(iii) $\left|y(j)_{k}\right| \leq j$ for all $k, j \in \mathbb{N}$.

To do this, e.g., let $\{z(j) ; j \in \mathbb{N}\}$ be a countable dense subset of U. For each $j \in \mathbb{N}$, we define $x(j)$ as

$$
x(j)_{k}= \begin{cases}z(j)_{k}, & \text { if } k \in B_{j} \text { and }\left|z(j)_{k}\right| \leq j, \\ 0, & \text { otherwise } .\end{cases}
$$

We have that $\{x(j) ; j \in \mathbb{N}\}$ is also a dense subset of U. Indeed, let $x \in U$ and $\varepsilon \in] 0,1[$. We fix $j_{0} \in \mathbb{N}$ such that $\sum_{k \geq j_{0}}\left|x_{k}\right|^{2} v_{k}<\varepsilon^{2} / 2$. Let $\alpha:=\max \left\{\left|x_{k}\right| ; k<j_{0}\right\}$ and $j>2^{j_{0}}+\alpha$ such that $\|z(j)-x\|<\varepsilon / 2$.

Observe that if $k \notin B_{j}$ it follows that $k \in A$ or $k \geq 2^{j+1}-1$. If $k \in A$ then $x_{k}=0$, and if $k \geq 2^{j+1}-1$ then $k>j_{0}$ since $j>2^{j_{0}}+\alpha>j_{0}$.

Also $\left|z(j)_{k}\right|>j$ implies $k \geq j_{0}$; otherwise,

$$
\|z(j)-x\| \geq\left|z(j)_{k}-x_{k}\right| \sqrt{v_{k}}>\left(\left|z(j)_{k}\right|-\alpha\right) 2^{-j_{0} / 2}>1
$$

which is not possible.
We then have

$$
\begin{gathered}
\|x(j)-x\|^{2}=\sum_{k \in B_{j}} \text { and }\left|z(j)_{k}\right| \leq j \\
\leq\|z(j)-x\|^{2}+\sum_{k \geq j_{0}}\left|x_{k}\right|^{2} v_{k}<\varepsilon^{2}
\end{gathered}
$$

which shows that $\{x(j) ; j \in \mathbb{N}\}$ is a dense subset of U.
Finally, we can set $(y(j))_{j \in \mathbb{N}}$ as

$$
y(j)_{k}= \begin{cases}2^{-j k}, & \text { if } k \in B_{j} \text { and } x(j)_{k}=0, \\ x(j)_{k}, & \text { otherwise }\end{cases}
$$

and conditions (i), (ii), and (iii) are satisfied.
We define the vector

$$
y=\sum_{j=1}^{\infty} S^{n_{j}} y(j)
$$

where $n_{j}:=\sum_{i=1}^{j} m_{i}$, and $m_{i}:=3 \cdot 2^{3 i}-2$, for $i, j \in \mathbb{N}$. We will show that $y \in U$ and

$$
\overline{\operatorname{Orb}(y, B) \cap M}=U .
$$

Observe that for every $j \in \mathbb{N}$, the vector $y(j)$ has its nonzero elements contained in a block of size $2^{j+1}-2$. On the other hand a vector in M, starting at position $m_{j}+1$, has a block of size at most $2^{3 j}$ of nonzero elements.

A calculation shows that

$$
n_{j-1}=\sum_{i=1}^{j-1} m_{i}=\frac{3}{7} 2^{3 j}-2 j-\frac{10}{7}
$$

Observe that

$$
n_{j-1}+2^{j+1}-2=\frac{3}{7} 2^{3 j}-2 j-\frac{10}{7}+2^{j+1}-2<2^{3 j}
$$

We claim that $S^{n_{j}} y(j) \in M$ since it has zeros in the first m_{j} positions and starting at position $m_{j}+1$ it has at most $n_{j-1}+2^{j+1}-2$ (possibly) nonzero elements. Since $n_{j-1}+2^{j+1-2}-2<2^{3 j}$ the claim follows. Condition (iii) ensures that the series expressed in y converges, therefore $y \in U$.

We will show that
(a) $B^{n_{j}} y \in U$ and $\left\|B^{n_{j}} y-y(j)\right\|<1 / 2^{j}$ for all $j \in \mathbb{N}$.
(b) If $n_{j-1}<k<n_{j}$ for some $j \in \mathbb{N}\left(n_{0}:=0\right)$, then, either $B^{k} y \notin M$, or $\left(B^{k} y\right)_{2}=0$ (and, thus, $B^{k} y \in U$).

Observe that

$$
B^{n_{j}} y=B^{n_{j}} \sum_{i=1}^{\infty} S^{n_{i}} y(i)=\sum_{n_{i}<n_{j}} B^{n_{j}-n_{i}} y(j)+y(j)+\sum_{n_{i}>n_{j}} S^{n_{i}-n_{j}} y(i)
$$

We know that for $j \in \mathbb{N}$ the largest index where a nonzero element occurs in $y(j)$ is $2^{j+1}-2$. If $n_{i}<n_{j}$ then $n_{j}-n_{i} \geq m_{j}>2^{j+1}$, therefore

$$
\begin{equation*}
\sum_{n_{i}<n_{j}} B^{n_{j}-n_{i}} y(j)=0 . \tag{2}
\end{equation*}
$$

If $n_{j}<n_{i}$ then $m_{i} \leq n_{i}-n_{j}<n_{i}$ and therefore, using the same argument as above, each vector $S^{n_{i}-n_{j}} y(i)$ is in M, since its only nonzero elements are in a block of size $2^{3 j}$ starting at position $m_{j}+1$, therefore

$$
\sum_{n_{i}>n_{j}} S^{n_{i}-n_{j}} y(i) \in M,
$$

and thus $B^{n_{j}} y \in U$, for every $j \in \mathbb{N}$.
By (1), (2) and by (iii) in the construction of $(y(j))_{j \in \mathbb{N}}$ we have

$$
\left\|B^{n_{j}} y-y(j)\right\|=\left\|\sum_{i=j+1}^{\infty} S^{n_{i}-n_{j}} y(i)\right\| \leq \sum_{i=j+1}^{\infty} \frac{\sqrt{\left(2^{i+1}-2\right) i}}{2^{n_{i}-n_{j}}}
$$

Also, a simple calculation shows that

$$
\sum_{i=j+1}^{\infty} \frac{\sqrt{\left(2^{i+1}-2\right) i}}{2^{n_{i}-n_{j}}} \leq \sum_{i=j+1}^{\infty} \frac{\sqrt{\left(2^{i+1}-2\right) i}}{2^{m_{k}+\ldots+m_{j+1}}} \leq \sum_{i=j+1}^{\infty} \frac{\sqrt{\left(2^{i+1}-2\right) i}}{2^{2 i} \cdot 2^{m_{k-1}+\ldots+m_{j+1}}} \leq \sum_{i=j+1}^{\infty} \frac{1}{2^{i}}
$$

Therefore we have (a).
Now observe that if $n_{j-1}<k<n_{j}$ for some $j \in \mathbb{N}$ then $k=m+n_{j-1}$ for some $1 \leq m<m_{j}$ and

$$
B^{k} y=\sum_{i=j-1}^{\infty} B^{k} S^{n_{i}} y(i)=B^{m} y(j-1)+\sum_{i=j+1}^{\infty} S^{n_{i}-k} y(i) .
$$

In case that $B^{k} y \in M$, suppose $\left(B^{k} y\right)_{2}=0$. Thus $B^{k} y=(0, a, 0, \ldots)$ with $a \neq 0$. But this impossible since the string $[0, a, 0]$ with $a \neq 0$ only happens in $B^{m} y(j-1)$ when $m=0$, by condition (ii), and $S^{p} y(i)=(0, a, 0, \ldots)$ with $a \neq 0$ only when $p=0$. We then obtain (b).

By (a) and (b) we have that $\overline{\operatorname{Orb}(y, B) \cap M}=U$. Therefore B has an orbit that is somewhere dense but is not everywhere dense.

Observe that B is subspace-hypercyclic for M, since we can repeat the same construction as above: Let $(y(j))_{j \in \mathbb{N}} \in M$ be a sequence of vectors satisfying
(i) $\overline{\{y(j) ; j \in \mathbb{N}\}}=M$,
(ii) $y(j)_{k} \neq 0$ if and only if $k \in B_{j}$,
(iii) $\left|y(j)_{k}\right| \leq j$ for all $k, j \in \mathbb{N}$.

Then the vector

$$
y=\sum_{j=1}^{\infty} S^{n_{j}} y(j)
$$

where $n_{j}:=\sum_{i=1}^{j} m_{i}$, and $m_{j}:=3 \cdot 2^{3 j}-2$, for $j \in \mathbb{N}$, satisfies

$$
\overline{\operatorname{Orb}(y, B) \cap M}=M .
$$

This provides a negative answer to Question 1.
Now observe that the set A contains intervals of arbitrary length, therefore $B^{n}(M) \not \subset$ M for any $n \in \mathbb{N}$. Moreover, A^{c} contains intervals of arbitrary length too, so $M \not \subset B^{n}(M)$ for each $n \in \mathbb{N}$, which yields a negative answer to Question 4.

The following is an example where the density of $\operatorname{Orb}(T, x)$ in a subspace does not imply that T is subspace-hypercyclic for the subspace, which means that the answer to Question 3 is negative too.

Example 3. Grivaux constructed in [3] a hypercyclic operator $T: H \rightarrow H$ on the Hilbert space H such that $T x=x$ for every $x \in H_{1}$, where H_{1} is certain infinite dimensional closed subspace of H. Let z be a hypercyclic vector for T, and let $M:=H_{1} \oplus\langle z\rangle$. It is clear that $M \subset \overline{\operatorname{Orb}(z, T)}$. In contrast, we will show that $\operatorname{Orb}(z, T) \cap M=\{z\}$. Let $y \in \operatorname{Orb}(z, T) \cap M$, then $y=\lambda z+x=T^{n} z$ for some λ, n, and $x \in H_{1}$. Thus, $\left(T^{n}-\lambda I\right) z=x$, which is not possible since the left-hand vector, being the image of z under a dense range operator that commutes with T, is hypercyclic for T [4], and the right-hand vector is fixed for T. This implies that T is not subspace-hypercyclic for M.

Acknowledgements

This work is supported in part by MEC and FEDER, Project MTM2010-14909. The first author was also supported by a grant from CONACYT.
[1] F. Bayart and É. Matheron, Dynamics of linear operators, Cambridge University Press, Cambridge, 2009.
[2] P. S. Bourdon and N. S. Feldman, Somewhere dense orbits are everywhere dense, Indiana Univ. Math. J. 52 (3) (2003) 811-819.
[3] S. Grivaux, Hypercyclic operators with an infinite dimensional closed subspace of periodic points, Rev. Mat. Complut. 16 (2) (2003) 383-390.
[4] K. G. Grosse-Erdmann and A. Peris Manguillot. Linear chaos. Universitext, Springer-Verlag London Ltd., London, 2011.
[5] C. M. Le, On subspace-hypercyclic operators, American Math. Society 139 (8) (2011) 2847-2852.
[6] B. F. Madore and R. A. Martínez-Avendaño, Subspace hypercyclicity, Journal of Mathematical Analysis and Appl. 373 (2) (2011) 502-511.
[7] H. Rezaei, Notes on subspace-hypercyclic operators, Journal of Mathematical Analysis and Appl. 397 (2013) 428-433.

[^0]: ${ }^{1}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F. 04510, México. e-mail: rjimenezmunguia@gmail.com
 ${ }^{2}$ Centro de Investigación en Matemáticas, Universidad Autónoma del Estado de Hidalgo, Ciudad del Conocimiento, Carr. Pachuca-Tulancingo, km 4.5, Pachuca, Hidalgo 42184, México. e-mail: rubeno71@gmail.com
 ${ }^{3}$ IUMPA, Universitat Politècnica de València, Departament de Matemàtica Aplicada, Edifici 7A, 46022 València, Spain. e-mail: aperis@mat.upv.es

