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Abstract

A bounded linear operator T on a Banach space X is called subspace-hypercyclic for a
subspace M if Orb(T, x) ∩M is dense in M for a vector x ∈M . We show examples that
answer some questions posed by H. Rezaei [7]. In particular, we provide an example of an
operator T such that Orb(T, x) ∩M is somewhere dense in M , but it is not everywhere
dense in M .
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1. Introduction

An operator on a Banach space is called hypercyclic if there is a vector whose orbit
under the operator is dense in the space; such a vector is called a hypercyclic vector for
the operator. Hypercyclic operators have been studied for more than twenty years (for
more information see [1] and [4]). Recently, B. F. Madore and R. A. Mart́ınez-Avendaño
introduced in [6] the concept of subspace-hypercyclic operators.

Definition 1. A bounded linear operator T : X → X is called subspace-hypercyclic for
a nonzero subspace M of X if there exists a vector x ∈ X such that Orb(x, T ) ∩M is
dense in M . The vector x is then called a subspace-hypercyclic vector for T .

Rezaei shows in [7] that, if a bounded linear operator T acting on a Banach space
X is subspace-hypercyclic for some subspace M of X and p is complex polynomial, then
ker(p(T ∗)) ⊆ M⊥, which provides an affirmative answer to question (v) of [6]. Also, he
proves as a consequence that, under general additional conditions, a subspace-hypercyclic
operator T for a subspace M of X has a dense linear manifold of M consisting entirely,
except for zero, of vectors that are subspace-hypercyclic for T . More examples and results
of subspace-hypercyclic operators can be found in [5, 6, 7].

In the present paper we answer negatively the following questions from [7]:

Question 1. Let M be a nontrivial subspace of a Banach space X and x ∈ M .
Does Orb(x, T )∩M being somewhere dense in M imply that it is everywhere dense
in M?
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Question 3. Let T ∈ L(X), M be an infinite dimensional subspace and x ∈ M .
Does the density of Orb(x, T ) in M , i.e., M ⊆ Orb(x, T ) imply that T is subspace-
hypercyclic for M?

Question 4. Does there exist a subspace-hypercyclic operator T for a nontrivial
subspace M such that we have neither T n(M) ⊆ M nor M ⊆ T n(M) for each
n ≥ 1?

We introduce some notation. We denote by `2(v) the Hilbert space defined by

`2(v) := {(xi)i∈N :
∞∑
i=1

|xi|2vi <∞},

where v is the weight sequence v = (vj)j∈N = (2−j)j∈N. We denote, as usual, by B the
unilateral backward shift on `2(v) and by S the unilateral forward shift on `2(v).

Observe that

‖Sx‖ =
1√
2
‖x‖,

and hence for every n ≥ 0

‖Snx‖ =
1

2n/2
‖x‖. (1)

2. Counterexamples

We know from [2] that, for linear operators, any somewhere dense orbit is everywhere
dense. The following is an example of a subspace-hypercyclic operator T for certain
subspace M so that there exists a vector y ∈M such that its orbit is somewhere dense in
M but it is not everywhere dense in M ; i.e. we construct a subspace M , a vector y ∈M ,
and a subset U ⊂M with non empty interior, such that Orb(y, T ) is dense in U but it is
not dense in M , which provides a negative answer to Question 1. This operator will have
the additional property that

T n(M) 6⊂M and M 6⊂ T n(M)

for every n ∈ N, which provides a negative answer to Question 4.

Example 2. Let B be the backward shift on `2(v), and let

A := {j ∈ N ; ∃n ∈ N with 2n − 2 < j ≤ 3 · 2n−1 − 2} = {1, 3, 4, 7, 8, 9, 10, 15, . . .}

and
M := {(xj)j∈N ∈ `2(v) ; xj = 0 if j ∈ A}.

We consider the increasing sequence (Bj)j∈N of subsets of Ac given by

Bj = Ac ∩ [1, 2j+1 − 2], j ∈ N.

Let
U := M ∩ {x ∈ `2(v) ; |x2| ≤ 1}.

We will construct a vector y ∈ U which has dense orbit in U but it is not dense in M .
We can find vectors y(j) ∈ U , for every j ∈ N, satisfying
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(i) {y(j) : j ∈ N} = U ,

(ii) y(j)k 6= 0 if and only if k ∈ Bj,

(iii) |y(j)k| ≤ j for all k, j ∈ N.

To do this, e.g., let {z(j) ; j ∈ N} be a countable dense subset of U . For each j ∈ N,
we define x(j) as

x(j)k =

{
z(j)k, if k ∈ Bj and |z(j)k| ≤ j,

0, otherwise.

We have that {x(j) ; j ∈ N} is also a dense subset of U . Indeed, let x ∈ U and ε ∈]0, 1[.
We fix j0 ∈ N such that

∑
k≥j0 |xk|

2vk < ε2/2. Let α := max{|xk| ; k < j0} and j > 2j0 +α
such that ‖z(j)− x‖ < ε/2.

Observe that if k /∈ Bj it follows that k ∈ A or k ≥ 2j+1 − 1. If k ∈ A then xk = 0,
and if k ≥ 2j+1 − 1 then k > j0 since j > 2j0 + α > j0.

Also |z(j)k| > j implies k ≥ j0; otherwise,

‖z(j)− x‖ ≥ |z(j)k − xk|
√
vk > (|z(j)k| − α)2−j0/2 > 1,

which is not possible.
We then have

‖x(j)− x‖2 =
∑

k∈Bj and |z(j)k|≤j

|z(j)k − xk|2vk +
∑

k 6∈Bj or |z(j)k|>j

|xk|2vk

≤ ‖z(j)− x‖2 +
∑
k≥j0

|xk|2vk < ε2,

which shows that {x(j) ; j ∈ N} is a dense subset of U .
Finally, we can set (y(j))j∈N as

y(j)k =

{
2−jk, if k ∈ Bj and x(j)k = 0,

x(j)k, otherwise,

and conditions (i), (ii), and (iii) are satisfied.

We define the vector

y =
∞∑
j=1

Snjy(j),

where nj :=

j∑
i=1

mi, and mi := 3 · 23i − 2, for i, j ∈ N. We will show that y ∈ U and

Orb(y,B) ∩M = U.

Observe that for every j ∈ N, the vector y(j) has its nonzero elements contained in a
block of size 2j+1 − 2. On the other hand a vector in M , starting at position mj + 1, has
a block of size at most 23j of nonzero elements.
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A calculation shows that

nj−1 =

j−1∑
i=1

mi =
3

7
23j − 2j − 10

7
.

Observe that

nj−1 + 2j+1 − 2 =
3

7
23j − 2j − 10

7
+ 2j+1 − 2 < 23j.

We claim that Snjy(j) ∈ M since it has zeros in the first mj positions and starting
at position mj + 1 it has at most nj−1 + 2j+1 − 2 (possibly) nonzero elements. Since
nj−1 + 2j+1−2−2 < 23j the claim follows. Condition (iii) ensures that the series expressed
in y converges, therefore y ∈ U .

We will show that

(a) Bnjy ∈ U and ||Bnjy − y(j)|| < 1/2j for all j ∈ N.

(b) If nj−1 < k < nj for some j ∈ N (n0 := 0), then, either Bky 6∈ M , or (Bky)2 = 0
(and, thus, Bky ∈ U).

Observe that

Bnjy = Bnj

∞∑
i=1

Sniy(i) =
∑
ni<nj

Bnj−niy(j) + y(j) +
∑
ni>nj

Sni−njy(i).

We know that for j ∈ N the largest index where a nonzero element occurs in y(j) is
2j+1-2. If ni < nj then nj − ni ≥ mj > 2j+1, therefore∑

ni<nj

Bnj−niy(j) = 0. (2)

If nj < ni then mi ≤ ni − nj < ni and therefore, using the same argument as above,
each vector Sni−njy(i) is in M , since its only nonzero elements are in a block of size 23j

starting at position mj + 1, therefore∑
ni>nj

Sni−njy(i) ∈M,

and thus Bnjy ∈ U , for every j ∈ N.
By (1), (2) and by (iii) in the construction of (y(j))j∈N we have

||Bnjy − y(j)|| = ||
∞∑

i=j+1

Sni−njy(i)|| ≤
∞∑

i=j+1

√
(2i+1 − 2)i

2ni−nj
.

Also, a simple calculation shows that

∞∑
i=j+1

√
(2i+1 − 2)i

2ni−nj
≤

∞∑
i=j+1

√
(2i+1 − 2)i

2mk+...+mj+1
≤

∞∑
i=j+1

√
(2i+1 − 2)i

22i · 2mk−1+...+mj+1
≤

∞∑
i=j+1

1

2i
.

Therefore we have (a).
Now observe that if nj−1 < k < nj for some j ∈ N then k = m + nj−1 for some

1 ≤ m < mj and

Bky =
∞∑

i=j−1

BkSniy(i) = Bmy(j − 1) +
∞∑

i=j+1

Sni−ky(i).
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In case that Bky ∈ M , suppose (Bky)2 = 0. Thus Bky = (0, a, 0, . . . ) with a 6= 0. But
this impossible since the string [0, a, 0] with a 6= 0 only happens in Bmy(j − 1) when
m = 0, by condition (ii), and Spy(i) = (0, a, 0, . . . ) with a 6= 0 only when p = 0. We then
obtain (b).

By (a) and (b) we have that Orb(y,B) ∩M = U . Therefore B has an orbit that is
somewhere dense but is not everywhere dense.

Observe that B is subspace-hypercyclic for M , since we can repeat the same construc-
tion as above: Let (y(j))j∈N ∈M be a sequence of vectors satisfying

(i) {y(j) ; j ∈ N} = M ,

(ii) y(j)k 6= 0 if and only if k ∈ Bj,

(iii) |y(j)k| ≤ j for all k, j ∈ N.

Then the vector

y =
∞∑
j=1

Snjy(j),

where nj :=
∑j

i=1mi, and mj := 3 · 23j − 2, for j ∈ N, satisfies

Orb(y,B) ∩M = M.

This provides a negative answer to Question 1.
Now observe that the set A contains intervals of arbitrary length, therefore Bn(M) 6⊂

M for any n ∈ N. Moreover, Ac contains intervals of arbitrary length too, so M 6⊂ Bn(M)
for each n ∈ N, which yields a negative answer to Question 4.

The following is an example where the density of Orb(T, x) in a subspace does not
imply that T is subspace-hypercyclic for the subspace, which means that the answer to
Question 3 is negative too.

Example 3. Grivaux constructed in [3] a hypercyclic operator T : H → H on the Hilbert
space H such that Tx = x for every x ∈ H1, where H1 is certain infinite dimensional
closed subspace of H. Let z be a hypercyclic vector for T , and let M := H1 ⊕ 〈z〉.
It is clear that M ⊂ Orb(z, T ). In contrast, we will show that Orb(z, T ) ∩M = {z}.
Let y ∈ Orb(z, T ) ∩ M , then y = λz + x = T nz for some λ, n, and x ∈ H1. Thus,
(T n − λI)z = x, which is not possible since the left-hand vector, being the image of z
under a dense range operator that commutes with T , is hypercyclic for T [4], and the
right-hand vector is fixed for T . This implies that T is not subspace-hypercyclic for M .

Acknowledgements

This work is supported in part by MEC and FEDER, Project MTM2010-14909. The
first author was also supported by a grant from CONACYT.

[1] F. Bayart and É. Matheron, Dynamics of linear operators, Cambridge University
Press, Cambridge, 2009.

[2] P. S. Bourdon and N. S. Feldman, Somewhere dense orbits are everywhere dense,
Indiana Univ. Math. J. 52 (3) (2003) 811–819.

[3] S. Grivaux, Hypercyclic operators with an infinite dimensional closed subspace of
periodic points, Rev. Mat. Complut. 16 (2) (2003) 383–390.

5



[4] K. G. Grosse-Erdmann and A. Peris Manguillot. Linear chaos. Universitext,
Springer-Verlag London Ltd., London, 2011.

[5] C. M. Le, On subspace-hypercyclic operators, American Math. Society 139 (8) (2011)
2847–2852.

[6] B. F. Madore and R. A. Mart́ınez-Avendaño, Subspace hypercyclicity, Journal of
Mathematical Analysis and Appl. 373 (2) (2011) 502–511.

[7] H. Rezaei, Notes on subspace-hypercyclic operators, Journal of Mathematical Anal-
ysis and Appl. 397 (2013) 428–433.

6


