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ABSTRACT 

In this study, Schlieren visualization tests have been performed for a prototype diesel common rail 

direct-acting piezoelectric injector, to understand the influence of fuel injection rate shaping on the 

vapor spray development under evaporative and non-reacting conditions. This state of the art injector 

presents a particular feature that permits full needle lift control through a parameter referred to as piezo 

stack charge level, enabling various fuel injection rate typologies. A fast camera and a two pass 

Schlieren visualization setup have been utilized to record high speed images of the injection event and 

later analyze, through the vapor phase, the transient evolution of the spray. The tests have been 

performed employing a novel continuous flow test vessel that provides an accurate control of ambient 

temperature and pressure up to 1000 K and 15 MPa respectively.  The effect of ambient temperature, 

injection pressure, needle lift and needle lift profile were studied. Data obtained is correlated to previous 

liquid length and injection rate measurements of the same injector. Results show, as expected for all 

cases, that instant vapor penetration rate is closely related to instant injection rate. This is confirmed by 
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the injection pressure test results, along with those obtained for the three different piezo stack charge 

levels, both affecting the vapor penetration in a similar way. Nevertheless, results obtained for the three 

different charge levels show that the influence of the charge level and the injection pressure differ in the 

very beginning of the injection event, where the spray development is largely determined by needle lift 

and not injection pressure. Ambient temperature alone seems not to have and important effect on vapor 

penetration. Finally, the effects of the needle lift profile in the instant injection rate and vapor 

penetration are presented, confirming the strong relation between these three parameters, and confirming 

also that the needle lift plays a determinant role in the spray development, especially at the early stages 

of the injection process. Both boot and ramp shaped injections proved the ability to strongly influence 

the vapor penetration rate. In comparison to the square shaped injection, the effect of the ramp shaped 

injection delays the vapor penetration right from the start of injection while the effect of the boot shaped 

injection takes considerably longer to become noticeable. From the results, the needle lift control feature 

has proven to be a very versatile tool for engine designers to control the injection process as desired, 

opening a new path with a plenty of room for improvement. 
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1. INTRODUCTION 

Internal combustion engines have played a very important role in the world since their introduction 

around a century ago. They opened infinite new possibilities for people and shaped the world that we 

now know. However, recent concerns regarding the environmental impact of gaseous and particulate 

emissions that engines produce, along with the ever more demanding fuel consumption standards, have 

pushed the industry into the research of new technologies and strategies, in between which, the injection 

process takes a determinant part [1][2][3]. 

Current development of piezo-actuated injectors is the direct acting system, where a piezoelectric 

actuator has direct control on the injector needle lift allowing for a fast and precise control of the fuel 

flow through the injector nozzle. This feature is unique and important, not only because it introduces full 

control of the needle lift for the first time, but also because it enables the ability to control the injection 

event in both the stationary and transient stages. Likewise, the ability to control the actual needle lift 

from the beginning of the injection implies faster response and better control of the injection event 

timing. 

Several studies have been performed in last decades in order to predict the spray behavior as well 

as to aid the development of numerical models, either based on physical assumptions or simply 

interpolating experimental data [3][4][5][6][7]. Although there has been research works performed to 

analyze the injection event using conventional servo-hydraulic injectors, only a few are discussing the 

effect of the partial needle lift on the injection process [8][9][10]. In order to develop a better 

understanding of the effect of partial needle lift on the atomization and evaporative performance of the 

injector, this research has carried out an experimental study to measure vapor phase penetration of the 

fuel spray produced by a direct acting injector, using a controlled 2-pass Schlieren setup. 

The study has been performed in a high temperature and high pressure test rig, capable of reaching 

15 MPa ambient pressure and 1000 K ambient temperature. The large optical accesses and the wide test 
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section permit studying the spray with high accuracy in a homogeneous temperature and nearly 

quiescent environment. Different parameters have been varied: ambient temperature, injection pressure, 

needle lift (piezo stack charge level) and needle lift profile. 

The research carried out, shows that the needle lift control turns out to be largely determinant in 

the vapor spray development process, suggesting that all the particularities of the new technology offer 

the engine design engineers a wide variety of injection strategies to think of. Therefore, a deep 

understanding of the injector performance in all the range of its operating possibilities has to be reached. 

This article is structured in five parts: first the present introduction, next the experimental setup 

with an explanation of the test rig and the optical hardware utilized, later the main results and analysis 

are exposed, next an empirical correlation that predicts the vapor penetration as a function of the spray 

momentum flux is presented to finalize with the main conclusions of the paper. 

 

2. EXPERIMENTAL METHODOLOGY AND SETUP 

2.1 THE FUEL INJECTION SYSTEM 

A common-rail injection system was used. It is constituted by a high pressure pump and a 

conventional rail with an electronic pressure regulator, which allows fuel injections under high (up to 

200 MPa) and constant rail pressure [2][3][11]. The injector temperature was kept close to 343K using a 

special injector holder designed to have coolant flowing at a controlled temperature in direct contact 

with the injector body. The study was performed using commercial Diesel fuel with a density of 812 

kg/m3 (at 70º) and kinematic viscosity of 1.9 10-6 mm2/s (at 70º). The fuel was injected using with a 7-

orifice nozzle (Outlet diameter D0 = 156 µm, k-factor = 1.5 [8]) which permits full control of the needle 

lift position through the voltage profiles applied to the piezo stack [9]. The complete injection system is 

electronically controlled by the ECU and all the settings are introduced digitally. 
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2.2 THE HIGH PRESSURE AND HIGH TEMPERATURE TEST RIG 

The tests have been performed in a high temperature and high pressure test vessel where the in-cylinder 

thermodynamic conditions of a Diesel engine at the time of injection can be reproduced. The rig allows a 

maximum ambient temperature of 1000K and maximum pressure of 15 MPa in the test chamber, which 

is illustrated in Figure 1. As can be seen from the figure, the test section has three large optical accesses 

(128 mm in diameter) placed orthogonally in order to have complete optical access to the injection 

event. The complete test rig functioning and principles are precisely described in [10]. 

There are several facilities in the world capable of operating at similar conditions 

[12][13][14][15]. Still, this particular test rig is capable of obtaining nearly quiescent, and steady 

thermodynamic conditions for very long periods of time. This design allows a better (and easier) control 

and replication of real engine-like test conditions [13] 

Engines with optical access are commonly used for similar purposes [16][17][18][19][20][21], 

but although they replicate more realistic conditions, they also introduce a lot of factors that could be 

undesired for the scope of certain studies, where a more controlled environment would be better suited. 

In these engines fuel distribution is affected by swirl and turbulent in-cylinder flow, and visualization is 

usually limited due to the geometric and space limitations of an operating engine. Alternatively, 

measurements under steady ambient conditions are more convenient to study and isolate spray sub-

processes. The steadier thermodynamic conditions provide a high test repetition rate and quality, 

improving the global accuracy of the data acquired. In this study, the vessel has been filled with nitrogen 

to guarantee the evaporative but non reacting conditions sought. 

2.3 OPTICAL SETUP 

The Schlieren technique is based on directing a beam of parallel rays of light across a region of 

interest, collecting this beam and filtering or discarding some of the deflected light, to finally form a 

shadowgraph in which different pixel intensities represent different refractive indexes in the region of 

interest [21]. 
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A scheme of the optical setup is represented in Figure 2. Being the injector nozzle a multi-hole 

nozzle, frontal visualization was necessary, which suggests the use of a two pass setup with a mirror just 

beneath the injector nozzle. This scheme shows the path of the light throughout the whole setup 

including the high pressure and high temperature vessel. The yellow and orange translucent beams 

represent light paths before and after reaching the mirror, respectively. The beam splitter is employed to 

separate light before and after it has been through the test area. Both the single point light source and the 

Fourier filtering diaphragm are purposely located at the focal length of Lens B. 

The filtering or discarding device utilized in this project consists of an adjustable diameter 

diaphragm which lets light past its center hole while blocking the rest. This would fall in the category of 

a circular type cut-off device, which performs symmetrically if everything is properly aligned. The 

diameter of the center hole is adjustable so that it is possible to decide how much light is desired to be 

allowed into the camera. This adjustment is what actually controls the system’s sensibility, by letting the 

user decide how deflected is the light that is being blocked. 

Lens A was introduced to better focus the light source into a smaller and more intensified single 

point, which is important as this is closely related to the quality of the collimating. The utilization of just 

one lens for collimating and collecting (Lens B) was decided in order to reduce the length of the test area 

to the minimum possible, thus maximizing the collection angle. 

Table 1 presents the details of the optical setup prepared and the devices utilized in it. The 

pixel/mm ratio obtained, along with the image size in pixels produce a considerably large image; a field 

of view of approximately 114mm x 114mm. For the camera utilized, the image size obtained is due to a 

slight sacrifice in acquisition speed, which could be higher along with a smaller image. Nevertheless, the 

speed was considered to be enough for the vapor penetration rates involved and the field of view 

obtained permits the visualization of vapor up to almost the maximum permissible by the window 

diameter which is 128 mm. 
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2.4 IMAGE PROCESSING 

The image processing is one of the most important parts of any visualization data analysis [4][22]. 

Images were processed with purpose developed software. During processing, each image is first divided 

into 7 sectors, each for one outlet orifice and thus one spray. Each spray is processed separately, by 

masking the image in order to get only the spray of interest. The algorithm details are described in [10], 

although [22] and Figure 3 illustrate the principle clearly. The image is inverted in order to have the 

spray as the high luminosity area and the threshold is calculated as the 0.5% of that image’s dynamic 

range [10][23]. Then, small areas that result of background noise are ruled out and finally the spray 

contour is “cleaned” free of small noise fluctuations through a pixel connectivity evaluation. This last 

step could be seen as a contour smoothing, as Figure 3 illustrates. Hence, the characteristics of the spray 

shape are obtained by analyzing its contour: 

- The vapor spray penetration is calculated detecting the point on the contour that is the furthest 

from the outlet orifice. 

- The spreading angle is calculated as the angle included between the two lines that fit the points 

on the spray contour in a specific region, and are forced to go through the outlet orifice. The 

region of the spray contour that is fitted goes from a 25% to 60% of the vapor spray 

penetration. The part close to the nozzle outlet is excluded because no Schlieren effect could 

be visualized there due to the injector and the isolator ceramic being non-reflective. 

2.5 SETUP LIMITATIONS 

The mirror is essential to the proper performance of the optical setup. The mirror had four non-

reflective areas in its surface: three holes for bolts that hold the mirror against the injector holder and a 

center hole to fit the injector nozzle. The center hole diameter is larger than the nozzle body outer 

diameter, in order to fit a cylindrical ceramic isolator that helps isolating the nozzle from the high 

temperatures. These non-reflective parts of the mirror plane interrupt visualization, since light not 

reflected is never collected at the sensor of the camera. This meant that the clear visualization of three of 
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the seven sprays was disturbed by these bolts, as the sprays traveled across the bolt’s head diameter. 

This also means that since the nozzle is non reflective either, spray contours could only be detected after 

a few millimeters of penetration had been reached. Hence, the three sprays that traveled through the 

bolts were excluded from the final data averaging, to ensure that the averaging is done from “clean” 

data. Therefore, results presented regard only the average of four of the seven sprays. 

2.6 DATA AVERAGING 

In order to obtain the mean value of the vapor spray penetration and to filter the experimental 

noise, a moving average technique has been implemented. In each single experiment, a data point yi is 

obtained at an instant ti, which corresponds to the time elapsed after the start of the injection. The 

average value yi at the instant ti is obtained following this procedure: 

 The data set falling in the interval ti ± Δt /2 is considered. An optimal time window Δt of 150 µs 

has been chosen for the current test. 

 Over the data set selected, a linear fit is applied and the value of yi is obtained substituting ti in 

the equation obtained in the linear fit. 

 This algorithm is repeated moving ti along the time line with 15 µs time step; then the averaged 

curve is obtained. 

2.7 IMAGE SYNCHRONIZATION 

Being a two pass system, the first few millimeters of spray penetration were not possible to catch 

because the injector nozzle and its ceramic isolator are not reflective. In addition, the triggering mode of 

a fast camera causes uncertainty in the start of the recording. 

It is known that the liquid and vapor penetration curves are not distinguishable at the first part of 

the injection process [18][20][24], so the best approach was to perform a time-alignment of the vapor 

penetration curves with the previously obtained liquid penetration curves [9] so that they coincide with 

each other in the early stages of the injection process. The SOI for liquid penetration has been 
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extrapolated properly in [9], due to a much higher sampling rate along with the visualization setup 

permitting the visualization of the spray from the very first few millimeters. 

2.8 EXPERIMENTAL TEST PROGRAM 

The test program has been designed to understand the effect of partial needle lift in the vapor 

penetration during both the transient and the steady part of the injection. Tests have been performed 

varying the ambient temperature, injection pressure and needle lift, and each test point was repeated 15 

times. The conditions tested are described in the test plan summarized in Table 2. In particular, needle 

lift tests were separated into three different cases: 

- Square shaped injection. The first case was the square shaped injection, where the needle lift 

profile emulated a square shaped profile similar to those found in conventional injectors. In this case, 

three different piezo stack charge levels were tested, considering that the charge level controls the needle 

lift, so the lower the charge level the lower the maximum needle lift. 

- Boot shaped injection. The second case was the boot shaped injection, which consists of a two 

stage squared shaped injection where the needle lift is controlled in such way that each stage has a 

particular mass flow rate. In the first stage, the needle is rapidly lifted to a certain value which yields a 

stabilized injection mass flow rate of 40% of that of the square shaped injection in the high charge level 

case. After this first stage, the needle lifts rapidly to the second lift value which yields the same injection 

rate as the square shaped injection in the high charge level case. 

- Ramp shaped injection. The lift profile in this case follows a ramp, that lifts the needle gradually, 

and not rapidly like in the square case, to the maximum lifts which yields, again, the same injection rate 

as the squared shaped injection in the high charge level case. 
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3. RESULTS AND DISCUSSION 

In this section, vapor penetration results are presented. Each vapor penetration curve (continuous 

lines in all penetration figures) has been plotted over the corresponding liquid penetration curve (dashed 

lines in all penetration figures) obtained in [10]. The injector’s instant mass flow rates were previously 

measured in [8] for each condition in the test plan and are also represented in the following figures to 

better understand the behavior of the injector. 

3.1 INFLUENCE OF THE AMBIENT TEMPERATURE 

Two ambient temperatures were tested, and the effects on vapor penetration were studied. As 

expected, ambient temperature does not affect the vapor penetration in any significant way. The same 

cannot be said about the liquid penetration which clearly depends on ambient temperature, being the 

later a determinant factor in the vaporizing process. But once the fuel is vaporized the spray 

development is not affected by temperature but by other more determinant factors, like spray momentum 

or ambient density, for instance. It is important to remember that the ambient pressure was kept constant 

at 50 bar, so the temperature difference alone caused a density variation of less than 8%, which is not 

significant in terms of penetration. 

3.2 INFLUENCE OF THE INJECTION PRESSURE 

As previously exposed in Table 2, two injection pressures were tested, and the effects over vapor 

penetration were studied. Figure 4 illustrates the influence of the injection pressure. As expected, an 

increase in injection pressure produces an increase in vapor penetration rates. These results agree with 

those previously obtained for the momentum flux and mass flow rates of this same injector by the 

authors in [8][9] and the relation between mass flow rate, momentum flux and outlet velocity [25][26]. 

Even so, the injection pressure effect is noticeable only after the spray has penetrated to a certain extent, 

since at the beginning of the injection the spray development is more dependent on the actual needle lift 

than on the injection pressure, being the former the determinant factor at this stage, as it can be seen in 

the next section. 
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3.3 INFLUENCE OF THE PIEZO STACK CHARGE LEVEL IN THE SQUARE SHAPED LIFT 
PROFILE 

Three different piezo stack charge levels were tested for the square shaped lift profile, and the 

effects over vapor penetration were studied. Figure 5 illustrates the influence of the piezo stack charge 

level. In this case, only the low temperature case is presented, although the other case shows similar 

results. Furthermore, it has been seen that temperature does not play a key part in the vapor spray 

development. The influence of the piezo stack charge level is clearly appreciable in Figure 5, and the 

effect is similar to that of the injection pressure: increasing the piezo stack charge level increases the 

injection rate thus increasing the vapor penetration rate. This, again, agrees to what the authors found in 

[9][8], where the momentum flux of the injection spray increased with the piezo stack charge level. This 

result is expected since the partial needle lift causes a pressure drop in the nozzle entry, and this drop is 

reduced as the needle lift is increased. 

Nevertheless, there is a slight difference between the injection pressure effect and the piezo stack 

charge level effect, and it is right after the start of injection. As stated before, at the beginning of the 

injection process it seems that, with this injector, the spray development is more dependent on the actual 

needle lift than on injection pressure, because the needle is not hydraulically lifted as it is in a 

conventional injector. This means that the piezo stack charge effect over spray development is 

noticeable from the start of injection, unlike the injection pressure effect. This behavior was noticeable 

already when the first hydraulic characteristic measurements were performed in [8] at the beginning of 

the study of this injector, and it also appeared in the liquid penetration curves shown in [10], measured 

later. The results presented, along with those obtained in these two previous studies, clearly confirm that 

this is a consistent behavior and that the needle lift plays a key role in both the transient and the steady 

stages of the injection process. 

The needle lift results presented regard three different needle lift values, but always under a square 

shaped lift profile similar to that of conventional injectors. Thus, they lead the way to think of the effects 
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a particular lift profile would have in the vapor penetration values and rates. The study of the needle lift 

profiling is covered in the next two cases presented. 

3.4 INFLUENCE OF THE BOOT SHAPED LIFT PROFILE 

This section presents the case of the boot shaped profile and its effects on vapor penetration, as 

illustrated in Figure 6. The equivalent (in rail pressure and ambient temperature) high charge level 

square shaped case is shown in black as a reference for comparison. 

In this case, only the low temperature case is presented, although the other case shows similar 

results. In the first part of the injection, the vapor penetration curve clearly shows how the reduction in 

the injection rate reduces also the penetration rate. On the same lines, it can be seen that, when both 

injection rates converge to the same value, in the second stage of the boot shaped profile, the penetration 

curves become parallel, indicating a similar penetration rate. However, this cannot be observed in the 

high pressure case, in which both the square and boot shaped sprays reach the visualization limit before 

getting to the equal injection rate part of the injection process. 

From these results, it could be said that the boot shaped profile is able to delay or shift the vapor 

penetration in time, but doing this while maintaining the same SOI timing, which surely proves to be a 

very versatile feature for the engine designer to control the injection event development as desired. 

3.5 INFLUENCE OF THE RAMP SHAPED LIFT PROFILE 

This section presents the case of the ramp shaped profile and its effects over vapor penetration, as 

illustrated in Figure 7. The equivalent (in rail pressure and ambient temperature) high charge level 

square shaped case is shown in black as a reference for comparison. 

Again, only the low temperature case is presented. It can be observed in Figure 7 that the ramp 

shaped injection reaches its stable injection rate flow considerably slower than the square shaped 

injection. This has an effect somewhat similar to that of the boot shaped injection, delaying the vapor 

penetration or off-setting it in the time domain. However, although both effects seem similar (both 

shifting the penetration curve in the time domain but maintaining the same SOI timing as the square 



FUEL; Volume: 113; Pages: 257-265; DOI: 10.1016/j.fuel.2013.05.057;  NOV 2013 

shaped case) they still differ slightly: the delay on the ramp shaped injection occurs right from the start 

of injection while it takes longer for the boot shaped injection effect to be noticeable. This difference 

may seem small, but can be a key factor when determining how to profile the injection when trying to 

control the injection event to achieve a given target. 

This early delaying effect was already observed in the piezo stack charge level tests (for the square 

shaped profile), where unlike in the injection pressure tests, the vapor penetration was affected from the 

beginning of the injection process. The ramp shaped profile effect could be seen as an extension of this, 

where the penetration rate is influenced even more, from the start of injection. This, once more, confirms 

the importance of the injector needle lift and its powerful influence on the spray development. 

After this study, it is clear that the needle lift control is a very strong tool to manage the vapor 

spray development, producing effects that were not possible to get with conventional injector control 

parameters. Nonetheless, in this research work only three profiles were tested but there exist infinite 

different variations to think of, each of them would have different outcomes in the liquid and vapor 

spray developments. In addition, it is important to mark that the results obtained in this study along with 

those obtained in previous works presented in [9] and [10], open room for a lot of different questions 

that could lead to further studies regarding the influences that this technology could have, not only on 

the inert injection spray, but also in the reactive spray and the complete engine performance. 

3.6 CORRELATION FOR THE VAPOR PHASE PENETRATION 

Data gathered in this study allowed the fitting of an empirical correlation that would permit future 

predictions of the vapor penetration for this injector. There have been various approaches for penetration 

correlations in the literature, some of them taking into account the injection pressure, while others rely 

on the momentum flux measurements of the spray. In this case, the base correlation presented in [27] 

was adopted. However, the power coefficients were left as additional fitting parameters for the model to 

better reproduce the experimental data, as shown in the equation (1): 
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 1
4 tan 2

a b c
aS k M t          (1) 

Where S represents vapor spray tip penetration, k is just a proportioning constant, ρa is the ambient 

density, M is the momentum flux, t is the time for which the penetration S is being predicted and θ is the 

spray spreading angle. The previous equation is then fitted to the experimental data through a nonlinear 

regression, and all the constants are adjusted for the best fit using the Levenberg-Marquardt algorithm 

[28] for nonlinear least squares to compute non-robust fits. 

The experimental data utilized for the fit, consist of the combination of the vapor phase 

visualization results, with the hydraulic measurements. For each given condition of the test plan, there is 

a time-wise penetration vector with the corresponding time vector. Ambient density is fixed by the 

ambient temperature and pressure for that test condition. For those same conditions, the momentum flux 

and spreading angle are the time-average calculated in the stabilized region of the momentum flux curve 

[8] and the spreading angle time response obtained in this study from the Schlieren images. This implies 

that the model “sees” the influences of injection pressure and needle lift as consequences of the 

corresponding momentum flux and spreading angle introduced. This also implies that the correlation 

does not “see” the influence of ambient density, which was kept out of the scope of this study and thus 

its coefficient was kept constant. 

It is important to highlight that the experimental data was cut to a minimum penetration of 20 mm, 

to ensure that the model fits the data correctly the region of interest which is after the injection has 

stabilized. On the upper limit, it can be seen in Figure 9 that data is available up to the visualization limit 

which is around the half of the width of the image (114 mm). Table 3 presents the results obtained for 

coefficients through the nonlinear regression. Looking at the results the exponents found for spray 

momentum (0.21) and for the time exponent (0.6) are in accordance with exponents found in theoretical 

studies [27]. 



FUEL; Volume: 113; Pages: 257-265; DOI: 10.1016/j.fuel.2013.05.057;  NOV 2013 

Measuring momentum flux is considerably easier than visualizing the vapor phase spray 

development, especially for a multi hole nozzle, so the momentum flux approach surely presents a great 

advantage. Utilizing momentum flux in the correlation also has the advantage of including in the 

regression the effects of the injection pressure. These are the two main reasons why the correlation is of 

great value, since it demonstrates that injection pressure and partial needle lift can be modeled simply by 

their influence on spray momentum. This had already been proved for the injection pressure [27], but 

this study also validates for the first time the approach for partial needle lifts. 

Figure 8 shows the modeled data plotted over the corresponding experimental data. This 

demonstrates how the effects of the needle lift and injection pressure can be reproduced by the model, 

with a correlation coefficient R2 =  0.984, by implementing the momentum flux approach. 

Figure 9 depicts the experimental data vs. the predicted data. A linear relation between the two can 

clearly be observed which suggests, once more, good agreement between the model and the results 

obtained. 

4. SUMMARY AND CONCLUSIONS 

The objective of this study was to understand the influence of a certain group of variables in the 

vapor spray development. The effects of ambient temperature, injection pressure, needle lift and needle 

lift profile were studied in a novel, constant flow high pressure and high temperature test rig. The facility 

emulates in-chamber conditions at the time of injection by means of pressurized and heated gas, to a 

maximum pressure and temperature of 150 bar and 1000 K respectively. The main advantage of this 

constant flow facility is that it can maintain test conditions for a considerable time, so boundary 

conditions at the time of injection can be precisely controlled. 

First, results show that the ambient temperature alone seems not to have an important effect on 

vapor penetration. Therefore, these results were not presented as they were not considered relevant, 

although it can be indirectly appreciated in Figure 4. Results also show that the needle lift and injection 
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pressure affect the vapor penetration and spreading angle in a similar way. An increase in either of the 

two will cause an increase in the vapor penetration rate. This was expected because of the results the 

authors presented in [8][9]. On the other hand, the beginning of the injection process seems to be more 

dependent on the actual needle lift than on the injection pressure, so the effect of the charge level can be 

noticed right after the SOI while the injection pressure needs a certain spray development to show its 

effect. This also suggests that needle lift profiling would delay the vapor penetration curve, as was 

confirmed later by the results, and depending on the actual needle lift profile different outcomes can be 

obtained. In comparison to the square shaped injection, the effect of the ramp shaped injection delays 

the vapor penetration from the start of injection, while the effect of the boot shaped injection takes 

considerably longer to become noticeable. The needle lift profile tests proved that the ramp and boot 

profiles are two different approaches that a particular engineer could follow to control the vapor 

penetration at will. 

Finally, an empirical correlation for the vapor phase spray penetration was obtained through a 

nonlinear regression of the experimental data. Predicted data shows good agreement with the 

experimental results, and a clear linear correlation can be observed between the two. 

The spray penetration rate is a key factor in the combustion process, since it has a great influence 

in the air utilization and mixing process [24]. With these results it is possible to say that engine design 

engineers could now control the vapor penetration rate not only with the injection pressures but also with 

the needle lift and needle lift profile. This is a unique and novel feature of this injector and these results, 

along with those obtained in [8][10], open room for different questions that could lead to further studies 

regarding the influences that this technology could have over, not only the inert injection spray, but also 

the reactive spray and the complete engine performance. 
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Appendix A equations 

Eq. (A.1)  1
4 tan 2

a b c
aS k M t   
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Appendix B Figure captions 

Fig. (B.1) Figure 1 High temperature and high pressure visualization test rig. 

Fig. (B.2) Figure 2 Scheme representing the optical setup. 

Fig. (B.3) Figure 3 Image sequence example. Top left: original image. Top center: inverted 

image. Top right: image after masking and threshold binarization. Bottom left: 

image after small area filtering. Bottom center: image after pixel conectivity 

evaluation. Bottom right: final contour detected and plotted over original image. 

Fig. (B.4) Figure 4 Influence of the injection pressure in the vapor penetration. a) Tamb = 

870K, ch% = med.  b) Tamb= 950K, ch% = med. 

Fig. (B.5) Figure 5 Influence of the piezo stack charge level in the vapor penetration. a) 

Tamb = 870K, Pinj = 600 bar. b) Tamb = 870K, Pinj = 1500 bar. 

Fig. (B.6) Figure 6 Influence of the boot shaped lift profile in the vapor penetration. a) 

Tamb = 870K, Pinj = 600 bar. b) Tamb = 870K, Pinj = 1500 bar. 

Fig. (B.7) Figure 7 Influence of the ramp shaped lift profile in the vapor penetration. a) 

Tamb = 870K, Pinj = 600 bar. b) Tamb = 870K, Pinj = 1500 bar. 

Fig. (B.8) Figure 8 Vapor spray tip penetration for the three charge levels tested, 

experimental data vs. fitted model for a) Tamb = 870K, Pinj = 600 bar and b)  

Tamb = 870K, Pinj = 1500 bar. 

Fig. (B.9) Figure 9 Experimental data vs. predicted data. 
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Appendix C Table captions 

Tab. (C.1) Table 1 Details of the optical setup and devices. 

Tab. (C.2) Table 2 Experimental test program. 

Tab. (C.3) Table 3 Fitted experimental correlation coefficients 
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Table 1 Details of the optical setup and devices. 

Acquisition camera Phantom V12 CMOS high-speed camera 
Acquisition frame rate [frames/second] 14834 
Acquisition time step [µs] 67 
Camera lens Nikkor 50mm 1:1.8 
Light source STORZ Xenon NoVA 300 
Lens A Nikkor 50mm 1:1.8 
Lens B TSI f = 450mm 
Beam splitter Edmund Optics 50:50 
Mirror Custom made stainless steel polished mirror 
Image size [pixels] 608 x 608 
Image pixel/mm ratio [pixel/mm] 5.33 
Image size [mm] 114 x 114 
Number of repetitions per test point 15 

 

Table 2 Experimental test program. 

Parameter Value - type Units 

Fuel 
Commercial 
Diesel 

- 

Orifice diameter 0.152 mm 
k-factor 1.5 - 
Energizing time 3200 μs 
Injector coolant temperature 343 K 
Ambient gas pressure 50 bar 
Ambient gas temperature 870 - 950 K 
Injection pressure 600 - 1500 bar 
Needle lift profiles  square-boot-ramp  - 
Piezo stack charge Ch% (square profile only) low-med-high - 
Oxygen concentration 0 %(vol.) 

 

Table 3 Fitted experimental correlation coefficients 

Coefficient Value 
k 4.75 
a 0.21 
b 0.60 
c -0.10 
R^2 0.984 

 



FUEL; Volume: 113; Pages: 257-265; DOI: 10.1016/j.fuel.2013.05.057;  NOV 2013 

 

Fig 1 
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Fig 5 

 

 

Fig 6 

 

 



FUEL; Volume: 113; Pages: 257-265; DOI: 10.1016/j.fuel.2013.05.057;  NOV 2013 

 

Fig 7 
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Fig 9 


