
High-Performance Architectures for
High-Radix Switches

∼ PhD. Dissertation ∼

Gaspar Mora Porta

Valencia, December 2008

Advisors: José Flich Cardo and José Francisco Duato Marín

�Arquitectura de los sistemas informáticos en red y sistemas empotrados�

DISCA - Departamento de Informática de Sistemas y Computadores

ii

Abstract

As the optimal radix for switches increases due to the bene�ts in lower
latencies, overall reduction in cost and power consumption; the traditional
switch architectures are no longer valid because of either low-performance or
non-scalability with the number of ports.

This dissertation proposes a new switch architecture suitable for high-
radix switches called Partitioned Crossbar Input Queued (PCIQ) that deals
with one of the main constraints in high-radix switch design, the excessive
memory requirements. Also, in general terms, PCIQ forms a new family of
switch microarchitectures.

PCIQ relies on a smart partition of the crossbar into sub-crossbars, thus
requiring less memory resources than other proposals for high-radix, yet ob-
taining high-performance and also increasing the arbiter e�ciency. PCIQ
uses two round-robin packet-based arbiters (one for each crossbar) that ex-
hibit a linear cost and a logarithmic response time as the radix of the switch
increases.

Here it is shown that PCIQ exhibits a cost (measured in terms of mem-
ory requirements, crossbar complexity and arbiter complexity) similar to or
lower than basic organizations like CIOQ. However, it is able to achieve max-
imum switch e�ciency for uniform tra�c distribution, thus leveling costly
organizations like BC.

The other big issue on high-radix switches is the HOL blocking problem,
which reduces dramatically the switch performance. Traditional solutions
for removing the HOL blocking problem were based on VOQ schemes, but
having high number of ports on a high-radix switch prevents the use of any
of them. In this dissertation, a new congestion management technique has
been proposed. This solution is called RECN-IQ, is speci�c for IQ switches
and di�ers from the original RECN idea (suitable only for CIOQ switches)
in being highly e�cient and simple to implement, reducing the memory
requirements to the maximum. RECN-IQ introduced by �rst time a novel
statistical approach for detecting congestion using just a single queue per
input port.

By combining the PCIQ microarchitecture with RECN-IQ, a new switch
architecture (called here PCIQ-enhanced) is derived and evaluated in this
dissertation. The PCIQ switch architecture inherits the bene�ts of the Par-

iii

iv

titioned Crossbar microarchitecture in reducing the memory requirements
for high-radix designs with the power of a congestion management technique
that removes the HOL blocking dynamically, thus achieving maximum switch
performance under all types of tra�c.

We have seen that in modern interconnection networks it is mandatory
the use of an e�ective congestion management technique in order to keep net-
work performance at maximum level under congestion situations. Therefore,
in this dissertation we describe the new congestion management technique
(RECN-IQ) suitable for any type of IQ switches (which includes PCIQ).
The idea behind RECN-IQ is, starting with a simple IQ switch with a single
queue per input port, to add some extra queues dynamically allocated for
congested packets. Congestion is detected as soon as HOL blocking begins
to act, setting aside (in those extra queues known as SAQs) the congested
packets in an e�cient manner. Therefore, HOL blocking is completely elim-
inated (as proven by the simulation results). The hardware requirements for
RECN-IQ, as we have seen, are reduced, making feasible its implementation
on any IQ-based switch architecture like PCIQ.

In order to prove that fact, a feasible and realistic switch architecture im-
plementing RECN-IQ has been proposed and described in detail. Moreover,
we have detailed every functional unit and structure required to implement
RECN-IQ on an Input-Queued switch architecture. This is the �rst time
since the RECN proposal back in 2005 that a RECN-like congestion man-
agement technique has been implemented in such a detailed level.

Results proved that by using RECN-IQ switches, the network will bene�t
from low cost switches and high-e�ciency under any type of tra�c pattern
or network circumstances. All this makes the network predictable and stable
in performance, no more drops in throughput because of congestion.

Acknowledgements

Above all I would like to acknowledge my darling Raquel. We have walked
together this life since we decided to share our lives many years ago, helping
each other, growing, and sharing many experiences jointly. She was respon-
sible of supporting me in pointing my career towards computers, so I could
�nally pursue my passion since I had my �rst computer (a C-64 by the way).
She has been my muse all this years; inspiring me in putting passion, e�-
ciency and love in this job. For that and many other moments in which she
has been essential, this work should be honored to her as well. This work
represents an academic milestone for us as a couple. Now it should be time
for us to have her pursuing her PhD in Physics.

Of course, I am especially grateful to my two advisors, José Duato and
José Flich for guiding and inspiring me during all my PhD studies. Knowing
both of them has been one of the best things in my life.

José Duato opened to me this world of interconnection networks and
computer architecture. The moment I met him I realized the amazing person
I had in front of me. He is one of these persons that make history, with a
mind so powerful and stimulating that can really change the world, all with
humility and friendliness. He has been a role model to follow and I've been
more than honored by his friendship and guidance these years; his ability
to �nd the best approach and strategy for solving any problem still amazes
me. Duato gave me the opportunity to join the Parallel Architectures Group
(GAP) and I am absolutely indebted to him.

Likewise, in José Flich I also discovered a truly friend. He taught me
important lessons of hard work, and enthusiasm for research. I am extremely
happy that I could share a lot of moments with him these past years. I really
thank him for mentoring me during my stay at the GAP; always ready for
helping like a good close friend should be. Working with him is always a
pleasure; he can always provide a smart overview on every subject we are
working on. Also, we made such a good team, not only in the laboratory
but in the sport courts as well, where we retired undefeated.

I would like to thank my family for understanding my dedication to this
work that stole so many moments from them. Apart from their unconditional
love and support there are many things I have to thank them. When I was a
kid, my mother introduced me into the �ne arts and creativity; helping me in

v

vi

developing my creativity and sense of esthetics in every work I am involved.
From my father I learned the importance of the logic and having a structured
way of thinking. He approached to me the wonderful world of mathematics
and I am really thankful to him for that. Both of them helped me in providing
the culture resources I needed to grow; either through enjoyable lessons and
conversations, or with the appropriate books I always found at home. I have
to thank my grand-parents from whom I learned the same educated values;
they provided me with a stimulating environment as well. They showed to
me the importance of language precision, respect and humbleness. Thanks
to my brother for helping me in growing; he has been always a true support
and still encourages me to enjoy life and challenge the status-quo. In the
same way, I am really grateful to my family in-law for their support.

I have to acknowledge Manuel López Pellicer for introducing Duato to
me. Manuel was key for starting this period in my life at the Parallel Ar-
chitectures Group (GAP) as a PhD student. As this dissertation represents
the end of that period, I have to thank all the people I had the luck to meet
there. I specially thank Blas for being my friend there; given that we started
at the same time in a similar position, our paths at the research group were
kind of bounded from the beginning and I hope that our friendship helps in
keeping us in touch. There are many especial moments I shared with him
in conferences, soccer games, working together, etc.; but the epic time we
had when we won our trophy as best table-football players of the School are
always at the top of my mind, that story owes to be published someday. I
am also lucky that I could meet people like Jose Miguel, the �senior-intern�,
he provided unforgettable moments at the lab. I have to thank Crispín, Ri-
cardo, Jordi and Paco as well; working with them has been delightful and
full of really good times. I would like to thank Andres; he has become an
important piece in my life. I thank him for being always ready to help, no
matter how many times I asked him for. I would like to mention Carles,
Rafa, Héctor, David, Noel and Samuel; what a pity not having more time to
stay working with them because they are awesome.

Apart from my colleagues in the lab, there are other persons from the
GAP I owe to mention. First I have to thank Pedro López, he has been
inspirational during these four years and ready to give smart feedback on
almost any subject. It has been such an honor to work with him. Likewise,
I would like to thank Antonio Robles, Federico Silla, Mª Engracia Gómez,
Vicente Santonja, and Elvira Baydal; they have contributed in several ways
to this work. And thanks to the rest of people from the DISCA Department,
all of them contributed in making me feel at home while working there.

But the GAP not only included people in Valencia. Since I started
we have been working very closely with amazing people from Universidad
Castilla-La Mancha, in Albacete, consequently I would like to thank all of
them. But I have to give especial thanks to Pedro García for his sense of
humor and meticulous work, it has been a pleasure to co-author papers with

vii

him; and I have to acknowledge Paco Alfaro for his readiness to help in any
matters that come up.

Working with Duato brought me the opportunity to meet Olav Lysne,
I would like to acknowledge him for his insightful comments regarding this
work. It has been a pleasure to have the privilege of working with Olav and
almost a dream come true to have co-authored some papers with him.

Another person I really thank is Ulrich Brüning, he opened to me the
research group he leads in Mannheim, the Computer Architecture Group,
where I stayed four months. That gave me the opportunity of working with
extraordinary people Ill never forget like Heiner, Mondrian, David, and,
especially, Holger, who has become a good friend since then and has helped
so much in this work. I am really grateful to him for that and more. Of
course I owe a mention to Marlis, who was responsible in making me feel like
home, taking care of everything I required back these days.

Likewise, I would like to thank William Dally for inviting me to join his
group (Concurrent VLSI Architecture) in Stanford University the summer
of 2007. Working with one of the best teams in the world has been one of
the greatest experiences in my life. Thanks to David, James and John for
all the moments we shared there.

Realizing that my time with the GAP group was bounded to my PhD
student status, an end was on the horizon. At �rst I couldnt imagine a
more stimulating place for my mind than the GAP, but then two incredible
persons come into my life with an amazing proposal. I want to give special
thanks to Mani Azimi and Donglai Dai for giving me the opportunity to
keep developing my skills in such an exciting and motivating environment
like Intel Corporation. It started with an invitation for working in Santa
Clara, CA as an intern last summer, but soon they gave me the chance
of pursuing a career in the microprocessor industry with Intel, an awesome
company. During my internship there I could met the amazing people who
are now my colleagues and helped in creating such a good and challenging
environment at least as great as the one I had at the GAP in Valencia.
Thanks to Akhilesh, Roy, Partha, Naveen, Ani, Anahita, Ching- Tsun, Hari,
Dongkook and SeungJoon for that.

My �nal thanks are to Antonio González and Shashi Kumar for accepting
on being part of the tribunal evaluating my PhD defense. It is going to be
a total honor for me to have them in the tribunal that day.

Let me reiterate my thanks to everyone who �jumped� into my life at
some time, contributing to build what I am right now. Thanks to all of you.

viii

ix

To Raquel

x

Contents

1 Introduction 1

1.1 Interconnection Networks . 1

1.2 Metrics for Measuring Network Performance 9

1.3 Switch Architecture . 10

1.4 High-Radix Switches . 12

1.5 Congestion Management . 17

1.6 Contributions . 20

2 The PCIQ Switch Architecture 23

2.1 Introduction . 23

2.2 Description of PCIQ . 25

2.2.1 PC Crossbar Organization 26

2.2.2 Routing and Flow Control 27

2.2.3 PCIQ: Removing the Output Memories from PC . . . 28

2.2.4 Arbiter . 28

2.3 PCIQ as a Family of Switch Architectures 30

2.4 Impact on Scheduling E�ciency When Asymmetrical Cross-
bars Are Used . 31

2.5 Model for Asymmetric Crossbars 31

2.6 Evaluation with the Theoretical Model 34

2.7 Evaluation of PCIQ Through Simulation 36

2.8 Enhancing PCIQ by Adding RECN-IQ 40

2.9 Evaluation of PCIQ with RECN-IQ 41

2.9.1 Worst Case Analysis 44

2.9.2 Multi-stage Interconnection Network Analysis 45

2.10 Cost Analysis . 46

2.11 Conclusions . 49

3 The RECN-IQ Mechanism 51

3.1 Introduction . 51

3.2 Previous RECN . 54

3.3 The RECN-IQ Mechanism . 56

3.3.1 Memory Management and Requirements 56

xi

xii CONTENTS

3.3.2 Congestion Detection 58
3.3.3 SAQ Allocation and Deallocation 59
3.3.4 Packet Processing . 59
3.3.5 Congestion Information Propagation 60
3.3.6 Flow Control . 61
3.3.7 Procedure Example of the RECN-IQ Mechanism . . . 61
3.3.8 False Positives when Detecting Congestion 66

3.4 Conclusions . 66

4 The RECN-IQ Switch Architecture 69

4.1 Description of the RECN-IQ Switch Architecture 69
4.1.1 Memory Management Unit 71
4.1.2 Mapping Unit . 72
4.1.3 Routing Unit . 72
4.1.4 Congestion Detection Unit 74
4.1.5 Post-Processing Unit 75
4.1.6 Flow Control Unit . 76
4.1.7 Global Flow Control and Scheduler 76

4.2 Evaluation of RECN-IQ . 78
4.2.1 Results for Uniform Tra�c 79
4.2.2 Results for Hot-Spot Tra�c 81
4.2.3 Reducing the Network Latency of RECN-IQ for Low

Network Loads . 82
4.2.4 Impact of the Number of iSLIP Iterations on RECN-

IQ Performance . 83
4.3 Conclusions . 84

5 Conclusion and Future Work 85

5.1 Future Directions . 86

A Contributions 89

B Summary of this PhD in Local Languages 91

B.1 Spanish . 91
B.2 Catalan . 92

Bibliography 95

Chapter 1

Introduction

Internet! Is that thing still around?
� Homer, �The Simpsons�

Digital systems can be found everywhere in modern society. Their applica-
tions range from control systems in industry, cars and appliances; to com-
puters, cell-phones and communication systems. Three basic building blocks
form the digital systems: logic, memory and communication.

The logic processes data by either transforming it (e.g. arithmetic op-
erations) or making decisions. The memory takes care of storing that data
for further uses. Finally, the communication system moves data from one
element of the system to another.

In this dissertation, the attention is paid to the communication part of
the digital systems. That part is indeed one of the most important and chal-
lenging nowadays. The reasons include that, whereas the logic and memory
continue scaling down in size, the wire and pin density does not scale that
fast. Moreover, most of the power consumed by a system is used to drive
wires. Also, when designing a digital system, most of the clock cycle is spent
on wire delay, not gate delay.

This increase in importance of interconnection networks is re�ected on
current trends in today's microprocessor manufacturers. The current trend
is to boost computing performance by the use of many computation units
(cores) within their chips, relying performance on the aggregate work capac-
ity from all of these cores. This means that the design of the interconnection
network that connects all those elements is critical so it not becomes the
bottleneck of the system.

1.1 Interconnection Networks

A good de�nition of interconnection network can be found in [1]. It states
that �an interconnection network is a programmable system that transports

1

2 CHAPTER 1. INTRODUCTION

Interconnection Network

E4 E5 E6 E7

E3E2E1E0

Figure 1.1: Functional view of an interconnection network.

Interconnect Family Number of Supercomputers Share

Gigabit Ethernet 284 56.8%

In�niband [2] 121 24.2%

Proprietary 40 8.0%

SP Switch [3] 17 3.4%

Myrinet [4] 12 2.4%

NUMALink� 8 1.6%

Cray Interconnect� 8 1.6%

Quadrics [5] 5 1.0%

Crossbar 3 0.6%

Mixed 2 0.4%

Table 1.1: Di�erent interconnect families used in the world's top 500 super-
computers as of June 2008 [6].

data between terminals�. Therefore, the interconnection network is respon-
sible of transport data between the subsystems of a digital system.

Figure 1.1 depicts the functional view of an interconnection network.
Here, 8 elements (E0 - E7) are connected by an interconnection network
using bidirectional channels (arrows). The network is programmable in the
sense that at some point in time two elements (say E0 and E3) communicate
thanks to a con�guration of the network, and at a step later, another pair of
elements (say E2 and E7) communicate thanks to a network recon�guration.

There are many examples of the use of interconnection networks in digital
systems. For instance, in computers, it is used for connecting the processor
(or processors) with the memory and I/O at the system level. Even inside
the processor, it connects several cores within the chip in modern multicore
architectures. They are known as networks on chip (NoC).

Another typical example is the communication switches, where the inter-

1.1. INTERCONNECTION NETWORKS 3

connection network connects all inputs and outputs of the network routers.
These include IP routers that form the backbone of Internet.

If we look at today's supercomputers, the corner stone of their perfor-
mance is the interconnection network because they rely on having many
computing devices working together. In Table 1.1 it is shown the share of
the di�erent interconnects used on the top 500 supercomputers as of June
2008 [6]. For instance, the BlueGene/L[7] supercomputer at the Lawrence
Livermore National Laboratory (Lawrence, CA, USA) requires the intercon-
nection of 212,992 computing cores (as of June 2008).

Also, in today's data centers, the interconnection network is fundamen-
tal in providing fast and reliable access to information spread on di�erent
cabinets of the system. A well-known example is Google and its powerful
cluster which servers millions of search results 24 hours a day, 7 days a week.

Traditionally, the interconnection network was realized by using buses.
But this isn't a solution anymore due to the increasing requirements in inter-
connection performance. Buses belong to shared-medium networks category
because the transmission medium is shared by all communication devices [8].
Since only one device is allowed to use the network at a time, this type of
interconnection network scales poorly with the number of connected devices.

To overcome the scalability issue for buses, direct networks are widely
used. A direct network (or point-to-point network) consists of a �set of nodes,
each one being directly connected to a (usually small) subset of other nodes
in the network � [8] (See Figure 1.2). A node is any system or set of elements
with communication requirements. It can be just a processor, a processor
plus memory, graphics elements, memory controllers, I/O interfaces, etc.

The key element, from our perspective, on the node is the router. The
router is the device which handles message communication among nodes.
Each router has direct connections to its neighbors, either by bi-directional
links or by two unidirectional links (one for each direction), these are known
as channels. It is important to note that as the number of connected nodes
increases, the aggregate bandwidth of the total system also increases.

There are several ways of connecting nodes by a direct network, de�n-
ing the topology of the network. In Figure 1.3 some example topologies are
shown. Choosing the correct topology when designing a network is fun-
damental. The following network properties can be de�ned from a graph
representation of the network (vertexes are nodes and edges are channels):

� Node degree: Number of channels connecting that node to its neigh-
bors.

� Diameter : The maximum distance between two nodes in the network.

� Regularity : A network is regular when all nodes have the same degree.

� Symmetry : A network is symmetric when it looks alike from every
node.

4 CHAPTER 1. INTRODUCTION

Router

RouterRouter

Router

Local Ports

Local Ports

Node 2

Local Ports

Local Ports

Node 0

Processor

Processor

Node 3

Node 1

Processor

Processor

Figure 1.2: Typical elements of a direct network. Each node communicates
with the router through local ports; and each router has direct connections
to other routers.

(a) Mesh (b) Torus (c) Hypercube

Figure 1.3: Di�erent topologies for direct networks.

Another major class of interconnection networks can be derived from
direct networks by taking the router out of the node. Now the router can
be used independently as a communicating device and it is called switch
in this context. This type of networks is known as indirect networks (or
switch-based networks) and one di�erence with direct networks is that some
switches do not have a computing device attached so they do not generate
tra�c by themselves. In Figure 1.4.(a), an example of an indirect network
with irregular topology can be seen.

A switch is basically a crossbar network, i.e. it allows to connect any
input to any free output simultaneously without contention (unless two or
more inputs request the same output). Nodes are connected to switches
through a network adapter.

The most common con�guration for indirect networks is the multi-stage

1.1. INTERCONNECTION NETWORKS 5

Switch 2

8x8

Switch 1

8x8

Switch 0

8x8

Switch 3

8x8

Node 4

Node 3

Node 0

Node 1

Node 2

N
o
d
e
 0

N
o
d
e
 1

N
o
d
e
 2

N
o
d
e
 3

N
o
d
e
 4

N
o
d
e
 5

N
o
d
e
 6

N
o
d
e
 7

Switch 0

8x8

Switch 1

8x8

Switch 2

8x8

Switch 3

8x8

Switch 5

8x8

Switch 4

8x8

(a) Irregular (b) Multi-Stage

Figure 1.4: Example of two indirect networks, also known as switch-based
networks.

interconnection network or MIN. In a MIN, see Figure 1.4.(b), switches are
grouped in stages. The communicating devices (or nodes) are connected to
the �rst stage of switches whereas the next stages are connected following
some connection pattern which provides full connectivity to the network.
The connection patterns are based on permutations on the node identi�er
expressed in some base, for instance the perfect shu�e permutation corre-
sponds to the following:

σk(xn−1xn−2 . . . x1x0) = xn−2 . . . x1x0xn−1 (1.1)

Both direct and indirect networks are mainly characterized by three fac-
tors: topology, routing and switching. We are already familiar with the
topology concept. Let us have a look on the routing and switching aspects.

Communication among nodes is usually realized by sending packets with
information. These packets must travel from source to destination, perform-
ing several hops throughout the network. For a given topology, the routing
mechanism provides the route a packet must follow towards its destination.
There are two major classes of routing mechanisms: deterministics and adap-
tives. In the former, the path followed by a packet is predetermined. In the
latter, the packet may follow di�erent routes depending on network circum-
stances. Because the number of resources within a network is �nite, it can
happen that a packet is waiting for a resource currently hold by another

6 CHAPTER 1. INTRODUCTION

packet which is, in turn, waiting for the resources hold by the �rst packet;
this is an example of a harmful situation known as deadlock. It is obvious that
deadlocks must be avoided by all means. There is another type of blocked
situation, known as livelock, when the packet can advance but can not reach
ever its destination because the required resources by the packet are always
busy, so the packet can only �orbit� the destination. Of course, any network
design must also avoid starvation situations, where some packets are treated
unfairly in the assignation of resources (giving priority to other packets),
taking long time (even in�nite time) to be served.

Switching refers to how packets are stored and forwarded between routers
(or switches). This is related with �ow control, which regulates the advance
of packets dividing them on smaller information units, known as �its (a con-
traction from ��ow control bits�). A �it is the minimum block of data that
requires �ow control synchronization, like request from sender and acknowl-
edgment from receiver. Flow control is tightly coupled with bu�er man-
agement because �its are usually bu�ered during their journey, and before
sending anything from one place to another it must be ensured that there is
enough free space, typically by means of credits or �stop & go� signals (also
known as Xon/Xo� �ow control). In Figure 1.5 there is an example of the
credit-based �ow control mechanism, whereas on Figure 1.6 it is shown the
Xon/Xo� �ow control mechanism.

Packets can be transmitted following an store-and-forward fashion, i.e.
before start re-transmitting a packet, it must be fully stored at the current
bu�er. This penalizes the time a packet takes for travel along the network
with the number of hops.

The switching technique known as Virtual-Cut-Through (VCT) starts re-
transmission as soon as there are enough �its with routing information and,
of course, the requested resources are available. Whenever a packet stops at
some bu�er, enough space for storing the entire packet must be guaranteed.

Another approach is to use wormhole switching (WH) [9], in which the
bu�ers are usually very small so a full packet can not be stored on the
same bu�er, thus a packet spreads along several bu�ers. The bene�t of
having small bu�ers is shadowed by the fact that the network becomes more
deadlock-prone (although techniques like virtual-channels can alleviate this),
and its behavior during congestion1 situations is tough, making very di�cult
for the network to recover from that point.

1Congestion refers to the situation when the network (or parts of it) is oversubscribed
so many packets are contending for the same resources. It usually implies that packets
spend long time waiting stopped at the bu�ers, thus occupying resources required for
another packets to make progress.

1.1. INTERCONNECTION NETWORKS 7

1

0

0

0

1

Output Port

Node 0

Output Port

Node 1

2

Node 1

Input Port

(i)

(ii)

(iii)

(iv)

(v)

(vi)

+1 Credit Return

Figure 1.5: Example of a credit based �ow control procedure. (i) There are
two credits at the output port of node 0, meaning that there is space for
two more packets at the input port of node 1. (ii) A packet is sent from
node 0 so one credit is decremented. (iii) Another packet is sent, consuming
all credits. (iv) Because there are no credits, no packet can be sent from
node 0. (v) When a packet is sent from node 1, a slot becomes empty for
new incoming packets, therefore a credit is returned to node. (vi) Upon
reception of such credit at node 0, the counter is incremented to one, hence
packet transmission can be resumed.

8 CHAPTER 1. INTRODUCTION

Output Port

Node 1

Xon

Xon

Xon

Xoff

Xoff

Xoff Stop sending traffic

Xoff

Xon Resume traffic inj.

Xon

Node 1

Input Port

(i)

(ii)

(iii)

(iv)

(v)

Output Port

Node 0

(vi)

(vii)

Figure 1.6: Example of an Xon/Xo� �ow control procedure. (i) Output port
at node 0 is on Xon state, that means that packets can be sent to node 1.
(ii) Node 0 keeps sending packets as long as it is on Xon state. (iii) When
the number of packets at node 1 reaches the Xo� threshold (2 packets in
this case) an Xo� noti�cation is sent to node 0 in order to stop transmission.
(iv) Upon reception of such Xo� noti�cation at node 0, transmission of new
packets towards node 0 is stopped. (v) and (vi) When the number of packets
at node 1 reaches the Xon threshold (1 packet in this case), because it is
forwarding packets, an Xon noti�cation is sent to node 0 indicating that
there is space for new packets to be sent. (vii) Upon reception of such Xon
noti�cation at node 0, transmission of packets towards node 1 is resumed.

1.2. METRICS FOR MEASURING NETWORK PERFORMANCE 9

Θmax

Zero Load Latency
T0

Offered Load

G
en

er
at

io
n
 L

at
en

cy

Θmax

Θmax

Offered Load

T
h

ro
u

g
h

p
u

t

(a) O�ered load versus
generation latency

(b) O�ered load versus
throughput

Figure 1.7: Di�erent curves showing network performance. Θmax indicates
the maximum throughput delivered by the network and T0 the zero-load-
latency.

1.2 Metrics for Measuring Network Performance

There are two main metrics for measuring the interconnection network per-
formance. The �rst one is the latency, or the time it takes for a packet to
travel from source to destination. If it is measured from the time the header
is injected on the network to the moment the last �it of the packet arrives
to destination, then it is known as network latency. If measuring from the
time the packet is generated, then it is known as generation latency.

Of course, having low latencies is mandatory in high-performance inter-
connection networks. The latency is also an indicator of network saturation,
it goes up when packets are waiting more than usual at any part of the
network. It is evident that the latency is tightly coupled with the traf-
�c conditions on the network, so when the network is empty and only one
packet is sent (no contention with other packets for any resource), its la-
tency is known as zero-load-latency and gives us the lower bound for latency
in that particular network.

The second metric is the throughput delivered by the network. That is,
the total bandwidth (in bits/s for instance) accepted by all destinations. For
low injection bandwidths, the network is able to deliver all injected tra�c
but beyond some injection rate (saturation point) the network saturates and
the maximum throughput is achieved.

While the latency is related on how fast packets are moving in the net-
work, the throughput tells about how many packets at most can be delivered
by the network per unit of time.

On Figure 1.7.(a) it is shown a typical curve of o�ered load versus latency.
As can be seen the zero-load-latency (T0) gives us the lower bound for latency
while the maximum accepted load (Θmax) establishes the asymptote where

10 CHAPTER 1. INTRODUCTION

generation latency goes to in�nite (packets are created at a faster rate than
they are delivered). Figure 1.7.(b) depicts the complementary curve, that
is, o�ered load versus throughput. There is a maximum load or throughput
(Θmax) beyond which the network is no longer able to deliver all injected
tra�c.

1.3 Switch Architecture

The general mission of a switch is to forward incoming packets at the input
ports to the output ports. If the packet requires exclusive access to a resource
already used by another packet, then that packet must wait in place, thus
bu�er space has to be provided by the switch in order to deal with such
situations.

Several architectures have been proposed in the past years for the switches
used in networks. Initially, a single shared memory was used for bu�ering
packets, but when it no longer provided enough bandwidth to cope with
aggregate port bandwidth, switches with multiple memories started being
used. Those switches were originally deployed with memories only at the
output links. Such switches are known as Output Queued switches (OQ)
(Figure 1.8.(a)).

An OQ switch connecting N inputs with N outputs (N×N switch) must
operate internally N times faster than the link (this is known as speedup),
so the switch is able to manage the simultaneous arrival of up to N packets
at the input ports, all of them requesting the same output (and therefore all
of them put into that same output). Because of that speedup, packets may
arrive to the output faster than they can abandon it (link transmission is
slower), then bu�er space must be provided at the output port.

The performance of an OQ switch is maximum, but nowadays the links
are operating at such high frequencies, providing huge bandwidths, so im-
plementing the speedup required in an OQ switch is unfeasible even for low
number of ports.

Switches using only bu�ers at the input ports (known as Input Queued
switches, IQ [10, 11]) (Figure 1.8.(b)) do not use speedup. The bu�er require-
ment at the inputs comes from the necessity of bu�ering packets contending
for the same output port at the same moment (only one can be granted, the
rest must wait in place).

Bu�ers are typically implemented as FIFOs because of hardware con-
straints (they are required to be really fast), therefore if a packet at the
head of a queue is blocked because it requires access to an output which
is currently busy, then packets behind must also wait even if they request
free outputs. This e�ect, known as Head-of-Line (HOL) blocking, a�ects
dramatically the performance of a switch. IQ switches can only achieve a
modest 58% of maximum switch e�ciency [12].

1.3. SWITCH ARCHITECTURE 11

XBar XBar

(a) Output Queued (b) Input Queued

XBar

(c) CIOQ (d) Bu�ered Crossbar

Figure 1.8: Switch architectures.

XBar

Figure 1.9: Virtual Output Queuing (VOQ) on an IQ switch, there are as
many queues per input port as outputs has the switch.

One solution to eliminate the HOL blocking in IQ switches is the use of N
FIFO queues (for an N ×N IQ switch) at every input port and mapping the
incoming packet on a queue associated to the requested output port. This
technique is known as Virtual Output Queuing (VOQ) [13, 14] and must be
used in conjunction to more complex logic in order to allow that each input
port can request multiple outputs at the same time. It also increases the
queue requirements quadratically with the number of ports (N2 queues for
an N ×N switch). Therefore, as the number of ports increases, this solution
becomes too expensive. In Figure 1.9 it is depicted a VOQ scheme on an IQ
switch.

Another way to improve the e�ciency of IQ switches is the use of internal
speedup. In this case, as the internal bandwidth is higher than the aggregate
link bandwidth, bu�er space at the output ports are required. Such switches
are known as Combined Input Output Queued switches (CIOQ) (Figure
1.8.(c)), and for these, the number of required memories is 2N . Speedup
can be implemented by using internal data paths with higher transmission

12 CHAPTER 1. INTRODUCTION

10

11

12

13

14

15

16

91

2

3

4

5

6

7

8

4x4

4x4

4x4

4x4

4x4

4x4

4x4

4x4

4x4

4x4

4x4

4x4

2

3

4

7

6

5

16

10

11

12

15

14

13

91

8

8x8

8x8

8x8

8x8

(a) (b)

7

6

16

10

11

12

15

14

13

2

3

4

5

91

8

16x16

(c)

Figure 1.10: Switches with di�erent radix can be used for connecting the
same number of nodes. As the radix increases, the number of required
switches and links is reduced. Sixteen nodes can be connected using (a)
4× 4-switches, (b) 8× 8-switches, or (c) a single 16× 16-switch.

frequencies or wider transmission paths. Thus, as the external link band-
width increases, sustaining the speedup value becomes di�cult. A speedup
of 4 (with VOQ at the inputs) is proven to be enough in providing the same
high-e�ciency of an OQ switch [15].

More recently, another switch organization has become popular. The
Bu�ered Crossbar (BC) (Figure 1.8.(d)) switch organization (like the one
proposed in [16]) uses a memory at every crossbar point. An input link is
connected to N memories, each one connected to a di�erent output link. The
BC organization implements internal speedup, as many inputs can forward
a packet to the same output at the same time. Additionally, such memory
organization eliminates the HOL blocking (every packet is mapped to the
memory associated with the requested output port). As a consequence, the
BC organization requires low-cost arbiters per output port. However, the
problem with such organization is that the number of memories increases
quadratically with the number of ports (N2), thus limiting scalability.

1.4 High-Radix Switches

The radix of a switch is simply the number of ports it serves. Choosing the
appropriate radix for switches when designing an interconnection network
is crucial because it directly a�ects performance, global cost, and power
consumption of the system.

Figure 1.10 depicts three con�gurations using switches with di�erent

1.4. HIGH-RADIX SWITCHES 13

radices connecting the same number of nodes. It is trivial to see that as
the radix increases, the number of required switches and links reduces.

As long as the cost of a network is roughly proportional to the number
of channels (related with the number of pins and connectors), by increasing
the radix of the switches used, the global cost goes down. In Figure 1.10,
three systems with di�erent radices have been plotted. As can be seen, the
number of channels range from 48 for Figure 1.10.(a) (radix 4), to 24 for
1.10.(b) (radix 8). In the system in Figure 1.10.(c) just 16 channels are
required (radix 16).

On the other hand, the power consumption is proportional to the number
of switches in the network, hence, having less switches by using high-radix
switches reduces the overall power dramatically.

But there are other bene�ts apart from the obvious reduction in power
and cost when using high-radix switches. For instance, the latency is tightly
coupled with the number of ports implemented on the switches.

There are two main contributions to the latency experienced by the pack-
ets traveling along the network. The �rst one is the serialization or the time
expended on squeezing the packet on (usually) narrower channels than its
size. The second main contribution is the time it takes to �process� a packet
on each switch it has to traverse, thus it is proportional to the number of
hops along a packet's route from source to destination.

As we increase the radix of the switches, the number of hops reduces,
therefore the latency goes down at �rst. But if we keep increasing the radix,
at the end, the bene�ts in reducing the number of hops is compensated
by the negative e�ect of serialization, so there is an optimal radix for each
technology.

In the process of designing an interconnection network, only after care-
fully analyzing the current technology and packaging constraints, the most
appropriate topology can be selected. In the past, the packaging constraints
suggested that networks made of low-radix switches exhibit lower packet
latencies [17, 18] but this is not the case anymore.

In order to �nd the characteristics of the topology which minimizes la-
tency, let us calculate the so-called zero-load latency. This is the latency
for a packet that travels from source to destination without any contention
at all, so there is any delay introduced because a resource is being used by
another packet.

Therefore, under this situation of no contention at all, there are two con-
tributions to the total latency, the header latency (Th) plus the serialization
latency (Ts). Hence, the zero-load latency can be written as:

T = Th + Ts = trH + L/b (1.2)

where H is the number of hops, tr the time the packet takes to cross a router,
L the length of the packet and b the link bandwidth.

14 CHAPTER 1. INTRODUCTION

Name Year B tr N L

J-Machine [19] 1991 3.84 Gb/s 62 ns 1024 nodes 128 b

Cray T3E [20, 21] 1996 64 Gb/s 40 ns 2048 nodes 128 b

SGI Altix [22] 2003 0.4 Tb/s 25 ns 1024 nodes 128 b

<projection> [23] 2010 20 Tb/s 5 ns 2048 nodes 256 b

Table 1.2: Technology parameters for di�erent chip routers.

If we replace the number of hops by the average number of hops assuming
uniform tra�c on an N -node network made of k-radix switches,

H = 2 logk N (1.3)

and by applying the fact that the global bandwidth of a router chip is a
constant (B) that have to be divided among all k ports (bidirectional ports,
thus divided by 2k) of the router, the link bandwidth b can be replaced by

b =
B

2k
(1.4)

Then, the expression 1.2 becomes

T = tr2 logk N + 2kL/B (1.5)

Table 1.2 shows values of these parameters for interconnection networks
of large supercomputers with single-word network accesses, as representative
of di�erent technologies in the past years.

With expression 1.5 and Table 1.2, the latency for di�erent radices can
be plotted. As can be seen on Figure 1.11, by increasing the radix, initially
the latency goes down because the number of hops is reduced. Beyond the
optimal radix (which gives the lowest latency) the latency goes high again
as the serialization penalty grows.

Now, if we di�erentiate T with respect of k, and set dT/dk equal to zero
in order to minimize latency, we obtain:

d

dk
T =

d

dk
[2tr logk N] +

2L
B

= 2tr
d

dk
[logk N] +

2L
B

(1.6)

0 = tr
d

dk
[logk N]+

L

B
= tr

d

dk

[
logN
log k

]
+
L

B
= tr logN

[
−1

k log2 k

]
+
L

B
(1.7)

L

B
= tr

[
logN
k log2 k

]
(1.8)

k log2 k =
Btr logN

L
(1.9)

1.4. HIGH-RADIX SWITCHES 15

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 50 100 150 200 250

La
te

nc
y

(n
an

os
ec

on
ds

)

Radix (#number of ports)

2003 Technology
2010 Technology

Figure 1.11: Latency versus radix for two di�erent technologies, one corre-
sponding to year 2003 (SGI Altix) and a projection for year 2010.

Name Year Aspect Ratio Optimal Radix

J-Machine [19] 1991 13.84 5

Cray T3E [20, 21] 1996 163.74 18

SGI Altix [22] 2003 595.41 42

<projection> [23] 2010 3274.75 135

Table 1.3: Aspect ratio and optimal radix for di�erent technologies.

Like in Kim's paper [23], we can de�ne the aspect ratio A of the router
as

A =
Btr logN

L
(1.10)

so it determines the optimal radix that minimizes latency for a given
technology. In Table 1.3, both the aspect ratio for di�erent technologies and
the subsequent optimal radix are calculated. As can be seen, the optimal
radix has been increasing over the years.

There are two main issues to deal with regarding the design of a high-
radix switch. The �rst one is related with the di�cult, for current VLSI
technologies, of wiring within the chip in order to connect many inputs with
many outputs when a centralized allocator2 (or scheduler) is used. This

2An allocator is simply a device, usually made of several arbiters, that matches the
inputs of the switch with the outputs. When each input can request more than one output
at once, then it is used an allocator that produces (at least) an approach to a maximal
(or even the maximum) number of connections each cycle. This is usually a complex logic
structure.

16 CHAPTER 1. INTRODUCTION

CIOQ

Figure 1.12: Hierarchical Crossbar schematic.

problem is overcome by using hierarchical arbiter schemes, as will be shown
later in Section 2.2.4. Basically, the idea consists on grouping the input
requests to the scheduler through smaller arbiters, submitting only one win-
ning request to the next stage in this hierarchical scheme; in doing so, only
few winning requests propagate to the next stages (placed along the switch),
so the allocation is performed on a distributed manner.

The second problem is the HOL blocking which, as seen in Section 1.3,
reduces the switch throughput to intolerable levels. As long as non-scalable
techniques such as VOQ can not be applied in high-radix switches, new
solutions must be provided. In this dissertation is presented a new technique
for solving the HOL blocking problem, known as RECN-IQ.

High-radix technologies are present in new designs; as an example, a
high-radix network is required in order to exploit the computing power of
a system made of Merrimac stream processors [24]. Also new communica-
tion technologies like Proximity Communication (PxC) [25, 26] from Sun
Microsystems are tied to high-radix architectural designs [27].

A switch architecture for high-radix switches was recently proposed in
[23]. Basically, this solution relies on the use of a new crossbar organiza-
tion. The internal data path is an intermediate solution between CIOQ and
BC. This architecture is referred to as Hierarchical Crossbar (HC) and it is
plotted in Figure 1.12. In particular, an N × N BC switch is substituted
by (N/p)2 smaller p× p sub-switches with the CIOQ memory organization.
This organization requires 2p(N/p)2 memories. As p increases, the HC or-
ganization resembles the CIOQ thus becomes cheaper but less e�cient. As
p decreases, the HC organization resembles the BC organization, thus more
e�cient and more expensive.

Notice that the HC architecture implements internal speedup. There-
fore, memories at the output links are needed. Additionally, the proposed
switch architecture was intended for wormhole switching and �it-based ar-
biters which makes arbitration complex. As it will be seen later, a packet-
based arbiter will be more e�cient and simpler.

1.5. CONGESTION MANAGEMENT 17

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 20 30 40 50 60

A
cc

ep
te

d
tr

af
fic

 (
B

yt
es

/c
yc

le
)

Injected traffic (Bytes/cycle)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70

N
et

w
or

k
la

te
nc

y
(C

yc
le

s)

Injected traffic (Bytes/cycle)

(a) Injected tra�c versus
accepted tra�c

(b) Injected tra�c versus
packet latency

Figure 1.13: Performance plots for a perfect-shu�e MIN made of IQ switches
connecting 64 nodes and random tra�c. Saturation is reached at around 42
bytes/cycle. This is the peak throughput delivered by the network. Beyond
the saturation point, the network throughput is lower and the latency very
high.

1.5 Congestion Management

When the tra�c injected on a network is below saturation, the network is
able to deliver all injected packets. In Figure 1.13 there are two plots for a
perfect-shu�e MIN made of IQ switches connecting 64 nodes and random
tra�c. On one hand it is plotted the injected tra�c versus the accepted
(delivered) tra�c, and on the other the injected tra�c versus packet latency
is shown.

As can be seen on Figure 1.13, the good behavior of the network (i.e.
when the network is able to deliver all injected packets) is broken when
the saturation point is reached at 42 Bytes/cycle. Beyond this point, no
matter how much tra�c you generate, the limit for the network to deliver
packets is reached. Moreover, the throughput is even lower than the peak in
throughput achieved exactly at the saturation point. This region is known
as the saturation region and this drop in performance must be avoided by
all means.

Contention and Head-Of-Line (HOL) blocking are responsible of such
performance drop after saturation. HOL blocking happens when a packet
at the head of a FIFO queue blocks, preventing other packets at the same
queue from advancing, even if they request free resources. This is indeed
a problem for lossless networks in which packet discarding is not allowed
(under normal operation), like in most of the modern high-speed networks.
Moreover, the punctual congestion of even small parts of the network usually
propagates and spreads all over the network very quickly.

The introduction of the wormhole switching technique [9] opened the
possibility of implementing a switch in a single chip. That allowed such a

18 CHAPTER 1. INTRODUCTION

 0

 50

 100

 150

 200

 0 2e+05 4e+05 6e+05 8e+05 1e+06

N
et

w
or

k
th

ro
ug

hp
ut

 (
by

te
s

pe
r

na
no

se
co

nd
)

Time (nanoseconds)

Hot-Spot

Figure 1.14: Punctual hot-spot injection over random tra�c a�ects the
throughput for a long period of time.

dramatic increase in link bandwidth, so interconnection networks could be
overdimensioned at a low cost in the past. Therefore, they were working
always far below saturation. But this is not the case today, when reducing
the number of network components (links and switches) is a must in order to
reduce power and cost (current VLSI technologies provide huge link speed
increases, so interconnects are consuming an increasing part of the total
system power [28]). This is especially true for high-radix networks, in which
the optimal radix that minimizes latency according to the technology can
lead to narrow channels forcing the network to work most of the time on the
saturated region. It is worth to mention that the characteristic burstiness of
tra�c can lead to saturate temporarily at least local parts of the network, if
not the whole.

Another example of how congestion a�ects performance can be seen on
Figure 1.14. There, uniform tra�c is being injected on a perfect-shu�e MIN
of IQ switches connecting 256 nodes. At some point in time (yellow band on
the plot), a hot-spot is injected. That means that for a small period of time
(6µs), 10% of the tra�c from each node is addressed to the same hot-spot
(node number 2 in this very example). As can be seen, the injection of such
small amount of hot-spot tra�c for a short time produces that the network
throughput is seriously harmed and takes long time to recover (more than
1000µs).

It is important to mention that if the HOL blocking is completely re-
moved, then the negative e�ects of congestion are eliminated as well. This
can be seen on Figure 1.15, where a VOQ at the network level has been
used. Because results in Figure 1.15 are for a MIN connecting 64 nodes
(three stages made of 4×4 switches), this means that each input port has 64
di�erent queues, one per each possible destination within the network. Fig-
ure 1.15 shows that by completely removing the HOL blocking, maximum

1.5. CONGESTION MANAGEMENT 19

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

N
or

m
al

iz
ed

 A
cc

ep
te

d
B

an
dw

id
th

 (
bi

ts
/n

an
os

ec
on

d)

Time (nanoseconds)

HotSpot
IQ Switches

VOQnet Switches

Figure 1.15: By using VOQ at the network level for completely removing
HOL blocking, switch e�ciency is maximum.

switch e�ciency is achieved when a hot-spot tra�c is applied; a hot-spot in
which uniform tra�c is injected at maximum rate, and for just 10µs, 50% of
the tra�c injected by each node is addressed to the same hot-spot destina-
tion. On the other side, observe the great plunge on throughput produced
by the HOL blocking on the IQ switches case (Figure 1.15).

The risk of congestion in interconnection networks is a well-known prob-
lem, and many strategies have been proposed to deal with it. The simplest of
those strategies are the network overdimensioning and the packet dropping
under congested situations. However, none of them are suitable for modern
interconnection networks due, respectively, to the high cost and power con-
sumption of current network components; and to the lossless character of
these networks.

Other more elaborated techniques have been speci�cally proposed for
avoiding or eliminating congestion. For instance, proactive strategies are
based on reserving network resources for each data transmission, requir-
ing a tra�c scheduling based on network status [29]. However, this status
information is not always available, and the resource reservation procedure
introduces signi�cant overhead. On the other hand, reactive congestion man-
agement is based on notifying congestion to the sources contributing to its
formation, in order to cease or reduce the tra�c injection from those sources
[30]. Unfortunately, these solutions are not quite e�cient due to the delay
between congestion detection and noti�cation.

Other strategies focus on eliminating the actual negative e�ect of con-
gestion: The HOL blocking. In that sense, many HOL blocking elimination
strategies have been proposed: Virtual Output Queues (VOQs) [31], Dy-
namically Allocated Multiqueues (DAMQs) [32], congestion bu�ers [33], etc.
Most of these techniques rely on allocating di�erent bu�ers for storing sep-
arately packets belonging to di�erent �ows.

20 CHAPTER 1. INTRODUCTION

Family of switch architectures

Congestion Management

RECN−IQ

Switch Architecture

InputQueued (IQ)

Switch Architecture

High−radix Switch Architecture

RECN−IQ

Input Queued (PCIQ)

Partitioned Crossbar

PCIQ−Enhanced

N
EW

N
EW

N
EW

N
EW

Figure 1.16: Schematic overview of the contributions of this dissertation.

In general, traditional HOL blocking elimination techniques are either
feasible or e�ective, but not feasible and e�ective at the same time. For
instance, the use of VOQs at network level requires as many queues at each
port as end-points in the network, being so an e�ective but not scalable
technique. A variation of VOQ uses as many queues at each port as output
ports in a switch [13], so this technique (known also as VOQsw or VOQ at
the switch level) is feasible, but it does not eliminate HOL blocking at the
network level.

In contrast to these techniques, another solution known as �Regional Ex-
plicit Congestion Noti�cation� (RECN) [34, 35] eliminates the HOL blocking
in an e�cient and scalable way. In order to achieve this, RECN identi�es
congested packets and stores them in special, dynamically-assigned set aside
queues (SAQs). RECN was the �rst truly e�cient and scalable HOL blocking
elimination technique and it is explained in full detail on Section 3.2.

1.6 Contributions

In this dissertation we tackle the inherent problems in the design of high-
radix switches; also, in any switch design one of the main constraints is the
memory requirements. Therefore, a new family of switch microarchitectures
known as Partitioned Crossbar Input Queued (PCIQ) is proposed. It relies
on a smart partition of the crossbar into sub-crossbars, thus requiring less
memory resources than other proposals for high-radix, yet obtaining high-
performance.

The other big issue on high-radix switches is the HOL blocking problem,

1.6. CONTRIBUTIONS 21

which reduces dramatically the switch performance. Traditional solutions for
solving that problem were based on VOQ schemes, but having high number
of ports on a high-radix switch prevents the use of any of them. In this
dissertation, a new congestion management technique is proposed. This
solution, known as RECN-IQ, is speci�c for IQ switches and di�ers from
the original RECN idea in being highly e�cient and simple to implement,
reducing the extra memory requirements (even by removing the necessity of
having queues at the outputs on the original RECN which was intended only
for CIOQ switches). This memory reduction relies on the fact that RECN-
IQ uses a novel statistical approach for detecting congestion instead of using
expensive detection queues from the original RECN.

By combining the PCIQ microarchitecture with RECN-IQ (the new con-
gestion management mechanism proposed here), a new switch architecture
(called here PCIQ-enhanced) is derived and deeply evaluated in this disser-
tation. The PCIQ switch architecture inherits the bene�ts of the Partitioned
Crossbar microarchitecture in reducing the memory requirements for high-
radix designs with the power of a congestion management technique that
removes the HOL blocking dynamically, thus achieving maximum switch
performance under all types of tra�c.

Because the RECN-IQ mechanism is so powerful in removing the HOL
blocking and it can be applied to almost any IQ switch microarchitecture;
we applied it to a basic IQ switch so we came up with a cheap, yet highly
e�cient, switch architecture known (just like the congestion management
mechanism itself) as RECN-IQ switch architecture. We detail the microar-
chitecture and implementation details of such proposal and also evaluate its
performance, showing the fact that by adding a little extra hardware for
supporting RECN-IQ, a simple IQ switch can perform like (and even better
than) more expensive solutions with several queues per input port or more
complex allocators.

To sum up, the four main contributions on this dissertation (also depicted
on Figure 1.16) are the following:

� Proposal of a new family of switch micro-architectures suitable for high-
radix switches known as Partitioned Crossbar Input Queued (PCIQ).

� Proposal of a highly e�cient congestion management technique known
as RECN-IQ suitable for switch architectures with bu�ers only at the
inputs.

� The combination of the previous two in order to come up with a high-
performance switch architecture known as PCIQ with RECN-IQ or
simply PCIQ-Enhanced.

� The congestion management technique allows us to derive another
high-performance low-cost switch architecture known as RECN-IQ from
a simple IQ switch architecture.

22 CHAPTER 1. INTRODUCTION

Chapter 2

The PCIQ Switch Architecture

Crazy theories one, regular theories a billion.
� Fry, �Futurama�

The interconnection network plays a key role in the overall performance
achieved by high performance computing systems, also contributing an in-
creasing fraction of its cost and power consumption, as we have seen in
the previous chapter. Current trends in interconnection network technology
suggest that high-radix switches will be the preferred option; so networks
become smaller (in terms of switch count), and with the associated sav-
ings in packet latency, cost, and power consumption. Unfortunately, current
switch architectures have scalability problems that prevent them from being
e�ective when implemented with a high number of ports.

In this chapter, an e�cient and cost-e�ective architecture for high-radix
switches is proposed. The architecture, referred to as Partitioned Cross-
bar Input Queued (PCIQ), relies on three key components: a partitioned
crossbar organization that allows the use of simple arbiters and crossbars,
a packet-based arbiter, and a mechanism to eliminate the switch-level HOL
blocking.

2.1 Introduction

Designing high-radix switches presents major challenges. The most impor-
tant one is to keep a high switch e�ciency with an a�ordable cost. The cost
of a high-radix switch will largely depend on three key components: memory
resources, arbiter logic and internal connection logic. Depending on the loca-
tion of memories within the switch, di�erent switch organizations (memory
and crossbar capabilities and their interconnects) have been used. In some
of them, the number of memories increases quadratically with the number
of ports. Also, arbiters and crossbars must cope with more candidates and
connections, and for that reason become expensive.

23

24 CHAPTER 2. THE PCIQ SWITCH ARCHITECTURE

From another point of view, switch e�ciency will be largely impacted by
the head-of-line (HOL) blocking experienced within the switch. The HOL
blocking problem appears when a packet at the head of a queue is blocked
(because it is requesting an occupied resource), thus preventing packets in
the same queue to make forward progress even if their requested resources
are free. Dealing with HOL blocking requires more resources (queues and
internal speedups), thus making the switch more expensive.

As seen on Chapter 1, traditional switch organizations are not suitable
for implementing high-radix switches: IQ organization because of their low
performance, and the rest because of their prohibitive cost in terms of mem-
ory resources (BC) and/or required internal speedups (OQ, CIOQ).

In the case of the HC architecture (Section 1.4), because it implements
internal speedup, memories at the output links are needed. As mentioned be-
fore, HC was intended for wormhole switching and �it-based arbiters which
makes arbitration complex. It is fair to say that by properly selecting pa-
rameter p, the HC organization may achieve a good trade-o� among cost
and e�ciency. However, from our point of view, all the proposed organiza-
tions (including HC) still su�er from the same problem: they do not provide
a cost-e�ective solution to the HOL blocking problem. Moreover, even the
cheapest version of HC has a cost signi�cantly higher than a CIOQ switch.

In this chapter, we propose a new switch architecture referred to as Parti-
tioned Crossbar Input Queued (PCIQ). The goal of the PCIQ architecture is
to achieve a high switch e�ciency, a good scalability, and virtually eliminate
HOL blocking while keeping cost as low as possible. These features make
the proposed architecture suitable for implementing high-radix switches.

The PCIQ organization has been designed starting from a low-cost and
simple switch organization (CIOQ with no speedup). This architecture has
been improved by carefully selecting the di�erent design choices: crossbar or-
ganization, memory organization, arbiters, switching mechanisms, and queue
mapping policies, in order to enable the maximum switch e�ciency with a
low cost and allowing high switch radix.

There are two main contributions in this chapter:

� The proposal of a new switch architecture with better cost/performance
trade-o� than any previously proposed architecture suitable for high-
radix switches.

� A detailed performance evaluation showing that the proposed switch
architecture achieves e�ciency very close to 100% of the one achievable
by an ideal architecture for di�erent tra�c patterns.

2.2. DESCRIPTION OF PCIQ 25

O
u
tp

u
t

li
n
k
s

Crossbar

In
p
u
t

li
n
k
s

memory memoryRouting &
arbitration
unit

Input Output

O
u
tp

u
t

li
n
k
s

Crossbar

In
p
u
t

li
n
k
s

memory memoryRouting &
arbitration
unit

Input Output

(a) CIOQ (b) CIOQ with two read ports
at the inputs

Figure 2.1: CIOQ is the starting point for deriving PCIQ.

2.2 Description of PCIQ

The PCIQ switch architecture will be deployed starting from the CIOQ
switch organization with no internal speedup (see Figure 2.1.(a)). The e�-
ciency of a CIOQ switch can be enhanced by increasing the read bandwidth
of the input ports (Figure 2.1.(b)). This idea is not new by itself. Indeed,
it was proposed long ago [36] in combination with a more complex crossbar
and arbiter. In what follows, without loss of generality, we will describe our
proposal assuming that the read bandwidth is doubled.

Basically, there are three ways to double the SRAM read bandwidth.
The �rst one consists of increasing either clock frequency or word size. Both
of these options imply a signi�cantly higher cost or have undesirable side
e�ects, so, we discard them. The second one consists of implementing two
independent read ports (dual-ported SRAM). This solution may signi�cantly
increase silicon area, almost doubling in some cases. This is mostly due to
the duplication of the internal wires from the cells to the ports. However,
that increase can be signi�cantly reduced by using a full-custom design [37]
or a Hierarchical Multiport Architecture (HMA) [38]. As an example, in
[39] a SRAM cache memory has been implemented with 4 ports with an
area overhead of 25% (there is another example with low area overhead in
[40]). The third way to double SRAM bandwidth is achieved by splitting the
SRAM into two independent SRAMs. This solution doubles silicon area re-
quirements but it also doubles SRAM size. However, it has two drawbacks to
consider. First, it requires new logic selecting the SRAM where an incoming
packet has to be stored. Second, it complicates �ow control since separate
credit counters are required for each memory. Therefore, a dual-port SRAM
will be the preferred solution.

It should be noted that the three solutions to double SRAM read band-
width, when used on PCIQ switch architecture, lead to the same architec-
tural con�guration: using no output speedup while using an input speedup

26 CHAPTER 2. THE PCIQ SWITCH ARCHITECTURE

Crossbar

O
u

tp
u

t
L

in
k

s

In
p

u
t

L
in

k
s

Output
memories

queue

NxN/2

Dual port
input

memories

Arbitration

unit

Routing &

Figure 2.2: PC switch organization, the previous step towards PCIQ.

of 2. But they di�er in their implementation cost.

In the switch organization proposed in [36], the number of input ports of
the internal crossbar is doubled, making arbitration more complex. Contrary
to this solution, the PCIQ switch organization increases the SRAM read
bandwidth while keeping the arbiter and crossbar cost constant. To achieve
this, the PCIQ switch architecture is based on three key mechanisms: a
partitioned switch organization; a partitioned arbiter design; and the use,
for the enhanced version of PCIQ, of a mechanism to remove internal HOL
blocking (known as RECN-IQ and described on Chapter 4).

2.2.1 PC Crossbar Organization

In the PCIQ switch architecture, the original crossbar used in CIOQ with
increased read bandwidth is split into two separate crossbars (referred to
as Partitioned Crossbar ; PC), as shown in Figure 2.2. Each read port of
the input memory RAMs is attached to a di�erent crossbar, thus providing
concurrent access from each memory RAM to both crossbars. On the other
hand, each crossbar only provides access to a subset of the output links,
thus reducing cost while keeping connectivity. For instance, the �rst cross-
bar could connect to odd output links and the other crossbar to even ones.
In this design, each crossbar has a size of N × N/2, thus they are called
asymmetrical (di�erent number of inputs than outputs), in contrast with an
N ×N symmetrical crossbar.

Although this partition reduces �exibility a little bit, it allows signi�-
cant simpli�cations in the internal crossbar, thus reducing cost and latency.

2.2. DESCRIPTION OF PCIQ 27

E�ectively, instead of having a single 2N × N crossbar, now we have two
independent N ×N/2 crossbars. In this way, the total crossbar complexity
is the same as for the basic CIOQ. Latency is also reduced with respect to
using a 2N ×N crossbar because the crossbar latency grows logarithmically
with the number of ports [41].

Notice that, in the PC organization (Figure 2.2), the queues implemented
in each input memory are split into two sets, one for packets addressed to
odd links and another one for packets addressed to even links.

2.2.2 Routing and Flow Control

When a packet arrives at a switch, it must be stored in the correct queue
(odd/even). Since a single memory is used to implement all queues (odd
and even ones) a mechanism is required to map the packet to the correct
queue (odd or even). An e�ective solution is to map an incoming packet
to a preallocated empty slot (not assigned to any queue). Upon reception
of the packet's header, routing is performed while the rest of the packet is
being received. Once the output port is known, the control pointers that
implement the queues are updated accordingly and the packet is appended
to the corresponding queue (odd or even).

On the other hand, both odd and even queues must implement �ow con-
trol separately. An e�cient way of doing this is by implementing credit-based
�ow control at the memory level combined with dynamic queue allocation
and sizing, and Xon/Xo� �ow control at the queue level [34] (refer to Fig-
ure 1.6 in Section 1.1 for an explanation of the credit based and Xon/Xo�
�ow control mechanisms). This way, we just need a single credit counter
to track the availability of space in the corresponding input memory of the
next switch, thus reducing cost. Additionally, dynamic queue sizing allows
us to e�ectively implement several queues without having to implement the
landing pad (i.e. the bu�er area required to maximize link utilization, which
is proportional to the round-trip time) in every queue. Finally, Xon/Xo�
prevents a single queue from monopolizing the entire memory space while
requiring only one bit per queue at the upstream switch to keep its status.

It should be noted that switch organizations like HC or the use of VOQs
require the computation of the output port for the current switch at the
upstream switch in order to �ow control the di�erent memories (HC) or
queues (VOQs). Similarly, packets have to be prerouted at the upstream
switch in our design so that packets are not transmitted to a queue that
sent an Xo�. For interconnects based on source routing, like Myrinet [4] or
Advanced Switching [42], this can be done simply by inspecting a few bits
from the packet header.

28 CHAPTER 2. THE PCIQ SWITCH ARCHITECTURE

Crossbar

O
u

tp
u

t
L

in
k

s

Credit
Counters

In
p

u
t

L
in

k
s

queue

NxN/2

Dual port
input

memories

Arbitration

unit

Routing &

Figure 2.3: PCIQ switch organization.

2.2.3 PCIQ: Removing the Output Memories from PC

The PCIQ architecture does not require memories at the output links. Ef-
fectively, although two read ports are implemented in each input memory,
they are used to forward packets to di�erent sets of output links. Thus,
output memories receive data at the same rate they should forward those
data through the link. This fact allows us to remove the output memories
(see Figure 2.3), thus sending packets through a crossbar and directly to
the corresponding link. As a consequence, the extra area required for im-
plementing the additional read ports in the input memories is compensated
by the removal of output memories, thus exhibiting a cost similar to that
of a conventional switch with memories both at the input and output links
(CIOQ).

As can be seen, with such crossbar partition, PCIQ has an input speedup
of 2 and no output speedup at all.

2.2.4 Arbiter

The second key component of the PCIQ switch architecture is the arbiter.
Two identical arbiters are required, one per crossbar. Each arbiter matches
candidates and output links for the corresponding crossbar. Thus, each
arbiter is associated with one read port from each input memory. Each
one is implemented as a hierarchical round-robin arbiter which is a common
solution in commercial products.

The arbiter used in PCIQ is shown in Figure 2.4, this scheme allows
to distribute the output arbiters across the router so wiring complexity is

2.2. DESCRIPTION OF PCIQ 29

8:1

arbiter

8:1

arbiter

k

8
:1

log k/2
2

log k/2
2

k/2 Odd

Outputs

k/2 Even

Outputs

k
:1

 a
rb

it
er

k
:1

 a
rb

it
er

k
:1

 a
rb

it
er

k
:1

 a
rb

it
er

arbiter

Grant
Final

Input 0

Input k

Figure 2.4: Hierarchical arbiters used in PCIQ. In this example, each output
arbiter uses 8 : 1 smaller sub-arbiters and a �nal k/8 : 1 sub-arbiter (k
indicates the radix of the switch).

limited.

Another detail is that both arbiters (for odd and even links) work on
a per-packet basis. That is, whenever an arbiter matches a request to a
free output link, the entire packet will be forwarded. Therefore, arbiters are
designed to work asynchronously, so that whenever a new packet reaches the
head of the queue, or whenever an output link becomes free, the arbiter will
be waken up.

Compared to a �it-based arbiter, there exist several bene�ts from using
a packet-based arbiter in the PCIQ architecture. The �rst one is that the
arbiter will be less frequently used (once per packet arrival or an end of
crossbar connection versus once per �it), therefore consuming less power.
Moreover, a �it-based arbiter must arbitrate among all the inputs and all
the outputs every cycle. Unless a very simple scheme is used, the arbiter
needs to be pipelined. But even more important, the e�ciency of a packet-
based arbiter increases with tra�c load, while a �it arbiter have to match
all the input-outputs pairs from scratch at every arbitration cycle.

When compared to an N×N arbiter, two N×N/2 packet-based arbiters
exhibit higher e�ciency, as will be proved in Section 2.5. In an N × N
arbiter, the ratio between the number of requests and the number of available
resources is one regardless of the number of already established connections in
the crossbar. However, in an N×N/2 arbiter, every time a new connection is
made, the ratio between the number of requests and the number of resources

30 CHAPTER 2. THE PCIQ SWITCH ARCHITECTURE

O
u

tp
u

t
li

n
k

s

In
p

u
t

li
n

k
s

memories
Input

Crossbars

unit

Routing &

arbitration

Figure 2.5: PCIQ switch organization with 4 subcrossbars.

improves, thus arbitration e�ciency improves as well. This fact is detailed
in Section 2.4.

Each arbitration level of the arbiter hierarchy could be executed in one
clock cycle since simple round-robin arbiters are used. However, supposing
that we initially designed the hierarchical arbiter divided into two levels, if
the number of input queues per read port and/or the radix of the switch
are high, the two levels may require several cycles. The number of required
cycles grows logarithmically with the number of candidates. As an example,
an N × 1 round-robin arbiter model is proposed and analyzed in [43]. The
arbiter is implemented with a hierarchical tree of smaller arbiters. In [43] it
is shown that, as the switch radix increases, the proposed arbiter exhibits a
logarithmic longest delay response. The arbiter proposed in [43] is valid for
implementing all the arbiters required at both levels.

2.3 PCIQ as a Family of Switch Architectures

The partitioned switch organization can be further elaborated by partition-
ing the initial crossbar in more than two subcrossbars, for instance using K
crossbars. As an example, an initial N ×N crossbar can be substituted by
four N ×N/4 subcrossbars where each one forwards packets to N/4 disjoint
output links. This solution requires the use of memories with four read ports
at the input, with the associated extra cost, but it also simpli�es arbitra-
tion by splitting the N ×N arbiter into four independent N ×N/4 arbiters.
Figure 2.5 depicts such con�guration of PCIQ with 4 subcrossbars.

2.4. IMPACTON SCHEDULING EFFICIENCYWHENASYMMETRICAL CROSSBARS ARE USED31

8 inputs

NxN

NxN/2

3 connec.

3 connec.

1 connec.

1 connec.0 connec.

0 connec.

8 outputs

Ratio: 1 to 1

8 inputs
4 outputs

Ratio: 2 to 1

7 inputs
3 outputs

Ratio: 2.33 to 1

7 outputs
7 inputs

Ratio: 1 to 1

5 inputs
5 outputs

Ratio: 1 to 1

5 inputs
1 outputs

Ratio: 5 to 1

Figure 2.6: Example of scheduling e�ciency improvement by using asym-
metrical crossbars versus using symmetrical ones.

Therefore, the PCIQ architecture forms a new family of switch architec-
tures just by choosing the appropriate number K of subcrossbars that �lls
the gap between the CIOQ and BC architectures, and thus, it should de-
liver a better trade-o� between switch e�ciency and cost depending on the
selected K value for the number of crossbars in PCIQ.

2.4 Impact on Scheduling E�ciency When Asym-

metrical Crossbars Are Used

Note that if we compare two schedulers, one symmetrical (i.e. N ×N) and
the other asymmetrical (like the ones used in PCIQ, i.e. N × N/2); then
the asymmetrical scheduler will show higher e�ciency. The reason behind
this can be understood looking at Figure 2.6. A symmetrical scheduler will
retain the same relationship between the number of input candidates to
match and the possible (non-assigned) requested outputs no matter how
many connections are already made; that relationship will be always 1:1 for
an N ×N scheduler.

On the other hand, as depicted on Figure 2.6, when an asymmetrical
scheduler is used (as in PCIQ), each time a new connection is established (a
pair of input-output is matched), then the possibility of establishing a new
connection is higher because we will have higher number of candidates for
less resources.

This intuitive view on the increase on scheduling e�ciency for asymmet-
rical crossbar is what the theoretical model presented on Section 2.5 exposes.

2.5 Model for Asymmetric Crossbars

Because we are proposing the use of asymmetrical crossbars, in this section
we develop a straightforward model that theoretically evaluates the PCIQ

32 CHAPTER 2. THE PCIQ SWITCH ARCHITECTURE

switch architecture. The model will only consider the structure of an asym-
metric crossbar (the number of inputs di�ers from the number of outputs).

For the sake of understanding, the model is described in four steps shown
in Figure 2.7. At step 1 (Figure 2.7.(a)), the model assumes that there are
I inputs that compete for O outputs, and that all inputs have an equal
probability to be requesting any output. The probability H(I,O) that there
is no input having a cell at the head of its queue destined to any given output
is:

H(I,O) =
(
O − 1
O

)I

(2.1)

It can relatively easily be veri�ed that 1 −H(I,O) approaches 0, 632 if
I = O (symmetric crossbars) and O is large, which is in accordance to the
results obtained in [12] (for crossbars that drop blocked packets).

At step 2 (Figure 2.7.(b)), the model assumes σ to be the utilization of
the outputs. Based on σ at any timestep t, the inputs request a subset σO
of the outputs. Then, at step 3 (Figure 2.7.(c)), the number of inputs served
at time t will be σO (which is identical to the number of outputs that will
be served) and the number of inputs not served will be I − σO.

The model now computes, at step 4 (Figure 2.7.(d)), the utilization of
the crossbar at the next timestep (t+ 1) from the con�guration obtained at
the previous timestep (t). In particular, the outputs not previously served
(I − σO) will be requested now only by the inputs previously served (σO).
Thus, they will have a probability of being served at timestep t+ 1 equal to
1−H(σO,O).

In the same way, the outputs previously served (σO) will now be re-
quested by all the inputs (I). However, depending on the inputs, the prob-
ability will di�er. The previously served outputs will have a probability of
H(σO,O) of not being requested by the inputs that were previously served
(σO), and a probability ofH(I−σO, σO) of not being requested by the input
ports that were not previously served (I −σO) 1. Therefore, the probability
of an output previously served of being served at timestep t+ 1 is:

1−H(σO,O) ·H(I − σO, σO) (2.2)

1At that point we choose to make the simplifying assumption that the inputs that were
blocked at timestep t have an equal probability of requesting access to any of the outputs
that were served, so the probability that there isn't any previously blocked input that
will request any given previously served output is modeled to be H(I − σO, σO). This is
where we trade o� accuracy. In fact the history of blockings that the inputs may have
gone through will make the requests lump together their requests on fewer outputs. The
reason is that the inputs that have been blocked twice in a row will compete only for the
outputs that have been served twice in a row. Therefore the probability of a previously
served output being requested by a previously blocked input is slightly overestimated in
our model.

2.5. MODEL FOR ASYMMETRIC CROSSBARS 33

input
ports

I O

ports
output

(a) Step 1

Oσ requested
output
ports

I
input
ports

(b) Step 2

σO
output
ports

served
servedOσ

input
ports

not

input
ports

servedOσI −

(c) Step 3

(1−σ)

1−H(σO,O)·H(I −σO,σO)
requested
by input
ports

σO

I − σO

prob. to be served 1−H(σO,O)·H(I −σO,σO)

(1−σ) 1−H(σO,O)+ ()

not served
before

σ= σ () +

served before

1−H(σO,O)by
requested

input
ports

σO

Oσ

Oσ

served
before

not
served
before

(σ)

4.

Oσ

Oσ

I−

I−

(d) Step 4

Figure 2.7: Steps to describe the model for asymmetric crossbars.

34 CHAPTER 2. THE PCIQ SWITCH ARCHITECTURE

The �nal observation we need is the fact that each output will spend a
fraction σ of its time being in a situation where it was served in the previous
timestep, and a fraction 1 − σ of its time in a situation where it was not
served. Simple calculation now gives us, as shown at the end of step 4, the
utilization of a crossbar with I inputs and O outputs, that is:

U(I,O) = σ = (1−σ)(1−H(σO,O))+σ(1−H(σO,O)H(I−σO, σO)) (2.3)

In order to solve this equation for various values of I and O we have
used a simple numeric algorithm that approximates the right value through
a binary search.

2.6 Evaluation with the Theoretical Model

In this Section we apply the previous model to evaluate di�erent switch
architectures. In particular, the model will allow us to evaluate architectures
with di�erent number of either asymmetric or symmetric crossbars connected
to inputs and outputs in di�erent ways. To do this we consider the following
assumptions:

� The switch has in�nite input queues.

� Each input follows a random and uniform address distribution.

� Each switch input port will be able to deliver one cell into each crossbar
to which it is connected to at each cycle.

� Each switch output port will be able to receive one cell from each
crossbar to which it is connected to at each cycle.

� Each cycle, a cell transfer takes place to a switch output link if an only
if there is at least one switch input link that requests access to that
output.

� When a switch input (or output) link is attached (through di�erent
read or write ports) to multiple crossbars, it is able to deliver (or
accept) fast enough for this not to be a bottleneck.

The model is applied to each switch architecture showed at Figure 2.8 by es-
timating the number of cells destined for each output port that the structure
of crossbars is able to accommodate. In particular, for the PCIQ architecture
with K N ×N/K crossbars, each switch output port is served by one cross-
bar, thus the expected throughput is U(N,N/K). Similarly, the model can
also be applied to CIOQ and HC architectures. The expected throughput of
CIOQ is U(N,N) and 2U(N/2, N/2) for HC (each output port is attached
to two N/2×N/2 crossbars).

2.6. EVALUATION WITH THE THEORETICAL MODEL 35

Input
memories

Output
memories

N
x

N
 C

ro
ss

b
ar

Input Output
memoriesmemories

N
x
N

/2
 C

ro
ss

b
ar

s

Output
memoriesmemories

Input

N
x

N
/4

 C
ro

ss
b

ar
s

(a) CIOQ-1rp (b) PCIQ-2xbar (c) PCIQ-4xbar

Output
memoriesmemories

Input

2
N

x
N

 C
ro

ss
b

ar

Crossbar
N/2xN/2

linksOutput

memories

Input

links

(d) CIOQ-2rp (e) HC

Figure 2.8: Di�erent switch organizations analyzed with the theoretical
model. The organizations are the following: (a) CIOQ with a single read
port per input; (b) PCIQ with two subcrossbars; (c) PCIQ with 4 subcross-
bars; (d) CIOQ with two read ports per input; and (e) Hierarchical Crossbar
with p = 2.

36 CHAPTER 2. THE PCIQ SWITCH ARCHITECTURE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250

M
od

el
ed

 th
ro

ug
hp

ut

Number of ports

"CIOQ-1rp"
"CIOQ-2rp"

"HC"
"PCIQ-2xbar"
"PCIQ-4xbar"

Figure 2.9: Throughput values given by our theoretical model.

Figure 2.9 shows the throughput (measured in cells/port/cycle) obtained
by the model for each architecture of Figure 2.8 for di�erent number of switch
ports. All of the designs outperform the standard simple crossbar (CIOQ
with one read port) completely. What is particularly interesting is that
PCIQ with four crossbars (PCIQ-4xbars), reaches near maximum switch
throughput (0.96), and thus, almost completely removes the drawback of
standard input bu�ered switches with simple scheduling. PCIQ with two
crossbars gives also a high throughput of 0.84. It achieves the same through-
put than CIOQ with two read ports per memory (CIOQ-2rp in the Figure
2.9), however, without the need for a complex arbiter and crossbar. Another
interesting result is that HC architecture achieves a throughput higher than
one (is able to move 1.23 cells per cycle per port). This is due to the inter-
nal speedup implemented in HC. However, since switch bandwidth will be
limited by link bandwidth, throughput values larger than one are not prac-
tical. It has to be noted that PCIQ architecture achieves maximum switch
throughput (with four crossbars) without implementing internal speedup.

2.7 Evaluation of PCIQ Through Simulation

In this section we evaluate the performance of the PCIQ switch architecture.
For this, a 24-port switch with di�erent organizations is evaluated. The
selected organizations are CIOQ, HC, and the proposed PCIQ with two and
four subcrossbars. For HC, four 12 × 12 sub-switches are used (p = 12).

2.7. EVALUATION OF PCIQ THROUGH SIMULATION 37

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

ep
te

d
tr

af
fic

 (
B

yt
es

/c
yc

le
/p

or
t)

Injected traffic (Bytes/cycle/port)

"HC"
"PCIQ-4xbar"
"PCIQ-2xbar"

"CIOQ-2Q"
"CIOQ-1Q"

Figure 2.10: Switch e�ciency of CIOQ, HC, and PCIQ. Uniform distribution
of packet destinations.

As long as PCIQ switch architecture uses two separated queues to forward
packets (one for even outputs and the other for odd outputs), it is fair to
compare it with CIOQ with two queues (2Q).

Our simulator works at the clock cycle level. Each link of the switch
is attached to an end node. Each end node injects tra�c at the maximum
link rate (one byte every cycle). The switch also forwards a byte from an
input to an output in one cycle. Arbitration is assumed to take two cycles.
Virtual cut-through switching is modeled in the simulator. Also, credit-based
�ow control for memories and Xon/Xo� �ow control for queues are used for
the three switch organizations. Therefore, the only di�erence between the
evaluated switch architectures is the internal datapath and the associated
arbiter partitioning.

First, uniform tra�c with 256 bytes packet size is analyzed. As Figure
2.10 shows CIOQ with 1Q achieves the expected performance of 58% switch
e�ciency (as proven in [12]). This is due to the combination of the limited
internal bandwidth (just one read port per input memory) and signi�cant
HOL blocking. For PCIQ with two subcrossbars, the switch e�ciency is close
to 80%. For the PCIQ with four subcrossbars, e�ciency is higher (close to
90%).

It is observed that CIOQ with 2Q shows higher performance (72%) than
the one queue case (58%). Having two separate and independent queues
helps in reducing the impact of the HOL blocking within the switch. When

38 CHAPTER 2. THE PCIQ SWITCH ARCHITECTURE

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
et

w
or

k
la

te
nc

y
(C

yc
le

s)

Injected traffic (Bytes/cycle/port)

"HC"
"PCIQ-4xbar"
"PCIQ-2xbar"

"CIOQ-2Q"
"CIOQ-1Q"

Figure 2.11: Network latency of CIOQ, HC, and PCIQ. Uniform distribution
of packet destinations.

a packet is blocked at the head of one queue (causing HOL blocking to
the rest of the packets in the queue), the remaining queue may provide (in
subsequent arbitration cycles) good candidates.

On the other hand, HC e�ciency is close to 100% (even for the largest p
value). This remarkable result is achieved because HC implements by design
internal speedup, that is, several writes to an output link at the same time
are possible. Additionally, internal HOL blocking is also alleviated by the
use of di�erent memories at the input ports for di�erent sets of output ports.
As a consequence, for uniform tra�c, the switch e�ciency achieved by HC
is limited only by the link bandwidth. However, the additional performance
achieved by HC over PCIQ (approximately 10%) comes at the expense of a
much higher implementation cost, as will be detailed in Section 2.10.

Results for network latency are also shown in Figure 2.11. In one switch
network, the main contribution to latency is the HOL blocking problem
experienced in the queues by the packets crossing the network.

Although the PCIQ switch architecture achieves very good levels of e�-
ciency for uniform tra�c, this scenario will not be the only case on a produc-
tion system. Figure 2.12 shows switch throughput when hot-spot tra�c is
injected into the 24-port switch. In this tra�c scenario, all the nodes inject
90% of their tra�c to random destinations. The remaining 10% of tra�c
is injected to a hot-spot (node 6). All the nodes inject at the full injection
rate. As the output link 6 will be overloaded, massive HOL blocking within

2.7. EVALUATION OF PCIQ THROUGH SIMULATION 39

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

ep
te

d
tr

af
fic

 (
B

yt
es

/c
yc

le
/p

or
t)

Injected traffic (Bytes/cycle/port)

"HC"
"PCIQ-4xbar"
"PCIQ-2xbar"

"CIOQ-2Q"
"CIOQ-1Q"

Figure 2.12: Switch e�ciency of CIOQ, HC, and PCIQ. Hot-spot plus uni-
form distribution of packet destinations.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
et

w
or

k
la

te
nc

y
(C

yc
le

s)

Injected traffic (Bytes/cycle/port)

"HC"
"PCIQ-4xbar"
"PCIQ-2xbar"

"CIOQ-2Q"
"CIOQ-1Q"

Figure 2.13: Network latency of CIOQ, HC, and PCIQ. Hot-spot plus uni-
form distribution of packet destinations.

40 CHAPTER 2. THE PCIQ SWITCH ARCHITECTURE

the switch will be produced. Note that for this tra�c pattern, switch e�-
ciency is bounded by 90% + 1/24 × 10% = 90.4% regardless of the switch
architecture.

As can be seen, all switch organizations su�er from HOL blocking. All of
them achieve the same switch e�ciency (around 45%). If the HOL blocking
were addressed the switch would deliver roughly 90.4% of maximum switch
e�ciency.

From the results obtained in this section, two issues arise. First, the
base PCIQ architecture with two subcrossbars requires new improvements
in order to achieve maximum switch e�ciency with uniform tra�c. More
precisely, the internal HOL blocking must be eliminated. Second, the switch
should achieve maximum switch e�ciency regardless of the injected tra�c.
Thus, hot-spot situations like the one analyzed must be handled correctly.

2.8 Enhancing PCIQ by Adding RECN-IQ

The HOL blocking experienced at some input queues prevents the lower-cost
organizations (CIOQ and PCIQ with two subcrossbars) from achieving the
maximum performance. In this section, we will incorporate a new mechanism
in order to increase their e�ciencies.

There are several ways to reduce HOL blocking. The easiest way is by
using a number of queues at the input memories equal to the number of
switch output ports and mapping packets to the queues depending on the
requested output links. This is known as Virtual Output Queuing (VOQ) at
the switch level. However, the queue requirements grow quadratically with
the number of ports, thus becoming infeasible for high-radix switches.

Notice also that network-wide HOL blocking is not solved by using VOQ
at the switch level. Such blocking occurs among packets that share along
their paths one output link at the same switch. A packet blocks at the
head of a queue because the requested next queue at the next switch is full
(congested). As a consequence, other packets behind the blocked one, also
block even if they would request a queue with space at the next switch.

Congestion trees and their dynamics [44] have proven to introduce mas-
sive HOL blocking, thus collapsing the network. One solution to the network-
wide HOL blocking would be to have as many queues as �nal destinations
on every input memory in all the switches (VOQ at the network level). Un-
fortunately, the cost of this solution is clearly prohibitive.

Another solution to increase switch e�ciency is by adding internal speedup
(as HC switches do). However, this signi�cantly increases the switch cost
and does not solve network-wide HOL blocking. Also, using four subcross-
bars in the PCIQ switch organization reduces internal HOL blocking thus
reporting higher e�ciencies, however, notice that again network-wide HOL
blocking is not solved.

2.9. EVALUATION OF PCIQ WITH RECN-IQ 41

A speci�c mechanism for congestion control (known as RECN) has been
recently proposed [34]. With this mechanism, network-wide HOL blocking
is removed by dynamically allocating queues to store packets going through
the congested points in the network. Congestion spots within the network
are detected, noti�ed to the a�ected switches and Set Aside Queues (SAQs)
are dynamically allocated. Packets traveling along the congested points are
mapped to the SAQs and, therefore, they do not introduce HOL blocking.

To detect congestion, RECN implemented detection queues at the input
links. There were as many detection queues as output ports in the switch,
thus this comes with the same cost as VOQ at the switch level. However, we
have developed in this dissertation a completely new version of RECN that
no longer requires detection queues. Instead, the packet at the head of a
congested queue is assumed to be responsible for congestion (new statistical
detection mechanism), therefore only the extra queues for congested �ows are
required. This new congestion management technique, called RECN-IQ, is
described in full detail in Chapter 3. With this improvement, the RECN-IQ
mechanism handles the switch-level and network-wide HOL blocking in the
same way (like the previous RECN does). Another big improvement achieved
by RECN-IQ versus the original RECN is that the latter is intended only
for CIOQ switches, whereas RECN-IQ is suitable for IQ switches.

The �nal PCIQ architecture will thus be enhanced with a third key com-
ponent: RECN-IQ. With RECN-IQ, the HOL blocking experienced within
a switch can be eliminated, thus the switch will achieve maximum e�ciency.
But the most important point is that the PCIQ architecture will be also able
to avoid the HOL blocking within the network by eliminating the negative
e�ects of congestion in a fast and e�cient way. This has been demonstrated
in [34, 44].

2.9 Evaluation of PCIQ with RECN-IQ

Figures 2.14 and 2.15 show results for the 24-port switch with the PCIQ
architecture with two crossbars and two or four SAQs per read port. For
comparison purposes, �gures also show results for the base PCIQ architecture
(without RECN-IQ) with four subcrossbars and HC. Uniform tra�c with 256
bytes packet size is used.

As can be observed, PCIQ now achieves maximum switch e�ciency. For
all the cases, the switch e�ciency of the improved PCIQ architecture is com-
parable to HC (or even better). This is due to the fact that the incorporated
RECN-IQ mechanism is able to eliminate all the HOL blocking existing in
the switch. Even when we use only 2 SAQs.

Figures 2.16 and 2.17 show the e�ciency achieved for the hot-spot tra�c.
As can be seen, PCIQ (with RECN-IQ) is the only one that �lters out the
HOL blocking completely, thus achieving maximum switch e�ciency. In

42 CHAPTER 2. THE PCIQ SWITCH ARCHITECTURE

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

ep
te

d
tr

af
fic

 (
B

yt
es

/c
yc

le
/p

or
t)

Injected traffic (Bytes/cycle/port)

"PCIQ-2xbar-4saqs"
"PCIQ-2xbar-2saqs"

"HC"
"PCIQ-4xbar"

Figure 2.14: Switch e�ciency of CIOQ, HC, and PCIQ. Uniform distribution
of packet destinations.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
et

w
or

k
la

te
nc

y
(C

yc
le

s)

Injected traffic (Bytes/cycle/port)

"PCIQ-2xbar-4saqs"
"PCIQ-2xbar-2saqs"

"HC"
"PCIQ-4xbar"

Figure 2.15: Network latency of CIOQ, HC, and PCIQ. Uniform distribution
of packet destinations.

2.9. EVALUATION OF PCIQ WITH RECN-IQ 43

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

ep
te

d
tr

af
fic

 (
B

yt
es

/c
yc

le
/p

or
t)

Injected traffic (Bytes/cycle/port)

"PCIQ-2xbar-4saqs"
"PCIQ-2xbar-2saqs"

"HC"
"PCIQ-4xbar"

Figure 2.16: Switch e�ciency of CIOQ, HC, and PCIQ. Hot-spot plus uni-
form distribution of packet destinations.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
et

w
or

k
la

te
nc

y
(C

yc
le

s)

Injected traffic (Bytes/cycle/port)

"PCIQ-2xbar-4saqs"
"PCIQ-2xbar-2saqs"

"HC"
"PCIQ-4xbar"

Figure 2.17: Network latency of CIOQ, HC, and PCIQ. Hot-spot plus uni-
form distribution of packet destinations.

44 CHAPTER 2. THE PCIQ SWITCH ARCHITECTURE

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

ep
te

d
tr

af
fic

 (
B

yt
es

/c
yc

le
/p

or
t)

Injected traffic (Bytes/cycle/port)

"PCIQ-2xbar-2saqs"
"CIOQ-2saqs"

Figure 2.18: Comparing the switch e�ciency of CIOQ and PCIQ, both with
RECN-IQ. 256-bytes packets.

particular, by correctly handling HOL blocking, it achieves 90% of switch
e�ciency while CIOQ and HC organizations obtain results about 50% or
even less.

When using RECN, the average packet latency is signi�cantly increased
once the hot-spot tra�c congests (0.4 bytes per cycle per port). However,
this is due to the latency experienced by congested packets (2, 500 cycles on
average) which is unavoidable.

RECN-IQ can also be added to any architecture. For instance, Figure
2.18 shows the switch e�ciency for CIOQ architecture when RECN-IQ is
used (with two SAQs) and a uniform tra�c distribution. As we can observe
CIOQ is not able to achieve maximum switch e�ciency (even when using
RECN-IQ). It obtains 80% of switch e�ciency. Thus, CIOQ does not provide
enough internal bandwidth. This motivates the need for a more elaborated
switch organization. As shown, PCIQ reaches nearly 100% e�ciency. As
will be seen in Section 2.10, this comes at no extra overall cost.

2.9.1 Worst Case Analysis

Figure 2.19 shows the worst case analysis for the PCIQ architecture. The
worst case is when the internal crossbars do not have enough packet candi-
dates. This occurs when odd input links send packets only to odd output
links and even input links send packets only to even output links. In this
situation, each arbiter will only have N/2 packet candidates for N/2 poten-

2.9. EVALUATION OF PCIQ WITH RECN-IQ 45

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

ep
te

d
tr

af
fic

 (
B

yt
es

/c
yc

le
/p

or
t)

Injected traffic (Bytes/cycle/port)

"PCIQ-2xbar-4saqs"
"PCIQ-2xbar-2saqs"

"CIOQ-2Q"
"HC"

"PCIQ-2xbar"
"CIOQ-1Q"

Figure 2.19: Switch e�ciency for the worst case analysis. Odd input links
sending to odd output links and even input links sending to even output
links.

tial output links, thus resembling a CIOQ switch organization. As can be
observed, the base PCIQ architecture (without RECN-IQ) achieves roughly
60% of switch e�ciency, as CIOQ does. In [23] it is shown that in the worst
case tra�c for HC (�rst half of input links sending to the �rst half of output
links and the second half of input links sending to the second half of output
links) the maximum switch e�ciency is bounded by 70%. However, notice
that PCIQ (with RECN-IQ) is able to increase the switch e�ciency to 90%.
This is due, again, to the removal of the internal HOL blocking.

Up to now, we have presented evaluation results for one switch. For
larger networks, the switch architecture has diminishing impact on overall
performance as network size increases. For very large networks, congestion
management becomes the dominant contributor to performance. It was al-
ready shown in [34] that RECN is able to eliminate HOL blocking even
for large networks. As PCIQ incorporates RECN-IQ, it inherits its bene�ts.
However, PCIQ is still a good switch architecture for very large networks be-
cause, as will be seen in the next section, it features a lower cost compared
to other architectures.

2.9.2 Multi-stage Interconnection Network Analysis

We have also simulated a complete network using the di�erent switch ar-
chitectures studied here. A 16 × 16 multi-stage interconnection network,

46 CHAPTER 2. THE PCIQ SWITCH ARCHITECTURE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000 600000

E
ffi

ci
en

cy

Time (cycles)

CIOQ
HC

PCIQ-2xbar-4saqs
PCIQ-2xbar
PCIQ-4xbar

Figure 2.20: E�ciency over time for a 16 × 16 multi-stage interconnection
network and uniform tra�c.

connected by a perfect shu�e, was the con�guration selected.

For uniform tra�c, Figure 2.20 shows that the network built using PCIQ
with four crossbars switches achieves maximum performance, the same hap-
pens for PCIQ with two crossbars and enhanced by RECN (using only 4
SAQs). HC achieves slightly lower network e�ciency than PCIQ-4xbar, but
still higher than the rest, as one can imagine from the results for a single
switch (Figure 2.10).

On the other hand, when there is a hot-spot (the same type as described
in Section 2.9) added to the uniform tra�c, the network performance drops
dramatically for all architectures but PCIQ enhanced with RECN-IQ. As
shown in Figure 2.21, using a very limited number of SAQs we can achieve
maximum network e�ciency.

2.10 Cost Analysis

The cost of a switch is mainly in�uenced by three components: the memory
resources, the arbiter, and the crossbar2. In this section we evaluate these
components in the PCIQ architecture. For comparison purposes, we also
analyze the cost of the CIOQ and HC switch organizations.

For the cost of the memory resources, Figure 2.22 shows the number of

2We do not include the link controllers since they are the same in all the architectures
under comparison.

2.10. COST ANALYSIS 47

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000 600000

E
ffi

ci
en

cy

Time (cycles)

HC
PCIQ-2xbar-4saqs

PCIQ-4xbar

Figure 2.21: E�ciency over time for a 16 × 16 multi-stage interconnection
network and a hot-spot tra�c.

0

200

400

600

800

1000

50 100 150 200 250

N
um

be
r

of
 r

eq
ui

re
d

m
em

or
ie

s

Switch radix

CIOQ
minimum cost HC

PCIQ-2xbar

Figure 2.22: Memory cost for di�erent switch architectures.

48 CHAPTER 2. THE PCIQ SWITCH ARCHITECTURE

memories required by each architecture. This value provides a �rst-order
estimation of the relative amount of silicon area required to implement the
bu�er memories. For the PCIQ architecture, a factor of 1.25 is added be-
cause of the additional silicon area required to implement the second read
port and the control info for SAQs. As it can be observed, the PCIQ switch
architecture achieves the minimum memory cost. As the radix (N) of the
switch increases, the number of memories required for PCIQ increases lin-
early with the number of ports (1.25N). For the CIOQ architecture, the
memory cost also increases linearly (2N), but exhibiting higher memory
needs than PCIQ, due to the need for output memories. For the HC, mem-
ory cost varies depending on the selected p parameter (the memory cost is
2p(N/p)2). Keeping p constant and increasing the radix (N), the memory
cost grows quadratically. Anyway, for any radix, the value of p that gives the
lowest memory cost is p = N/2 (four subcrossbars within the switch). Con-
sidering always the value of p that minimizes memory cost, we can see that
HC requires more queues (4N) than PCIQ. It may be argued that the extra
cost of an additional memory read port depends on the VLSI technology
and thus, the factor added to PCIQ could be higher. However, for di�erent
technologies it will not be higher than 2 (100% of additional cost per port).
Thus, the reduction in memory area requirements from HC to PCIQ varies
from a factor of 2 (for 100% additional cost per port) to a factor of 3.2 (for
25% additional cost per port).

The memory size requirements depend on the number of queues needed.
PCIQ implements a single landing pad on each memory. Additionally, a
pool of bytes is required to implement all the queues. Also, it needs just one
queue and two SAQs to achieve maximum switch e�ciency. On the other
hand, the landing pad is also required by HC and CIOQ switch organizations
(if they use dynamic memory allocation). However, the number of queues
for CIOQ should be at least four (to achieve an acceptable performance
level as previously seen). For HC, just one queue is required, but it does
not solve HOL blocking. If HC and CIOQ were to address internal HOL
blocking, they would require at least the same number of queues (when using
RECN) as PCIQ, if not more (when using VOQs). In summary, memory size
requirements for PCIQ are not higher than for other switch architectures.

An N × N crossbar can be implemented in several ways. A common
alternative is by using small switches at the crosspoints. The number of
crosspoints is N2, thus a cost proportional to N2 can be assumed for the
crossbar. Assuming this cost we can now deduct the cost of the crossbars
used in the di�erent switch organizations. For the CIOQ organization its cost
is clearlyN2, since it uses anN×N crossbar. For the HC organization, it uses
(N/p)2 subcrossbars of size p×p. Since the cost of the subcrossbar is p2, the
total cost of all the crossbars is N2. Finally, for the PCIQ organization and
assuming q subcrossbars, it will have q subcrossbars of size N ×N/q. Thus
the total cost will be also N2. Therefore, all the switch organizations have

2.11. CONCLUSIONS 49

the same cost. It should be noted that the organization used as a reference to
elaborate PCIQ was the CIOQ with two read ports and a 2N ×N crossbar.
In that organization, the crossbar cost (2N2) is signi�cantly higher.

The arbiter is assumed to be a two-level hierarchical arbitration scheme
in all the switch architectures. For PCIQ, the �rst level consists of two
round-robin arbiters per input port (one to handle requests for odd ports
and the other one for requests for the even ports) that work in parallel. The
complexity of such arbiters is (Q+ S)× 1 where Q is the number of queues
per input port and S is the number of SAQs. In the second level, a request
is issued from each arbiter to the arbiters located at the output links. Each
output link has a round-robin arbiter with a complexity of N×1. Therefore,
for a con�guration with Q = 4, S = 4 and N = 64, arbiter implementation
requires 128 arbiters with complexity 8 × 1 at the inputs and 64 arbiters
with complexity 64 × 1. In [43], the proposed N × 1 round-robin arbiter
(implemented with a hierarchical tree of smaller arbiters) exhibits a linear
cost in terms of silicon area. This arbiter is valid for implementing all the
PCIQ arbiters.

Anyway, the cost of the arbiter can be deduced from the crossbars. Since
an N ×N crossbar allows N candidates to arbitrate for N resources, we can
approximate the cost of the arbiter for an N ×N crossbar as N2 (candidates
times resources). Following this model we can conclude that the cost of the
arbiters used in PCIQ, HC, and CIOQ are similar.

To sum up, the overall cost of the PCIQ architecture is signi�cantly
lower than the cost of the CIOQ and HC organizations. Although the cost
of the crossbars and arbiters is similar, the main bene�t comes from the
reduced cost for the memories. Taking into account that as the transmission
frequency increases, round-trip time and bu�er size requirements increase
proportionally, we conclude that the overall cost of a switch is dominated by
the memory cost. Therefore, the PCIQ architecture is the one that achieves
the lowest cost.

2.11 Conclusions

In this chapter we have proposed a new switch architecture for high-radix
switches that relies on three key components. First, a partitioned crossbar is
used in order to increase the read bandwidth at the input memories without
neither increasing the cost of the crossbar nor the arbiter. Second, two
round-robin packet-based arbiters (one for each crossbar) are used. They
exhibit a linear cost and a logarithmic response time (as the radix of the
switch increases). Third, a congestion management technique (RECN-IQ)
is incorporated to eliminate both the internal switch and the network-wide
HOL blocking.

The proposed architecture, referred to as PCIQ, exhibits a cost (mea-

50 CHAPTER 2. THE PCIQ SWITCH ARCHITECTURE

sured in memory requirements, crossbar complexity and arbiter complexity)
similar to or lower than basic organizations like CIOQ. However, it is able to
achieve maximum switch e�ciency for uniform tra�c distribution, thus lev-
eling costly organizations like BC. Additionally, PCIQ is able to eliminate
all the switch and network-wide HOL blocking, thus achieving maximum
throughput in the presence of non-uniform tra�c. These results come at a
cost clearly inferior to the HC architecture.

In the next chapter, the RECN-IQ mechanism for eliminating the HOL
blocking used on the enhancement of PCIQ is presented in full detail.

Chapter 3

The RECN-IQ Mechanism

Weaseling out of things is important to learn. It's what
separates us from the animals ... except the weasel.

� Homer, �The Simpsons�

As we have seen before, network performance (which directly impacts on
the overall system performance) may dramatically drop during congestion
situations. Moreover, the current trend of reducing overall cost and power
consumption by lessening the number of network components makes this
problem even harder, thereby becoming mandatory the use of congestion
management techniques.

Here, following the basic approach used by the Regional Explicit Conges-
tion Noti�cation (RECN) technique (eliminating the Head-of-Line blocking
produced by congested packets turns congestion harmless), we completely
rede�ne the RECN mechanism in order to achieve di�erent goals. First,
we adapt RECN to a switch organization with queues only at input ports.
These switches are simple and cheap to produce. Second, we propose a
new method for detecting congestion that does not require detection queues,
thereby reducing memory requirements and switch cost.

These improvements lead to achieve a cost-e�ective switch organization
that derives maximum performance even in the presence of congestion. So,
we present in detail a realistic switch architecture, known as RECN-IQ, sup-
porting the new congestion management mechanism. Results demonstrate
that RECN-IQ achieves maximum network performance under all analyzed
situations.

3.1 Introduction

Congestion occurs when several �ows of packets simultaneously and persis-
tently request the access to the same network resources (typically, a switch
output port). In these cases, any packet not granted will block, and will

51

52 CHAPTER 3. THE RECN-IQ MECHANISM

remain stored1 in a queue until its request is attended. This may cause
the appearance of the phenomenon known as Head-Of-Line (HOL) blocking,
that occurs when a packet at the head of a queue blocks, preventing the
rest of packets in the same queue from advancing, even if they request avail-
able resources. When congested packets block and produce HOL blocking to
non-congested ones (those packets belonging to �ows that do not contribute
to congestion), non-congested �ows advance at the same speed as congested
�ows, thereby severely degrading network performance and eventually col-
lapsing the network (the e�ect is rapidly spread over the entire network).

Although the negative consequences of congestion have been always ev-
ident, congestion has not been considered a critical problem until recently,
due to several reasons. For instance, networks were traditionally overdimen-
sioned (using more network components than strictly needed), and this leads
to a very low link utilization, thereby reducing contention and congestion
probability. Moreover, di�erent queue organizations at switches reduce or
eliminate the HOL blocking e�ect. This is the case of VOQ where a queue is
used per each output port of the switch (VOQ at the switch level)[13] or per
each possible destination end node (VOQ at the network level)[31]. Also, the
traditional architecture for switches in communication networks used queues
only at their output ports (Output Queuing, OQ switches), so HOL blocking
(at switch level) was eliminated in this case.

But the high cost and power consumption of current network components
discourages to overdimension the network. In fact, it is more appropriate to
use a lower number of network components for interconnecting the terminals,
thus reducing cost and power consumption as we have seen in Section 1.4.
However, link utilization increases and subsequently congestion probability.
On the other hand, the OQ scheme has become unfeasible because it requires
the memories to operate at a much faster speed than the links, and link
speed in current high-speed interconnects is on the order of Gbps. Thus,
most current switches use either queues only at input ports (IQ switches),
or queues at both input and output ports (CIOQ switches)2. However, IQ
and CIOQ switches may be a�ected by HOL blocking. In fact, this problem
may limit the throughput of the switch to about 58% of its peak value
[12]. Although VOQ schemes may be used, they become very expensive as
the memory is the component that drives the �nal cost of the switch. CIOQ
overcomes this limitation by increasing the speedup within the crossbar, thus
approaching to an OQ scheme and therefore with the same implementation
problems explained before.

Taking all this into account and in order to keep network performance at
maximum levels while using a reduced number of network components, the

1We assume lossless networks, where blocked packets are never discarded. Note that
most current interconnects (Myrinet 2000, Quadrics, In�niband, etc.) are lossless.

2Although other schemes, like BC (Bu�ered Crossbar)[16] switches, have been pro-
posed, they are not so popular because of high cost.

3.1. INTRODUCTION 53

use of an e�cient congestion management technique is becoming mandatory
in modern interconnects. Although many techniques have been proposed
in this sense, none of them has been completely satisfactory until the pro-
posal of Regional Explicit Congestion Noti�cation (RECN) [34, 35]. RECN
focuses on detecting and eliminating the HOL blocking produced by con-
gested packets. In order to achieve this, RECN identi�es congested packets
and stores them in special, dynamically-assigned set aside queues (SAQs).
RECN completely eliminates HOL blocking while requiring a small number
of resources (queues) per port. In fact, RECN is the �rst truly e�cient and
scalable HOL blocking elimination technique.

However, RECN has been proposed and designed assuming CIOQ switches.
This narrows the scope of RECN, whose application is limited to switches
with this type of switch organization, while IQ switches are currently pre-
ferred since their implementation is usually simpler and cheaper. Note that
the cost of a switch is mainly driven by the memory used, and most of the
switch power and area is consumed by the memory. This fact suggests that
switch designs with fewer and smaller memories are preferable, thus the IQ
organization being more attractive than CIOQ; another bene�t is that is can
be applied to the PCIQ switch architecture presented in the previous chap-
ter since PCIQ has no bu�ers at the outputs. Taking all this into account,
one of the novelties we present in this chapter is a new RECN version whose
main aim is to adapt to IQ switches, thereby allowing any switch model
with this organization to get e�cient and scalable congestion management.
The new version will be referred to as RECN-IQ. In this sense, RECN will
be compatible with both CIOQ and IQ architectures, on which most of the
current switches are based.

Additionally, we have reduced the memory requirements of RECN at the
input ports of a switch. Speci�cally, the previous RECN version required
several detection queues at each port (one per output port in the switch)
in order to detect congestion. In detail, whenever a detection queue �lls
over a given threshold, the output port associated to the detection queue is
considered as a congested point. Although this method works accurately, it
is expensive as it increases the silicon area required at input ports, even if
memory is dynamically managed. In order to avoid all the aforementioned
problems, this novel RECN-IQ mechanism includes a new method for de-
tecting congestion at input ports that requires a single detection queue per
input port, i.e., a reduction factor of N for an N ×N switch.

Note that, since the new RECN proposal removes data memories at out-
put ports and detection queues at input ports, the power and area required
for switches will be signi�cantly reduced, thereby allowing us to build cheaper
networks as switches will have fewer and smaller memories. Of course, this
will lead to a reduction in the cost and power consumption of the overall
system.

54 CHAPTER 3. THE RECN-IQ MECHANISM

���
���
���
���

������

���
���
���
���

������

������
������

������
���
���
���
���

����
����
����
����

����
����
����
����

��������
����
����
����
����

����
����
����
����

��������

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����

����
����
����
����

Link 0

Link 1

Link 2

Link 3

Link 4

Link 5

Link 6

Link 7

Crossbar

SAQs+CAM

Input
Queues (VOQsw)

SAQs+CAM

Output Queue

Figure 3.1: Queue distribution for a switch implementing the original RECN.
At each input port, a set of VOQ is required plus some SAQs+CAM (two
in this case). At the outputs it is required a single queue plus the some
SAQs+CAMs (same number as there are at the input ports).

3.2 Previous RECN

RECN separates congested and non-congested �ows by storing them into
di�erent queues, thus eliminating the HOL blocking introduced among them.
Speci�cally, RECN adds a set of additional queues (Set Aside Queues, SAQs)
at every input and output port of a switch. Figure 3.1 shows an schematic of
the memory organization required in order to implement RECN on a CIOQ
switch architecture.

RECN assumes that packets from non-congested �ows can be mixed in
the same queue without producing signi�cant HOL blocking. Thus, standard
queues will store non-congested packets and SAQs will be dynamically allo-
cated for storing packets passing through a speci�c congested point. Every
set of SAQs is controlled by means of a Content Addressable Memory (CAM)
[45], each CAM line containing control information for managing an asso-
ciated SAQ, including the information required for addressing a congested
point.

In this sense, RECN (and also RECN-IQ) addresses network points by
means of the routing information included in packet headers, assuming that
source routing is used. For instance, Advanced Switching (AS) [42] packet
headers include a turnpool made up of 31 bits, which contains all the turns
(i.e. o�set from the input port to the output port) for every switch in a
route. See Figure 3.2 for an example of a route de�ned by turns. Therefore,

3.2. PREVIOUS RECN 55

−1
+4

+3

2

36

30 2

Header

+3 +4 −1

Payload

Figure 3.2: Source based routing with the header of the packets indicating
the turns (o�set between input port and input port at each hop along the
packet's path).

in AS networks, CAM lines include turnpools addressing congested points,
and these turnpools can be compared to the turnpool of any packet, in order
to know whether the packet will cross the corresponding congested point. In
this way, packets crossing a particular congested point can be easily detected.

In order to identify a point as congested, RECN implements di�erent
congestion detection mechanisms at input and output ports. At any out-
put port (see Figure 3.1), whenever the standard queue �lls over a given
threshold, congestion is detected at this point, and a noti�cation is sent to
any input port of the switch sending packets to the congested output port.
These noti�cations include the relative address required to reach the con-
gested point from the input port receiving the noti�cation (a turn in the
turnpool). Upon reception of a noti�cation, an input port must allocate a
new SAQ and �ll the corresponding CAM line with the received turnpool.

On the other hand, at input ports, the standard queue is divided into
several small detection queues, one per output port (therefore following some
kind of VOQsw scheme); this can be seen on Figure 3.1. Whenever a de-
tection queue �lls over a given threshold, congestion is detected at the cor-
responding output port and a new SAQ associated to this congested point
is automatically allocated at the input port. Immediately, all the packets
stored in the detection queue are transferred to the SAQ (the detection queue
becomes empty and non-operative), and a noti�cation containing the turn-
pool of the newly allocated SAQ is sent to the output port of the upstream
switch, where a new SAQ should be subsequently allocated.

Once a SAQ is allocated at a given port, every incoming packet will be
directly stored in the SAQ if it will pass through the associated congested
point. Otherwise, the packet will be stored in the standard (or detection)
queue. In this way, non-congested packets are always separated from the
congested ones, thereby preventing the appearance of HOL blocking among
them.

56 CHAPTER 3. THE RECN-IQ MECHANISM

Furthermore, if any SAQ becomes congested (reaches a given threshold),
a noti�cation will be sent upstream, and the receiving input or output port
will allocate a new SAQ. This procedure can be repeated until these noti�-
cations reach the sources. Therefore, a SAQ will be allocated at every point
where otherwise HOL blocking could be introduced. RECN uses a SAQ-
speci�c Xon/Xo� (Stop & Go) �ow control in order to prevent SAQs from
using all the memory space.

RECN also detects congestion vanishing at any point, in such a way that
SAQs can be deallocated asynchronously. Speci�cally, the conditions for
deallocating a SAQ are the following: the SAQ must be empty, and it must
be in Xon state (must not be blocked by a downstream SAQ). Note that
these conditions allow a distributed SAQ deallocation, in such a way that
a SAQ can be deallocated independently of other SAQs. Since deallocated
SAQs can be re-allocated for new congested points, this policy reduces the
number of SAQs per port required for completely eliminating HOL blocking.
For a detailed description of the RECN mechanism, refer to [34, 35].

3.3 The RECN-IQ Mechanism

In this section the new version of RECN for IQ switches is described. For
this, we show the main modi�cations introduced in the previous RECNmech-
anism (suitable for CIOQ switches). In Chapter 4 we will describe a switch
architecture that includes RECN-IQ, detailing all the required memory and
logic components.

For the sake of an easier understanding, the following subsections de-
scribe in detail and separately each di�erent functional aspect of RECN-IQ:
memory management, congestion detection, allocation of queues, processing
of packets, and �ow control. Later, when describing the switch architecture
including RECN-IQ, we will implement each aspect in a separate functional
unit.

3.3.1 Memory Management and Requirements

The RECN-IQ mechanism has been designed assuming data memories only
at the input ports of the switch. At each input port a data memory will
be used for allocating a normal (Cold) queue and a set of SAQs. In order
to manage the SAQs, an associated CAM (Content-Addressable Memory)
will be required at each input port. Additionally, a CAM structure will be
required also at output ports. Figure 3.3 depicts such memory requirements.

In the previous RECN mechanism, some detection queues were used at
each input port. However, in the RECN-IQ mechanism only a single queue,
the Cold Queue (CQ), will be used for storing all the incoming packets (both
congested and non-congested). Therefore, the new RECN mechanism will
require at each switch fewer memory resources, both at the output ports

3.3. THE RECN-IQ MECHANISM 57

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����

��������

��������
����
����
����
����

��������
��������

����
����
����
����

��������

Link 0

Link 1

Link 2

Link 3

Link 4

Link 5

Link 6

Link 7

Crossbar

SAQs+CAM

Cold Queue

CAM

Figure 3.3: Queue distribution for a switch implementing the RECN-IQ
congestion management. At each input port, a single queue (known as Cold
Queue, CQ) plus some SAQs+CAM (two in this case) are required. There
is no bu�ering at the outputs, only some CAMs for keeping track of the
congestion situation.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 50 100 150 200 250

N
um

be
r

of
 R

eq
ui

re
d

Q
ue

ue
s

Number of Ports of the Switch

RECN-IQ
RECN

Figure 3.4: Relationship between the number of ports of the switch and the
required queues for an architecture based on RECN and on RECN-IQ. It is
assumed that the number of SAQs is equal to the number of ports divided
by four.

58 CHAPTER 3. THE RECN-IQ MECHANISM

(where only the CAM is required) and at the input ports (where detection
queues are replaced by only one queue). Thus, the number of queues required
for a RECN-IQ switch (QRECN-IQ) can be calculated through the following
expression:

QRECN-IQ = N × (1 + S) (3.1)

where N is the number of ports of the switch and S is the number of SAQs
implemented.

On the other hand, a switch implementing the previous RECN requires
N detection queues plus S SAQs per input port, and one queue plus S SAQs
per output port. Therefore, the number of queues required (QRECN) for a
RECN switch is given by the following expression:

QRECN = N × [(N + S) + (1 + S)] (3.2)

Assuming that the number of SAQs required is always the number of
ports divided by 4, the relationship between the radix of the switch and the
queue requirements can be plotted (Figure 3.4). For instance, assuming a
detection threshold of 2 slots (a slot will store one packet), an Xo� threshold
(required for activating the �stop� function in the �ow control between SAQs)
of 2 slots, 4 SAQs, and a 16×16 switch; the RECN mechanism would require
800 memory slots, whereas just 160 slots is enough for the new RECN-IQ.
A reduction factor of 5. It should be noted that these numbers have been
obtained assuming short cables where Round-Trip-Time (RTT) is lower than
a packet/slot.

3.3.2 Congestion Detection

The new RECN-IQ mechanism detects congestion only at input ports. In
particular, whenever the number of packets in the Cold Queue (CQ) exceeds
a given threshold (the RECN-IQ threshold), congestion is detected. Once a
congested situation is detected, the congested point must be identi�ed.

The RECN-IQ mechanism assumes that the origin of congestion is the
output port requested by the �rst packet at the CQ queue. This assumption
is based on the fact that, under a congested situation, it is very likely that the
�rst packet in a congested queue is blocked because it requests a congested
output port. Therefore, under these situations, the detection mechanism will
hit the congested output port.

Indeed, in a non-congested situation, the rate at which packets arrive to
a given input port will be roughly the same at which packets leave the input
port, thus the queue's occupancy will be low. Thus, if the CQ increases in
size is because the packet at the head is temporarily blocked.

On the other hand, it may happen that the packet at the head of the
queue is not addressed to a congested output port. In that situation, the

3.3. THE RECN-IQ MECHANISM 59

CAM

SentXoff

SentXoff Xoff

Xoff

Congested point address

SAQs Flow Control

Valid

Valid

Turnpool

Turnpool Bit Mask

Bit Mask CAM line SAQ 0

CAM line SAQ n−1

Figure 3.5: CAM structure for RECN-IQ.

detection mechanism will fail, but the Post-Processing unit and the deal-
location policy of SAQs will minimize the impact of the false positives (as
explained below, in Section 3.3.8).

3.3.3 SAQ Allocation and Deallocation

Once congestion is detected, the input port allocates a new SAQ for the
congested point (output port requested by the packet at the head of the
CQ).

The associated CAM line, whose structure can be seen in Figure 3.5, will
include all the routing information (turnpool + bit mask) and the status
(Valid, Xo�, and SentXo� bits) of the SAQ. An active Valid bit indicates
that the SAQ is assigned to a congestion point; an active Xo� bit indicates
that the SAQ is stopped by the �ow control between SAQs; and an active
SentXo� bit indicates that the SAQ has sent an Xo� signal to an upstream
SAQ.

For instance, when a new SAQ is allocated because of congestion de-
tection at the CQ, it will set the �Valid � bit, and will reset the �Xo� � and
�SentXo� � bits. As in the previous RECN, if there exists an associated SAQ
for the detected congested point, then no new SAQ is allocated. Thus, before
allocating a new SAQ, a search in the CAM structure is performed.

Whenever a SAQ empties and is not blocked by the Xon/Xo� �ow control
(Xo� bit not set), then the SAQ is deallocated. So the RECN-IQ mechanism
allows the deallocation of SAQs in a distributed way.

3.3.4 Packet Processing

Whenever a new packet arrives to the switch, it is stored in the CQ queue,
regardless whether it is going to pass through a detected congested point or
not. A mechanism (Post-Processing mechanism, PP) at each input port will
decide later if the packet goes to any of the di�erent SAQs allocated at this
port. The PP mechanism cyclically inspects all the queues (CQ and SAQs),
one at a time. At each queue, it processes the packet at the head of the
queue. In particular, the routing information of that packet is compared to
the routing information of each CAM line. Thus, it will be detected whether

60 CHAPTER 3. THE RECN-IQ MECHANISM

or not the packet is going through a congested point in the network. In the
case of a match, the packet is moved to the corresponding SAQ. Otherwise,
the packet is set as ready for the scheduler. In this way, congested packets
will not be blocked at the head of the queue, thereby avoiding HOL blocking.

Notice that the routing information of a packet may match at the same
time the routing information of several active CAM lines in an input port.
Thus, di�erent situations may arise depending on the queue where the packet
is initially mapped into. The �rst situation occurs when the packet is initially
in the CQ and there are two matches, in that case the shortest match is
selected. Thus, in a �rst post-processing step, the packet is stored in the
SAQ with the �less-speci�c� (shortest) associated turnpool. In a second
situation, a packet stored in a SAQ matches (when it is post-processed) two
CAM lines, one of them being less-speci�c than the one associated to the
current SAQ. In that situation, the post-processing mechanism selects the
less-speci�c match, but larger than the routing information for the current
SAQ.

To sum up, packets move initially from CQ to one SAQ, then from that
SAQ to another in increasing matching size, until the packet reaches the SAQ
with the largest match. This is the penalty for preserving in-order delivery
of packets which is important for some applications. Also, this prevents the
burden of using reordering bu�ers at destination. Once a packet is post-
processed and there is no match with any CAM line, then the packet is set
as ready for the arbiter.

It is worth to mention that the arbitration must not distinguish between
requests from the CQ and the ones from the SAQs, i.e. all queues from an
input port must be treated equally by the scheduler, with no hard-priority.
Therefore arbitration schemes like iSLIP [46], for instance, are the most
appropriates for RECN-IQ.

3.3.5 Congestion Information Propagation

The detection of congestion propagates between switches in the following
manner. Whenever the number of packets on a SAQ exceeds the Xo� RECN
Threshold, then the input port sends backwards an Xo� signal (containing
the routing information that points to the associated congested point) to
the corresponding output port at the upstream switch. Upon reception, a
new CAM line is allocated at the output port of the switch pointing to the
congested point (if there is not already a SAQ allocated for the noti�ed
congested point). The Valid and Xo� bits are set.

Whenever a packet passes through the output port3, the routing infor-
mation is inspected and compared to the routing information stored in the
active CAM lines at this output port. If there is a match and the matching

3Notice that queues are not implemented at output ports.

3.3. THE RECN-IQ MECHANISM 61

CAM line has its Xo� bit set, an internal Xo� noti�cation is sent to the in-
put port that sent the packet. Upon reception of that Xo� signal, the input
port allocates a new SAQ+CAM line, with routing information pointing to
the congested point (note that the routing information from the output port
CAM line is updated at the input port CAM line to include an additional
turn). The Xo� bit for that newly allocated SAQ is set. However, if a SAQ
already existed for the congested point, then the Xo� bit of its associated
CAM line is set.

3.3.6 Flow Control

The Cold Queues at the input ports forward packets on a credit �ow control
fashion at the memory level, i.e., whenever there is enough free space at the
requested input memory, the Cold Queue can forward packets.

On the other hand, the �ow control for the SAQs is di�erent. A SAQ
with its associated CAM line having the Xo� bit set cannot send packets.
Whenever the number of packets on a SAQ goes below the RECN Xon
threshold, an Xon signal is sent backwards to the connected output port at
the upstream switch. Then, the corresponding CAM line at the output port
resets the Xo� bit and broadcasts an internal Xon signal to all the input
ports of the switch. The input ports with an allocated SAQ for the congested
point reset the Xo� bit on the corresponding CAM line, thus allowing the
packets stored in the SAQ to move forward.

3.3.7 Procedure Example of the RECN-IQ Mechanism

In order to better understand RECN-IQ, a graphical example showing the
basic procedure is shown in �gures 3.6 through 3.15.

Step 1 (Figure 3.6) shows how congestion is detected. Output link num-
ber 5 of switch 2 is oversubscribed, therefore packets begin to accumulate on
the Cold Queue (CQ) of several input ports of switch 2. When the number
of packets stored in the CQ at input link 0 of switch 2 exceeds the RECN-IQ
threshold, congestion is detected at the output port requested by the packet
at the head of that CQ. Because at that moment, the packet at the head of
CQ at link 0 of switch 2 is requesting the output port number 5, that output
port number 5 of switch 2 is considered the congested point.

Step 2 (Figure 3.7), a new SAQ+CAM line is allocated at input port
0 of switch 2, pointing to the detected congested point. From input's port
0 of switch 2 perspective, the congested point at link 5 is identi�ed by the
turn +5 at the current switch. Congested packets at the head of the CQ
at input port 0 of switch 2 are moved into the SAQ by the Post-Processing
mechanism, so avoiding the HOL blocking these packets may produce.

Step 3 (Figure 3.8), when the number of packets at the recently allocated
SAQ exceeds the Xo� threshold, an Xo� signal is sent backwards to the

62 CHAPTER 3. THE RECN-IQ MECHANISM

�������
�������
�������

�������
�������
��������������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
��������������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������

�������
�������
��������������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
��������������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

���
���
���
���

��
��
��
��

��

�
�
�
�

�
�
�
�

�
�
�
�
���
���
���

���
���
���

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�
�
��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

�������
�������
�������
�������
�������
�������
�������
�������

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� CrossbarCrossbar

Xoff Xon
Threshold

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Threshold Switch 2

Link 5

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Threshold
RECN−IQ

Switch 1

Link 5

RECN−IQ

XonXoff
Threshold

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Threshold
Threshold

Figure 3.6: Step 1 of 10 of the RECN-IQ basic procedure example.

�������
�������
�������

�������
�������
��������������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
��������������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������

�������
�������
��������������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
��������������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�
�
�
���
���
���

���
���
���

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�
�
��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

���
���
���
���

���
���
���
���
��
��
��
��

�������
�������
�������
�������
�������
�������
�������
�������

�
�
�
�

�
�
�
�

�
�
�
�

��

��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� CrossbarCrossbar

Xoff Xon
Threshold

Xoff Xon
Threshold

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Link 5

Threshold
RECN−IQ

Switch 2

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Threshold
RECN−IQ

Switch 1

Link 5

+5

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

ThresholdThreshold

Figure 3.7: Step 2 of 10 of the RECN-IQ basic procedure example.

�������
�������
�������

�������
�������
��������������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
��������������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
��������������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�

�
�
�

���
���
���
���

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

���
���
���
���
��
��
��
��

��
��
��
��

�������
�������
�������
�������

�
�
�
�
�

�
�
�
�
�

�
�
�
�

��

�
�
�
�

��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�������
�������
�������

�������
�������
�������

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� CrossbarCrossbar

Xoff Xon
Threshold

Xoff Xon
Threshold

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Link 5

Threshold
RECN−IQ

Switch 2

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Threshold
RECN−IQ

Switch 1

Link 5

+5

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Threshold

Xoff signal

Threshold

Figure 3.8: Step 3 of 10 of the RECN-IQ basic procedure example.

3.3. THE RECN-IQ MECHANISM 63

�������
�������
�������

�������
�������
��������������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
��������������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
��������������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�
�

�
�
�
�

������
������
������
������
������
������

������
������
������
������
������
������

�
�
�
�
�

�
�
�
�
�

�
�
�

�
�
�

���
���
���
���

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

���
���
���
���
��
��
��
��

��
��
��
��

�������
�������
�������

�������
�������
��������������
�������
�������
�������

�
�
�
�
�

�
�
�
�
�

�
�
�
�

��

�
�
�
�

��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��

�
�
�
�

��

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

������
������
������
������
������
������
������

������
������
������
������
������
������
������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

CrossbarCrossbar

Xoff Xon
Threshold

+3+5

Xoff Xon
Threshold

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Link 5

Threshold
RECN−IQ

Switch 2

+5

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Threshold
RECN−IQ

Switch 1

Link 5

+5Xoff

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

+1+5

ThresholdThreshold

Xoff signal

Figure 3.9: Step 4 of 10 of the RECN-IQ basic procedure example.

�������
�������
�������

�������
�������
��������������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
��������������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������

�������
�������
��������������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�

�
�
�

���
���
���
���

��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���
��
��
��
��

��
��
��
��

�������
�������
�������
�������

�
�
�
�
�

�
�
�
�
�

��

��

�
�
�
�

��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

��

��

�
�
�
�

��

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��

���
���
���
���

��
��
��
��

���
���
���
���

�������
�������
�������

�������
�������
�������

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

CrossbarCrossbar

Xoff Xon
Threshold

Xoff Xon
Threshold

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Link 5

Threshold
RECN−IQ

Switch 2

+5

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Threshold
RECN−IQ

Switch 1

Link 5

+5

+3+5 Xoff

Xoff

Xoff+1+5

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

ThresholdThreshold
Xoff signal

Xoff signal

Figure 3.10: Step 5 of 10 of the RECN-IQ basic procedure example.

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
���
���
���
���

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�
��
��
��
��
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���
��
��
��
��

��
��
��
��

�������
�������
�������
�������

�
�
�
�

�
�
�
�

��

��

��

��

�
�
�
�

�
�
�
�

�
�
�
�

��

��

��

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���

��
��
��
��

���
���
���
���

��
��
��
��

���
���
���
���

���
���
���
���
��
��
��
��

�������
�������
�������
�������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� CrossbarCrossbar

Xoff Xon
Threshold

+3+6

Xoff Xon
Threshold

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Link 5

Threshold
RECN−IQ

Switch 2

+5

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Threshold
RECN−IQ

Switch 1

Link 5

+5

+3+5 Xoff

Xoff

+1+5 Xoff

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

ThresholdThreshold

Figure 3.11: Step 6 of 10 of the RECN-IQ basic procedure example.

64 CHAPTER 3. THE RECN-IQ MECHANISM

�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������

������
������
������

������
������
������
������
������
������

������
������
������

������
������
������

������
������
������
������
������
������
������

�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

������
������
������

������
������
������
������
������
������

������
������
������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�
�

�
�
�
�
���
���
���

���
���
���

������
������
������

������
������
������
������
������
������

������
������
������

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

CrossbarCrossbar

Xoff Xon
Threshold

Xoff Xon
Threshold

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Threshold
RECN−IQ

Switch 2

+5

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Threshold
RECN−IQ

Switch 1

Link 5

+5

+3+5 Xoff

Link 5

Xoff

+1+5 Xoff

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

ThresholdThreshold

Xon signal

Figure 3.12: Step 7 of 10 of the RECN-IQ basic procedure example.

�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������

������
������
������

������
������
������
������
������
������

������
������
������

������
������
������

������
������
������
������
������
������

������
������
������

�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

������
������
������

������
������
������
������
������
������

������
������
������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�
�
�

�
�
�
�
�

���
���
���

���
���
���

������
������
������

������
������
������
������
������
������

������
������
������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

CrossbarCrossbar

Xoff Xon
Threshold

Xoff Xon
Threshold

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Threshold
RECN−IQ

Switch 2

+5

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Threshold
RECN−IQ

Switch 1

Link 5

+5

+3+5 Xoff

Link 5

Xon

+1+5 Xoff

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

ThresholdThreshold

Xon signalXon signal broadcast

Figure 3.13: Step 8 of 10 of the RECN-IQ basic procedure example.

�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������

������
������
������

������
������
������
������
������
������

������
������
������

������
������
������

������
������
������
������
������
������

������
������
������

�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

������
������
������

������
������
������
������
������
������

������
������
������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�
�
�

�
�
�
�
�

������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

���
���
���

���
���
���

������
������
������

������
������
������
������
������
������

������
������
������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

CrossbarCrossbar

Xoff Xon
Threshold

+3+5

Xoff Xon
Threshold

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Threshold
RECN−IQ

Switch 2

+5

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Threshold
RECN−IQ

Switch 1

Link 5

+5Xon

Link 5

+1+5 Xon

Xon+3+5

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

+1+5

ThresholdThreshold

Figure 3.14: Step 9 of 10 of the RECN-IQ basic procedure example.

3.3. THE RECN-IQ MECHANISM 65

�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������

������
������
������

������
������
������
������
������
������

������
������
������

������
������
������

������
������
������
������
������
������

������
������
������

�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

������
������
������

������
������
������
������
������
������

������
������
������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�
�
�

�
�
�
�
�

������
������
������

������
������
������
������
������
������

������
������
������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

CrossbarCrossbar

Xoff Xon
Threshold

Xoff Xon
Threshold

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Threshold
RECN−IQ

Switch 2

Link 0

Link 1

Link 2

Link 3

Link 4

Link 6

Link 7

Threshold
RECN−IQ

Switch 1

Link 5 Link 5

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

ThresholdThreshold

Figure 3.15: Step 10 of 10 of the RECN-IQ basic procedure example.

upstream output port (link 4 at switch 1).

Step 4 (Figure 3.9), upon reception of the Xo� signal at link 4 of switch
1, a new CAM line pointing to the congested point is activated. The contents
of this CAM line are indicated by the Xo� signal and are the same as the
ones at the downstream CAM line. When any input port of switch 1 sends
a packet through output link 4, the turnpool of the packet is compared to
the turnpool stored in the CAM line. In the case there is a match, the
output port sends an Xo� signal to the input port sending that packet. In
this example, input links 1 and 3 of switch 1 are sending congested packets
through output link 4.

Step 5 (Figure 3.10), upon reception of the internal Xo� signal, each input
port allocates a new SAQ+CAM line pointing to the detected congested
point (at the switch downstream in this example). From input's port 1 of
switch 1 perspective, the congested point is identi�ed by the turns +3+5. On
the other hand, from input's port 3 of switch 1 point of view, the congested
point is +1+5.

Step 6 (Figure 3.11), a packet is moved into a SAQs only if there is a
complete match between the remaining turns of that packet and the turn
information at the CAM associated with the SAQ. Therefore, a packet going
through output link 4 of switch 1 and then through link 6 of switch 2 (turn
+3 + 6) is not considered congested, even if it shares the path with the
identi�ed congested route (identi�ed by +3 + 5 here). Note that congested
packets are being placed into the appropriate SAQ but this SAQ cannot
send packets because it was created on an Xo� state. If at any time later,
the SAQ is over the Xo�, the steps 3 to 5 are repeated until the congestion
information (and the subsequent tra�c separation) eventually reaches the
sources.

Step 7 (Figure 3.12), at this point congestion at link 5 of switch 2 van-
ishes. The only SAQ sending tra�c was the one at input port 0 of switch 2

66 CHAPTER 3. THE RECN-IQ MECHANISM

(not on Xo� state). When the number of packets at that SAQ is below the
Xon threshold, an Xon noti�cation is sent to the output port of the switch
upstream (link 4 of switch 1).

Step 8 (Figure 3.13), upon reception of the Xon signal at output link 4
of switch 1 the corresponding CAM switches its status from Xo� to Xon and
broadcasts an internal Xon noti�cation to all input ports in that switch.

Step 9 (Figure 3.14), upon reception of the Xon signal at the input ports
of switch 1, if there is a match between the turn indicated by the Xon signal
and an allocated SAQ, then the status of the matching CAM is switched
from Xo� to Xon. At that moment, that SAQ is allowed to send congested
packets. This scheme of Xon/Xo� �ow control signals controls the movement
of the congested packets at the SAQs.

Step 10 (Figure 3.15), whenever a SAQ is not on Xo� state and be-
comes empty, it can be de-allocated so it can be re-used for other upcoming
congested �ows.

3.3.8 False Positives when Detecting Congestion

There is still the question regarding what happens if, when congestion is
detected, the packet at the header of the Cold Queue does not belong to a
congested �ow.

Imagine that this is indeed the case, then the RECN-IQ mechanism will
allocate a SAQ for that non-congested point and thereafter will put the
packet at the head of the CQ into that SAQ. Imagine now that the next
packet at the CQ belongs to a congested �ow. When it reaches the head of
that queue, it is very likely that the packet will block because its requested
output port is oversubscribed, thus producing HOL blocking. In that case
the most probable is that the non-congested packet will gain the access to the
crossbar (win the arbitration) versus the congested one at the CQ. There-
fore, the SAQ will become empty at the next cycle so it can be de-allocated;
whereas the blocked packet at the CQ is producing HOL blocking, keep-
ing the number of packets in that queue over the threshold, triggering the
congestion detection mechanism that will allocate another SAQ, this time
pointing to the correct congested output port.

The conclusion is that the RECN-IQ mechanism overcomes the prob-
lem of miss-detections of congestion in a very straightforward way, with no
signi�cant penalty, due to the fact that the scheduler does not distinguish
between requests from the CQ or the SAQs (they are all treated the same
way, with no hard priority).

3.4 Conclusions

For modern interconnection networks, the use of an e�ective congestion man-
agement technique has become mandatory in order to keep network perfor-

3.4. CONCLUSIONS 67

mance at maximum even in congestion situations. Although the formerly
proposed RECN mechanism e�ciently solves the problems related to con-
gestion, its application is restricted to CIOQ switches, thereby not being
suitable for the IQ switches.

In order to a�ord an e�ective congestion management technique to this
type of switches, we have proposed in this chapter an adaptation of RECN
to IQ switches. The resulting mechanism, referred to as RECN-IQ, also in-
troduces a new way for detecting congestion at input ports that signi�cantly
reduces the data memory area required at each port. From the evaluation
results presented in this chapter, we can deduce that RECN-IQ eliminates
HOL blocking as well as RECN, while being an even more cost-e�ective
technique.

In the next chapter the RECN-IQ congestion management mechanism
is used to enhance a cheap and low-performance IQ switch architecture.
The idea is that by adding some extra hardware (detailed in next chapter)
for implementing RECN-IQ, the cost of the switch is kept low but with an
impressive increase in performance.

68 CHAPTER 3. THE RECN-IQ MECHANISM

Chapter 4

The RECN-IQ Switch

Architecture

King Arthur: The swallow may �y south with the sun or the
house martin or the plover may seek warmer climes in winter,

yet these are not strangers to our land?
Soldier: Are you suggesting coconuts migrate?

� �Monty Python and the Holy Grail�

In this chapter, we propose an e�cient and realistic switch architecture suit-
able for the new RECN mechanism, describing in detail the structure and
behavior of each functional unit of this architecture. All the memory sizes,
signals and components required for a real implementation are de�ned. Note
that this is the �rst time a switch architecture implementing RECN is de-
scribed at this level.

4.1 Description of the RECN-IQ Switch Architec-

ture

In the previous chapter we have described the new RECN-IQ mechanism. Of
course, this mechanism would in�uence many aspects (e.g., memory manage-
ment, �ow control issues, scheduler) of any switch supporting it. Therefore,
we detail in this Section the entire switch organization required for imple-
menting the RECN-IQ mechanism.

The switch architecture assumes a routing scheme similar to the one used
in AS interconnects [42]. Thus, it is assumed that each packet includes in
its packet header a turnpool and a turn pointer. The turnpool is made of 31
bits and contains a turn (o�set from an input port to the requested output
port) for each switch along the packet's path. The turn pointer, made of
5 bits, points to the set of bits of the turnpool encoding the turn for the
current switch. Also, the switch architecture assumes VCT switching.

69

70 CHAPTER 4. THE RECN-IQ SWITCH ARCHITECTURE

(C
R

O
S

S
B

A
R

)

d
at

a
in1

6 1

S
O

P

M
M

U

C
D

U
R

U

M
U

P
P

U

R
F

C
U

ad
d
re

ss

d
at

a

6
4

 s
lo

ts
 o

f
6

4
 b

y
te

s

~
 3

2
 K

b
it

s
~

S
R

A
M

R
W

P
o

in
te

r
R

eg
is

te
rs

ad
d
re

ss

W
R

6
4

 s
lo

ts
 o

f
6

 b
it

s

~
 3

8
4

 b
it

s
~

R
E

C
N

 T
h
re

sh
o
ld R W

6
 b

it
s

RW W W WRR R

R R R R WW W W

H
ea

d
 (

6
 b

it
s)

T
ai

l
(6

 b
it

s)

E
m

p
ty

?
(1

 b
it

)

#
 P

ac
k

et
s

(6
 b

it
s)

C
Q

 R
eg

is
te

rs

ad
d
re

ss

tp
o
in

te
r

(5
 b

it
s)

tp
o
o
l

(3
1
 b

it
s)

tp
o
o
l

(3
1
 b

it
s)

tp
o
in

te
r

(5
 b

it
s)

ad
d
re

ss

~
 2

,3
0

4
 b

it
s

~
S

R
A

M
W

R

..
.
6
4
 s

lo
ts

 .
..

R
o

u
ti

n
g

 I
n

fo

ad
d
re

ss

W
R

~
 4

4
8

 b
it

s
~

6
4

 s
lo

ts
 o

f
7

 b
it

s

R
eq

u
es

ts
 R

eg
s.

RW W W WRR R

R R R R WW W W

RW W W WRR R

R R R R WW W W

RW W W WRR R

R R R R WW W W

RW W W WRR R

R R R R WW W W

H
ea

d
 (

6
 b

it
s)

T
ai

l
(6

 b
it

s)

E
m

p
ty

?
(1

 b
it

)

H
ea

d
 (

6
 b

it
s)

H
ea

d
 (

6
 b

it
s)

T
ai

l
(6

 b
it

s)

E
m

p
ty

?
(1

 b
it

)
E

m
p
ty

?
(1

 b
it

)

T
ai

l
(6

 b
it

s)

H
ea

d
 (

6
 b

it
s)

E
m

p
ty

?
(1

 b
it

)

T
ai

l
(6

 b
it

s)

#
 P

ac
k

et
s

(6
 b

it
s)

#
 P

ac
k

et
s

(6
 b

it
s)

#
 P

ac
k

et
s

(6
 b

it
s)

#
 P

ac
k

et
s

(6
 b

it
s)

S
A

Q
1
 R

eg
is

te
rs

S
A

Q
0
 R

eg
is

te
rs

S
A

Q
2
 R

eg
is

te
rs

S
A

Q
3
 R

eg
is

te
rs

RW W W WRR R

C
A

M
 R

eg
is

te
rs

R R R R WW W W

+
tm

as
k
(5

)+
X

o
ff

+
S

X
o
ff

+
V

al
id

+
tm

as
k
(5

)+
X

o
ff

+
S

X
o
ff

+
V

al
id

+
tm

as
k
(5

)+
X

o
ff

+
S

X
o
ff

+
V

al
id

+
tm

as
k
(5

)+
X

o
ff

+
S

X
o
ff

+
V

al
id

tp
o
o
l(

3
1
)+

tp
o
o
l(

3
1
)+

tp
o
o
l(

3
1
)+

tp
o
o
l(

3
1
)+

C
A

M
0
 (

3
9
 b

it
s)

C
A

M
1
 (

3
9
 b

it
s)

C
A

M
2
 (

3
9
 b

it
s)

C
A

M
3
 (

3
9
 b

it
s)

RW W W WRR R

C
A

M
 R

eg
is

te
rs

R R R R WW W W

+
tm

as
k
(5

)+
X

o
ff

+
S

X
o
ff

+
V

al
id

+
tm

as
k
(5

)+
X

o
ff

+
S

X
o
ff

+
V

al
id

+
tm

as
k
(5

)+
X

o
ff

+
S

X
o
ff

+
V

al
id

+
tm

as
k
(5

)+
X

o
ff

+
S

X
o
ff

+
V

al
id

tp
o
o
l(

3
1
)+

tp
o
o
l(

3
1
)+

tp
o
o
l(

3
1
)+

tp
o
o
l(

3
1
)+

C
A

M
0
 (

3
9
 b

it
s)

C
A

M
1
 (

3
9
 b

it
s)

C
A

M
2
 (

3
9
 b

it
s)

C
A

M
3
 (

3
9
 b

it
s)

R W
5
 b

it
s

X
o
ff

 T
h
re

sh
o
ld

R W
5
 b

it
s

X
o
n
 T

h
re

sh
o
ld

Figure 4.1: General overview of the proposed switch architecture.

4.1. DESCRIPTION OF THE RECN-IQ SWITCH ARCHITECTURE 71

Figure 4.1 shows a general overview of the switch architecture with
RECN-IQ; depicting an input port, the crossbar and an output port. For the
sake of an easier understanding, the switch has been divided into six func-
tional units: Memory management (MMU), Mapping (MU), Post-Processing
(PPU), Routing (RU), RECN-IQ Flow Control (RFCU), and Congestion De-
tection (CDU). In order to focus on the RECN-IQ mechanism and to avoid
introducing graphical complexity, we do not include the arbiter in this Fig-
ure. Further in this Section we will discuss about the arbiter.

Also, the memory structures required by the mechanism and the switch
architecture are shown in Figure 4.1. In addition to the SRAM memory
that bu�ers incoming packets, an additional memory of 2Kb is required at
each input port. This memory will store the routing headers of each packet.
Also, two register �les will be required: the Pointer Registers File (PRF) and
the Requests Registers File (RRF). The PRF will store the pointers among
di�erent packets, in order to keep the logical structure of the queues. The
RRF will store the requested output ports of the packets.

Additionally, besides some other small registers, a set of four registers
is required for each implemented logic queue (either CQ or SAQ). These
registers (head, tail, empty and number of packets) keep track of the queue
structure and the queue occupancy level. Finally, a CAM structure per input
port and another per output port are required by the RECN-IQ mechanism.

In the following sections we describe in detail each functional unit and
all the required memory structures.

4.1.1 Memory Management Unit

In the proposed switch architecture packets are stored only at input ports.
Thus, the Memory Management Unit (MMU) is located at the input side
of the switch. The MMU is in charge of mapping all the incoming packets
to the corresponding queue and to keep track of the allocated queues within
the memory. Figure 4.2 shows the scheme for the MMU. This element works
in a Dynamically Allocate Multi-Queue bu�er (DAMQ) [14] fashion and
it consists of a SRAM memory of 32 Kbits and an associated logic. The
memory is divided into slots of 64 bytes (64 chunks of 64 bytes each). Slots
are used atomically.

Whenever a new packet arrives (Start Of Packet signal, SOP), the writing
logic selects a free slot in the memory for mapping the packet. In order to
do this, the MMU incorporates two registers to keep track of the list of free
slots, managed in a LIFO manner. Additionally, in order to keep track of
the di�erent queues implemented in the memory, the MMU incorporates a
list of pointers, one for each possible slot. Thus, it incorporates 64 registers.
Each register corresponds to a slot and indicates which is the next slot in
the queue's order.

72 CHAPTER 4. THE RECN-IQ SWITCH ARCHITECTURE

M
U

X
M

U
X

M
U

X

RU MU PPU

data in

SOP

6

(CROSSBAR)

R

W

R

W
Free Space (6 bits)

Tail (6 bits)

Free Space Registers

W R

address

data

SRAM

64 slots of 64 bytes

~ 32 Kbits ~

address

W R

64 slots of 6 bits

~ 384 bits ~

Pointer Registers

Writing
Logic

(and updates the)

6b

Register
Address

(selects a free address)

(FreeSpace registers)

(update pointers)

(previous tail packet now points to that address)

12

12

6

6 6

6

6

6

6

6

6

6

1

16

Figure 4.2: MMU (Memory Management Unit) detailed.

4.1.2 Mapping Unit

As already explained, in the RECN-IQ mechanism, the memory of each input
port is logically divided into a single Cold Queue (CQ), and a set of SAQs
for storing congested packets. In the proposed architecture, we assume four
SAQs per port (this number of SAQs is enough for handling e�ectively the
congestion situations and network con�gurations evaluated in Section 4.2).
SAQs are dynamically allocated when required. Whenever a new packet
arrives to an input port, it is stored always in the CQ queue. To keep track
of the CQ, the Mapping Unit (MU) is used.

Figure 4.3 shows the scheme for the MU. It consists of four registers and
an associated logic. The logic places the incoming packet in the CQ and
updates the registers. The head and tail registers keep track of the structure
of the CQ whereas the remaining two registers keep track of the queue's
occupancy.

4.1.3 Routing Unit

At the same time packets are being stored into the CQ, the switch routes the
packet in order to decide which output port the packet requests. For this,
the Routing Unit (RU) shown in Figure 4.4 places the packet header in a
separate SRAM memory of 2Kbits. This memory contains the header of each
packet stored in the port, so it is divided into 64 slots. Each slot contains
a turnpool and a turnpointer following the AS packet header format. Thus,
each slot is 36 bits wide.

Additionally, the RU extracts from the header of the incoming packet
the output port requested, and then stores that information into the request
register �le (RRF), made up of 64 registers 7 bits wide each. The RRF is

4.1. DESCRIPTION OF THE RECN-IQ SWITCH ARCHITECTURE 73

data in

16

SOP

R

W

W

W

W

R

R

R

R

R

R

R

W

W

W

W

CQ Registers

Head (6 bits)

Tail (6 bits)

Empty? (1 bit)

Packets (6 bits)

CQ Allocation
Logic
(places the incoming)

(packet in the CQ)
(updating all CQ regs)

6
6

6
6

6

6

6

6

1

6 12

RU

CDU

PPUMMU

Figure 4.3: MU (Mapping Unit) detailed.

M
U

X
M

U
X

M
U

X

Routing Logic

(Writes all info)

requested output port)
(Then calculates the

from the packet)
(extracts tpool+tpointer

data in

16

SOP

(packet tpool)

(mark as ready for the arbiter)

Requests Regs.

W R

64 slots of 7 bits

~ 448 bits ~

address

(Arbiter)

7

6

6

6

1

RFCU

PPU

MMU W

~ 2,304 bits ~

SRAM

Routing Info

address

... 64 slots ...

tpool (31 bits)

R

address

tpointer (5 bits)

tpointer (5 bits)tpool (31 bits)

Figure 4.4: RU (Routing Unit) detailed.

74 CHAPTER 4. THE RECN-IQ SWITCH ARCHITECTURE

B>=A

AllocateNewCAM

AllocateNewSAQ

Congestion Detection Logic

· Construct the Tpool for that
Requested Output and search for it
in the CAMs

· If there is a match: AllocateNewCAM,
AllocateNewSAQ, if (packet.Ready) {
packet.Ready=FALSE;}

B

A

PPU
RU

R

W

W

W

W

R

R

R

CAM Registers

R

R

R

R

W

W

W

W

tpool(31)+

tpool(31)+

tpool(31)+
CAM3 (39 bits)

CAM2 (39 bits)

CAM1 (39 bits)

CAM0 (39 bits)

+tmask(5)+Xoff+SXoff+Valid

+tmask(5)+Xoff+SXoff+Valid

+tmask(5)+Xoff+SXoff+Valid

+tmask(5)+Xoff+SXoff+Valid

tpool(31)+

MU

RECN Threshold

6 bits
R

W

R

W

W

W

W

R

R

R
Packets (6 bits)

Empty? (1 bit)

Tail (6 bits)

Head (6 bits)

CQ Registers

R

R

R

R

W

W

W

W

Requests Regs.

address

W R

64 slots of 7 bits

~ 448 bits ~

Figure 4.5: CDU (Congestion Detection Unit) detailed.

inspected by the scheduler in order to decide when to forward the packet
through the crossbar. However, one of these bits (the ready-for-scheduler,
RFS bit) will be used in order to enable/disable the forwarding of the packet.
Whenever a new packet arrives at the input port and is routed, the RFS bit
is reset, thus the packet is disabled for being forwarded. Later, the PPU
unit will set this bit, thus enabling the packet for the scheduler.

4.1.4 Congestion Detection Unit

The Congestion Detection Unit (CDU) shown in Figure 4.5 is in charge of
detecting congestion, computing the output port congested, and, if required,
allocating a new SAQ for the congested point. First, it compares the current
queue's occupancy of the CQ against a given RECN threshold (measured in
number of packets or slots). If the threshold is reached, then the congestion
detection logic is triggered. This logic extracts from the request registers �le
(RRF) the output port requested by the packet at the header of the CQ.
Then, it builds the turnpool and the bit mask addressing that output port,
and compares this information against all the routing information stored in
the CAM line of each active SAQ. In order to implement these CAM lines,
the CDU incorporates a register for each possible SAQ. If there is no match,
a new SAQ for the congested output port is allocated.

Notice that the logic associated to the CDU is enabled only when the
detection threshold is reached. Thus, in the absence of congestion, most of
the logic can be disabled.

4.1. DESCRIPTION OF THE RECN-IQ SWITCH ARCHITECTURE 75

Tail (6 bits)

Empty? (1 bit)

MUX

M
U

X

M
U

X
M

U
X

M
U

X

Move

PacketRound
Robin

PostProcessing Logic

·Search for the less specific

match, but greater than the

current one.

(activate this logic)

MU

RU

address

W R

64 slots of 7 bits

~ 448 bits ~

Requests Regs.

(Arbiter)

W R

address

tpointer (5 bits)tpool (31 bits)

tpool (31 bits) tpointer (5 bits)

address

~ 2,304 bits ~

SRAM

Routing Info

... 64 slots ...

R

W

W

W

W

R

R

R

CAM Registers

R

R

R

R

W

W

W

W

CAM0 (39 bits)

+tmask(5)+Xoff+SXoff+Valid

tpool(31)+

CAM1 (39 bits)

CAM2 (39 bits)

+tmask(5)+Xoff+SXoff+Valid

+tmask(5)+Xoff+SXoff+Valid

tpool(31)+

tpool(31)+

tpool(31)+
CAM3 (39 bits)

+tmask(5)+Xoff+SXoff+Valid

R

W

W

W

W

R

R

R

R

R

R

R

W

W

W

W

R

W

W

W

W

R

R

R

Head (6 bits)
R

R

R

R

W

W

W

W

R

W

W

W

W

R

R

R

R

R

R

R

W

W

W

W

R

W

W

W

W

R

R

R

R

R

R

R

W

W

W

W

Tail (6 bits)

Empty? (1 bit) Empty? (1 bit)

Tail (6 bits)

Head (6 bits)

Head (6 bits)

Tail (6 bits)

Empty? (1 bit)Empty? (1 bit)

Tail (6 bits)

Head (6 bits)

Packets (6 bits)

Packets (6 bits) # Packets (6 bits)

Packets (6 bits)

SAQ2 Registers

SAQ0 Registers SAQ1 Registers

SAQ3 Registers

MMUPointer Registers

address

W R

64 slots of 6 bits

~ 384 bits ~

RFCU

R

W

W

W

W

R

R

R

R

R

R

R

W

W

W

W

CQ Registers

Head (6 bits)

Packets (6 bits)

FOUND!

NOT FOUND

(S
A

Q
s)

(packet tpool)

(mark as ready for the arbiter)

Figure 4.6: PPU (Post-Processing Unit) detailed.

4.1.5 Post-Processing Unit

The Post-Processing unit (PPU) shown in Figure 4.6 is in charge of sepa-
rating the congested �ows from the non-congested ones. Also, it separates
every congested �ow from each other.

In order to keep the logical queue structure of SAQs, the PPU requires
some registers per SAQ (the same required for the CQ at the MU unit):
Head and tail registers to keep queue's structure and two registers to keep
queue's occupancy level.

The PPU works as a background task managing stored packets. Its
main purpose is to classify packets according to the congested points already
identi�ed. To do this, the PPU continuously inspects the routing header
(this information is located at the routing info memory at the RU) of each
packet located at the head of any queue (CQ, SAQ0, SAQ1, SAQ2, and
SAQ3). With this info, it checks if there is a match with any of the identi�ed
congested points. If so, the packet is moved to the SAQ associated to the
congested point (it should be noted that the packet is not moved at all, only
the pointers are updated).

Notice that the PPU may move packets from the CQ to a SAQ. In this
case, the packet has been identi�ed as passing through the congested point

76 CHAPTER 4. THE RECN-IQ SWITCH ARCHITECTURE

for which the SAQ has been allocated. The packet is simply moved to the
tail of the SAQ. This is done by just adjusting the pointers of the CQ and
the SAQ. Also, the pointer registers �le (PRF) is updated accordingly.

However, note also that a packet stored at the head of a SAQ can be
moved by the PPU unit. In this case, the unit moves the packet only if there
is a match of the turnpool of the packet with the routing info associated to
another SAQ allocated for a more speci�c congested point in the network
(with a longer turnpool match).

Whenever a packet gets postprocessed (it is treated by the PPU unit),
the RFS bit of the packet (located at the RRF �le) is written. If the packet
is moved (either from the CQ or from a SAQ) to a new queue, then, its RFS
bit is reset. On the contrary, if the packet is not moved by the PPU unit,
then its RFS bit is set, thus allowing the scheduler to forward the packet
through the crossbar.

The PPU can be highly improved by disabling it for low network loads,
thus avoiding the contribution of this hardware element to the latency. With
this improvement, whenever the number of packets at the CQ is under the
RECN-IQ threshold (no congestion) and there are no allocated SAQs at that
input port, then the packets can be forwarded immediately. The moment a
SAQs is allocated or the number of packets at the CQ reaches the RECN-
IQ threshold, then the PP mechanism starts working the way previously
described. In Section 4.2, some experimental results of this improvement are
shown.

4.1.6 Flow Control Unit

The RECN-IQ mechanism implements Xon/Xo� (Stop & Go) �ow control
for the SAQs. As seen in Section 3.3, these �ow control signals are used as
noti�cations of congestion (propagation or vanishing) within the network as
well. The RECN-IQ Flow Control unit (RFCU) is shown in Figure 4.7.

Each time a packet is moved into a SAQ by the Post-processing unit,
the RFCU logic is activated in order to check whether the occupancy of the
receiving SAQ goes over the Xo� threshold, and also to check whether the
occupancy of the sending SAQ (in the case of packets being moved from a
SAQ) goes below the Xon threshold. Therefore, the RFCU compares the
number of packets of each SAQ against the Xo� (Xon) threshold. If the
SAQ occupancy is over (below) the Xo� (Xon) threshold, and the SentXo�
bit is unset (set), an Xo� (Xon) signal is sent backwards to the output port
in the switch upstream. Then, the SentXo� bit for that SAQ is set (unset).

4.1.7 Global Flow Control and Scheduler

Although SAQs are individually �ow controlled, the switch implements also
a general (memory level) �ow control mechanism. That is, each input port

4.1. DESCRIPTION OF THE RECN-IQ SWITCH ARCHITECTURE 77

A==B

Xoff Logic

· Set Xoff bit
· Send Xoff

Xoff

· Unset Xoff bit
· Send Xon

Xon Logic

Xon

SXoff bit

(and SXoff)

A

A

B

B

A==B

(activate this logic)

(activate this logic)

AND

AND

(and !SXoff)

PPU

R

W

W

W

W

R

R

R
Packets (6 bits)

Empty? (1 bit)

Tail (6 bits)

Head (6 bits)

SAQ0 Registers

R

R

R

R

W

W

W

W

R

W

W

W

W

R

R

R
Packets (6 bits)

Empty? (1 bit)

Tail (6 bits)

Head (6 bits)

SAQ1 Registers

R

R

R

R

W

W

W

W

R

W

W

W

W

R

R

R
Packets (6 bits)

Empty? (1 bit)

Tail (6 bits)

Head (6 bits)

SAQ2 Registers

R

R

R

R

W

W

W

W

R

W

W

W

W

R

R

R
Packets (6 bits)

Empty? (1 bit)

Tail (6 bits)

Head (6 bits)

SAQ3 Registers

R

R

R

R

W

W

W

W

R

W

W

W

W

R

R

R

CAM Registers

R

R

R

R

W

W

W

W

CAM0 (39 bits)

+tmask(5)+Xoff+SXoff+Valid

tpool(31)+

CAM1 (39 bits)

CAM2 (39 bits)

+tmask(5)+Xoff+SXoff+Valid

+tmask(5)+Xoff+SXoff+Valid

tpool(31)+

tpool(31)+

tpool(31)+
CAM3 (39 bits)

+tmask(5)+Xoff+SXoff+Valid

Xoff Threshold

5 bits
R

W

Xon Threshold

5 bits
R

W

Figure 4.7: RFCU (RECN-IQ Flow Control Unit) detailed.

78 CHAPTER 4. THE RECN-IQ SWITCH ARCHITECTURE

memory has a number of credits available for packets. The number of credits
is the number of slots available in the memory, regardless of the receiving
queue. Therefore, a packet will be transmitted over a link only if the receiving
memory has an available slot (a credit) and the transmitting queue is not
blocked (in the case the transmitting queue is a SAQ and its associated CAM
has the �Xo�� bit set). Once a packet is transmitted the switch decrements
the number of available credits at the downstream memory. Hence, at each
output port the switch implements a counter of the number of available
credits.

Therefore, the scheduler must take the credit counters at each output
port into account when scheduling packets for transmission. Besides the
credit counters, also, the scheduler will take into account the RFS bit of
each packet and the Xo� bits of each CAM line associated to an active SAQ.

Regarding the arbiter, the switch architecture presented up to now is
independent of the algorithm used to implement the arbiter. An arbiter
based on the iSLIP scheduling algorithm has been selected so it does not
represent the bottleneck of the switch architectures analyzed [46]. The iSLIP
arbiter should perform enough iterations to converge to a maximal match.
As long as RECN-IQ use extra SAQs that play the same role as the VOQ
queues used in [46] and the number of SAQs should be always lower than the
number of ports of the switch (less pairs to match), the number of iterations
required would be even less than log2N , thus the hardware requirements of
RECN-IQ will be simpler.

4.2 Evaluation of RECN-IQ

In this section, the RECN-IQ mechanism is evaluated by means of simulation
results. Speci�cally, we plot the network accepted tra�c and network latency
in a Burton Normal Form (BNF) graph [8]. Also, results of switch e�ciency
as a function of time are presented. These metrics have been measured for
di�erent values of the maximum number of SAQs available at input ports.
Speci�cally, we have considered 2, 4 and 8 SAQs for simulating di�erent
RECN-IQ con�gurations and also no SAQs for simulating switches not using
RECN-IQ. For comparison, a VOQ at the network level (VOQnet) has been
also modeled. As long as the number of queues per input port cannot match
all the possible destinations within the network, only the same number of
queues for VOQ as the RECN-IQ mechanism uses for SAQs is used (packets
are modulo-allocated at the VOQs at each switch according to their �nal
destination).

Two di�erent synthetic tra�c patterns are used: uniform and hot-spot.
And regarding network size and topology, the following two Multi-stage In-
terconnection Network (MIN) con�gurations have been analyzed, both for
connecting 256 end nodes:

4.2. EVALUATION OF RECN-IQ 79

� Con�guration 1: 256 end nodes, MIN made of 8x8 switches (256
switches in 4 stages, perfect shu�e as interconnection pattern).

� Con�guration 2: 256 end nodes, MIN made of 32x32 switches (32
switches in 2 stages, perfect shu�e as interconnection pattern).

The organization of all switches in those con�gurations is the one described
in Section 4.1, i.e., IQ switches in which RECN-IQ can be enabled/disabled.
Other common parameters used in all the simulations are:

� Input Memory Size=4KB (64 packets)

� Packet Length=64 bytes

� Xon Threshold=2 packets

� Xo� Threshold=5 packets

� Congestion Detection Threshold=4 packets.

In the case of the VOQnet-like simulations, the same input memory size is
used but it is divided evenly among all VOQ queues implemented on it. The
bandwidth of all links is 1GByte/s and 4 nanoseconds is the inter-switch link
delay.

4.2.1 Results for Uniform Tra�c

Figures 4.8 and 4.9 depict the simulation results obtained for both MIN
con�gurations. When the radix of the switches is low (8× 8 at Figure 4.8),
the maximum throughput achieved by a network made of basic IQ switches
is about 63% due to the HOL blocking problem. By using 2 VOQnet-like
extra queues per input port at each switch, the throughput jumps to 77%,
but at the same cost in terms of extra queues, when RECN-IQ and 2 extra
SAQs is used, the maximum throughput goes as high as 84%. To achieve
such a performance, the VOQnet technology requires to divide the input
memories into at least 4 extra queues. When RECN-IQ is implemented with
4 or 8 SAQs, then the maximum throughput is over 90%.

If we increase the radix of the switches (32×32 at Figure 4.9), then more
extra queues are required in order to achieve high network throughput. In
this case, having RECN-IQ with 4 SAQs is almost equivalent to having 8
extra VOQnet queues for uniform tra�c (90% of the maximum throughput),
thus with evident bene�ts in input port memory reduction. With RECN-IQ
and 8 SAQs, a maximum throughput of 92% can be achieved.

80 CHAPTER 4. THE RECN-IQ SWITCH ARCHITECTURE

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 0.2 0.4 0.6 0.8 1

N
et

w
or

k
La

te
nc

y
(N

an
os

ec
on

ds
)

Normalized Accepted Traffic

8x8-IQ-Switch
RECN-IQ-2SAQs
RECN-IQ-4SAQs
RECN-IQ-8SAQs

2 VOQnet Queues
4 VOQnet Queues
8 VOQnet Queues

Figure 4.8: Accepted tra�c versus network latency for an 8 × 8 network.
Uniform distribution of packet destinations.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 0.2 0.4 0.6 0.8 1

N
et

w
or

k
La

te
nc

y
(N

an
os

ec
on

ds
)

Normalized Accepted Traffic

32x32-IQ-Switch
RECN-IQ-2SAQs
RECN-IQ-4SAQs
RECN-IQ-8SAQs

2 VOQnet Queues
4 VOQnet Queues
8 VOQnet Queues

Figure 4.9: Accepted tra�c versus network latency for an 32× 32 network.
Uniform distribution of packet destinations.

4.2. EVALUATION OF RECN-IQ 81

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 400000 800000 1.2e+06 1.6e+06 2e+06

N
or

m
al

iz
ed

 A
cc

ep
te

d
T

ra
ffi

c

Time (Nanoseconds)

8x8-IQ-Switch
RECN-IQ 2SAQs
RECN-IQ 4SAQs
RECN-IQ 8SAQs

2 VOQnet Queues
4 VOQnet Queues
8 VOQnet Queues

Figure 4.10: Switch e�ciency versus time for Hot-Spot tra�c for an 8 × 8
network.

4.2.2 Results for Hot-Spot Tra�c

We have also conducted experiments using a hot-spot tra�c pattern. Specif-
ically, in this case all the end nodes inject 50% of their tra�c to a single
(hot-spot) end node (end node number 2 in this very case), whereas the rest
of the tra�c is randomly distributed among the rest of end nodes. Further-
more, the hot-spot tra�c injection is only active during just 1 microsecond
after 25 microseconds of simulation. As we will see, such a small hot-spot
situation a�ects dramatically the network performance unless RECN-IQ is
used.

Figures 4.10 and 4.11 show the switch e�ciency versus time for MIN
con�gurations 1 and 2 respectively. As can be seen in the case of 8×8 switches
(Figure 4.10), after injecting the hot-spot tra�c, the switch e�ciency for the
basic IQ switch architecture drops from the usual 63% for uniform tra�c
to about 3% due to the massive HOL blocking introduced throughout the
network, and this situation lasts for more than 600 microseconds (for a hot-
spot injection of just 1 microsecond).

On the other hand, when RECN-IQ with 4 or 8 SAQs is used, the switch
e�ciency is not a�ected by the introduction of the hot-spot situation. Im-
mediately after the hot-spot injection ceases, the throughput of the net-
work begins to recover as if nothing had happened. The solution of using
a VOQnet-like mechanism, fails to keep the performance under this tra�c
situation, it requires long time to recover because complete paths are blocked

82 CHAPTER 4. THE RECN-IQ SWITCH ARCHITECTURE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 400000 800000 1.2e+06 1.6e+06 2e+06

N
or

m
al

iz
ed

 A
cc

ep
te

d
T

ra
ffi

c

Time (Nanoseconds)

32x32-IQ-Switch
RECN-IQ 2SAQs
RECN-IQ 4SAQs
RECN-IQ 8SAQs

2 VOQnet Queues
4 VOQnet Queues
8 VOQnet Queues

Figure 4.11: Switch e�ciency versus time for Hot-Spot tra�c for an 32× 32
network.

by congested packets. This result was evident as long as a true congestion
management technique is required to deal with that type of tra�c, just like
RECN-IQ does.

Similar results for a network made of 32× 32 switches (Con�guration 1)
are shown in Figure 4.11. Unless RECN-IQ with at least 4 SAQs is used,
the introduction of such a tiny (in terms of time) hot-spot degrades the
throughput for long time, leaving the network into a situation of unaccept-
able performance.

4.2.3 Reducing the Network Latency of RECN-IQ for Low

Network Loads

As explained in Section 4.1, the PPU unit can be disabled for low network
loads, reducing the packet latency introduced by this unit. In this enhanced
version of RECN-IQ, the PPU unit is disabled and packets are immediately
forwarded by the input port whenever the number of packets at the cold queue
(CQ) is below the RECN-IQ threshold and there are no SAQs allocated.
Otherwise, the PPU unit works as previously described.

This solution is very useful specially when the PPU logic introduces high
latencies compared with the rest of the switch logical elements. As example,
we have carried out an experiment where we have chosen 10 nanoseconds
for the PPU to process a packet. The rest of the parameters are exactly the
same as described at the start of this Section. The network connects 256

4.2. EVALUATION OF RECN-IQ 83

 0

 500

 1000

 1500

 2000

 0 0.2 0.4 0.6 0.8 1

N
et

w
or

k
La

te
nc

y
(N

an
os

ec
on

ds
)

Normalized Accepted Traffic

Basic RECN-IQ - 8SAQs
Enhanced RECN-IQ - 8SAQs

Figure 4.12: Enhanced RECN-IQ without PPU for low loads.

nodes through a MIN made of 8× 8 switches and just 8 SAQs are used.

Figure 4.12 shows how the network latency is about 60 nanoseconds lower
for this enhanced version of RECN-IQ compared to the basic RECN-IQ for
low network loads (up to 50%). As the network load increases, this di�erence
vanishes.

4.2.4 Impact of the Number of iSLIP Iterations on RECN-

IQ Performance

We carried out an experiment for evaluating the impact of the number of
iSLIP iterations on the RECN-IQ performance. It is well known that by
increasing the number of iSLIP iterations, the number of input-output con-
nections established increases up to a maximal (beyond which any extra
iteration is useless). In the case of having N VOQs per input port (for an
N × N switch), it is stated in [46] that the required number of iterations
in order to achieve that maximal matching is about log2N , that means 5
iterations on a 32× 32 switch.

Figure 4.13 shows the results for a single switch of size 32× 32, uniform
tra�c, and di�erent number of iSLIP iterations and SAQs. The rest of
parameters like timings and packet size are identical to the ones stated at
the start of this section.

As can be seen in the experimental results, the improvement obtained
when increasing the number of iterations is almost negligible. The maximal
matching has been achieved with few iterations, even with just one. The

84 CHAPTER 4. THE RECN-IQ SWITCH ARCHITECTURE

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
et

w
or

k
La

te
nc

y
(C

yc
le

s)

Normalized Accepted Traffic

2saq-1iter
2saq-2iter
2saq-3iter
4saq-1iter
4saq-2iter
4saq-3iter
8saq-1iter
8saq-2iter
8saq-3iter

16saq-1iter
16saq-2iter
16saq-3iter

Figure 4.13: Impact of iSLIP iterations on RECN-IQ performance.

conclusion is that, because RECN-IQ does not use VOQ at the input ports
but a reduced number of SAQs compared with the number of ports of the
switch, the requirement of up to log2N iSLIP iterations in an N ×N switch
intuitively translates into a requirement of up to log2 S iterations to achieve
the maximal matching (S is the number of SAQs per input port). This
means a simpler hardware implementation of RECN-IQ switch architecture.

4.3 Conclusions

A feasible, realistic switch architecture implementing RECN-IQ has been
proposed and described in detail in this chapter. We covered every functional
unit and structure required to implement RECN-IQ on an Input-Queued
switch architecture, therefore turning realistic (by �rst time since its proposal
in 2005 [34]) the use of a RECN-like technique.

Moreover, this architecture, RECN-IQ, could be the base for switches
which would allow to build cheaper networks featuring congestion manage-
ment. The bene�ts are huge and would make any network made of these
kind of switches more predictable, ensuring performance at acceptable levels
at any time and under any tra�c circumstances.

Chapter 5

Conclusion and Future Work

Oh wait, you're serious. Let me laugh even harder.
� Bender, �Futurama�,

As the optimal radix for switches increases due to the bene�ts in lower
latencies, overall reduction in cost and power consumption; the traditional
switch architectures are no longer valid because of either low-performance or
non-scalability with the number of ports.

This dissertation proposes a new switch architecture suitable for high-
radix switches called Partitioned Crossbar Input Queued (PCIQ) that deals
with one of the main constraints in high-radix switch design, the excessive
memory requirements. Also, in general terms, PCIQ forms a new family of
switch microarchitectures as we have seen in Chapter 2.

PCIQ relies on a smart partition of the crossbar into sub-crossbars, thus
requiring less memory resources than other proposals for high-radix, yet ob-
taining high-performance and also increasing the arbiter e�ciency. PCIQ
uses two round-robin packet-based arbiters (one for each crossbar) that ex-
hibit a linear cost and a logarithmic response time as the radix of the switch
increases.

In Chapter 2 it is shown that PCIQ exhibits a cost (measured in terms
of memory requirements, crossbar complexity and arbiter complexity) sim-
ilar to or lower than basic organizations like CIOQ. However, it is able to
achieve maximum switch e�ciency for uniform tra�c distribution, thus lev-
eling costly organizations like BC.

As we have seen, the other big issue on high-radix switches is the HOL
blocking problem, which reduces dramatically the switch performance. Tra-
ditional solutions for removing the HOL blocking problem were based on
VOQ schemes, but having high number of ports on a high-radix switch pre-
vents the use of any of them. In this dissertation, a new congestion man-
agement technique has been proposed. This solution is called RECN-IQ, is
speci�c for IQ switches and di�ers from the original RECN idea (suitable
only for CIOQ switches) in being highly e�cient and simple to implement,

85

86 CHAPTER 5. CONCLUSION AND FUTURE WORK

reducing the memory requirements to the maximum. RECN-IQ introduced
by �rst time a novel statistical approach for detecting congestion using just
a single queue per input port.

By combining the PCIQ microarchitecture with RECN-IQ, a new switch
architecture (called here PCIQ-enhanced) is derived and evaluated in Chap-
ter 2. The PCIQ switch architecture inherits the bene�ts of the Partitioned
Crossbar microarchitecture in reducing the memory requirements for high-
radix designs with the power of a congestion management technique that
removes the HOL blocking dynamically, thus achieving maximum switch
performance under all types of tra�c.

We have seen that in modern interconnection networks it is mandatory
the use of an e�ective congestion management technique in order to keep
network performance at maximum level under congestion situations. There-
fore, in Chapter 3 we describe the new congestion management technique
(RECN-IQ) suitable for any type of IQ switches (which includes PCIQ).
The idea behind RECN-IQ is, starting with a simple IQ switch with a single
queue per input port, to add some extra queues dynamically allocated for
congested packets. Congestion is detected as soon as HOL blocking begins to
act, setting aside (in those extra queues known as SAQs) the congested pack-
ets in an e�cient manner. Therefore, HOL blocking is completely eliminated
(as proven by the simulation results shown in Chapter 4). The hardware re-
quirements for RECN-IQ, as we have seen, are reduced, making feasible its
implementation on any IQ-based switch architecture like PCIQ.

In order to prove that fact, a feasible and realistic switch architecture
implementing RECN-IQ has been proposed and described in detail in Chap-
ter 4, where we have detailed every functional unit and structure required
to implement RECN-IQ on an Input-Queued switch architecture. This is
the �rst time since the RECN proposal back in 2005 [34] that a RECN-like
congestion management technique has been implemented in such a detailed
level.

Results in Chapter 4 proved that by using RECN-IQ switches, the net-
work will bene�t from low cost switches and high-e�ciency under any type
of tra�c pattern or network circumstances. All this makes the network pre-
dictable and stable in performance, no more drops in throughput because of
congestion.

5.1 Future Directions

Regarding RECN-IQ as a congestion management technique, it can be used
together with power consumption reduction techniques that rely on either
disconnecting links or reducing their frequency, so the per-link bandwidth
can be increased/reduced at will.

Because RECN-IQ is aware in a distributed manner of the network con-

5.1. FUTURE DIRECTIONS 87

gestion, it can be used as an heuristic to increase/decrease the link band-
width, thus saving power.

One big problem on saving energy by reducing link bandwidth is due to
the characteristic burstiness of tra�c. When a burst of tra�c shows up, the
link bandwidth can be in low power mode so the available bandwidth is not
enough to deal with that tra�c and the network enters in saturation with a
huge drop in performance. When the power saving mechanism acts it is too
late. By using RECN-IQ both for activating the links and as a congestion
management technique, congestion never a�ects throughput. The transition
between high load and low load will be done in a graceful way.

88 CHAPTER 5. CONCLUSION AND FUTURE WORK

Appendix A

Contributions

While conducting the research necessary for this work I had the opportunity
to publish some papers, having the chance of receiving very useful feedback
from many reviewers. Here it is the list of all publications in which I have
participated during my time as PhD student.

� G. Mora, P.J. Garcia, J. Flich and J. Duato. �RECN-IQ: A Cost-
E�ective Input- Queued Switch Architecture with Congestion Manage-
ment�. 2007 International Conference on Parallel Processing (ICPP-
07). XiAn China, September 10-14, 2007. ISBN 0-7695-2933X. ISSN
0190-3918

� G. Mora, P. J. Garcia, J. Flich and J. Duato. �The RECN-IQ Switch
Architecture�. XVIII Jornadas de Paralelismo. Zaragoza (Spain).
September 2007. ISBN 978-84-9732- 672-8. Pages 205-212

� G. Mora, J. Flich, J. Duato, E. Baydal, P. López and O. Lysne.
�Towards an E�cient Switch Architecture for High-Radix Switches�.
ACM/IEEE Symposium on Architectures for Networking and Com-
munications Systems. San Jose, CA, December 3-5, 2006

� G. Mora, J. Flich, J. Duato and O. Lysne. �Partitioned Crossbar: Una
organización de conmutador e�ciente�. XVII Jornadas de Paralelismo.
Albacete. September 2006. ISBN 84-690-0551-0. Pages 139-144.

� G. Mora, J. Flich and J. Duato. �Report on new switch architec-
tures and RECN with postprocessing, no tokens, and egress bu�er-less
queues�. September 2006. Research Report for Xyratex (http://www.xyratex.com)

� G. Mora, J. Flich, J. Duato, E. Baydal, P. López and O. Lysne. �To-
wards an E�cient o Switch Architecture for High-Radix Switches�. Ad-
vanced Computer Architecture and Compilation for Embedded Sys-
tems. L'Aquila (Italy), July 26, 2006. Published by the HiPEAC
Network of Excellence. ISBN 90 382 0981 9. Pages 257 - 260.

89

90 APPENDIX A. CONTRIBUTIONS

� J. Flich, G. Mora, J. Duato, E. Baydal, P. López and O. Lysne.
�PCIQ: An E�cient o and Cost-E�ective Architecture for High-Radix
Switches�. Advanced Networking and Communications HardwareWork-
shop. Boston, MA, June 18, 2006. Pages 3 - 12.

� G. Mora, J. Flich and J. Duato. �Report on Post-Processing Approach
over �No-Tokens RECN� Simulator �. June 2005. Research Report for
Xyratex (http://www.xyratex.com).

The following list acknowledges the projects I participated and that funded
all this research:

� �Spanish CICYT � (Spain) under Grant TIC2003- 08154-C06.

� �Universidad Politécnica de Valencia� (Spain) under Grant 20040937.

� �Junta de Comunidades de Castilla-La Mancha� (Spain) under Grant
PBC-05-005-2.

� �Spanish MEC � (Spain) under Grant TIN2006-15516-C04.

� �CONSOLIDER-INGENIO 2010 � (Spain) under Grant CSD2006-00046.

Appendix B

Summary of this PhD in Local

Languages

B.1 Spanish

De cara a bene�ciarse de una reducción en la latencia así como disminuir tan-
to el consumo como el coste, el número óptimo de puertos de un conmutador
ha ido aumentando a lo largo del tiempo. Sin embargo, las arquitecturas
tradicionales se han quedado atrás bien por bajo rendimiento o bien por
problemas de escalabilidad con el número de puertos.

En esta Tesis se propone una nueva arquitectura de conmutador váli-
da para conmutadores de elevado grado llamada Partitioned Crossbar Input
Queued (PCIQ). Esta arquitectura resuelve una de los mayores problemas
en el diseño de arquitecturas de elevado grado, es decir, el excesivo requer-
imiento de memoria. Además, ya en términos generales, PCIQ forma una
nueva familia de arquitecturas de conmutador.

PCIQ se basa en un particionado inteligente del crossbar, dividiéndolo
en sub-crossbars, por lo que se requieren menos recursos de memoria que
las otras propuestas para conmutadores de elevado grado y que consigue
una mayor e�ciencia debido en parte a un incremento en la e�ciencia de los
árbitros empleados en el diseño. En este sentido, PCIQ emplea dos árbitros
con prioridad rotativa (uno para cada sub-crossbar) que presentan un coste
lineal y una respuesta en el tiempo logarítmica conforme aumenta el número
de puertos del conmutador.

En este trabajo, se muestra que PCIQ tiene un coste (medido en términos
de requerimientos de memoria, complejidad del crossbar y complejidad en el
arbitraje) similar o incluso menor que organizaciones básicas como CIOQ.
Sin embargo, con este reducido coste, PCIQ es capaz de conseguir máxima
e�ciencia para distribuciones de trá�co uniforme.

Otro gran problema a resolver en los conmutadores de elevado grado
es el bloqueo por paquete al principio de cola (o HOL en inglés), bloqueo

91

92 APPENDIX B. SUMMARY OF THIS PHD IN LOCAL LANGUAGES

que reduce dramáticamente el rendimiento del conmutador. Las soluciones
tradicionales para eliminar el bloqueo por HOL están basadas en Virtual
Output Queueing (VOQ), pero dado que en nuestro caso el número de puer-
tos es elevado, estas soluciones están totalmente descartadas. En esta Tesis
se propone una técnica de control de la congestión que elimina el bloqueo
por HOL llamada RECN-IQ. RECN-IQ está diseñada para conmutadores
con memorias sólo a la entrada y es una técnica altamente e�ciente y sen-
cilla de implementar, con unos requerimientos extras de memoria mínimos.
Además introduce una técnica novedosa basada en estadística para detectar
congestión empleando tan sólo una cola por puerto de entrada en el conmu-
tador.

La combinación de la arquitectura PCIQ con RECN-IQ para eliminar
el bloqueo por HOL es descrita y evaluada en esta Tesis. Esta combinación
se conoce como PCIQ-Enhanced y une los bene�cios del particionado del
crossbar en cuanto a la reducción de memoria con la potencia de una técnica
de control de la congestión que elimina el bloqueo por HOL, obteniéndose
máximas prestaciones bajo cualquier tipo de trá�co.

Esta nueva técnica de control de la congestión, RECN-IQ, se describe
en profundidad en esta Tesis. La idea detrás de RECN-IQ es que, partiendo
de un conmutador sencillo con memoria sólo a la entrada, se añaden unas
pocas colas extra que son manejadas dinámicamente para colocar los pa-
quetes congestionados. La congestión se detecta tan pronto como el bloqueo
por HOL comienza a aparecer, de modo que es inmediatamente separada del
�ujo normal y puesta en esas colas extra llamadas SAQs.

Para probar que el mecanismo RECN-IQ elimina completamente el blo-
queo por HOL y que es viable su implementación en cualquier arquitectura de
conmutador con colas sólo a la entrada, en esta Tesis se propone su aplicación
a un conmutador simple de este tipo. Para ello se describe todo elemento fun-
cional y estructura lógica (y de memoria) requerido para la implementación
de RECN-IQ.

Los resultados prueban que, mediante el uso de RECN-IQ sobre una
arquitectura de conmutador básica, la red se bene�cia de conmutadores de
bajo coste y alta e�ciencia bajo cualquier tipo de trá�co o circunstancias
de la red. Esto otorga a la red un comportamiento previsible y estable en
rendimiento, sin caídas en productividad debidas a la congestión.

B.2 Catalan

De cara a bene�ciar-se d'una reducció en la latència així com disminuir tant
el consum com el cost, el nombre òptim de ports d'un commutador ha anat
augmentant al llarg del temps. No obstant això, les arquitectures tradicionals
s'han quedat arrere bé per baix rendiment o bé per problemes d'escalabilitat
amb el nombre de ports.

B.2. CATALAN 93

En esta Tesi es proposa una nova arquitectura de commutador vàlida
per a commutadors d'elevat grau anomenada Partitioned Crossbar Input
Queued (PCIQ). Esta arquitectura resol un dels majors problemes en el disse-
ny d'arquitectures d'elevat grau, és a dir, l'excessiu requeriment de memòria.
A més, ja en termes generals, PCIQ forma una nova família d'arquitectures
de commutador.

PCIQ es basa en un particionat intel·ligent del crossbar, dividint-ho en
sub-crossbars, per la qual cosa es requereixen menys recursos de memòria que
les altres propostes per a commutadors d'elevat grau i que aconseguix una
major e�ciència gràcies en part a un increment en l'e�ciència dels àrbitres
emprats en el disseny. En aquest sentit, PCIQ utilitza dos àrbitres amb
prioritat Rotativa (un per a cada sub-crossbar) que presenten un cost lineal
i una resposta en el temps logarítmica conforme augmenta el nombre de
ports del commutador.

En aquest treball, es mostra que PCIQ té un cost (mesurat en ter-
mes de requeriments de memòria, complexitat del crossbar i complexitat
en l'arbitratge) semblant o inclús menor que organitzacions bàsiques com
CIOQ. No obstant això, amb aquest reduït cost, PCIQ és capaç d'aconseguir
màxima e�ciència per a distribucions de trà�c uniforme.

Un altre gran problema a resoldre en els commutadors d'elevat grau és el
bloqueig per paquet al principi de cua (o HOL en anglés), bloqueig que reduïx
dramàticament el rendiment del commutador. Les solucions tradicionals per
a eliminar el bloqueig per HOL estan basades en Virtual Output Queueing
(VOQ), però atés que en el nostre cas el nombre de ports és elevat, aquestes
solucions estan totalment descartades. En esta Tesi es proposa una tècnica de
control de la congestió que elimina el bloqueig per HOL anomenada RECN-
IQ. RECN-IQ està dissenyada per a commutadors amb memòries només a
l'entrada i és una tècnica altament e�cient i senzilla d'implementar, amb uns
requeriments extres de memòria mínims. A més introduïx una tècnica nova
basada en estadística per a detectar congestió emprant tan sols una cua per
port d'entrada en el commutador.

La combinació de l'arquitectura PCIQ amb RECN-IQ per a eliminar el
bloqueig per HOL és descrita i avaluada en esta Tesi. Esta combinació es
coneix com PCIQ-Enhanced i uneix els bene�cis del particionat del crossbar
quant a la reducció de memòria amb la potència d'una tècnica de control de la
congestió que elimina el bloqueig per HOL, obtenint-se màximes prestacions
sota qualsevol tipus de trà�c.

Esta nova tècnica de control de la congestió, RECN-IQ, es descriu en
profunditat en esta Tesi. La idea darrere de RECN-IQ és que, partint d'un
commutador senzill amb memòria només a l'entrada, s'afegeixen unes poques
cues extra que són manejades dinàmicament per a col·locar els paquets con-
gestionats. La congestió es detecta tan prompte com el bloqueig per HOL
comença a aparéixer, de manera que és immediatament separada del �ux
normal i posada en eixes coles extra anomenades SAQs.

94 APPENDIX B. SUMMARY OF THIS PHD IN LOCAL LANGUAGES

Per a provar que el mecanisme RECN-IQ elimina completament el blo-
queig per HOL i que és viable la seua implementació en qualsevol arquitec-
tura de commutador amb cues només a l'entrada, en esta Tesi es proposa la
seua aplicació a un commutador simple d'este tipus. Per a això es descriu
tot element funcional i estructura lògica (i de memòria) requerit per a la
implementació de RECN-IQ.

Els resultats proven que, per mitjà de l'ús de RECN-IQ sobre una ar-
quitectura de commutador bàsica, la xarxa es bene�cia de commutadors de
baix cost i alta e�ciència sota qualsevol tipus de trà�c o circumstàncies de
la xarxa. Açò atorga a la xarxa un comportament previsible i estable en
rendiment, sense caigudes en productivitat degudes a la congestió.

Bibliography

[1] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers, 2004.

[2] G. P�ster, �An introduction to the in�niband architecture
(http://www.in�nibandta.com),� IEEE Press, 2001.

[3] A. Farazdel, G. Archondo-Callao, and F. V. E. Hocks,
T. Sakachi, �Understanding and using the sp switch,�
http://www.redbooks.ibm.com/redbooks/pdfs/sg245161.pdf, April 1999.

[4] �Myrinet, 2000 series networking.� Available at
http://www.cspi.com/multicomputer/products/2000_series_networking/
2000_networking.htm.

[5] �Quadrics qsnet.� Available at http://doc.quadrics.com.

[6] �Top500 supercomputer sites.� http://www.top500.org.

[7] �Ibm bg/l team: An overview of bluegene/l supercomputer,� in ACM
Supercomputing Conference, Nov. 2002.

[8] J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection Networks: An
Engineering Approach. Morgan Kaufmann Publishers, 2003.

[9] W. J. Dally and C. L. Seitz, �The torus routing chip,� Journal of Dis-
tributed Computing, vol. 1, pp. 187�196, October 1986.

[10] M. Karol and M. Hluchyj, �Queuing in high-performance packet-
switching,� IEEE J. Select. Areas. Commun, vol. 6, pp. 1587�1597, Dec.
1998.

[11] N. McKeown, M. Izzard, A. Mekkittikul, W. Ellersick, and M. Horowitz,
�The tiny tera: A packet switch core,� IEEE Micro, vol. 17, pp. 27�33,
Jan./Feb. 1997.

[12] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, �Input versus out-
put queueing on a space-division packet switch,� IEEE Transactions
on Communications, vol. COM-35, no. 12, pp. 1347�1356, 1987.

95

96 BIBLIOGRAPHY

[13] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, �High-speed switch
scheduling for local-area networks,� ACM Transactions on Computer
Systems, vol. 11, pp. 319�352, Nov 1993.

[14] Y. Tamir and G. L. Frazier, �High-performance multi-queue bu�ers
for vlsi communications switches,� SIGARCH Comput. Archit. News,
vol. 16, no. 2, pp. 343�354, 1988.

[15] B. Prabhakar and N. McKeown, �On the speedup required for combined
input and output queued switching,� Stanford University Technical Re-
port, STAN-CSL-TR-97-738, Nov 1997.

[16] R. Rojas-Cessa, E. Oki, and H. Chao, �Cixob-k: Combined input-
crosspoint-output bu�ered packet switch,� Proceedings of the IEEE
Global Telecomunications Conference, 2001.

[17] A. Agarwal, �Limits on interconnection network performance,� IEEE
Transactions on Parallel Distributed Systems, vol. 4, no. 2, pp. 398�
412, 1991.

[18] W. J. Dally, �Performance analysis of k-ary n-cube interconnection net-
works,� IEEE Transactions on Computers, vol. 39, no. 6, pp. 775�785,
1990.

[19] M. Noakes, D. Wallach, and W. Dally, �The j-machine multicomputer:
An architectural evaluation,� Proceedings of the 20th International Sym-
posium on Computer Architecture, pp. 224�235, May 1993.

[20] S. Scott, �Synchronization and communication in the t3e multiproces-
sor,� Proceedings of the 7th International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 26�36,
October 1996.

[21] S. Scott and G. Thorson, �The cray t3e network: Adaptive routing in
a high performance 3d torus,� Proceedings of Hot Interconnects Sympo-
sium IV, August 1996.

[22] �Sgi altix 3000.� http://www.sgi.com/products/servers/altix/.

[23] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta, �Microarchitecture of a
high-radix router,� 32nd Annual International Symposium on Computer
Architecture (ISCA '05), pp. 420�431, 2005.

[24] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labonte, J. H.
Ahn, N. Jayasena, U. J. Kapasi, A. Das, J. Gummaraju, and I. Buck,
�Merrimac: Supercomputing with streams,� Proc. of Supercomputing,
SC'03, Nov 2003.

BIBLIOGRAPHY 97

[25] R. Drost, R. Hopkins, and I. Sutherland, �Proximity communication,�
IEEE Custom Integrated Circuits Conference, pp. 469�472, Sep 2003.

[26] R. Drost, R. Hopkins, and I. Sutherland, �Electronic alignment for prox-
imity communication,� IEEE Solid-State Circuits Conference, pp. 144�
158, Feb 2004.

[27] W. Olesinski, H. Eberle, and N. Gura, �Obig: the architecture of an
output bu�ered switch with input groups for large switches,� IEEE
GLOBECOM, Nov 2007.

[28] L. Shang, L. S. Peh, and N. K. Jha, �Dynamic voltage scaling with links
for power optimization of interconnection networks,� Proceedings of the
International Symposium on High-Performance Computer Architecture,
pp. 91�102, February 2003.

[29] M. Wang, H. Siegel, M. Nichols, and S. Abraham, �Using a multipath
network for reducing the e�ects of hot spots,� IEEE Transactions on
Parallel and Distributed Systems, vol. 6, pp. 252�268, March 1995.

[30] M. Thottethodi, A. Lebeck, and S. Mukherjee, �Self-tuned conges-
tion control for multiprocessor networks,� Proc. Int. Symp. High-
Performance Computer Architecture, Feb 2001.

[31] W. J. Dally, P. Carvey, and L. Dennison, �The avici terabit
switch/router,� Proc. Hot Interconnects 6, Aug 1998.

[32] Y. Tamir and G. Frazier, �Dynamically-allocated multi-queue bu�ers
for vlsi communication switches,� IEEE Trans. on Computers, vol. 41,
June 1992.

[33] A. Smai and L. Thorelli, �Global reactive congestion control in multi-
computer networks,� Proc. 5th Int. Conf. on High Performance Com-
puting, 1998.

[34] J. Duato, I. Johnson, J. Flich, F. Naven, P. J. Garcia, and T. Nachiondo,
�A new scalable and cost-e�ective congestion management strategy for
lossless multistage interconnection networks,� Proc. 11th International
Symposium on High-Performance Computer Architecture (HPCA05),
pp. 108�119, Feb 2005.

[35] P. J. Garcia, J. Flich, J. Duato, I. Johnson, F. Quiles, and F. Naven, �Ef-
�cient, scalable congestion management for interconnection networks,�
IEEE Micro, vol. 26, pp. 52�66, Sep 2006.

[36] W. J. Dally, �Virtual-channel �ow control,� Proceedings of the 17th an-
nual International Symposium on Computer Architecture, pp. 60�68,
1990.

98 BIBLIOGRAPHY

[37] G. Kornaros, C. Kozyrakis, P. Vatsolaki, and M. Katevenis, �Pipelined
multi-queue management in a vlsi atm switch chip with credit-based
�ow-control,� 17th Conference on Advanced Research in VLSI (ARVLSI
'97), 1997.

[38] H. J. Mattausch, �Hierarchical n-port memory architecture based on
1-port memory cells,� Solid-State Circuits Conference, 1997. ESSCIRC
'97. Proceedings of the 23rd European, pp. 348�351, 1997.

[39] K. Johguchi, Z. Zhu, K. Aoyama, Y. Mukuda, H. J. Mattausch,
T. Koide, and T. Hironaka, �Uni�ed data/instruction cache with dis-
tributed crossbar, hidden precharge pipeline and dynamic cmos logic,�
Fourth Hiroshima International Workshop on Nanoelectronics for Tera-
Bit Information Processing, 2005.

[40] Z. Zhu, K. Johguchi, H. Mattausch, T. Koide, T. Hirakawa, and T. Hi-
ronaka, �A novel hierarchical multi-port cache,� Solid-State Circuits
Conference, 2003. ESSCIRC '03. Proceedings of the 29th European,
pp. 405 � 408, 2003.

[41] A. A. Chien, �A cost and speed model for k-ary n-cube wormhole
routers,� Proceedings of Hot Interconnects, August 1993.

[42] �Advanced switching core architecture speci�cation.� Available at
http://www.asi-sig.org/speci�cations for ASI SIG.

[43] E. S. Shin, V. J. M. III, and G. F. Riley, �Round-robin arbiter design
and generation,� Proceedings of the 15th International Symposium on
System Synthesis, 2002.

[44] P. J. Garcia, J. Flich, J. Duato, I. Johnson, F. Quiles, and F. Naven,
�Dynamic evolution of congestion trees: Analysis and impact on switch
architecture,� Proceedings of the 2005 International Conference on High
Performance Embedded Architectures and Compilers, Nov 2005.

[45] K. Pagiamtzis and A. Sheikholeslami, �Content-addressable memory
(cam) circuits and architectures: A tutorial and survey,� IEEE J. Solid-
State Circuits, vol. 41, pp. 712�727, Mar 2006.

[46] N. McKeown, �The islip scheduling algorithm for input-queued
switches,� IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 188�201,
1999.

