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THE BISHOP-PHELPS-BOLLOBÁS PROPERTY FOR NUMERICAL
RADIUS IN `1(C)

ANTONIO J. GUIRAO AND OLENA KOZHUSHKINA

ABSTRACT. We show that the set of bounded linear operators from X to X
admits a Bishop-Phelps-Bollobás type theorem for numerical radius whenever
X is `1(C) or c0(C). As an essential tool we provide two constructive versions
of the classical Bishop-Phelps-Bollobás theorem for `1(C).

1. INTRODUCTION

The Bishop-Phelps theorem states that norm attaining functionals on a Ba-
nach space X are dense in its dual space X∗. In 1970, B. Bollobás extended this
result in a quantitative way in order to work on problems related to the numerical
range of an operator [Bol70]. One of the versions of his extension is presented
below:

Theorem 1.1. Let X be a Banach space. Given ε > 0, if x ∈ X , x∗ ∈ X∗ with
‖x‖ = ‖x∗‖ = 1 and x∗(x) ≥ 1 − ε2

2
, then there exist elements x0 ∈ X and

x∗0 ∈ X∗ such that ‖x0‖ = ‖x∗0‖ = x∗0(x0) = 1,

‖x− x0‖ ≤ ε and ‖x∗ − x∗0‖ ≤ ε.

However, the known proofs of this fact have an existence nature –they are
based on Hahn-Banach extension theorem, the Ekeland variational principle or
Brøndsted-Rockafellar principle. In this paper we construct, as a necessary tool
for our main results, explicit expressions of the approximating pair (x0, x

∗
0) when

X = `1(C) –see Theorems 2.4 and 2.6.
Paralleling the research of norm attaining operators initiated by Lindenstrauss

in [Lin63], B. Sims raised the question of the norm denseness of the set of
numerical radius attaining operators –see [Sim72]. Partial positive results have
been proved. We emphasize for their importance the results of M. Acosta in
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2 A. J. GUIRAO AND O. KOZHUSHKINA

her Ph. D. thesis [Aco90], where a systematic study of the problem was initi-
ated, the renorming result in [Aco93], and joint findings of this author with R.
Payá [AP89, AP93]. Prior to them, I. Berg and B. Sims in [BS84] gave a positive
answer for uniformly convex spaces and C. S. Cardassi obtained positive answers
for `1, c0,C(K), L1(µ), and uniformly smooth spaces [Car85a, Car85b, Car85c].

Using a renorming of c0, R. Payá provided an example of a Banach space
X such that the set of numerical radius attaining operators on X is not norm
dense, answering in the negative Sims’ question –see [Pay92]. In the same year,
M. Acosta, F. Aguirre, and R. Payá in [AAP92] gave another counterexample:
X = `2 ⊕∞ G, where G is the Gowers space.

Recently, M. Acosta et al. studied in [AAGM08] a new property, called the
Bishop-Phelps-Bollobás property for operators, BPBp for short. A pair of Ba-
nach spaces (X, Y ) has the BPBp if a “Bishop-Phelps-Bollobás” type theo-
rem can be proved for the set of operators from X to Y . This property im-
plies, in particular, that the norm attaining operators from X to Y are dense
in the whole space of continuous linear operators L(X, Y ). However, as shown
in [AAGM08], the converse is not true. Consequently, the BPB property is more
than a quantitative tool for studying the density of norm attaining operators.

We investigate here an analogue of the Bishop-Phelps-Bollobás property for
operators but in relation with numerical radius attaining operators. We call it the
Bishop-Phelps-Bollobás property for numerical radius, BPBp-ν for short. The
relation between norm attaining and numerical radius attaining operators is far
from being clear, although the existence of an interconnection is evident. Accord-
ingly, our goals in this paper are to define this new property –see Definition 1.2
below– and to show that `1(C) and c0(C) satisfy it –see Theorems 3.1 and 4.1.
This brings an extension as well as a quantitative version of C. S. Cardassi’s
results in [Car85b].

Observe that the counterexamples provided in [AAP92] and [Pay92] imply,
in particular, that there exist Banach spaces failing the Bishop-Phelps-Bollobás
property for numerical radius.

Given a Banach space (X, ‖·‖), we denote as usual by SX and BX , respec-
tively, the unit sphere and the unit ball of X . By X∗ we represent its dual, en-
dowed with its standard norm ‖x∗‖ = supx∈BX

{|x∗(x)|} and by Π(X) the set

Π(X) = {(x, x∗) ∈ SX × SX∗ : x∗(x) = 1}.

Given x ∈ SX and x∗ ∈ SX∗ , we set

π1(x∗) := {x ∈ SX : x∗(x) = 1}.
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By L(X) we mean the Banach space of all linear and continuous operators from
X into X endowed with its natural norm ‖T‖ = supx∈BX

{‖Tx‖}. For a given
T ∈ L(X), its numerical radius ν(T ) is defined by

ν(T ) = sup{|x∗(Tx)| : (x, x∗) ∈ Π(X)}.

It is well known that the numerical radius of a Banach spaceX is a continuous
seminorm on X which is, in fact, an equivalent norm when X is complex. In
general, there exists a constant n(X), called the numerical index of X , such that

n(X) ‖T‖ ≤ ν(T ) ≤ ‖T‖ , for all T ∈ L(X).

Our interest in this paper is in spaces of numerical index 1, n(X) = 1, where
the norm and the numerical radius coincide. For background in numerical radius
we refer to the monographs [BD71, BD73] and in numerical index we refer to
the survey [KMP06].

We say that T ∈ L(X) attains its numerical radius if there exists (x, x∗) ∈
Π(X) such that |x∗(Tx)| = ν(T ). The set of numerical radius attaining operators
will be denoted by NRA(X) ⊂ L(X).

Definition 1.2 (BPBp-ν). A Banach space X is said to have the Bishop-Phelps-
Bollobás property for numerical radius if for every 0 < ε < 1, there exists δ > 0

such that for a given T ∈ L(X) with ν(T ) = 1 and a pair (x, x∗) ∈ Π(X)

satisfying |x∗(Tx)| ≥ 1 − δ, there exist S ∈ L(X) with ν(S) = 1, and a pair
(y, y∗) ∈ Π(X) such that

(1.1) ν(T − S) ≤ ε, ‖x− y‖ ≤ ε, ‖x∗ − y∗‖ ≤ ε and |y∗(Sy)| = 1.

Observe that if X is a Banach space with n(X) = 1, then the seminorm ν(·)
can be replaced by ‖ · ‖ in the definition above. Note that all the spaces studied
in this paper have numerical index 1.

Notation and terminology. Throughout this paper arg(·) stands for the func-
tion which sends a non zero complex number z to the unique arg(z) ∈ [0, 2π)

such that z = |z|earg(z)i. For convenience we extend the function to C by writing
arg(0) = 0. Following the standard notation, let Re(z) and Im(z) be, respec-
tively, the real and imaginary part of the complex number z ∈ C.

All along sections 2 to 4, the spaces `1, `∞, and c0 stand respectively for
`1(C), `∞(C), and c0(C). The standard basis of `1 is denoted by {en}n∈N, and its
biorthogonal functionals by {e∗n}n∈N. Given a sequence ξ = (ξj)j∈N∈ CN and a
complex function f : C→ C we write f(ξ) meaning the sequence (f(ξj))j∈N.
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The following sets will be of help in the formulation of the results and proofs.
Given x = (xj)j∈N ∈ `1, ϕ = (ϕj)j∈N ∈ `∞ we define

N(x, ϕ) = {j ∈ N : ϕj xj = |xj|},(1.2)

supp(x) = {j ∈ N : |xj| 6= 0}.

For r > 0 we consider

Aϕ(r) = {j ∈ N : |ϕj| ≥ 1− r},(1.3)

P(x,ϕ)(r) = {j ∈ supp(x) : Re(ϕj xj) ≥ (1− r)|xj|}.(1.4)

Observe that P(x,ϕ)(r) ⊂ Aϕ(r) and that if xj ≥ 0 for all j ∈ N –we describe
this situation saying that x is positive– then

P(x,ϕ)(r) = {j ∈ supp(x) : Re(ϕj) ≥ (1− r)}.

For a given set Γ, a subset A ⊂ Γ and K ∈ {R,C}, we denote by 1A the
characteristic function of A, that is, the element in KΓ such that (1A)γ = 1 if
γ ∈ A and (1A)γ = 0 otherwise.

2. THE BISHOP-PHELPS-BOLLOBÁS THEOREM IN `1(C)

In this section we present two constructive versions of Theorem 1.1, which
are the main tools in the proofs of Theorems 3.1 and 5.1.

Lemma 2.1. Let (x, ϕ) ∈ S`1 × S`∞ . Then x ∈ π1(ϕ) if and only if N(x,ϕ) = N.

Proof. Given a pair (x, ϕ) ∈ S`1 × S`∞ satisfying N(x,ϕ) = N, one can compute

ϕ(x) =
∑

j∈N ϕj xj
(1.2)
=
∑

j∈N |xj| = ‖x‖ = 1, which implies that (x, ϕ) ∈
Π(`1).

Conversely, let us assume that (x, ϕ) ∈ Π(`1) then,

1 = Re(ϕ(x)) =
∑
j∈N

Re(ϕj xj) ≤
∑
j∈N

|ϕj xj| ≤
∑
j∈N

|xj| = 1,

which implies that Re(ϕj xj) = |ϕj xj| = |xj| for j ∈ N. Therefore, ϕj xj =

|xj| for every j ∈ N, which finishes the proof. �

Lemma 2.1 provides the essential insight into the properties of Π(`1) that we
need for the proofs of Theorems 2.4 and 2.6. A glance at Lemma 2.1 gives the
following easy result regarding the norm attaining functionals on `1, NA(`1).

Corollary 2.2. NA(`1) = {ϕ ∈ `∞ : ∃n ∈ N with |ϕn| = ‖ϕ‖}.

The following lemma is an adaptation of [AAGM08, Lemma 3.3] to our no-
tation.

Lemma 2.3. Let (x, ϕ) ∈ B`1×B`∞ and 0 < δ < 1 such that Re(ϕ(x)) ≥ 1−δ.
Then, for every δ < r < 1 we have

∥∥Re
(
earg(ϕ)i x

)
· 1P(x,ϕ)(r)

∥∥ ≥ 1− (δ/r).
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Proof. By assumption, we have that

1− δ ≤ Re(ϕ(x)) =
∑
j∈N

Re(ϕj xj) =
∑
j∈N

|ϕj|Re
(
earg(ϕj)i xj

)
≤

∑
P(x,ϕ)(r)

Re
(
earg(ϕj)i xj

)
+ (1− r)

∑
N\P(x,ϕ)(r)

|xj|

≤ r
∑
P(x,ϕ)(r)

∣∣Re
(
earg(ϕj)i xj

)∣∣+ (1− r),

which implies that∥∥∥Re
(
earg(ϕ)i x

)
1P(x,ϕ)(r)

∥∥∥ =
∑

j∈P(x,ϕ)(r)

∣∣∣Re
(
earg(ϕj)i xj

)∣∣∣ ≥ 1− (δ/r),

as we wanted to show. �

Observe that the previous lemma implies, in particular, that∥∥x · 1P(x,ϕ)(r)

∥∥ ≥ 1− (δ/r).

We present next the two constructive versions of the Bishop-Phelps-Bollobás
theorem.

2.1. First constructive version.

Theorem 2.4. Given (x, ϕ) ∈ B`1 × B`∞ and 0 < ε < 1 such that Re(ϕ(x)) ≥
1− ε3

4
. Then, there exists (x0, ϕ0) ∈ Π(`1) such that ‖x− x0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤

ε. Moreover, we can take

(2.1) x0 :=
∥∥x · 1P(x,ϕ)(ε

2/2)

∥∥−1 · x · 1P(x,ϕ)(ε
2/2).

Proof. Set P := P(x,ϕ)(ε
2/2) –see definition (1.4). Applying Lemma 2.3 with

δ = ε2/2 and r = ε gives that

(2.2) M := ‖x · 1P‖ ≥ 1− (ε/2).

Let us define

(2.3) ϕ0 := ϕ · 1N\P + e−arg(x)i · 1P ∈ S`∞

and

(2.4) x0 := M−1x · 1P ∈ S`1 .

On one hand, we can compute

‖x− x0‖
(2.4)
=
∥∥x−M−1x · 1P

∥∥ = (M−1 − 1) ‖x · 1P‖+
∥∥x · 1N\P

∥∥
(2.2)
= (1−M) +

∥∥x · 1N\P
∥∥ ‖x‖≤1

≤ 2− 2M
(2.2)
≤ ε,
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and, since the support of x0 is included in P –this is a consequence of (2.4), we
deduce that

ϕ0(x0) =
∑
j∈P

(ϕ0)j (x0)j
(2.3)
=
∑
j∈P

e−arg(xj)i (x0)j
(2.4)
=
∑
j∈P

|(x0)j|= ‖x0‖ = 1,

which is equivalently expressed as (x0, ϕ0) ∈ Π(`1).
On the other hand, using that

(2.5) |z − 1| ≤
√

2(1− Re(z)) for every z ∈ C such that |z| ≤ 1,

we deduce

‖ϕ− ϕ0‖
(2.3)
= sup

j∈P
{|ϕj − (ϕ0)j|}

(2.3)
= sup

j∈P

{∣∣ϕj − e−arg(xj)i
∣∣}

= sup
j∈P

{∣∣earg(xj)i ϕj − 1
∣∣} (2.5)
≤ sup

j∈P

{√
2− 2 Re

(
earg(xj)i ϕj

)}
≤
√

2− 2(1− ε2/2) = ε,

which finishes the proof. �

An immediate consequence of Theorem 2.4 is the following version of the
Bishop-Phelps-Bollobás theorem for `1(C).

Corollary 2.5. Let 0 < ε < 1 and (x, ϕ) ∈ B`1×B`∞ such that |ϕ(x)| ≥ 1− ε3

4
.

Then, there exists (x0, ϕ0) ∈ S`1 × S`∞ such that ‖x− x0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤ ε

and |ϕ0(x0)| = 1.

Proof. Apply Theorem 2.4 to the pair
(
e−arg(ϕ(x))i x, ϕ

)
obtaining (z0, ϕ0) be-

longing to Π(`1) such that
∥∥e−arg(ϕ(x))i x− z0

∥∥ ≤ ε and ‖ϕ− ϕ0‖ ≤ ε. There-
fore, if we set x0:=earg(ϕ(x))i z0, the pair (x0, ϕ0) satisfies the conclusions of the
corollary. �

2.2. Second constructive version. Given a pair (x, ϕ) and 0 < ε < 1, The-
orem 2.4 ensures the existence of a pair (x0, ϕ0) –defined by (2.4) and (2.3)–
satisfying the conclusions of the Bishop-Phelps-Bollobás theorem. However, ϕ0

depends on x, in fact, on arg(x). In order to prove Theorem 3.1 we will need a
functional ϕ0 depending only on the given ε and ϕ. So, we present the following
result.

Theorem 2.6. Let (x, ϕ) ∈ B`1 ×B`∞ and 0 < ε < 1 be such that Re(ϕ(x)) ≥
1− ε3

60
. Then there exists (x0, ϕ0) ∈ Π(`1) such that ‖x− x0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤ ε.

Moreover, the functional ϕ0 can be defined as

(2.6) ϕ0 = ϕ · 1N\Aϕ(ε2/20) + earg(ϕ)i · 1Aϕ(ε2/20).
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Proof. Let us consider the isometry S : `1 → `1 defined by

(2.7) 〈e∗j , Sy〉 = earg(ϕj)i yj, for y ∈ `1 and j ∈ N.

Set x̃ = Sx and ϕ̃ = ϕ◦S−1. Then, it is clear that the pair (x̃, ϕ̃) is inB`1×B`∞ ,
that Re(ϕ̃(x̃)) ≥ 1 − ε3

60
and that ϕ̃ = (|ϕj|)j∈N is positive. Denote by A and P

respectively the sets Aϕ̃(r) and P(x̃,ϕ̃)(r) –see definitions (1.3) and (1.4), where
r:= ε2

20
. Let us define

(2.8) ϕ̂:=ϕ̃ · 1N\A + 1A ∈ S`∞

and

(2.9) x̂:=M−1Re(x̃) · 1P ∈ S`1 ,

where M := ‖Re(x̃) · 1P‖. Applying Lemma 2.3 with δ = ε3/60 and r, gives
that M ≥ 1− ε

3
. In particular, this means that P , and thus A, are non-empty.

We can compute that

‖ϕ̃− ϕ̂‖ (2.8)
= sup

j∈A
{|ϕ̃j − ϕ̂j|}

(2.8)
= sup

j∈A
{|ϕ̃j − 1|}

= sup
j∈A
{(1− ϕ̃j)}

(1.3)
≤ r ≤ ε,(2.10)

and, since by (1.4) and (2.9) the support of x̂ is P ⊂ A –which, in particular,
implies that x̂j > 0 for j ∈ P , we deduce that

(2.11) ϕ̂(x̂) =
∑
j∈P

ϕ̂jx̂j
(2.8)
=
∑
j∈P

x̂j =
∑
j∈P

|x̂j| = 1,

which is equivalently written as (x̂, ϕ̂) ∈ Π(`1).
In order to show that ‖x̃− x̂‖ ≤ ε, let us observe first that

(2.12) ‖x̃ · 1P‖ =
∑
j∈P

|x̃j| ≥
∑
j∈P

|Re(x̃j)| =M ≥ 1− ε

3
,

from which

‖x̃− x̂‖ (2.9)
=
∥∥x̃−M−1Re(x̃) · 1P

∥∥ =
∥∥x̃ · 1N\P

∥∥+
∥∥(x̃−M−1Re(x̃)) · 1P

∥∥
(2.12)
≤ ε

3
+
∥∥(x̃−M−1Re(x̃)) · 1P

∥∥ .(2.13)

We need a bit more care to estimate the last term in (2.13). From the very defini-
tion of P , we know that for every j ∈ P it holds

(2.14) |x̃j| ≤ (1− r)−1ϕ̃j Re(x̃j).
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Therefore,

‖(x̃− Re(x̃)) · 1P‖ =
∑
j∈P

|x̃j − Re(x̃j)| =
∑
j∈P

|Im(x̃j)|

=
∑
j∈P

√
|x̃j|2 − Re(x̃j)2

(2.14)
≤
∑
j∈P

|Re(x̃j)|
√

(1− r)−2 − 1

≤ ‖x̃‖
√

(1− r)−2 − 1
r= ε2

20

≤ ε

3
,(2.15)

which implies that∥∥(x̃−M−1Re(x̃)) · 1P
∥∥ ≤ ‖(x̃− Re(x̃)) · 1P‖+

∥∥(1−M−1)Re(x̃) · 1P
∥∥

(2.15)
≤ ε

3
+ (M−1 − 1) ‖Re(x̃) · 1P‖

=
ε

3
+ (1−M) ≤ 2ε

3
.(2.16)

Putting together (2.13) and (2.16), one obtains

(2.17) ‖x̃− x̂‖ ≤ ε

3
+
∥∥(x̃−M−1Re(x̃)) · 1P

∥∥ ≤ ε,

which finishes the core of the proof.
Now, we define

(2.18) x0:=S−1x̂ and ϕ0 = S∗(ϕ̂) = ϕ̂ ◦ S,

which by (2.11) gives that ϕ0(x0) = ϕ̂(x̂) = 1. Since S and S∗ are isometries,
we deduce from (2.10), (2.17), (2.18) and the definition of x̃ and ϕ̃ that

‖x− x0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤ ε.

Therefore, (x0, ϕ0) is the pair in Π(`1) we were looking for.
Bearing in mind (2.18), one computes

(ϕ0)j = ϕ0(ej)
(2.18)
= ϕ̂(Sej)

(2.7)
= ϕ̂

(
earg(ϕj)i ej

)
= earg(ϕj)i ϕ̂j,

which together with (2.8) implies that ϕ0 = ϕ·1N\A+earg(ϕ)i ·1A. Finally, noting
that A = Aϕ̃(r) = Aϕ(r), the validity of (2.6) has been shown. �

Remark 2.7. Observe that the function ϕ0 provided by Theorem 2.6 and defined
by (2.6) only depends on ε and ϕ itself as well as satisfies π1(ϕ) ⊂ π1(ϕ0).

3. BPB PROPERTY FOR NUMERICAL RADIUS IN `1(C)

As a consequence of Theorems 2.4 and 2.6 we show that `1 has the Bishop-
Phelps-Bollobás property for numerical radius.
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Theorem 3.1. Let T ∈ SL(`1), 0 < ε < 1 and (x, ϕ) ∈ Π(`1) such that ϕ(Tx) ≥
1− (ε/9)9/2. Then there exist T0 ∈ SL(`1) and (x0, ϕ0) ∈ Π(`1) such that

(3.1) ‖T − T0‖ ≤ ε, ‖x− x0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤ ε and ϕ0(T0x0) = 1.

Proof. First of all, fix µ :=
√
ε3/240. Using a suitable isometry, we can assume

that x is positive. In particular, by Lemma 2.1 and the definition ofNx,ϕ in (1.2),
we can assume that ϕj = 1 for j ∈ supp(x). Since µ3/4 ≥ (ε/9)9/2, Theo-
rem 2.4 can be applied to the pair (x, T ∗ϕ) ∈ B`1 × B`∞ and µ instead of ε
giving x0 ∈ π1(ϕ) such that ‖x− x0‖ ≤ µ ≤ ε. Moreover, by (2.1) we know
that

(3.2) x0 = ‖x · 1P‖−1 · x · 1P ,

where the non-empty set P is defined by

(3.3) P := P(x, T ∗ϕ)(µ
2/2) = {j ∈ supp(x) : Re(T ∗ϕ(ej)) ≥ 1− µ2/2}.

In particular, x0 is positive.
Since µ2/2 = (ε/2)3

60
, for each j ∈ P we can apply Theorem 2.6 to the pair

(e−arg(ϕ(Tej))i Tej, ϕ) and ε/2 to find (zj, ϕ0) ∈ Π(`1) such that

‖Tej − ajzj‖ ≤ ε/2, ‖ϕ− ϕ0‖ ≤ ε/2

and Π1(ϕ) ⊂ Π1(ϕ0) –see Remark 2.7, where aj = earg(ϕ(Tej))i. Observe that ϕ0

can be chosen independently on j ∈ P and by (2.6) explicitly written as

(3.4) ϕ0 = ϕ · 1N\Aϕ(ε2/80) + earg(ϕ)i · 1Aϕ(ε2/80).

Let us define T0 as the unique operator in L(`1) such that T0ei = Tei for
i /∈ P and T0ej = zj for j ∈ P . Equivalently,

(3.5) T0x = 1N\P · Tx+
∑
j∈P

e∗j(x)zj, for x ∈ `1.

It is clear from (3.5) that

‖T0‖ = sup
n∈N
{‖T0en‖} = max

{
sup
j /∈P
{‖Tej‖}, sup

j∈P
{‖zj‖}

}
= 1.

Given j ∈ P , the identity (3.3) ensures that Re(ϕ(Tej)) ≥ 1 − µ2/2. Using
again the general fact (2.5), we deduce that |aj − 1| ≤ µ ≤ ε/2.

Therefore,

‖T − T0‖ = sup
n∈N
{‖Ten − T0en‖} = sup

j∈P
{‖Tej − zj‖}

≤ sup
j∈P
{‖Tej − ajzj‖}+ sup

j∈P
{‖ajzj − zj‖}

≤ ε

2
+ sup

j∈P
{|aj − 1|} ≤ ε.
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Since x0 ∈ π1(ϕ) and π1(ϕ) ⊂ π1(ϕ0), we deduce that (x0, ϕ0) belongs to
Π(`1). It remains to show that ϕ0(T0x0) = 1 to prove the validity of (3.1). But,
since x0 is positive, we obtain that

ϕ0(T0x0)
(3.5)
=
∑
j∈P

(x0)jϕ0(zj) +
∑
j /∈P

(x0)jϕ0(Tej)

(3.2)
=
∑
j∈P

(x0)j =
∑
j∈P

|(x0)j| = ‖x0‖ = 1,

and the proof is over. �

Remark 3.2. We cannot replace the condition (x, ϕ) ∈ Π(`1) in Theorem 3.1
by the more general (x, ϕ) ∈ B`1 × B`∞ . Indeed, let us consider the operator
T : `1 → `1 defined by Tej = ej for j ≥ 2 and Te1 = e2. Take (e1, e

∗
2) ∈

B`1 × B`∞ , T0 ∈ L(`1), and (x, ϕ) ∈ B`1 × B`∞ such that ‖T − T0‖ ≤ ε,
‖e1 − x‖ ≤ ε, and ‖e∗2 − ϕ‖ ≤ ε. Then

|ϕ(x)| ≤ |ϕ(x)− e∗2(x)|+ |e∗2(x)− e∗2(e1)|+ |e∗2(e1)| ≤ 2ε,

which implies that (x, ϕ) cannot be in Π(`1).

Corollary 3.3. The Banach space `1 has the Bishop-Phelps-Bollobás property
for numerical radius.

Proof. Let us consider T ∈ L(`1) with ν(T ) = 1 and 0 < ε < 1. Let us take a
pair (x, ϕ) ∈ Π(`1) such that |ϕ(Tx)| ≥ 1− (ε/9)

9
2 . In fact, we can assume that

ϕ(Tx) ≥ 1−(ε/9)
9
2 ; otherwise, we proceed with T̃ = e−arg(ϕ(Tx))i T . Then The-

orem 3.1 gives the existence of an operator T0∈ SL(`1) and a pair (x0, ϕ0)∈ Π(`1)

that satisfy conditions in (3.1), which are precisely the requirements (1.1) in Def-
inition 1.2. �

Corollary 3.4 ([Car85b]). The set NRA(`1) is dense in L(`1).

4. BPB PROPERTY FOR NUMERICAL RADIUS IN c0(C)

Theorem 3.1 allows us to show that c0 has the Bishop-Phelps-Bollobás prop-
erty for numerical radius as well. Indeed, we rely on the fact that our construc-
tions in `1 can be dualized.

Theorem 4.1. Let T ∈ SL(c0), 0 < ε < 1 and (x, ϕ) ∈ Π(c0) such that
|ϕ(Tx)| ≥ 1 − (ε/9)9/2. Then there exist S ∈ SL(c0) and (x0, ϕ0) ∈ Π(c0),
such that

‖T − S‖ ≤ ε, ‖x− x0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤ ε and |ϕ0(Sx0)| = 1.
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Proof. Throughout this proof we identify the elements in c0 with their image in
`∞ through the natural embedding c0 → `∞. The adjoint operator of T , T ∗ : `1 →
`1 satisfies

|x(T ∗ϕ)| = |T ∗(ϕ)(x)| = |ϕ(Tx)|≥1− (ε/9)9/2.

Without loss of generality, we can assume that x(T ∗ϕ) ≥ 1−(ε/9)9/2. Other-
wise, employing techniques from the proof of Corollary 3.3, define the operator
T̃ = e−arg(x(T ∗ϕ))i T ∗ and proceed with the proof for x(T̃ϕ) = |x(T ∗ϕ)|.

By Theorem 3.1, there exists T0 ∈ L(`1), ‖T0‖ = 1 and (ϕ0, x0) ∈ Π(`1)

such that

‖T ∗ − T0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤ ε, ‖x− x0‖ ≤ ε

and x0(T0ϕ0) = 1.
We assert that (x0, ϕ0) is the pair we are looking for. To show this, we will

reexamine the proof of Theorem 3.1 to establish how x0, ϕ0 and T0 are defined.
Indeed, from (3.3), (3.2), (3.4) and (3.5) we have respectively

P = P(ϕ,T ∗∗x)(ε
3/480),

ϕ0 = ‖ϕ · 1P‖−1 · ϕ · 1P ,

x0 = x · 1N\Ax(ε2/80) + earg(x)i · 1Ax(ε2/80),(4.1)

T0x = 1N\P · Tx+
∑
j∈P

e∗j(x)zj, for x ∈ `1,

where {zj}j∈P ⊂ π1(ϕ0).
Note that Ax(ε2/80) = {j ∈ N : |xj| ≥ 1 − ε2/80} and that x ∈ c0. Thus,

Ax(ε
2/80) is finite which, by (4.1), implies that x0 ∈ c0.

We shall show that T0 is an adjoint operator and thus that there exists S ∈
L(c0) such that S∗ = T0. It will be enough to show that T ∗0 |c0 ⊂ c0. Set tij =

〈ei, T (ej)〉 for i, j ∈ N. Fix i ∈ N, then for j ∈ N

〈ej, T ∗0 (ei)〉 =

{
tji if j /∈ P,
(zj)i if j ∈ P.

Since x ∈ c0, T ∗∗x belongs to c0, which implies that P is finite. Accordingly,
only finitely many terms of the form 〈ej, T ∗0 (ei)〉 differ from the corresponding
tji. On the other hand, since T belongs to L(c0), it holds that limj |tji| = 0.
Therefore, we deduce that |〈ej, T ∗0 (ei)〉| → 0 when j → ∞. This implies that
T ∗0 ei ∈ c0 and, since i ∈ N is arbitrarily chosen, we deduce that T ∗0 |c0 ⊂ c0.

Hence we obtain the operator S = T ∗0 |c0 ∈ L(c0) and the pair (x0, ϕ0) ∈
Π(c0) satisfying:

ϕ0(Sx0) = S∗ϕ0(x0) = x0(S∗ϕ0) = x0(T0ϕ0) = 1,
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and
‖S − T‖ = ‖(S − T )∗‖ = ‖S∗ − T ∗‖ = ‖T0 − T ∗‖ ≤ ε,

which finishes the proof. �

Theorem 4.1 implies the following two corollaries.

Corollary 4.2. The Banach space c0 has the Bishop-Phelps-Bollobás property
for numerical radius.

Corollary 4.3 ([Car85b]). The set NRA(c0) is dense in L(c0).

5. GENERALIZATIONS AND REMARKS

All the results that have been presented in sections 2, 3 and 4 were stated
and proved for the Banach spaces `1(C) or c0(C). However, a glance at their
proofs suffices to convince oneself of their validity for `1(R) and c0(R) –shorter
proofs and better estimates can be obtained in this case. More generally, given a
non-empty set Γ and K ∈ {R,C}, these results are, after suitable adjustments,
still valid for `1(Γ,K) and c0(Γ,K). The spaces `1(Γ,K) and c0(Γ,K) are, re-
spectively, the `1-sum and the c0-sum of Γ copies of the field K. Note that in
particular `1(N,K) = `1(K).

The Banach space c0(Γ,K) is a predual of `1(Γ,K). Observe that both spaces
c0(Γ,K) and `1(Γ,K) have numerical index 1. Previous considerations imply
that both of them also have the BPB property for numerical radius. The ω∗ topol-
ogy of `1(Γ,K) stands here for the topology induced on `1(Γ,K) by pointwise
convergence on elements of c0(Γ,K).

On the other hand, the proof of Theorem 4.1 shows that in Theorem 3.1 we
proved more than was stated. Indeed, putting together Theorem 3.1, the ideas on
duality in the proof of Theorem 4.1 and considerations above, one easily proves
the following theorem.

Theorem 5.1. Let T ∈ SL(`1(Γ,K)), 0 < ε < 1 and (x, ϕ) ∈ Π(`1(Γ,K)) such
that |ϕ(Tx)| ≥ 1 − (ε/9)9/2. Then there exist T0 ∈ SL(`1(Γ,K)) and (x0, ϕ0) ∈
Π(`1(Γ,K)) such that

‖T − T0‖ ≤ ε, ‖x− x0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤ ε and |ϕ0(T0x0)| = 1.

Moreover, if T is ω∗-ω∗-continuous and ϕ is ω∗-continuous, then T0 and ϕ0

will be ω∗-ω∗-continuous and ω∗-continuous, respectively.

Below are two consequences of Theorem 5.1.

Theorem 5.2. The Banach space `1(Γ,K) has the BPB property for numerical
radius.
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Theorem 5.3. The Banach space c0(Γ,K) has the BPB property for numerical
radius.

Proof. Fix 0 < ε < 1, δ ≤ (ε/9)9/2, T ∈ SL(c0(Γ,K)) and (x, x∗) ∈ Π(c0(Γ,K))

such that |x∗(Tx)|≥1− δ. Applying Theorem 5.1 to the ω∗-ω∗-continuous oper-
ator T ∗ ∈ SL(`1(Γ,K)), the pair (x∗, x) and ε, gives a new T0 ∈ SL(c0(Γ,K)) and a
new pair (x∗0, x

∗∗
0 ) ∈ Π(`1(Γ,K)) satisfying

(5.1)
∥∥T ∗ − T ∗0 ∥∥ ≤ ε, ‖x− x∗∗0 ‖ ≤ ε, ‖x∗ − x∗0‖ ≤ ε and |x∗∗0

(
T ∗0 x

∗
0

)
| = 1.

Moreover, x∗∗0 is ω∗-continuous, so we can identify it with some x0 ∈ Sc0(Γ,K).
Therefore, conditions in (5.1) become∥∥T − T0

∥∥ ≤ ε, ‖x− x0‖ ≤ ε, ‖x∗ − x∗0‖ ≤ ε and |x∗0
(
T0x0

)
| = 1.

which are the requirements (1.1) in Definition 1.2. Consequently, c0(Γ,K) has
the Bishop-Phelps-Bollobás property for numerical radius. �
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IUMPA, UNIVERSIDAD POLITÉCTNICA DE VALENCIA, 46022, VALENCIA, SPAIN
E-mail address: anguisa2@mat.upv.es

DEPTARTMENT OF MATHEMATICAL SCIENCES, KENT STATE UNIVERSITY, KENT OH
44242, USA

E-mail address: okozhus@math.kent.edu


