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Non-commutative locally convex measures

José Bonet and J. D. Maitland Wright

Abstract

We study weakly compact operators from a C∗-algebra with values in a complete lo-
cally convex space. They constitute a natural non-commutative generalization of finitely
additive vector measures with values in a locally convex space. Several results of Brooks,
Sâıto and Wright are extended to this more general setting. Building on an approach
due to Sâıto and Wright, we obtain our theorems on non-commutative finitely additive
measures with values in a locally convex space, from more general results on weakly com-
pact operators defined on Banach spaces X whose strong dual X ′ is weakly sequentially
complete. Weakly compact operators are also characterized by a continuity property for
a certain “Right topology” as in joint work by Peralta, Villanueva, Wright and Ylinen.

1 Introduction

In 1970, D. R. Lewis [19], extending previous work of Bartle, Dunford and Schwartz, and
of Grothendieck, proved the following result (See also [17]). Let K be a compact Hausdorff
space, let E be a complete locally convex space and let T ∈ L(C(K), E) a continuous operator.
T is weakly compact if and only if there is a regular measure µ : Σ → E on the Borel subsets
of K such that

T (f) =
∫

K
f(t)µ(dt) for each f ∈ C(K).

A linear operator T ∈ L(X, Y ) between Banach spaces is weakly compact if it maps the
closed unit ball of X into a weakly relatively compact subset of Y . There are two possible
extensions of this concept when the continuous linear operator T ∈ L(F,E) is defined between
locally convex spaces F and E. As in [10], we say that T is reflexive if it maps bounded sets
into weakly relatively compact sets, and it is called weakly compact (as in [18, 42.2]) if there is
a 0-neighborhood U in F such that T (U) is weakly relatively compact in E. It can be easily
seen that if T ∈ L(F, E) is weakly compact, then T is reflexive. Although the converse is
true if F is a Banach space, in general this is false, as the identity T : E → E on an infinite
dimensional Fréchet Montel space E shows. One can take, for example, the space E of entire
functions on the complex plane endowed with the compact open topology.
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From the point of view of the articles [5, 6, 7, 38], the natural non-commutative gener-
alization of a (finitely additive) vector measure with values in a Banach space is a weakly
compact operator from a C∗-algebra with values in a Banach space. The purpose of this
paper is to study weakly compact operators T : A → E from a C∗-algebra A into a complete
locally convex space E. They constitute the natural non-commutative version of a vector
measure with values in E. As in the paper by Saitô and Wright [33], we obtain our results on
non-commutative finitely additive measures with values in a locally convex space, from more
abstract results on weakly compact operators defined on Banach spaces X whose strong dual
X ′ is weakly sequentially complete. Weakly compact operators T : X :→ E in our setting are
also characterized by a continuity property for a certain “Right topology” ρ(X) in X, as in
[27]. A recent expository article on this topic is [40].

We obtain extensions of results of Brooks, Saitô and Wright [5, 6, 7, 8, 9, 38] from the case
where E is a Banach space. We generalize results of Lewis [19] and Panchapagesan [23, 24]
from commutative to non-commutative C∗-algebras.

We also extend an elegant result of Akemann, Dodds and Gamlen [2] by showing that
a continuous linear map T from a C∗-algebra into a complete locally convex space which
contains no copy of c0 must be weakly compact.

2 Notation and preliminaries

In this article A stands for a C∗-algebra, A1 for its closed unit ball, A′ for the dual of A and
A′′ for the second dual of A. The space A′′ can be identified with the von Neumann envelope
of A in its universal representation. This and other standard results on operator algebras may
be found in [22, 25, 34]. Throughout this paper let M denote a von Neumann algebra with
predual M∗. As usual we do not distinguish between normal functionals on M and elements
of M∗.

We use standard notation for functional analysis and locally convex spaces [13, 14, 18,
21, 28]. For a locally convex space E = (E, τ), E′ stands for the topological dual of E,
we denote by σ(E, E′), µ(E, E′) and β(E, E′) the weak, Mackey and strong topologies on
E respectively. Sometimes we write E′

b to denote the strong dual (E′, β(E′, E)) of E. The
family of all absolutely convex 0-neighborhoods of a locally convex space E is denoted by
U0(E), the family of all absolutely convex bounded subsets of E by B(E), and the family of
all continuous seminorms on E by cs(E). If E is a locally convex space and q ∈ cs(E), Eq

is the Banach space which appears as the completion of (E/Kerq, q̂), q̂(x + Kerq) = q(x),
x ∈ E. We denote by πq : E → Eq, πq(x) = x + kerq the canonical map. Observe that
‖πq(x)‖Eq = q(x) for all x ∈ E. If q ∈ cs(E) then Uq := {x ∈ E | q(x) ≤ 1} ∈ U0(E) and it
is closed. If U ∈ U0(E), the Minkowski functional of U , qU (x) = inf{λ > 0 : x ∈ λU} is a
seminorm on E. Moreover {x ∈ E | qU (x) < 1} ⊂ U ⊂ {x ∈ E | qU (x) ≤ 1}. If B ∈ B(E),
the normed space generated by B is EB := (spanB, pB), pB being the Minkowski functional
of B. If B ∈ B(E), then EB ↪→ E continuously and we denote the injection by jB : EB → E.
If E is complete, EB is a Banach space for every B ∈ B(E) which is closed. If B ⊂ E, the
polar of B in E′ is

B◦ := {u ∈ E′ | |u(x)| ≤ 1 for all x ∈ B}.
A subset C ⊂ E′ is called (E, τ)-equicontinuous (or simply equicontinuous) if there is
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U ∈ U0(E) such that C ⊂ U◦. If q ∈ cs(E), Uq ∈ U0(E) and, by the Hahn Banach theorem,

q(x) = sup
u∈U◦q

|u(x)|.

Moreover, u ∈ U◦
q if and only if |u(x)| ≤ q(x) for all x ∈ E.

The space of all (continuous, linear) operators between the locally convex spaces F and E
is denoted by L(F, E), and we write Lb(F, E) when this space is endowed with the topology
of uniform convergence on the bounded subsets of F . A basis of 0-neighborhoods in Lb(F, E)
is given by W (B, V ) := {f ∈ L(F, E) | f(B) ⊂ V }, as B runs in B(F ) and V in U0(E). The
transpose of an operator T is denoted by T ′ : E′ → F ′, and the bitranspose by T ′′ : F ′′ → E′′.
If X is a Banach space and E is a locally convex space an operator T ∈ L(X, E) is weakly
compact if T (X1) is relatively σ(E, E′)-compact in E. Here X1 stands for the closed unit
ball of X. We observe that T ∈ L(X, E) is weakly compact if and only if πq ◦ T : X → Eq is
weakly compact for each q ∈ cs(E).

Here is Grothendieck’s extension of Gantmacher’s Theorem; see [18, 42.2.(1)] and [12].
In fact Grothendieck’s result is a characterization of reflexive operators between two locally
convex spaces with E complete.

Theorem 2.1 Let X be a Banach space and let E be a complete locally convex space. The
following are equivalent for T ∈ L(X,E)

(1) T is weakly compact.

(2) T ′′(X ′′) ⊂ E.

(3) For each C ⊂ E′ which is equicontinuous, T ′(C) is relatively σ(X ′, X ′′)-compact.

A Fréchet space is a complete metrizable locally convex space. We refer the reader to [3, 18, 21]
for the theory of Fréchet and (DF)-spaces. In the rest of the article E always stands for a
complete locally convex space, unless explicitly stated.

3 Weakly compact operators from a Banach space into a lo-
cally convex space

Our first result is an extension of [33, Theorem 2.1].

Theorem 3.1 Let A be a Banach space such that (A′, σ(A′, A′′)) is sequentially complete and
let E be a complete locally convex space. Let (Tn)n be a sequence of weakly compact operators
from A into E. If (T ′′nz)n is a Cauchy sequence in E for each z ∈ A′′, then there is a weakly
compact operator T : A → E such that T ′′nz → T ′′z in E for each z ∈ A′′.

Proof. For each a ∈ A′′ define T0z := limn T ′′nz ∈ E, which exists since (T ′′nz)n is a Cauchy
sequence in E and E is complete. By the Banach Steinhaus uniform boundedness theorem
(see e.g., Chapter IV, Section 2, Corollary 1 in [31]), the linear operator T0 : A′′ → E is
continuous. We denote by T the restriction of T0 to A. Clearly T ∈ L(A,E).

Fix u ∈ E′. For each z ∈ A′′, we have

〈T0z, u〉 = lim
n
〈T ′′nz, u〉 = lim

n
〈z, T ′nu〉,
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and the sequence (T ′nu)n is σ(A′, A′′)-Cauchy in A′ for each u ∈ E′. By the sequential com-
pleteness of (A′, σ(A′, A′′)), for each u ∈ E′ there is α(u) ∈ A′ such that 〈z, α(u)〉 = 〈T0z, u〉
for each z ∈ A′′.

We claim that T0 : (A′′, σ(A′′, A′)) → (E, σ(E,E′)) is continuous. Indeed, let (zi)i∈I be a
net in A′′ converging to 0 for the topology σ(A′′, A′). Given u ∈ E′, we select α(u) ∈ A′ such
that 〈zi, α(u)〉 = 〈T0zi, u〉 for each i ∈ I. This implies limi〈T0zi, u〉 = limi〈zi, α(u)〉 = 0.

The claim that we have just proved implies that the image T0(A′′1) of the unit ball A′′1
of A′′ is σ(E, E′) relatively compact in E. Therefore T (A1) is also σ(E, E′) relatively com-
pact in E, and T : A → E is weakly compact. By Grothendieck’s extension of Gant-
macher’s theorem [18, 42.2.(1)], this implies that T ′′(A′′) ⊂ E, which is equivalent to the
continuity of the operator T ′ : (E′, σ(E′, E)) → (A′, σ(A′, A′′)). This, in turn, implies that
T ′′ : (A′′, σ(A′′, A′)) → (E, σ(E, E′)) is continuous.

Now T0 and T ′′ are two continuous operators from (A′′, σ(A′′, A′)) into (E, σ(E, E′)) which
coincide on A, which is a σ(A′′, A′)-dense subspace of A′′. Thus T ′′ = T0, and the proof is
complete. 2

If A is a C∗-algebra, then its dual A′ is the predual of a von Neumann algebra and, by
[34, Corollary III.5.2], (A′, σ(A′, A′′)) is sequentially complete. Accordingly Theorem 3.1 can
be applied for operators from a C∗-algebra into a complete locally convex space E. In fact,
it is possible to improve the result in the case of C∗-algebras, thus extending [5, Corollary
3.3] which is a generalization to C∗-algebras of a theorem of Dieudonné in classical measure
theory. To do this we need the following definition. A projection p ∈ A′′ is said to be a range
projection for A if there exists b ∈ A, 0 ≤ b ≤ 1, such that the monotone increasing sequence
(b1/n)n converges to p in the topology σ(A′′, A′). We write p = RP (b).

The following non-commutative extension of a fundamental Theorem of Dieudonné [11]
was proved by Brooks, Saitô and Wright in [5] Theorem 3.2 (Generalized Dieudonné Theo-
rem): Let A be a C∗-algebra, which is not assumed to be unital. Let (φn)n be a sequence in
A′ such that for every range projection p ∈ A′′ the limit limn→∞ φn(p) exists. Then there is
a unique φ ∈ A′ such that for all x ∈ A′′, φ(x) = limn→∞ φn(x).

Lemma 3.2 Let A be a C∗-algebra and let φ be a functional on A, whose extension to A′′

is also denoted by φ. Let φ(p) = 0 for each range projection p in A′′. Then φ is the zero
functional.

Proof. Let y be a positive self adjoint element of A with ‖y‖ ≤ 1. Then (y1/n)n increases
monotonically to a range projection e. Then φ(e) = 0. Let C0 be the closed commutative
C∗-algebra generated by y. Let C be the algebra generated by y and e. So C is unital and
C ⊂ A′′. Let K ⊂ R be the spectrum of y. Let π be the spectral isomorphism of C0 into
A′′. Then π has a canonical extension to a σ-homomorphism π∞ of B∞(K), the bounded
Baire measurable functions on K, into A′′. Let U be any open subset of K. Then χU is
lower semicontinuous. Since K is metrizable, each open subset is an Fσ-set. So, by Uryshon’s
Lemma, there exists a monotone increasing sequence of positive elements of C0, (an)n, which
increases pointwise to χU . Let b =

∑∞
n=1 1/2nan. Then (b1/n)n increases pointwise to χU .

So (π(b1/n))n increases strong* to π∞(χU ). Thus π∞(χU ) is a range projection in A′′. So
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φπ∞(χU ) = 0. Now, let f be a bounded lower semicontinuous function on K. Then, as
remarked by Dieudonné [11], f is the uniform limit of linear combinations of functions of the
form χU , where U is open. So φπ∞(f) = 0. So φ vanishes on π(C), in particular φ(y) = 0.
It follows by linearity that φ vanishes on A. 2

Theorem 3.3 Let A be a C∗-algebra, let E be a complete locally convex space and let (Tn)n

be a sequence of weakly compact operators Tn : A → E. Suppose that, whenever p ∈ A′′ is a
range projection, limn→∞ T ′′n (p) exists in E. Then there is a unique weakly compact operator
T : A → E such that T ′′(x) = limn→∞ T ′′n (x) for each x ∈ A′′.

Proof. Suppose first that there is x ∈ A′′ such that (T ′′n (x))n ⊂ E is not a Cauchy sequence
in E. We find q ∈ cs(E) and an increasing sequence (n(i))n in N such that q(T ′′n(i+1)(x) −
T ′′n(i)(x)) > 1 for each i ∈ N. Set Si := (Tn(i+1) − Tn(i))′′ : A′′ → E, and find, for each i ∈ N,
ui ∈ E′ such that |ui(z)| ≤ q(z) for all z ∈ E and |ui(Si(x))| > 1.

We set φi := (ui ◦ Si)|A; φi ∈ A′ for each i ∈ N. If p ∈ A′′ is a range projection,
by assumption, Si(p) converges to 0 in E. Hence (q(Si(p)))i converges to 0, and then also
(φi(p))i tends to 0 since |ui ◦Si(p)| ≤ q(Si(p)). By the generalized Dieudonné theorem, there
is φ ∈ A′ such that limn→∞ φi(b) = φ(b) for each b ∈ A′′. In particular, φ(p) = 0 for each
range projection p ∈ A′′. By Lemma 3.2, φ(y) = 0 for all y ∈ A. Then φ(z) = 0 for every
z ∈ A′′, since φ ∈ A′. However this contradicts q(φi(x)) > 1 for each i ∈ N. Consequently, as
E is complete, for each x ∈ A′′, L(x) := limn→∞ T ′′n (x) exists. The conclusion follows from
Theorem 3.1, since (A′, σ(A′, A′′)) is sequentially complete. 2

4 Extending a result of Ryan on weakly compact operators

In this section we extend results due to Ryan [32], Ylinen [42] and to Saitô and Wright [33]
about weakly compact operators from a Banach space into the space of convergent or null
sequences in another Banach space.

For a locally convex space E, we denote by `∞(E) the space of all bounded sequences
(xn)n in E, endowed with the topology of uniform convergence generated by the seminorms
Pq((xn)n) := supn q(xn), for each continuous seminorm q in E. The closed subspaces of
convergent and of null sequences are denoted by c(E) and c0(E) respectively. On the other
hand, the space of all absolutely summable sequences (yn)n in E is denoted by `1(E), and it
is endowed with the continuous seminorms P 1

q ((yn)n) :=
∑

n q(yn). By [30, 1.5.8], if E is a
Fréchet or a (DF)-space, then for every (yn)n in `1(E), there is an absolutely convex, closed,
bounded subset B of E such that

∑
n pB(yn) ≤ 1. Here pB is the Minkowski functional of B.

This permits us to show, proceeding as in the proofs of [28, 4.8.7] and [3, Theorem 10], using
the stability properties of (DF)-spaces [28, 8.3.60 and 11.3.14], the following result.

Proposition 4.1 Let E be a Fréchet space or a complete (DF)-space, and let j : E → E′′ be
the canonical embedding. We have the following dualities:

(1) c(E)′b ' `1(E′
b), and the duality is given by

〈(x1, x2, . . .), (u0, u1, u2, . . .)〉 := 〈lim
n

xn, u0〉+
∞∑

n=1

〈xn, un〉.
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(2) `1(E′
b)
′
b ' `∞(E′′

b ), the duality is given by

〈(u0, u1, u2, . . .), (z0, z1, z2, . . .)〉 :=
∞∑

n=0

〈un, zn〉.

Furthermore the embedding J : c(E) → `∞(E′′
b ) is given by

J((x1, x2, · · · )) := (j(lim
n

xn), j(x1), j(x2), · · · ).

Lemma 4.2 Let A be a Banach space and E a complete locally convex space. Let (Tn) ⊂
L(A,E) be a sequence of operators such that T∞a := limn Tna exist in E for each a ∈ A.
Then

(1) The linear map T∞ : A → E defined by T∞a := limn Tna, a ∈ A, is continuous.

(2) The operator T̃ : A → c(E), T̃ a := (Tna)n, a ∈ A, is well defined and continuous.

Proof. (1) By the uniform boundedness principle (see e.g., Chapter IV, Section 2, Corollary
1 in [31]), T∞ : A → E is continuous.

(2) Applying again the uniform boundedness principle (see e.g., Chapter IV, Section 2,
Theorem 3 in [31]), the sequence (Tn)n is equicontinuous in L(A,E). Hence, for every con-
tinuous seminorm p on E, there is M > 0 such that p(Tn(x)) ≤ M ||x|| for each n ∈ N and
each x ∈ A. This implies that T̃ : A → c(E) is continuous. 2

Observe that every continuous linear operator from A to c(E) arises in the way described
in Lema 4.2 from a sequence of (Tn)n continuous linear operators from A into E.

Lemma 4.3 Let A be a Banach space and let E be a Fréchet space or a complete (DF)-space.
Let (Tn) ⊂ L(A,E) be a sequence of operators such that T∞a := limn Tna exist in E for each
a ∈ A. Let T̃ a := (Tna)n, a ∈ A. Then, for each U = (u0, u1, u2, . . .) ∈ c(E)′ = `1(E′

b) and
for each z ∈ A′′, we have

〈T̃ ′′z, U〉 = 〈T ′′∞z, u0〉+
∞∑

n=1

〈T ′′nz, un〉.

Proof. For each a ∈ A we have, according to the identifications explained above,

〈T̃ a, U〉 = 〈T∞a, u0〉+
∞∑

n=1

〈Tna, un〉.

Given z ∈ A′′1, we find a net (ai)i∈I ⊂ A1 converging to z for the topology σ(A′′, A′). This im-
plies that the net (T̃ ′′ai)i∈I converges to T̃ ′′z in the space (c(E)′′, σ(c(E)′′, c(E)′)). Moreover,
for each N ∈ N, the net

〈T∞ai, u0〉+
N∑

n=1

〈Tnai, un〉, i ∈ I

converges to

〈T ′′∞z, u0〉+
N∑

n=1

〈T ′′nz, un〉.

6



Since U = (u0, u1, u2, . . .) ∈ `1(E′), and E′
b is either a complete (DF)-space (if E is Fréchet)

or a Fréchet space (if E is a (DF)-space), we can find an absolutely convex closed bounded
subset B of E′

b such that
∑

n pB(un) ≤ 1; pB being the Minkowski functional of B. We denote
by C the closed absolutely convex hull in E of the set

⋃∞
n=1(Tn(A1)∪T∞(A1)). By the uniform

boundedness theorem, the set {Tn| n ∈ N} ∪ {T∞} is equicontinuous in L(A,E), hence C is
bounded in E. Furthermore, since A′′1 coincides with the closure of A1 in (A′′, σ(A′′, A′)), we
conclude that

⋃∞
n=1(T

′′
n (A′′1) ∪ T ′′∞(A′′1) is contained in the σ(E′′, E′)-closure D of C in E′′.

Since D is bounded and E′′
b and B is bounded in E′

b, we can find d > 0 such that |〈w, v〉| ≤ d
for each w ∈ D, v ∈ B. In particular, for each z ∈ A′′1 and each n ∈ N, |〈T ′′nz, un〉| ≤ dpB(un).

Fix ε > 0. Find N ∈ N such that d
∑∞

n=N+1 pB(un) < ε/4. Given z ∈ A′′1, select i0 ∈ I
such that, for i ≥ i0,

|〈T̃ ′′z, U〉 − 〈T̃ ai, U〉| < ε/4

and

|〈T∞ai, u0〉+
N∑

n=1

〈Tai, un〉 − 〈T ′′∞z, u0〉 −
N∑

n=1

〈T ′′nz, un〉| < ε/4.

For all M > N we have

∞∑

n=M+1

|〈T ′′nz, un〉| ≤ d
∞∑

n=N+1

pB(un) < ε/4.

Hence, the inequalities above permit us to conclude, for each M > N ,

|〈T̃ ′′z, U〉 − 〈T ′′∞z, u0〉 −
M∑

n=1

〈T ′′nz, un〉| < ε.

This implies

〈T̃ ′′z, U〉 = 〈T ′′∞z, u0〉+
∞∑

n=1

〈T ′′nz, un〉

for each z ∈ A′′1, and the conclusion follows. 2

When the identification of c(E)′′ and `∞(E′′) is made appropriately, we have the following
direct consequence of Lemma 4.3.

Corollary 4.4 Let A be a Banach space and let E be a Fréchet space or a complete (DF)-
space. Let (Tn) ⊂ L(A,E) be a sequence of operators such that T∞a := limn Tna exist in E
for each a ∈ A. Let T̃ a := (Tna)n, a ∈ A. Then the bitranspose operator T̃ ′′ : A′′ → `∞(E′′

b )
satisfies T̃ ′′z = (T ′′∞z, T ′′1 z, T ′′2 z, . . .).

Lemma 4.5 Let A be a Banach space and let E be a Fréchet space or a complete (DF)-space.
Let T̃ ∈ L(A, c(E)) be a weakly compact operator and let Tn be the operators from A into E
such that T̃ a = (Tna)n, a ∈ A. Then each Tn and the pointwise limit T∞ of (Tn)n are weakly
compact. Furthermore, T ′′∞z = limn T ′′nz for each z ∈ A′′.

Proof. Since the canonical maps pm : c(E) → E, pm((xn)n) := xm, and p∞ : c(E) →
E, p∞((xn)n) := limn xn, are continuous, the weak compactness of T̃ implies that Tn =
pn ◦ T̃ , n ∈ N, and T∞ = p∞ ◦ T̃ are weakly compact. Moreover, T̃ ′′(A′′) is contained in the
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canonical image of c(E) in `∞(E′′). Therefore, for each z ∈ A′′ there is x = (xk)k ∈ c(E)
such that, for each u ∈ E′, 〈xk, u〉 = 〈u, T ′′k z〉 for each k ∈ N and 〈limk xk, u〉 = 〈u, T ′′∞〉. That
is, j(xn) = T ′′nz for all n ∈ N and limn j(xn) = T ′′∞z. In particular, T ′′∞z = limn T ′′nz. 2

Here is the extension of Ylinen [42, Corollary 2.3].

Proposition 4.6 Let A be a Banach space and let E be a Fréchet space or a complete (DF)-
space and let T̃ ∈ L(A, c(E)) be an operator. Let Tn be the operators from A into E such
that T̃ a = (Tna)n, a ∈ A and let T∞ be the pointwise limit of (Tn)n. The operator T̃ is weakly
compact if and only if the following conditions are satisfied.

(1) Tn is weakly compact for each n.

(2) For each z ∈ A′′, T ′′∞z = limn T ′′nz.

(3) The operator T∞ is weakly compact.

Proof. By Lemma 4.5, when T̃ is weakly compact the three conditions are satisfied. Con-
versely, suppose that the conditions hold. Conditions (i) and (iii) imply that Tn(A′′) and
T∞(A′′) are contained in E for each n. Hence, by condition (ii), (T ′′∞z, T ′′1 z, T ′′2 z, . . .) belongs
to the canonical image of c(E) in c(E)′′ for each z ∈ A′′. By Corollary 4.4, T̃ ′′ maps A′′ into
c(E), and the operator T̃ is weakly compact. 2

As a consequence we obtain the following extension of a useful lemma due to Ryan [32].

Corollary 4.7 Let A be a Banach space and let E be a Fréchet space or a complete (DF)-
space. Let Tn be the operators from A into E such that, for each a ∈ A, limn Tna = 0 in E.
Then the operator T̃ : A → c0(E), T̃ a := (Tna)n, a ∈ A is weakly compact if and only if
each Tn is weakly compact and limn T ′′nz = 0 for each z ∈ A′′. Furthermore, if T̃ is weakly
compact, then T̃ ′′z = (T ′′nz)n for each z ∈ A′′.

Theorem 4.8 Let A be a Banach space such that (A′, σ(A′, A′′)) is sequentially complete and
let E be a Fréchet space or a complete (DF)-space. Let (Tn)n be a sequence of weakly compact
operators from A into E, such that (T ′′nz)n is a Cauchy sequence in E for each z ∈ A′′. Then
T̃ : A → c(E), T̃ a := (Tna)n, a ∈ A, is a weakly compact operator.

Proof. Since (A′, σ(A′, A′′)) is sequentially complete, we can apply Theorem 3.1 to find a
weakly compact operator T∞ ∈ L(A,E) such that T ′′∞z = limn T ′′nz for each z ∈ A′′. So
conditions (i)-(iii) of Proposition 4.6 are satisfied. The conclusion follows. 2

If the assumption that A has a weakly sequentially complete dual is removed in Theorem
4.8, the conclusion is no longer valid, as the example constructed by Ylinen in [42, Proposition
2.1] shows.

5 The Right topology. A continuity characterization of reflex-
ive operators between locally convex spaces.

Let E be a locally convex space. As in the work of Peralta, Villanueva, Wright and Ylinen [27],
the Right topology ρ(E) is the topology induced in E by the Mackey topology µ(E′′, E′) of the
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dual pair (E′′, E′). Recall that µ(E′′, E′) is the topology on E′′ of the uniform convergence
on the absolutely convex σ(E′, E′′)-compact subsets of E′. See also Peralta’s paper [26] for
the Right topology on Banach spaces. The existence of the Right topology can be obtained
as a consequence of the operator ideals approach in the articles of Wong [36] and [37]. Clearly
ρ(E) is finer than the weak topology σ(E, E′). Moreover, if E is a barrelled space, then ρ(E)
is coarser than the original topology of E, since every absolutely convex σ(E′, E′′)-compact
subset of E′ is E-equicontinuous in this case. Accordingly, if E is barrelled, the Right topology
ρ(E) is a topology of the dual pair (E, E′). Moreover, if (E, τ) is reflexive, then the Right
topology ρ(E) coincides with the original topology τ of E. Indeed, since E is barrelled,
τ = µ(E, E′) and E = E′′ as E is semireflexive. This implies µ(E′′, E′) = τ .

Recall that a continuous linear operator T ∈ L(F,E) between the locally convex spaces
F and E is called reflexive if the image of every bounded subset of F is relatively σ(E, E′)-
compact in E. If F is a normed space, an operator T ∈ L(F, E) is reflexive if and only if it
is weakly compact.

Proposition 5.1 If the continuous linear operator T between the locally convex spaces F and
E is reflexive, then T : (F, ρ(F )) → E is continuous.

Proof. If T is reflexive, then T ′′(F ′′) ⊂ E by [18, 42.2.(1)]. This implies that T ′ :
(E′, σ(E′, E)) → (F ′, σ(F ′, F ′′)) is continuous. Therefore T ′(V ◦) is σ(F ′, F ′′)-compact in F ′

for each V ∈ U0(E). This implies that the operator T ′′ : (F ′′, µ(F ′′, F ′)) → E is continuous.
Taking the restriction of the topology µ(F ′′, F ′) to F , we conclude that T : (F, ρ(F )) → E is
also continuous. 2

Proposition 5.2 Let T ∈ L(F, E) be a continuous linear operator between locally convex
spaces. Suppose that F is barrelled and E is complete. Assume that there is an absolutely
convex neighbourhood V ∈ U0(F ) such that the restriction T |V of T from V , equipped with
the topology induced by the Right topology ρ(F ), into E is continuous. Then T : F → E is
reflexive.

Proof. First observe that T ′′ : (F ′′, σ(F ′′, F ′)) → (E′′, σ(E′′, E′)) is continuous since T ∈
L(F, E). Fix z ∈ F ′′. There is a bounded absolutely convex subset B in F such that z
belongs to the closure C of B is (F ′′, σ(F ′′, F ′)). Since µ(F ′′, F ′) is a topology of the dual
pair (F ′′, F ′) we can find a net (xλ)λ ⊂ B, which converges to z for the topology µ(F ′′, F ′),
hence the net (xλ)λ is a Cauchy net in (F, ρ(F )). Since B is bounded, we can find M > 0
such that xλ ∈ MV for each λ. As E is complete, we can apply the continuity of T on V
endowed with the Right topology, to conclude that the net (Txλ)λ converges to a element y
in E. On the other hand, as (xλ)λ converges to z for the topology σ(F ′′, F ′), the net (Txλ)λ

converges to T ′′z in (E′′, σ(E′′, E′)). This implies T ′′z = y ∈ E. Therefore T ′′(F ′′) ⊂ E, and
we can apply [18, 42.2.(1)] to conclude that T is reflexive. 2

Theorem 5.3 Let F and E be complete, barrelled locally convex spaces. Let T ∈ L(F, E) be
a continuous linear operator. The following conditions are equivalent.

(1) T is reflexive.

(2) T ′′ : (F ′′, µ(F ′′, F ′)) → (E′′, β(E′′, E′)) is continuous.
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(3) T : (F, ρ(F )) → E is continuous.

(4) There is an absolutely convex neighbourhood V ∈ U0(F ) such that the restriction T |V
of T from V , equipped with the topology induced by the Right topology ρ(F ), into E is
continuous.

Proof. The equivalence of conditions (1) and (2) follows from Grothendieck’s extension of
Gantmacher’s theorem [18, 42.2.(1)] since (2) holds if and only if the image of every β(E′, E)-
bounded subset of F ′ is relatively σ(F ′, F ′′)-compact, and every β(E′, E) bounded set in E′

is E-equicontinuous. Condition (1) implies (3) by Proposition 5.1, and (3) clearly implies (4).
Finally condition (4) implies (1) by Proposition 5.2. 2

Proposition 5.4 Let T : F → E be a linear operator between complete, barrelled locally
convex spaces. Then T is continuous from F to E with their original topologies if and only if
T : (F, ρ(F )) → (E, ρ(E)) is continuous.

Proof. Assume first that T : (F, ρ(F )) → (E, ρ(E)) is continuous. Since F and E are
barrelled, the Right topologies are topologies of the dual pair (F, F ′) and (E, E′) respectively.
This implies that T : (F, σ(F, F ′)) → (E, σ(E, E′)) is continuous, hence T : (F, µ(F, F ′)) →
(E, µ(E, E′)) is continuous. Since both spaces are barrelled, their topologies coincide with
the corresponding Mackey topologies. Conversely, if T is continuous from F to E, then
T ′′ : (F ′′, µ(F ′′, F ′)) → (E′′, µ(E′′, E′)) is continuous. Passing to the induced topologies in F
and E, we conclude that T is Right-Right continuous. 2

A continuous linear operator T between locally convex spaces F and E is called pseudo
reflexive if T : (F, ρ(F )) → E is sequentially continuous. In case F is a normed space, we
say that T is pseudo weakly compact as in [27]. By Theorem 5.3, every reflexive operator
is pseudo reflexive. As remarked in Example 8 of [27] the identity operator on `1 is pseudo
weakly compact but not weakly compact. As we see in Section 6, a continuous linear operator
T : A → E from a C∗-algebra into a complete locally convex space E is weakly compact if
and only if it is pseudo weakly compact.

Remark 5.5 Peralta, Villanueva, Wright and Ylinen proved, see e.g. Theorem 5.3 of [40],
that a fundamental system of seminorms of the Right topology ρ(E) of a Banach space E
consists of the collection of all seminorms p such that there is a reflexive Banach space Z and
a bounded linear operator T : E → Z such that p(x) = ||T (x)||, x ∈ E. This result is no
longer true for non normable Fréchet spaces E. Indeed, there is a Fréchet Montel space E
which has the Banach space `1 as a quotient; see e.g. Section 31.5 in [18]. Since E is Fréchet
Montel, it is reflexive and the Right topology on E is the original Fréchet topology. Denote
by q : E → `1 the quotient map. Clearly, P (x) := ||q(x)|| is a continuous seminorm on E.
If one can find a fundamental system of seminorms of the Right topology on E as described
above, then there are a reflexive Banach space X and a continuous operator T : E → X such
that P (x) ≤ ||T (x)|| for every x ∈ E. We may assume that T has dense range, since every
closed subspace of a reflexive Banach space is also reflexive. Define a map S from T (E) ⊂ X
endowed with the norm of X into `1 as follows. We set S(T (x)) := q(x), x ∈ E. The map
S is well defined, for if T (x) = T (x′), then ||q(x − x′)|| = P (x − x′) ≤ ||T (x − x′)|| = 0,
hence q(x) = q(x′). Moreover S is continuous, as ||S(T (x))|| = ||q(x)|| = P (x) ≤ ||T (x)|| for
each x ∈ E. Using the density of T (E) in X, we extend S to a continuous linear operator
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S : X → `1. By the very definition, S ◦ T = q. Now the surjectivity of q implies that
S : X → `1 is surjective. Apply the open mapping theorem to conclude that `1 is isomorphic
to a quotient of the reflexive space X. This is a contradiction, since every quotient of a
reflexive Banach space is also reflexive.

Now we apply the results of Section 4 and Theorem 3.1 to get some consequences that can
be seen as non-commutative vector valued extensions of Nikodym’s theorem as it is explained
in section 5 of [40]. See also the article [40] for a version of our next two theorems in the case
of Banach valued operators.

Theorem 5.6 Let A be a Banach space and let E be a Fréchet space or a complete (DF)-
space. Let (Tn)n be a sequence of weakly compact operators from A into E such (T ′′nz)n

converges to 0 in E for each z ∈ A′′. Then

(1) If (aj)j ⊂ A converges to 0 in the Right topology of A, then supn∈Np(Tn(aj)) converges
to 0 as j →∞ for each continuous seminorm p on E.

(2) If (zj)j is a sequence in A′′ converging to 0 in the topology µ(A′′, A′), then supn∈Nq(T ′′n (zj))
converges to 0 as j →∞ for each continuous seminorm q on (E′′, β(E′′, E′)).

Proof. (1) The operator T̃ : A → c0(E), T̃ a := (Tna)n, a ∈ A is weakly compact by the
extension of Ryan’s result Corollary 4.7. Let (aj)j ⊂ A be a sequence converging to 0 in the
Right topology of A. Since T̃ is weakly compact, we can apply Theorem 5.3 to conclude that
(T̃ aj)j converges to 0 in c0(E). This implies the conclusion using the form of the seminorms
of c0(E).

(2) Let (zj)j be a sequence in A′′ converging to 0 in the topology µ(A′′, A′). Since T̃ is
weakly compact, we can apply condition (2) in Theorem 5.3 to conclude that

T̃ ′′ : (A′′, µ(A′′, A′)) → (c0(E)′′, β(c0(E)′′, c0(E)′))

is continuous. By Proposition 4.1, c0(E)′′b = `∞(E′′
b ). Moreover, Corollary 4.7 implies T̃ ′′z =

(T ′′nz)n for each z ∈ A′′. On account of the form of the seminorms of `∞(E′′
b ), the conclusion

follows. 2

Theorem 5.7 Let A be a Banach space such that (A′, σ(A′, A′′)) is sequentially complete and
let E be a Fréchet space or a complete (DF)-space. Let (Tn)n be a sequence of weakly compact
operators from A into E such that (T ′′nz)n is a Cauchy sequence in E for each z ∈ A′′. Let
Sa := limTna for each a ∈ A. Then

(1) If (aj)j ⊂ A converges to 0 in the Right topology of A, then supn∈Np((Tn − S)(aj))
converges to 0 as j →∞ for each continuous seminorm p on E.

(2) If (zj)j is a sequence in A′′ converging to 0 in the topology µ(A′′, A′), then supn∈Nq((T ′′n−
S′′)(zj)) converges to 0 as j →∞ for each continuous seminorm q on (E′′, β(E′′, E′)).

Proof. By Theorem 3.1, S is weakly compact and S′′z = limT ′′nz in E for each z ∈ A′′. The
conclusion now follows by applying Theorem 5.6 to the sequence of operators (Tn − S)n. 2

We emphasize that this theorem would fail, in general, if (A′, σ(A′, A′′)) were not sequen-
tially complete. See [33] and [42].
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6 Weakly compact operators from a C∗-algebra into a locally
convex space

We recall [34] the following result: Let ψ ∈ A′ be a positive functional on a C∗-algebra A,
and define

pψ(a) := ψ((aa∗ + a∗a)1/2), a ∈ A.

Then pψ is a seminorm on A. A positive functional ψ ∈ A′ satisfying ‖ψ‖ = 1 is called a state.
The universal σ-strong* topology of a C∗-algebra A is the topology induced by all seminorms
pψ, where ψ is a positive functional on A. It follows from a fundamental result of Akemann
[1], see [34, Theorem III.5.7], that the restriction of the σ-strong* topology to the unit ball
A1 of A coincides with the restriction of the Right topology ρ(A) to A1.

As in [41] by an orthogonal sequence in the C∗-algebra A we mean a sequence (an)n of
self adjoint elements of the closed unit ball of A such that anam = 0 whenever n 6= m.

The following omnibus Theorem 6.3 collects several characterizations of weakly compact
operators from a C∗-algebra with values in a complete locally convex space. It is an extension
of [41, Proposition 2.2] and its proof depends on deep characterizations of weak compactness
in preduals of von Neumann algebras [2, 34], and in duals of C∗-algebras [29]. We also use of
methods due to Jarchow [15] and extend [15, Theorem 1.3]. Related results can be seen in
Section 7. In the proof of Theorem 6.3 several lemmas are needed. The following result due
to Akemann [1] (see [34, p.149]) is important.

Lemma 6.1 A subset K ⊂ A′ is relatively σ(A′, A′′)-compact if and only if K is bounded and
there exists a state φ ∈ A′ such that for all ε > 0 there exists δ > 0 such that for all a ∈ A1

for which pφ(a) < 1 then |ψ(a)| < ε for all ψ ∈ K.

Lemma 6.2 A bounded subset K ⊂ A′ is relatively σ(A′, A′′)-compact if and only if there
exist a state φ ∈ A′ and N :]0,∞[→]0,∞[ such that

sup
ψ∈K

|ψ(a)| ≤ N(ε)pφ(a) + ε‖a‖

for all a ∈ A and for all ε > 0.

Proof.
Assume that such a state φ ∈ A′ can be found as in the assumption. Given ε > 0, select

δ := ε
2N(ε/2) . Suppose that a ∈ A1 satisfies pφ(a) < δ. For each ψ ∈ K we have

|ψ(a)| ≤ N(ε/2)pφ(a) +
ε

2
‖a‖ ≤ ε.

Suppose now that K is relatively σ(A′, A′′)-compact. By Lemma 6.1, we find a state
φ ∈ A′ such that for all ε > 0 there exists δ > 0 such that, for all a ∈ A1, pφ(a) ≤ δ implies
supψ∈K |ψ(a)| ≤ ε. We define N(ε) := ε/ min(1, δ). Fix a ∈ A, a 6= 0, ε > 0, and δ = δ(ε).
Set

a′ :=
1

max(‖a‖, min(1, δ)−1pφ(a))
a.

Clearly a′ ∈ A1 and pφ(a′) ≤ min(1, δ) ≤ δ. Consequently supψ∈K |ψ(a′)| ≤ ε. This yields
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sup
ψ∈K

|ψ(a)| ≤ ε max(‖a‖,min(1, δ)−1pφ(a)) ≤

≤ ε‖a‖+
ε

min(1, δ)
pφ(a) = N(ε)pφ(a) + ε‖a‖.

2

Theorem 6.3 Let A be a C∗-algebra, E a complete locally convex space and T : A → E a
continuous linear operator. The following conditions are equivalent.

(1) T is a weakly compact operator.

(2) T is pseudo weakly compact operator.

(3) If (an)n is an orthogonal sequence in A, then (Tan)n converges to 0 in E.

(4) For every bounded universal strong ∗-null net (aλ)λ in A we have (T (aλ))λ converges to
0 in E.

(5) If (an)n is a sequence in A which is convergent in the universal σ-strong* topology, then
(Tan)n converges in E.

(6) T : (A, ρ(A)) → E is continuous.

(7) For each q ∈ cs(E) there exist a state φq ∈ A′ and Nq :]0,∞[→]0,∞[ such that

q(Ta) ≤ Nq(ε)pφq(a) + ε‖a‖.

Proof. By Theorem 5.3 conditions (1) and (6) are equivalent. By the very definition condition
(6) implies (2). We show that (2) implies (3). Let (an)n be an orthogonal sequence in A. As
the proof of [41, Proposition 2.2], we conclude that (an)n converges to zero in the universal σ-
strong* topology. A result of Akemann, see [34, Theorem III.5.7], assures that the restriction
of the σ-strong* topology to the unit ball A1 of A coincides with the restriction of the Right
topology ρ(A) to A1. Since T : (A, ρ(A)) → E is sequentially continuous by condition (2), we
conclude that (Tan)n converges to 0 in E. To prove that (3) implies (1), it is enough to show
that πq ◦ T : A → Eq is weakly compact for each continuous seminorm q ∈ cs(E). We can
apply (3) to conclude that limn ||Tan||Eq = 0 for each orthogonal sequence (an)n in A. The
conclusion follows from [41, Proposition2.2]. The implication needed at this point is based
on a very deep theorem due to Pfitzner [29]. Clearly (4) implies (5), which is equivalent to
(2), since the restriction of the σ-strong* topology to the unit ball A1 of A coincides with the
restriction of the Right topology ρ(A) to A1. The same fact permits us to conclude (4) from
(6).

It remains to show that (7) is equivalent to the other six conditions. First we show that
(7) implies (4). Let (aλ)λ be a bounded net in A which converges to 0 in the universal strong
∗-topology of A. Fix q ∈ cs(E). We apply (7) to find a state φq ∈ A′ and Nq :]0,∞[→]0,∞[
such that, for all ε > 0 and for all λ

q(T (aλ)) ≤ Nq(ε)pφq(aλ) + ε‖aλ‖.
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since the net is bounded, there is M > 0 such that ‖aλ‖ ≤ M for all λ. By [34, 2.5],
(φq(aλa∗λ))λ tends to 0 and (φq(a∗λaλ))λ tends to 0. This yields that (pφq(aλ))λ) tends to 0.
Given ε > 0, select λ0 such that pφq(aλ) < ε/(2Nq(ε/2M)) whenever λ > λ0. For each λ > λ0

we have
q(T (aλ)) ≤ Nq(ε/2M)pφq(aλ) +

ε

2M
‖aλ‖ ≤

≤ Nq(ε/2M)
ε

2Nq(ε/2M)
+

ε

2M
M = ε,

and condition (4) follows.
Now we show that condition (1) implies condition (7). By Grothendieck’s extension of

Gantmacher’s theorem, T ∈ L(A, E) is weakly compact if and only if, for each q ∈ cs(E),
T t(U◦

q ) is a σ(A′, A′′)-compact subset of A′. By Lemma 6.2 this is in turn equivalent to show
that the following condition holds: for each q ∈ cs(E) there exists φq ∈ A′, a state, such that
there exists N :]0,∞[→]0,∞[ such that

sup
ψ∈T t(U◦q )

|ψ(a)| ≤ N(ε)pφq(a) + ε‖a‖

for all ε > 0 and a ∈ A. Since

sup
ψ∈T t(U◦q )

= sup
u∈U◦q

|u ◦ T (a)| = q(T (a)),

the conclusion follows.
2

In case E is a Fréchet space, the state φ in condition (7) of Theorem 6.3 does not depend
on the seminorm q.

Proposition 6.4 Let E be a C∗-algebra and let E be a Fréchet space. T ∈ L(A, E) is weakly
compact if and only if there exist a state φ ∈ A′ and N :]0,∞[→]0,∞[ such that for each
q ∈ cs(E) there exists λq > 0 for which

q(Ta) ≤ Nq(ε)pφq(a) + λqε‖a‖
for all a ∈ A and for all ε > 0.

Proof. We only have to show that an operator T which is weakly compact satisfies the
assumption. Let T ∈ L(A, E) weakly compact. Since E is Fréchet, we find B ∈ B(E)
such that T (A1) is contained in B and it is relatively weakly compact in EB. The map
T0 := T : A → EB is continuous and weakly compact. By [15, Theorem 1.3] there exist
φ ∈ A′ a state and N :]0,∞[→]0,∞[ such that

‖T0(a)‖EB
≤ N(ε)pφ(a) + ε‖a‖ ∀a ∈ A, ε > 0.

Given q ∈ cs(E), since B is bounded, there is λq > 0 with supx∈B q(x) ≤ λq, thus q(z) ≤
λq‖z‖EB

for each z ∈ EB. This implies, for a ∈ A

q(T (a)) = q(T0(a)) ≤ λqN(ε)pφ(a) + λqε‖a‖.

2
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7 Weak E-valued integral

The purpose of this section is to present a locally convex extension of the main result of
Wright [38]. It emphasizes the fact that weakly compact operators on a C∗-algebra constitute
the natural non-commutative extensions of vector valued measures. Theorem 7.4 extends
theorems of Lewis [19] and Panchapagesan [23, 24] to the non-commutative setting and of
Wright’s theorem for the case of operators with values in a locally convex space.

For a C∗-algebra A, we denote by Asa the set of self adjoint elements in A, and Aσ

stands for the smallest subspace of A′′ containing A with the property that whenever (bn)n

is a monotonic sequence (Aσ)sa with limit b in the weak operator topology of A′′ (or in the
topology σ(A′′, A′)), then b ∈ Aσ. By a fundamental theorem of Pedersen [25], Aσ is a
C∗-subalgebra of A′′ and it is called the Baire ∗-envelope of A or the Pedersen envelope of A.

Definition 7.1 T̃ : Aσ → E is a weak E-valued integral for A if it is continuous and for
all (bn)n monotonic sequence of self adjoint elements in Aσ such that bn tends to b for the
σ(Aσ, A′)-topology then T̃ (bn) tends to T̃ (b) for the σ(E, E′)-topology.

If T̃ : Aσ → E is a weak E-valued integral for A, then T := T̃ |A is a continuous linear operator
T : A → E and T ′′ : A′′ → E′′ is well-defined and continuous.

Lemma 7.2 Let T̃ : Aσ → E be a weak E-valued integral for A and let T := T̃ |A be the
restriction of T̃ to A. Then T̃ = T ′′|Aσ .

Proof. As in [38, Lemma 2.2], let V := {b ∈ Aσ | T̃ (b) = T ′′(b)}. V is a closed subspace of
A′′ which contains A. Let (bn)n be a monotonic sequence of self adjoint elements in V with
limit b in σ(A′′, A′). For each u ∈ E′,

〈
u, T̃ (b)

〉
= lim

n→∞
〈
u, T ′′(bn)

〉
= lim

n→∞
〈
T ′(u), bn

〉
=

〈
T ′(u), b

〉
=

〈
u, T ′′(b)

〉
.

This implies b ∈ V . By the minimality of Aσ, V = Aσ. 2

Lemma 7.3 Let T̃ : Aσ → E be a weak E-valued integral for A. If (pn)n is a decreasing
sequence of projections in Aσ with infimum 0, then limn→∞ q(T̃ (pn)) = 0 for each q ∈ cs(E).

Proof. Fix q ∈ cs(E). The continuous linear operator πq ◦ T : Aσ → Eq is a weak valued
integral in the sense of Wright [38, p.126]. By Lemma 2.2 in [38],

∥∥∥πq ◦ T̃ (pn)
∥∥∥

Eq

→ 0 as n →∞.

Since q(z) = ‖πq(z)‖Eq
for each z ∈ E, we have

lim
n→∞ q(T̃ (pn)) = 0.

2

Theorem 7.4 A continuous operator T : A → E is weakly compact if and only if there is a
weak E-valued integral T̃ : Aσ → E for A whose restriction to A coincides with T .
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Proof. If T ∈ L(A,E) is weakly compact, Grothendiek’s extension of Gantmacher’s theorem
[18, 42.2.(1)] ensures that T ′′(A′′) ⊂ E and the operator T ′ : (A′′, σ(A′′, A′)) → (E, σ(E, E′))
is continuous. This implies that T̃ := T ′′|Aσ is a weak E-valued integral which extends T .

To show that the converse is also true we assume T = T̃ |A for a weak E-valued integral
T̃ : Aσ → E. By Grothendieck’s extension of Gantmacher’s theorem we must show that for
each q ∈ cs(E), T ′(U◦

q ) is a relatively σ(A′, A′′)-compact subset of A′.

T ′(U◦
q ) = {u ◦ T | u ∈ E′, |u(x)| ≤ q(x) for all x ∈ E}.

Clearly T ′(U◦
q ) is bounded in A′, since T is continuous. Suppose first that A is separable.

By [38, Lemma 2.1], it is enough to show that if (pn)n is a monotone decreasing sequence of
projections in Aσ with infimum 0, then limn→∞ µ(pn) = 0 uniformly on µ ∈ T ′(U◦

q ).
By Lemma 7.3, if (pn) is a monotone decreasing sequence of projections in Aσ with

infn pn = 0, then limn→∞ q(T̃ (pn)) = 0. But

q(T̃ (pn)) = sup
u∈U◦q

∣∣∣u(T̃ (pn))
∣∣∣ .

On the other hand, we can apply Lemma 7.2 to conclude, for u ∈ U◦
q

u(T̃ (pn)) = u(T ′′(pn)) = (T ′(u))(pn).

Therefore
lim

n→∞ sup
u∈U◦q

∣∣(T ′(u))(pn)
∣∣ = 0,

and limn→∞ µ(pn) = 0 uniformly for µ ∈ T ′(U◦
q ). Accordingly, if A is separable, T : A → E

is weakly compact. The general case now follows from [2, Theorem 3.1] or by the argument
at the end of the proof of [38, Theorem 2.3].

2

The commutative case of our next result is [24, Theorem 13]. The non-commutative case
for a Banach space E is due to Akemann, Dodds and Gamlen [2]

Corollary 7.5 If A be a C∗ algebra and E is a complete locally convex space which contains
no copy of c0, then every T ∈ L(A,E) is weakly compact.

Proof. Let V := {a ∈ A′′ | T ′′(a) ∈ E}. Then V is a closed subspace of A′′ containing A. Let
(bn)n be a monotonic and bounded sequence of self-adjoint elements in V such that bn tends
to b in σ(A′′, A′). For each positive element f ∈ A′ we have

∞∑

n=1

|f(bn+1 − bn)| < ∞.

If u ∈ E′ then T ′(u) ∈ E′ and we can write T ′(u) = f1 − f2 + i(f3 − f4), fi ∈ A′ positive.
Hence ∞∑

n=1

| 〈bn+1 − bn, T ′(u)
〉 | =

∞∑

n=1

| 〈T ′′(bn+1 − bn), u
〉 | < ∞.

and the series
∑∞

n=1 T ′′(bn+1−bn) is weakly unconditionally Cauchy. By a result of Tumarkin
[35] (see also [16, 20]),

∑∞
n=1 T ′′(bn+1 − bn) = x ∈ E, the convergence of the series being for
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the topology of E. Since bn tends to b in σ(A′′, A′), it follows that T ′′(bn) tends to T ′′(b) in
σ(E′′, E′). Hence we can write

T ′′(b) = T ′′(b1) +
∞∑

n=1

T ′′(bn+1 − bn),

the convergence of this series being in σ(A′′, A′). However
∑∞

n=1 T ′′(bn+1 − bn) = x ∈ E
converges in E. This yields

T ′′(b) = T ′′(b1) + x ∈ E.

Hence b ∈ V and this implies Aσ ⊂ V , and T̃ := T ′′|Aσ is a weak E-valued integral for A.
Now T is weakly compact by Theorem 7.4. 2
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