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Abstract

This article studies the linear stability of a thermoconvective problem in an
annular domain for different Bond (capillarity or buoyancy effects) and Biot
(heat transfer) numbers for two set of Prandtl numbers (viscosity effects).
The flow is heated from below, with a linear decreasing horizontal tempera-
ture profile from the inner to the outer wall. The top surface of the domain
is open to the atmosphere and the two lateral walls are adiabatic. Different
kind of competing solutions appear on localized zones of the Bond-Biot plane.
The boundaries of these zones are made up of co-dimension two points. A
co-dimension four point has been found for the first time. The main result
found in this work is that in the range of low Prandtl number studied and in
low-gravity conditions, capillarity forces control the instabilities of the flow,
independently of the Prandtl number.

Keywords: Thermocapillary convection, Linear stability, Gravitational
Effects, Bond number

1. Introduction

It is well known that two different effects are responsible of the thermo-
convective instabilities in fluid layers: gravity and capillarity forces. The
problem in which both effects are considered, known as Bénard-Marangoni
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(BM) convection, has become a classical problem in fluid mechanics [1]. In
the classical BM problem, heat is uniformly applied from the bottom wall
and the solution becomes unstable for increasing temperature gradients. A
more general problem includes the effect of non-zero horizontal temperature
gradients arising new thermoconvective instabilities. These instabilities have
been analyzed considering both a rectangular domain containing the flow
[29, 19, 11, 26, 6, 3, 20, 24], or an annular geometries [14, 8, 15, 10, 21, 12].

In order to characterize the different effects steering the behavior of the
flow, the following set of dimensionless numbers has been introduced:

1. Aspect ratio, Γ = δ/d. Is the geometrical parameter that characterizes
the domain.

2. Marangoni number, Mar = γ∆Td2/ρκν: Characterizes the surface ten-
sion effects.

3. Prandtl number, Pr = ν/κ: The ratio of momentum diffusivity (kine-
matic viscosity) to thermal diffusivity. In this article several different
Pr values will be considered covering the different situations concerning
the momentum diffusivity to the thermal diffusivity.

4. Rayleigh number, Ra = gα∆Td4/κν: Representative of the buoyancy
effect.

5. Biot Number, Bi: Accounts for heat transmission between the fluid and
the atmosphere. Values inside the range [0.2− 3.2] are explored in this
article.

6. Bond number, Bo = Ra/Mar = gαρd2/γ: Ratio of Rayleigh to Marangoni
numbers, which is the control parameter in this analysis ranging from
Bo = 0→ g = 0.0 to Bo ≈ 64→ g = 9.9.

In the previous definitions, δ and d are characteristic lengths of the do-
main that will be defined in the following section; γ stands for the rate of
change of surface tension with temperature; ∆T is the temperature incre-
ment, ranging from 2 to 50; ρ, κ, α and ν are the density, the thermal
diffusivity, thermal expansion coefficient and the kinematic viscosity of the
fluid, respectively; and g is the acceleration due to gravity.

The importance of heat-related parameters on the development of insta-
bilities was analyzed in [15, 14]. More recently, the problem was also studied
in an annular geometry [25, 27, 28] but neglecting the effect of Biot number
and considering conduction through the lateral walls of the cylinder. Hoyas
et al. [16] analyzed the effect of Biot number on the different bifurcations
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for the case of Pr= ∞. The computational method was validated by com-
paring the results obtained with the experimental results by Garnier et al.
[10]. The computational method has been recently modified [30] to be used
with Prandtl numbers close to unity. In [12], the authors investigated the
existence of co-dimension three bifurcations that are the points where the co-
dimensions two curves intersect on the Prandtl-Biot plane and an also new
kind of instability was predicted. Those latter works dealt with the influ-
ence of Biot number in the flow solutions. The interest in understanding the
influence of gravitational effects in thermo-convective phenomena has been
rapidly growing [7, 23]. However, less attention has been paid to the effect
of the capillarity forces of the onset of the flow motion and the behavior of
the bifurcations that can appear.

The current work is devoted to obtain a deeper insight on the effect of the
gravitational and capillarity forces of the onset of the flow motion, keeping in
mind that understanding this flow behavior will contribute open a gateway
to control the instabilities. To achieve this goal, a linear stability analysis,
similar to the one in [16], will be performed, but instead of focusing on the
influence of the Prandtl number, the focus will be put on understanding the
effect of variations in the gravitational forces (or what is the same for a fixed
geometry, the Bond number). Simulations will be performed in two different
ranges of Prandtl number: Pr = 1 and Pr = 50. In [12] it was shown that Pr
is the main parameter to determine the shape of the growing solution. This
also applies to the current problem, but in the case of low gravity conditions,
the dependency on Prandtl of the Rayleigh and Marangoni numbers is far
less clear.

The paper is structured as follows. In the second section the formulation
of the problem is presented, and in the third one the numerical method used
to solve it. Then, in the fourth section the results are discussed. In the fifth
and last section conclusions are presented, and future works are proposed.
As this work contains many adimensional numbers and parameters, a list of
symbols has been added before the bibliography.

2. Model description and formulation

The physical domain considered in this work consists of a horizontal fluid
layer of depth d (z coordinate) which is contained in the annular ring limited
by two concentric cylinders of radii a and a + δ (r coordinate). A sketch of
the domain is presented in Fig. 1. The aspect ratio, Γ, is set to 4 and the
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diameters of the two cylinders are chosen so that the bigger is the double of
the smaller one (a = δ). The bottom surface is considered to be rigid and is
heated with a linear decreasing temperature gradient with a value of TG = 2.2
K, which is kept constant throughout this study. The top surface is open
to the atmosphere and the two lateral walls of the cylinder are considered
adiabatic. The reference temperature used in the definition of the Rayleigh
and Marangoni numbers is the mean temperature difference between the
bottom plate and the atmosphere, ∆T .

Figure 1: Sketch of the geometry. Lateral walls are considered adiabatic.
The fluid is heated from below and the top surface is open to the atmosphere

The fluid layer behavior can be described by means of the momentum
and mass balance equations and the energy conservation principle. These
equations expressed in cylindrical coordinates and non-dimensionalized as in
[15, 5] become

∇ · u = 0, (1)

∂tu + (u · ∇)u = Pr
(
∇p+∇2u + RaΘez

)
, (2)

∂tΘ + u · ∇Θ = ∇2Θ. (3)

In the equations governing the system ur, uθ and uz are the components of
the velocity field u, Θ is the temperature, and p is the pressure. In these
equations the operators and fields are expressed in cylindrical coordinates
and ez is the unit vector in the z direction. The Boussinesq approximation
has been used as it is usual in this sort of problem [5]. Boundary conditions
are similar to those of references [15, 30] and are summarized in Table 1.
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Briefly, the velocity is zero (no-slip wall condition) on the lateral walls and the
bottom plate. On the top surface, the thermo-capillarity forces are modeled
through the Marangoni condition [15], whereas for the heat transmission to
the atmosphere is simulated by the Biot condition.

z = 0 z = d r = a, a+ δ

ur = 0 ∂zur + Mar ∂rΘ = 0 ur = 0
uφ = 0 r∂zuφ + Mar ∂φΘ = 0 uφ = 0
uz = 0 uz = 0 uz = 0
Θ = ∆T − (TG/δ) r ∂zΘ + BiΘ = 0 ∂nΘ = 0

Table 1: Boundary conditions

As the temperature gradient is imposed, the fluid starts to evolve until
a stationary state, commonly know as basic state, is reached. Due to the
symmetries in the problem and given that the flow is laminar, the basic
state can be approximated by a 2D axisymmetric solution. Therefore, the
dependency with φ can be neglected. The equations then become:

r−1∂r (rur) + ∂zuz = 0, (4)

Pr−1 (ur∂rur + uz∂zur) = −∂rp+ ∆cur −
ur
r2
, (5)

Pr−1 (ur∂ruz + uz∂zuz) = −∂zp+ ∆cuz + RaΘ, (6)

ur∂rΘ + uz∂zΘ = ∆cΘ, (7)

where ∆c = r−1∂r (r∂r) + ∂2z is the Laplacian operator expressed in cylindri-
cal coordinates. To obtain the proper solution, the previous equations are
supplemented with the boundary conditions gathered in Table 1.

3. Numerical Method

The previous system of equations was solved numerically using a collo-
cation method [22]. The method starts by expanding the fluid variables in a
truncated series of orthonormal Chebyshev polynomials, as

p (r, z) '
N∑
n=0

M∑
m=0

anmTn (r)Tm (z) (8)
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ur (r, z) '
N∑
n=0

M∑
m=0

bnmTn (r)Tm (z) , (9)

uz (r, z) '
N∑
n=0

M∑
m=0

cnmTn (r)Tm (z) , (10)

Θ (r, z) '
N∑
n=0

M∑
m=0

dnmTn (r)Tm (z) , (11)

where Ti(x) is the Chebyshev polynomial of the first kind of degree i. The
polynomial coefficients, anm, bnm, cnm, and dnm, are now the unknowns of the
problem. The flow variables expanded expressions are substituted into Eqs.
(1), (2) and (3) and boundary conditions (Table 1). The resultant equations
are then evaluated in the Chebyshev-Gauss-Lobatto (CGL) points [4],

ri = cos

(
π
i

N

)
, j = 0, 1, ..., N,

zi = cos

(
π
i

M

)
, j = 0, 1, ...,M,

where N and M correspond to the order of the method in radial and axial
direction, respectively. The use of CGL points is of interest when dealing
with boundary effects [17] since the points are not equispaced but tend to
concentrate near the boundaries. The boundary condition for the pressure is
obtained projecting the equations by the normal to the boundaries and eval-
uating the projected equations there. The use of this procedure, as proposed
in [18], avoided the problem of the spurious modes [2]. As the pressure is
determined up to an additive constant, an arbitrary value for it is fixed in a
boundary point.

The non-linearity of the problem was solved by using a Newton-like iter-
ative method, taking as first contribution either a solution of the linearized
problem (neglecting the nonlinearity of eq. (5) and eq. (6)) or a known basic
state “close” to the new one. Typically convergence was obtained in less
than 20 iterations as shown in the convergence test performed in [15].

As the Rayleigh number is increased (and thus Marangoni), the basic
state becomes unstable and several different bifurcations arise. The purpose
of the analysis is to determine the critical Rayleigh and Marangoni numbers
values and thus the shape of growing instabilities for fixed Biot, Prandtl
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and Bond numbers. As previously stated, the analysis will be done for two
extreme ranges of the Prandtl number to cover the different flow situations in
terms of the relative importance of the momentum diffusivity to the thermal
diffusivity.

The stability is analyzed by perturbing the basic solutions with fields
depending on the three coordinates, r, φ and z. Using again that the problem
is axisymmetric, and thus there is periodicity in φ, fluid magnitudes may be
expanded in Fourier modes in φ as

X(r, φ, z, t) = Xb(r, z) +Xp(r, z)eikφ+λt (12)

where subscript b denotes the basic state and k ≥ 0 is the wave number. The
real part of the eigenvalue, λ, characterizes the instability. If it is negative
the basic state is stable whereas if it is positive the basic solution is unstable.
The imaginary part accounts for the stationarity of the given state. In this
case, it can be either zero when the bifurcation is stationary, or non zero
when it has an oscillatory behavior.

The eigenvalues and eigenfunctions of this problem are computed substi-
tuting the Fourier expansion (12) into the general equations (1-3) and the
BCs from Table 1. After linearizing the problem by neglecting the non-linear
terms, a generalized eigenvalue problem of the form

AX̄ = BλX̄ (13)

is obtained, as shown by [30].
The matrix B is singular, due to the presence of the boundary condi-

tions, and thus not all the eigenvalues have a finite value. In the current
work, a computational technique, developed by Navarro et al. [21], specifi-
cally designed for thermo-convective problems is used. The largest eigenvalue
obtained through this transformation corresponds to the largest finite eigen-
value of the original problem. As shown in previous works [30, 12], several
bifurcations may appear depending on the symmetries of the growing per-
turbation. Up to four different competing solutions for the different wave
numbers have been found, namely: stationary roll (SR), similar to the ones
of the basic state [29]; hydrothermal wave or oblique traveling waves (HWI)
[29]; longitudinal rolls (LR) [3, 16]; and a standing hydrothermal wave of sec-
ond class or flower-like wave (HWII) [9, 10]. These solutions will be described
later.
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All this formulation has been implemented in Fortran90, based in an
earlier implementation [15] for infinity Prandtl numbers. The previous code
was validated experimentally in [16]. The generalization to Pr < 50 was
validated in [30], using the same procedure that in [15].

4. Discussion

4.1. Basic state

Neither the variation of the Biot nor the Prandtl numbers affects greatly
to the shape of the basic state, being the Bond number the most significative
parameter. In Fig. 2, the temperature profiles and velocity diagrams for
extreme values of Bond numbers, g = 9.9 (left) and g = 0.0 (right), are
plotted at their critical Rayleigh and Marangoni numbers. In both cases
the Prandtl number is moderately low (Pr = 0.7). In the case plotted at
the left of Fig. 2, the Bond number is Bo = 68.44 with Rac = 2113.7
and Marc = 30.88. The left plot is similar to those previously reported
for Pr = ∞ both experimentally and numerically [14, 16] and qualitatively
similar to those used in Riley and Neitzel [26]. They are similar for all the
range of Prandtl number studied (not shown). The velocity diagram presents
two long co-rotative rolls. These rolls distribute the heat in convective way,
supported by the couple between the energy and momentum equation trough
the Rayleigh term. Things change completely in the second case plotted.
There, Bo = 0.0 with Rac = 0.0 and Marc = 235.61. Obviously, without
gravity buoyancy effects are not important any more. The only thermal
effects come from the Marangoni effect a the top of the container. This
produce that the vertical component of the rolls be relatively smaller than
in the buoyant-dominant case, creating an almost parallel stratification.

4.2. Momentum diffusivity dominating flow (Pr = 50)

In [12], the authors studied this problem but in buoyancy dominant condi-
tions. They found there that the shape and class of the growing perturbation
depends only on the Biot and Prandtl numbers. In this case the Bond number
plays a critical role, changing the main cause of instabilities in the flow from
gravitational forces to capillarity ones. The representative top r − φ plane
isotherms corresponding to the different regions of the Biot-Bond plane are
shown in Fig. 4. Two different regions, bounded by codimension two points
appear. These points are defined by the condition that for the same critical
pair (Rac,Marc) two different competing solutions can be found. The shaded
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Figure 2: Temperature profile and velocity diagram of the basic state at their
relative critical Rayleigh number for the highest (left) and lowest (right) bond
numbers studied. The left figure corresponds to Bo = 68.44, g = 9.9, and
the right one to Bo = 0.0, g = 0.0,

curve separates two regions: HWI, left, wave numbers ranging from 10 to
15, and longitudinal rolls, region LR, right, wave numbers from 13 to 19.
The open symbols at the bottom right separate two different zones of the LR
region. The 3D structure of these growing solutions is presented in Fig. 3
for a codimension two point around Bi=1.8 and Bo ' 45. In this case both
solutions present a r − z structure made up of two counter-rotative vortex.
The boundary between these vortex is exactly at the same r where the max-
imum heat is reached. Depending on the imaginary part of the eigenvalue
with the maximum real part, this structure rotates ( Fig. 3a) or stay still
(Fig. 3a). In the case of low Bond number, the lateral structure presents
more co-rotative rolls, corresponding to the enlargement of the structures.

Below that curve, for low Bond numbers, wave numbers are around 16
and the rolls of the instabilities are close to the outer wall. Above the line,
the wave number is around 13, being the rolls closer to the hotter inner wall.
As we travel in the figure to regions of lower Biot and higher Bond, the
wave number tends to 13 in both cases. This transition can be very hard to
compute, as is shown in marginal stability diagram of Fig. 5. From k = 0 to
k = 12 the highest eigenvalue is complex, and thus the growing perturbation
is a hydrothermal wave (HWI). At k = 13, the highest eigenvalue correspond
to a longitudinal roll equivalent to the one shown in Fig. 4 above the open
line. This curve has a very sharp shape since, for k = 12, the eigenvalue
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(a) (b)

(c) (d)

Figure 3: Temperature distribution (top and lateral view) and lateral veloc-
ity diagram of an hydrothermal wave of the first (a,b) class and a longitu-
dinal roll (c,d) for Pr=50, Bi=1.8 and Bo ' 45 in a codimension two point.
Temperatures and velocities has been adimensionalized dividing them by its
maximum
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corresponding to this solution is below −6. The last curve in this figure
corresponds to a solution in the LR region, below the empty dot line of Fig.
4. For k > 30 the real part of the eigenvalues is below −2.

Figure 4: Bond-Biot plane stability diagram showing regions HWI and LR.
Representative top r − φ plane isotherms corresponding to aforementioned
regions are shown. The shaded points made up the boundary whereas the
open ones separate two different zones of the LR region

One difficult question to answer is at what Bo the main responsible of the
onset of the instabilities changes from capillarity forces to gravitational ones.
In Fig. 6 the critical pairs (Rac,Marc) have been plotted for different Biot
and Bond numbers. It is well known [15, 12] that as Biot decreases the system
becomes more stable and thus the values of Rac and Marc to destabilize it
are higher. Focusing at the top curve of Fig. 6(a), for B = 0.2, as the Bond
number is increased the curve follows a linear profile until approximately
Bo = 13.8 (g = 2). The rate of decrease is similar for all the Biot numbers.
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Again, for B = 0.2 the critical (Rac,Marc) for each Bond number, together
with the critical ∆T has been plotted in Fig. 6(b). For Bond numbers over
approximately 25, the critical Rayleigh numbers follow a straight pattern,
indicating that the main cause of the instabilities for Bo ≥ 25 is buoyancy.
As it is also shown in this figure, the critical temperature ∆Tc decreases
with increasing Bond numbers, showing that buoyancy is a more effective
mechanism for destabilization of the flow. In the case of thermocapillarity,
from Fig. 6 it seems to be the main effect for Bo ≤ 10, whereas the transition
from Marangoni to Rayleigh is produced between 10 and 25.

The idea stated in the previous paragraph can be reinforced with the
information provided in Fig. 4. As we already said, as the Bond number is
reduced, the system is able to store more heat and the critical temperature
grows. This produces that the structures present in the flows get larger. As
example of this can be see in the structures for case of Bi = 0.2, Bo = 0, at
the bottom-left corner of Fig. 4. For small Biots, the structures are usually
attached to the colder cylinder [16]. In this case, as we have neglected the
buoyancy effects, the only responsible of this large structure has to be the
Marangoni condition.
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Figure 5: Marginal stability diagram of a co-dimension two bifurcation.
Rac = 616.98, Mar = 148.72, Bi = 1.321, Pr = 50. Empty points mean
a real eigenvalue, whereas bold ones stand for complex eigenvalues. The
curves group the eigenvalues corresponding to geometrically similar eigen-
functions. The value max |real(λ13, λ15)| ≤ 10−6. All these curves intersects
transversally
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(a) (b)

Figure 6: (a) Critical pairs (Rac,Marc) for Pr = 50. Arrows mark the direc-
tion of increasing gravity, from 0.0 to 9.9, with a 0.1 step, and of growing
B for 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 1.1, 1.3, 1.5. The lines approximate the
points from g = 0.0 to g = 2.0 on least-squares sense. (b) Bond number
dependency for B=0.2 of Mar, Ra and ∆T . Right axis: Critical Ra (dots)
and Mar (stars). Left axis: ∆T (circles)
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5. Prandtl numbers close to unity

When Pr is close to unity, the nonlinearities of Navier-Stokes equations
are of the same order of magnitude than the viscous terms. This increases
the richness and complexity of bifurcations, making still harder to decide the
point where the main effects are thermoconvective or thermocapillary. The
lateral structure of a typical HWI solution is presented in 7, with several co-
rotative rolls. This lateral structure is similar to the one of 8(d). They are,
however, completely different to the HWII, where a big structure expanding
half of the domain is present. Moreover, in oder to fulfill the continuity
equation, the 3D structure is most necessary. It is worth to say that this
structure depends on buoyancy to exists.

The Bond-Biot plane can again describe properly the situation (Fig. 9).
In this figure, codimension-two points for Pr = 0.7 circles, and Pr = 1.2,
squares are shown. Representative top r − φ plane isotherms of the grow-
ing solution in several points of these plane has been plotted in Fig. 10.
There are mainly five regions: Left top, stationary rolls (Fig.10a); Right top,
hydrothermal waves of the second class (10d); Bond 40-60, Biot 0.5-1.5, Hy-
drothermal waves of the first class, k=9 (10c); Right bottom, Longitudinal
rolls (Figs. 10f,10g,10k). When Pr is reduced, all the curves move rightward,
to higher Biot numbers. This has also been seen for other Prandtl numbers
computed (not shown). A very interesting solution is found for Pr = 0.7 at
where a codimension four bifurcation takes place. This is the first time that
a point like this has been found in this geometry.

The boundary between regions LR and HWI at the bottom-left of Fig. 9
presents a very curious characteristic. In Fig. 11 the location in the Ra−Mar
plane of the codimension two-points has been plotted. The fan-like structure
at the center of this figure corresponds to the boundary between region SR
and HWI in Fig. 9. They resent a clear dependency on Pr. This is not true, or
at least not so clear for the boundary between regions LR and HWI. These
points follows a straight pattern that seems to be independent of Prandtl
number. A possible explanation of this fact is that due to the relatively
small Rayleigh number of this region, the nonlinear effects produced by the
Prandtl number are not important.

From Fig. 9 it is also clear that changing properly Biot and Bond number
it is possible to find any sort of bifurcation. Moreover, for Biot numbers
below 1.5 it was found [12, 30] that the growing perturbation was always
a stationary roll. Now it is clear that for at least Pr = 0.7 it is possible to

15



(a) (b)

Figure 7: Temperature distribution and velocity diagram of an hydrothermal
wave of the first class corresponding to point (c) of Fig. 9 (Pr=1.2, Bi=1.2
and Bo ' 60). Temperatures and velocities has been adimensionalized di-
viding them by its maximum
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(a) (b)

(c) (d)

Figure 8: Temperature distribution and velocity diagram of an hydrother-
mal wave of the second class (a,b) and a stationary roll (c,d). The HWII
corresponds to point (d) Fig. 9 (Pr=1.2, Bi=1.8 and Bo ' 60). The SR to
point (a) (Pr=1.2, Bi=0.2 and Bo ' 30). Temperatures and velocities has
been adimensionalized dividing them by its maximum
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obtain an hydrothermal wave, with a smaller value of the critical Rayleigh
number.

Figure 9: Bond-Biot plane stability diagram for Pr = 0.7, circles, and
Pr = 1.2, squares. Bold points correspond to those in 11. The different
regions found (HWI, HWII, SR and LR) for Pr = 1.2 are shown in the fig-
ure. Representative top r − φ isotherms for Pr = 1.2 in the approximated
location of the points marked by letters are shown in Fig. 10

6. Conclusions and future works

In this work the instabilities appearing in a cylindrical annulus heated
from below were analyzed by means of the linear stability method. This
thermo- and fluid-dynamic problem is governed by mass, momentum and
energy conservation equations in primitive variables, where the Boussinesq
approximation has been used. Basic state and linear stability equations were
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(a) SR, B = 0.22 (b) HWI, B = 0.22 (c) HWI, B = 1.28

(d) HWII, B = 1.17 (e) HWI, B = 1.10 (f) LR, B = 1.10

(g) LR, B = 2.6 (h) HWI, B = 2.6 (i) HWI, B = 1.64

(j) HWI, B = 2.6 (k) LR, B = 3.1 (l) HWI, B = 0.2

Figure 10: Representative top rφ plane isotherms corresponding to the points
marked in Fig. 9
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Figure 11: Location in the Ra−Mar plane of the codimension two-points
found for Pr = 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 (circles, diamonds, stars, down tri-
angles, left triangles and squares). Bold points corresponds to the curves
separating regions LR and HWI in figure 9 for each Prandtl number. These
points seem to be independent of Prandtl number

solved by using spectral methods. The main control parameters were the
Marangoni and Rayleigh numbers, related by the Bond number, the Prandtl
number, and the Biot number.

It has been confirmed that the main parameter controlling the shape of
the basic state is the Bond number with little or null effect coming from Biot
or Prandtl numbers. A codimension four point has been found for the first
time in this geometry, as an intersection of several codimension two curves.
For high Prandtl numbers, it has been possible to identify the range of Bond
numbers where the main effect is buoyancy or thermocapillarity. Several new
features are of interest in the case of low Prandtl numbers. First, for Biot
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greater than one and Bond below thirty, it has been found that the critical
pairs (Rac,Marc) separating the regions HWI and LR are almost independent
of the Prandtl number 11. Secondly, for small Biot number, it was found [12]
that for low Biot the growing solution was of the SR class. In this case it
has been always possible to find a Bond number such that the perturbation
is an hydrothermal wave, changing completely the behavior of the system.

A new question arises. As the Bond number is defined as Bo = Ra/Ma =
gαρd2/γ, what happens when the geometry is changed, and thus transform-
ing the aspect ratio of the box. The idea behind this is to find a new geome-
try such that the transition between thermocapillarity and thermo-buoyancy
would be sharper, in order to better identify the structure coming from these
effects.

Symbols and constants
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List of Symbols
a Diameter of the internal cylinder

d Diameter of the physical domain
ez Unit vector in z direction
g Acceleration due to gravity
k Wave number
p pressure
r radial coordinate
Tn, Tm Chebyshev polynomials
TG Temperature gradient at the bottom surface
∆T Mean temperature difference between the bottom plate and the atmosphere
u Velocity vector
uj Velocity components (r, φ, z)
z z coordinate
α Thermal expansion coefficient
γ Rate of change of surface tension with temperature
δ Thickness of the physical domain
κ Thermal diffusivity
Λ Aspect ratio
λ Real part of the eigenvalue (stability)
ν Kinematic viscosity
ρ Density
Θ Temperature
φ Azimutal coordinate

Dimensionless numbers
Bi Biot Number

Bo Bond number, Bo = Ra/Mar = gαρd2/γ
Mar Marangoni number, Mar = γ∆Td2/ρκν
Pr Prandtl number, Pr = ν/κ
Ra Rayleigh number, Ra = gα∆Td4/κν

Sub- and Superscripts
c Critical value
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