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Abstract 

We describe the fabrication of asymmetric nanopores sensitive to ultraviolet (UV) light 

and give a detailed account of the divalent ionic transport through these pores using a 

theoretical model based on the Nernst-Planck equations. The pore surface is decorated with 

lysine chains having pH-sensitive (amine and carboxylic acid) moieties that are caged with 

photo-labile 4,5-dimethoxy-2-nitrobenzyl (NVOC) groups. The uncharged hydrophobic 

NVOC groups are removed using UV irradiation, leading to the generation of hydrophilic 

“uncaged” amphoteric groups on the pore surface. We demonstrate experimentally that 

polymer membranes containing single pore and arrays of asymmetric nanopores can be 

employed for the pH-controlled transport of ionic and molecular analytes. Comparison 

between theory and experiment allows for understanding the individual properties of the 
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phototriggered nanopores and provides also useful clues for the design and fabrication of 

multipore membranes to be used in practical applications. 

 

I. INTRODUCTION 

Nanoscale pores have been studied extensively in the last decade due to the new basic 

phenomena involved and the potential applications in medicine,1-3 nanofluidics,4-7 membrane 

science8,9 and biotechnology.10,11 Polymer samples containing single asymmetric nanopores 

and multipore arrays obtained by track-etching12 are of particular interest because they mimic 

some of the transport properties of biological ion channels.13-19 Recent advances concerning 

the fabrication processes and the tailoring of the surface properties have permitted to control 

the pore geometry20-23 and the response to external stimuli such as voltage,24,25 

temperature,26,27 pH28-30 or the presence of a given analyte in the pore solution.31-34 These 

features have allowed the fabrication of nanofluidic devices35-38 with potential applications in 

sensing,34,39,40 energy harvesting41,42 and information processing.07,42-44 

Recently, synthetic nanopores sensitive to ultraviolet (UV) light have been reported.45,46 

The pores use photo-labile protecting groups (PPGs) or photosensitive active groups, initially 

in hydrophobic state, that switch to a hydrophilic form after UV light irradiation. UV light 

constitutes a facile way to change the pore functionalities externally, without causing further 

damage to the active groups attached to the pore wall. 

In this paper we describe a technique to obtain asymmetric nanopores sensitive to UV 

light. To achieve this goal, the “caged” lysine amino acid is chemically synthesized with an 

unprotected amine group at the terminus of alkyl chain. Then the pore surface and inner pore 

walls are functionalized with monolayers of amino acid “caged” lysine chains through 

carbodiimide coupling chemistry. The immobilized lysine chains contain photolysable 4,5-

dimethoxy-2-nitrobenzyl (NVOC) moieties attached to the –NH2 and –COOH groups at α–
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carbon of lysine. Upon UV treatment, the uncharged hydrophobic aromatic chromophore 

NVOC moieties are removed and hydrophilic “uncaged” amphoteric groups sensitive to 

environmental pH are exposed on the pore surface. The UV treated asymmetric nanopore 

displays a broad range of pH-controlled rectifying properties. Firstly, we demonstrate 

experimentally that polymer samples containing single and multiple UV light-operated pores 

can be employed for the pH-controlled transport of divalent anionic and cationic analytes 

across the membrane. Secondly, we present a detailed account of the experimental findings 

using a theoretical model based on the Nernst-Planck (NP) equations. The systematic 

comparison of the model predictions with the experimental data allows for the estimation of 

the pore characteristics and the diffusion coefficients of the divalent analytes. The approach 

provides an understanding of the properties of a single pore that should be useful in the design 

of multipore membranes for sensing, controlled release, and information processing.  

 

II. EXPERIMENTAL  

Photosensitive “caged” amino acid lysine 

Single asymmetric nanopores (Fig. 1a) as well as multipore membranes containing 

arrays of pores were fabricated from heavy ion tracked polyethylene terephthalate (PET) 

membranes of thickness 12 µm by well-established track-etching techniques.12 During the 

chemical etching process, the carboxylic acid groups generated on the pore surface act as sites 

for the covalent attachment of functional molecules containing primary amine in their 

backbone.  

The photosensitive “caged” lysine amino acid with a free amine group at ε-position was 

synthesized following the chemical reactions shown in the scheme of Fig. 1b. The compound 

3 was obtained in high yield by the esterification reaction between Fmoc-Lys(Boc)-OH (1) 

and 6-nitroveratryl alcohol (2) using dicyclohexyl carbodiimide (DCC) and 4-(dimethyl 
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amino)-pyridine (DMAP) in dichloromethane at room temperature. The deprotection of 

Fmoc-group in 3 yields compound 4 (Fig. 1b), which was used without purification in the 

next reaction step. The compound 6 was synthesized by the direct coupling reaction between 

deprotected amine of compound 4 with reactive 4,5-dimethoxy-2-nirobenzyl chloroformate 5 

(NVOC-Cl). Finally, the deprotection of Boc-group in 6 afforded the desired lysine (7). 

The “caged” lysine chains (7) of Fig. 1b were immobilized on the pore surface and 

inner walls through carbodiimide coupling chemistry. To this end, the track-etched 

membranes were treated with an activation solution containing N-(3-dimethylaminopropyl-N′-

ethylcarbodiimide (EDC) and pentafluorophenol (PFP) to convert the native –COOH groups 

into amine-reactive ester molecules. Subsequently, the activated PFP-ester molecules were 

covalently coupled with the terminal ε-amine group of photosensitive lysine molecules. 

Single asymmetric nanopore 

The success of the pore surface modification reaction was confirmed by measuring the 

current–voltage (I–V) characteristics of a single nanopore prior to and after the 

immobilization of “caged” lysine chains (Fig. 2). For the case of as-prepared nanopores, 

native ionized carboxylate (–COO⎯) groups impart negative charge to the pore walls under 

neutral and basic pH conditions. Therefore, the asymmetric single pore shows rectification 

characteristics that depend on the surface charge of the pore walls, which can be tuned by the 

pH value of the external solutions. By changing the solution pH from basic to acidic values, a 

significant decrease in positive currents (from the pore tip to the pore basis) is observed, 

suggesting a decrease in the surface charge density due to the protonation of –COOH groups 

(Fig. 2a).  

After functionalization, the hydrophobic and uncharged photolabile NVOC groups in 

the immobilized lysine chains drastically reduce the ionic current and rectification, as it is 
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shown in the I–V curve of Fig. 2b. This experimental fact confirms the successful anchoring 

of “caged” lysine chains onto the surface and walls of the pore. 

Upon UV light irradiation of the pore, the NVOC groups are detached from the 

immobilized lysine chains and the amphoteric groups are exposed on the pore surface. This 

switches the chemical characteristics of the pore from hydrophobic to hydrophilic, which in 

turn changes the ion transport behavior (Fig. 2c) from non-selective (“off” state) to perm-

selective (“on” state). 

Due to the amphoteric nature of the resulting end groups, the pH of the surrounding 

solutions dictates the pore net charge and permselectivity. The I–V curves of Fig. 2c confirm 

the successful uncaging of the –NH2 and –COOH groups of lysine chains immobilized on the 

pore surface. At pH = 9.5, both groups are deprotonated and the net charge on the pore 

surface is negative due to the presence of ionized –COO⎯ groups. The pore is cation-selective 

and rectifies the ionic current flowing across the membrane. On the contrary, at acidic 

conditions (pH = 3.0) both groups are protonated and the –NH3
+ groups impart positive 

charge to the pore. Due to the switching of the pore net charge from negative to positive, the 

permselectivity and rectification behavior is also reversed (the pore is now anion-selective). 

Finally, at the intermediate pH = 5.0, the pore behaves like an ohmic resistor because the net 

pore charge is zero due to the ionization of the –COO⎯ and –NH3
+ groups (Fig. 2c). It is 

interesting to note that this behavior is present to some degree in the case of the I–V curves 

corresponding to the pore with “caged” lysine chains (Fig. 2b). This fact reveals the presence 

of a small amount of residual “uncaged” amphoteric groups in the pore surface before UV 

irradiation. 
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Multipore membranes 

We have also investigated the UV-light-induced transport of divalent analytes across the 

nanoporous membrane containing 5×107 pores cm-2 functionalized with “caged“ lysine chains 

(Fig. 3), prior to and after UV treatment. The membrane sample separated the feed 

compartment filled with an aqueous solution of either cationic or anionic analyte and the 

permeate compartment contains a buffer solution only. The results obtained are presented in 

Figs. 4 (methylviologen ion, MV2+) and 5 (1,5-naphthalene disulfonate ion, NDS2-). The flux 

of analyte through the membrane sample (Figs. 4d and 5d) was obtained by monitoring the 

time-dependent concentration of analyte in the permeate chamber (Figs. 4a, 4b, 5a and 5b) 

from UV absorbance measurements with a UV/Vis spectrophotometer (Figs. 4c and 5c). The 

experiments clearly suggest that the transport of analyte is governed by the interaction of the 

permeate ions with the groups fixed on the pore surface.  

Before UV irradiation (Fig. 3a, left), the pore is in hydrophobic (“off”) state and the 

divalent ions in the external solutions can hardly enter and pass through the nanopores. The 

resulting analyte fluxes are therefore relatively small at all pH values (Figs. 4d and 5d). After 

UV irradiation (Fig. 3a, right) the pore switches to a hydrophilic (“on”) state and the analyte 

fluxes depend markedly on the environmental pH (Fig. 3b). Ionic species with the same sign 

as that of the pore charge are prevented from entering the membrane while species with 

opposite charge to that of the pore permeate through the pore. Finally, in the case of neutral 

pores both positive and negative species are almost equally transported across the pores, and 

the membrane is not-selective. Note that the pore with “caged” lysine chains (Figs. 4a and 5a) 

shows qualitatively similar pH-controlled transport properties as the pore with “uncaged” 

lysine groups (Figs. 4b and 5b), which suggests again that some residual “uncaged” 

amphoteric groups are present in the pore surface before UV irradiation. 
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III. THEORY  

We consider the scheme of Fig. 6 where a polymeric film of thickness d containing a 

single asymmetric nanopore separates two electrolyte solutions. The pore radius a(x) has 

symmetry of rotation around the axis x and can be described by the equation47,48 

       

 

exp exp
( ) ( 0)

1 exp

n n n

R L R L
n

a a d h a a x d d h
a x n

d h

          
 

   
, (1) 

where a
L
 and a

R
 are, respectively, the radii at the left (tip) and right (base) pore openings. 

Typical nanopores obtained using the track-etching procedure show pore openings ranging 

from a few or tens of nanometers (pore tip) to a few hundreds of nanometers (pore base), 

while the pore length d is of the order of 10 m.12 Therefore, the pores can be assumed to be 

long and narrow, d >> a(x). The radius profiles generated by Eq. (1) are in agreement with the 

typical tip shapes obtained by using recent improvements of the track-etching 

procedure.21,2248-51 The pore shape can be controlled by changing the values of the geometrical 

parameters n and d/h in Eq. (1).47 For instance, n = 1 and d/h > 0 give profiles showing 

concave, bullet-like pore tips (the limit d/h  0 corresponds to the case of a conical pore). 

Using d/h  0 and n > 1 lead to pores with convex, trumpet-like profiles. Finally, the values 

d/h > 0 and n > 1 produce profiles showing pore tips and lumens of variable length.47 

In Fig. 6, pH
j
 refers to the pH value of solution j (j = L for the left and j = R for the right 

external solutions). In the following calculations, we assume pH
L
 = pH

R
 ≡ pH. Also, c

i,j
 is the 

concentration of ion i in the bulk of solution j and 
j
 denotes the dimensionless electric 

potential (normalized to RT/F, where R, T anf F have their usual meaning47) in the bulk of the 

solution j, respectively. Finally, c
i
 and  refer to the local concentration of species i and 

dimensionless electric potential, respectively. The potential drops 
L
 =  (0) - 

L
 and 

R
 = 
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
R
 - (d), are the Donnan potential differences through the left and right interfaces, 

respectively. Finally,  is the surface charge density, assumed to be constant and related to the 

volume concentration of fixed charges X
F
 as 

2
F

X
aF


 . (2) 

The external solutions are considered to be ideal and perfectly stirred (the effect of the 

diffusion boundary layers is ignored because the resistance to flow is due to the single 

nanopore) and the system is isothermal and at steady state. Finally, convective flows are 

ignored (note that the experiments of Figs. 4 and 5 are conducted under zero electric current). 

We assume that the ionic transport through the pore can be described by the Nernst-

Planck equations 

 i i i i i
J D c z c     
  

, (3) 

the continuity equation at steady state 

0
i

J 


, (4) 

and the Poisson equation  

2
2

i i F
i

F
z c X

RT



 

     
 
 . (5) 

In Eqs. (3) – (5), D
i
, z

i
 and 

i
J


 are the diffusion coefficient, the charge number and the ionic 

flux density of ion i, respectively, and  is the electric permittivity of the aqueous solution 

(approximately equal to that of water). 

As stated above, the pore is long and narrow, and the ionic fluxes can be assumed to 

have only axial component 
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ˆ
i i x

J J u


. (6) 

According with this approximation, 

2 i
i i i i

dc d
j a D z c

dx dx




    
 

, (7) 

where 

2
i i
j a J  

 (8) 

is the total flux of ion i through an arbitrary section of the pore (Eq. (1)). Equation (4) is then 

approximated as 

0i
dj

dx
 . (9) 

Finally, the local electroneutrality condition 

0
i i F

i

z c X   (10) 

can be used instead of the Poisson equation in the case of long pores. Indeed, for one-

dimensional problems where averaging to the longitudinal channel axis is assumed, Eq. (10) 

can replace the Poisson equation when the axial pore length is much greater than the Debye 

length,52-54 which is the region where significant deviations from electroneutrality occur. The 

Debye length is typically 3 - 30 nm thick for most aqueous electrolyte solutions. Our pore is 

12000 nm thick while the pore tip radii are in the 5 nm range. Therefore, Eq. (10) constitutes 

a useful approximation to the complex transport phenomena studied here. 

The values of the electric potential and the ionic concentrations at the pore limits x = 0 

and x = L are unknown and must be calculated in terms of those in the external solutions. 

Again, the influence of the access resistance can be neglected, because the pore is long and 
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narrow, and we can assume the Donnan equilibria52,53,55 at the interfaces at x = 0 and x = d 

(Fig. 6): 

 (0) exp
i L i L

c c z    , (11a) 

 ( ) exp
i R i R

c d c z   . (11b) 

Combining Eqs. (10) and (11) with the electroneutrality condition in the bulk of the external 

solutions 

,
0 , ,

i i j
i

z c j L R   (12) 

allows for the calculation of the concentrations of all mobile ionic species at the pore limits, 

c
i
(0) and c

i
(d), and the interfacial Donnan potential differences (Fig. 6) at any value pH

j
. 

Finally, Eqs. (7)-(10), together with the boundary conditions given in Eqs. (11)-(12), can be 

integrated using iterative schemes to obtain the concentrations and electric potential profiles, 

as well as the total fluxes, for any applied voltage V  RT(
L
 – 

R
)/F. From the ionic fluxes, 

the total electric current passing through the pore is 

i i
i

I z Fj  (13) 

Note that Fig. 6 shows the sign criteria used for V and I. Mathematically, the solution to the 

above transport equations could be obtained as an inverse problem where the structural 

characteristics of the nanopore should be determined from measurements of its function.56,57  

However, we will use simple, approximate models that address the phenomenological basis of 

the observed phenomena. 

A single pore with COOH groups 

In the case of the as-prepared single nanopore with native –COOH groups, we have 

considered the following equilibrium between the neutral and ionized carboxylate groups 
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COOH COO HC
K    , (14) 

The local fixed charge concentration in Eq. (2) can be written as  

1 /

T
C

F C
CH

X
X X

c K


   


, (15) 

where  

H
0

10 C
pK C

C
C

X c
K

X





  , (16) 

is the equilibrium constant of Eq. (14), 
C

X   and 0
C

X  are the volume concentration of 

carboxylic groups in ionized and neutral forms, respectively, and   

0T
C C C

X X X   (17) 

is the total volume concentration of carboxylic groups. 

A single pore with amphoteric groups 

For a pore containing amphoteric groups, we have considered the equilibria  

,1 +
3 3

NH A COOH NH A COO H
A

K
       , (18) 

,2+
3 2

NH A COO NH A COO H
A

K
        , (19) 

and the local volume fixed charge concentration of Eq. (2) is now  

2
,1 ,2

2
,2 ,1 ,2

/( ) 1

1 / /( )

T
A A AH

F A A
A A AH H

X c K K
X X X

c K c K K



 

 
     

 
, (20) 

where  
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,1

,1
10 A

pK A H
A

A

X c
K

X






  , (21) 

,2 H
,2

10 A
pK A

A
A

X c
K

X






  , (22) 

are the equilibrium constants in Eqs. (18) and (19), 
A

X  , 
A

X   and 
A

X   are the volume 

concentration of amphoteric groups in zwitterionic, negatively charged, and positively 

charged forms, respectively, and T
A A A A

X X X X      is the total volume concentration of 

amphoteric groups in the pore. For the sake of simplicity, we have assumed that the surface 

charge concentration in the pore is constant and equal to that calculated for the pore tip. 

Estimation of the pore parameters  

The pore parameters involved in the transport process were estimated according to the 

following protocol. The radius of the pore base was measured directly using AFM techniques 

in polymer samples with a high number of pores etched simultaneously with the sample 

containing the single nanopore. In our case, we obtained a
R
  300 nm. Because small 

variations in a
R
 lead to negligible changes in the calculated I–V curves, we employed this 

value in all calculations. We used also the free solution diffusion coefficients 
K

D  = 1.95 10-5 

cm2/s, 
Cl

D  = 2.03 10-5 cm2/s, 
H

D  = 9 10-5 cm2/s and 
OH

D  = 4.5 10-5 cm2/s.58 

When the pore is uncharged (X
F
 = 0 and  = 0 in the model), the I–V curves depend 

only on the concentrations of mobile ions in the surrounding solutions and the geometrical 

characteristics of the pore. Under these conditions, the concentrations of mobile ions within 

the pore are constant, 

, , ,i i L i R i Bc c c c   , (23) 
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and integration of Eqs. (6)-(10) gives the linear I–V curve 

m

I V
g


 , (24) 

where 

2
2

,i i i B
i

F
z D c

RT
    (25) 

is the conductivity of the solution inside the pore and 

20

d

m

dx
g

a
   (26) 

is a geometrical factor depending exclusively on the pore shape (see Eq. (1) for a(x)). In the 

case of a conical pore, this factor gives 

m
L R

d
g

a a
 . (27) 

Note that for a
L
 = a

R
, Eq. (27) gives the well-known result corresponding to the cylindrical 

pore (Fig. 1). For geometries other than cylindrical (or conical), Eq. (26) must be solved 

numerically taken into account the radius profile of Eq. (1). 

In the experiments of Fig. 2, we obtained quasi-linear I–V curves for the case of the 

pores containing “uncaged” and “caged” lysine groups when these chains are mostly in 

zwitterionic form (Figs. 2b and 2c at pH = 5.0). A linear fitting using the least square method 

provides the slopes (pore conductances) of the I–V curves. Because the concentrations of all 

ionic species can be calculated from the electrolyte concentration and the pH of the external 

solutions, the only free parameter in the slope of the straight line is the geometrical factor g
m

. 

The results obtained for the experimental data in Figs. 2b and 2c are summarized in Table I. 

Once the value of g
m

 has been determined, the radius of the pore tip can be calculated from 
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Eq. (26) assuming a particular geometry in Eq. (1). Table I shows the values of a
L
 obtained 

using this procedure. We have considered the cases of a perfectly conical pore and an 

asymmetric pore showing a convex profile that deviates slightly from the conical geometry 

(d/h  0 and n = 1.5 in Eq. (1); see Fig. 6). 

We conclude that the assumption of conical geometry gives unrealistically low values 

of a
L
 for pores fabricated using the track-etching method.33,48,59-61 If we assume convex pores, 

the values of a
L
 in Table I are now within the range of those estimated in previous 

studies.33,48,59-61 Otherwise stated, we will assume thus that the pore tip is convex and deviates 

slightly from the conical geometry. As expected, the effective pore radii obtained for the 

pores with “caged” lysine chains are significantly lower than those corresponding to the 

“uncaged” chains (Table I), in agreement with the bulky terminal ends and its hydrophobic 

character (Fig. 2a). 

We consider now the case of charged pores. The results obtained for the as-prepared 

pore with carboxylate groups (Fig. 2a) show non-linear curves at the pH values measured and 

thus the above procedure cannot be applied directly. Since the value obtained for a
L
 in the 

case of the pores with “uncaged” lysine reveals a relatively wide tip opening, we can assume 

that the pore tip radius of the as-prepared nanopore is the same than that calculated from Fig. 

2c, a
L
 = 5.1 nm. With this assumption, the only free parameters in the NP model are the 

surface charge density  and the pK
a
 value of the carboxylate groups, pK

C
. The best fit for the 

as-prepared pore (Fig. 7a) gave a surface charge density  = -0.3e nm-2 at pH = 9.5, where e is 

the elementary charge, and pK
C
 = 4.5. Because at pH = 9.5 all the carboxylate groups are in 

charged form, it can be concluded that the surface density of groups attached to the pore walls 

is approximately n
C
 = 0.3 groups/nm2. The values of n

C
 and pK

C
 are in agreement with those 

found in previous studies for the case of pores functionalized with carboxylate groups.33,61 
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It must also be mentioned that similar calculations assuming a perfect conical geometry 

instead of a convex tip geometry lead to unrealistically low values of the surface charge 

density (= -0.07e nm-2 at pH = 9.5 in the case of the experiments of Fig. 2a). Also, the 

rectification ratios (defined as the absolute value of the ratio between the electric current in 

the “on” and “off” states at a given voltage) calculated assuming a perfect conical geometry 

are much higher than those obtained using the experimental data of Fig. 2a. These two facts 

give further support to our assumption that the pore with a convex tip deviates slightly from 

the conical geometry.  

We consider now the experiments with the pore functionalized with “uncaged” lysine 

chains (Fig. 2c). Because the axial pore profile and the values of the pore radii at the tip and 

base have already been determined, the unknown parameters in the NP model are the surface 

density n
A
 and the two pK

a
 values of the amphoteric lysine groups, pK

A,1
 and pK

A,2
. Figure 7c 

shows the theoretical results obtained for this pore using n
A
 = 0.3 groups/nm2, pK

A,1
 = 3 and 

pK
A,2

 = 9. The value for n
A
 assumes a 100% substitution of the original carboxylate groups by 

the amphoteric groups. The values for pK
A,1

 and pK
A,2

 provide the best fit to the experimental 

data of Fig. 2c and are close to the pK
a
 values of lysine in free solution (2.18 and 8.95),62 

which gives support to the pore characterization procedure followed here.  

Finally, Fig. 7b shows the results provided by the NP model for the pore functionalized 

with “caged” lysine. Using the pK
A,1

 and pK
A,2

 values calculated above, the best fit to 

experimental data was obtained assuming n
A
 = 0.12 groups/nm2. This value suggests that 

approximately one third of the supposedly “caged” lysine groups were actually in ionized 

form, which explains the residual pH-controlled transport shown in Figs. 2b and 7b.  
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Permeation of MV2+ and NDS2- 

The ionic analyte molecules used in the transport measurements through the multipore 

membranes of Figs. 4 and 5 were methylviologen dichloride (MVCl
2
) and 1,5-naphthalene 

disulfonate di-sodium salt (Na
2
NDS). The ionic species involved in the permeation process 

were MV2+ and Cl- in the case of the methylviologen dichloride and NDS2- and Na+ for the 

1,5-naphthalene disulfonate di-sodium salt. For the sake of simplicity, we have neglected the 

influence of the ionic species present in the buffer solutions used to control the external pH. 

Also, we restrict our calculations to the case of the membrane in the “on” state (after UV 

irradiation) when all the lysine groups are “uncaged”. 

In the case of MVCl
2
 we consider again the case X

F
 = 0 (pH = 5.0). When the 

membrane is uncharged, integration of the Nernst-Planck equations gives the total flux 

 
2

2

2

MV

MV

MV Cl

3 (0)

1/ 2 /
p sample p sample

m

c
j n A n A

g D D





 




, (28) 

where np is the number of pores per unit of area and A
sample

 is the membrane area used in the 

experiments. Equation (28) is obtained with the condition of zero electric current through the 

membrane 

2MV Cl
2 0j j

 
  . (29) 

Because the multipore membrane sample was etched at the same time as the single nanopore 

sample, we can assume that the geometrical factor g
m

 is the same for the two samples. With 

this assumption, the only free parameter in Eq. (28) is the diffusion coefficient of the analyte. 

Using the experimental data of Fig. 4 for pH = 5.0, we obtain 
2MV

D


= 5.1 10-7 cm2/s. Similar 

calculations for the NDS2- experimental data of Fig. 5d at pH = 5 give 
2NDS 

D = 2.5 10-7 
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cm2/s. These values are in good agreement with those found in previous studies of MVCl
2
 and 

Na
2
NDS diffusion through nanoporous membranes.45,63 

In the case of acidic or basic pH, the membrane is charged and the Nernst-Planck 

equations must be solved using numerical procedures. In order to find an approximate 

analytical solution, we assume  

2 constant
d

a
dx

  . (30) 

Equation (30) is a generalization of the Goldman constant field assumption64 commonly used 

in the study of biological ion channels and synthetic membranes.65 With this assumption, the 

integration of the Nernst Planck equations yields 

 

 
2 2

2

2

MV MV
2MV

2 (0) log 1/

1p sample p sample
m

D c u u
j n A n A

g u

 





,  (31) 

where 

2 4

2
c c c

f f f
u

 
 , (32) 

and 

2 2

Cl Cl

MV MV

(0)

4 (0)c

D c
f

D c

 

 

 . (33) 

Similar calculations allow the estimation of the total NDS2- flux through the multipore 

membrane.  

Because the concentration of the mobile species at the pore tip can be calculated from 

the external concentrations in the feeding compartment using Eqs. (10)-(12), the simplified 

model of Eqs. (30)-(33) contains no additional free parameters, and can then be used to check 
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further the validity of the theoretical approach proposed here. The comparison between the 

model predictions and the experiments of Figs. 4 and 5 is given in terms of the ratio between 

the analyte fluxes in Table II. In spite of the rough approximations introduced, the agreement 

between theory and experiment is good for analytes with charge of the same sign as that of 

the pore surface charge. However, the theoretical model overestimates the fluxes if the 

analyte and surface charges have opposite signs. This result suggests that other effects in 

addition to those characteristic of the simple point ion models66 could be important for the 

relatively bulky divalent ions used in the permeation experiments.  

V. CONCLUSIONS 

Photochemical gating of nanoscale pores constitutes a subject of current interest 

because of the potential applications.45,46,67 We have described the transport properties of 

asymmetric nanopores functionalized with photosensitive amphoteric lysine groups. The 

experiments concern the I–V curves of polymer samples containing the as-prepared single 

asymmetric nanopore with carboxylate groups acting as fixed charges, the I–V curves of the 

single nanopore functionalized with “caged” and “uncaged” lysine groups, and the fluxes of 

divalent positive and negative analytes through multipore membranes. A detailed theoretical 

study based on the NP equations allows for obtaining the key parameters involved in the 

transport processes (pore tip shape and dimensions, surface charge concentrations, and pKa 

values of the functional groups fixed on the pore walls). We have shown that a relatively 

simple continuum model involving a reduced number of basic concepts approximately 

describes the observed transport phenomena in terms of the electrostatic, pH-tunable 

interaction of the mobile ions with the pore surface charges. 
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FIGURE CAPTIONS 

Fig. 1: 

a) Scheme (not to scale) of the asymmetric nanopore (Fig. 1a). b) Reaction scheme for the 

synthesis of “caged” amino acid lysine (7) with caged amine and carboxylic acid groups 

attached to the α-carbon (Fig. 1b).  

 

Fig. 2: 

Schematic pore and pH-dependent I–V curves of a single asymmetric nanopore with 

carboxylate groups (Fig. 2a), “caged” (Fig. 2b), and “uncaged” amphoteric lysine chains (Fig. 

2c). The I–V curves are measured in a 0.1 M KCl solution prepared in a phosphate buffer at 

different pH values. 

 

Fig. 3: 

Schematic cartoon describing the phototriggered permeation through the asymmetric 

nanopore arrays bearing “caged” lysine chains (“off” state) and “uncaged” lysine chains (“on” 

state) on the inner pore walls (Fig. 3a). The pH-tunable permselective transport of ionic 

analytes across the multipore membrane containing “uncaged” amphoteric lysine chains (Fig. 

3b). 

 

Fig. 4: 

pH-dependent permeation of MV2+ through the multipore membrane prior to (Fig. 4a) and 

after (Fig. 4b) UV irradiation. Absorption spectra recorded for MV2+ in the permeate solution 

obtained after 4 hours of analyte transport at pH = 9.5 before and after UV irradiation of the 

membrane (Fig. 4c). MV2+ permeation rates through the multipore membrane before and after 

UV treatment, respectively (Fig. 4d). 
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Fig. 5: 

pH-dependent permeation of NDS2- through the multipore membrane prior to (Fig. 5a) and 

after (Fig. 5b) UV irradiation. Absorption spectra recorded for NDS2- in the permeate solution 

obtained after 4 hours of analyte transport at pH = 3.0 before and after UV irradiation of the 

membrane (Fig. 5c). NDS2- permeation rates through the multipore membrane before and 

after UV treatment, respectively (Fig. 5d). 

 

Fig. 6: 

Sketch of the asymmetric nanopore (not to scale). 

 

Fig. 7: 

Calculated I–V curves of a single asymmetric nanopore with carboxylate groups (Fig. 7a), 

“caged” lysine chains (Fig. 7b), and “uncaged” lysine chains (Fig. 7c), for the same 

experimental conditions as in Fig. 2. The nanopore parameters used in the calculations are 

shown in the insets. 

 

TABLE I: 

Estimation of the pore parameters from least-square fittings of the linear I–V curves in Figs. 

2b and 2c. 

 

TABLE II: 

The flux ratios at different pH values obtained with the NP model and the experimental ratios 

for the permeation of MV2+ and NDS2- through the multipore membrane. 

 
 


