

Appl. Gen. Topol. 15, no. 1 (2014), 25-32 doi:10.4995/agt.2014.2049 © AGT, UPV, 2014

Near metrizability via a new approach

D. Mandal^{*,a} and M. N. Mukherjee ^a

^a Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata-700019, India (dmandal.cu@gmail.com, mukherjeemn@yahoo.co.in)

Abstract

The present article deals with near metrizability, initiated in an earlier paper [7], with a new orientation and approach. The notions of nearly regular and uniform pseudo-bases are introduced and analogues of some results concerning metrizability and paracompactness are obtained for near metrizability and near paracompactness respectively via the proposed approach, suitably formulated.

2010 MSC: 54D20; 54E99.

KEYWORDS: nearly paracompact space; regular open set; nearly regular and uniform pseudo-bases; nearly metrizable.

1. INTRODUCTION

The idea of near paracompactness, a well known weaker form of paracompactness, was initiated by Singal and Arya [9], followed by an extensive study of the concept by many topologists from different perspectives and with different applications (for instance see [3], [4], [5], [6], [8]). Now, in [7] we introduced a neighbouring form of metrizability, termed near metrizability, which plays the same role with regard to near paracompactness as is done by metrizability visa-vis paracompactness. It was shown in [7] that there exist nearly metrizable, non-metrizable spaces that are not paracompact, moreover some other facts were established in [7].

^{*}The author is thankful to the University Grants Commission, New Delhi- 110002, India for sponsoring this work under Minor Research Project vide letter no. F. No. 41-1388/2012(SR).

The intent of the present article is to do a further study of nearly mertizable spaces from an altogether new approach. The notion of pseudo-base was introduced and studied in [7], and here, we define regular and uniform pseudo-bases, and ultimately achieve analogues of two well known results on metrizability in our setting.

At the outset we recall a few definitions which may be found in [1, 2]. A base \mathcal{B} for a topological space X is called regular if for each $x \in X$ and any neighbourhood U of x, there exists a neighbourhood O of x such that the set of all members of \mathcal{B} that meet both O and $X \setminus U$, is finite; and a base \mathcal{B} is called a uniform base if for each $x \in X$ and every neighbourhood U of x, the set of all members of \mathcal{B} that contain x and meet $X \setminus U$, is finite. It is clear that every regular base is a uniform base. The next two metrization theorems are known (see [1, 2]), which have been formulated in terms of the above special base.

Theorem 1.1.

(a). A T_3 -paracompact space X with a uniform base \mathcal{B} is metrizable.

(b). Every T_1 -space X with a regular base \mathcal{B} is metrizable.

As already proposed, our principal aim in this paper is to achieve analogous versions of the results in Theorem 1.1 for near metrizability with accessories formulated suitably.

In what follows, by a space X we shall mean a topological space X endowed with a topology $\tau(\text{say})$. The notations 'clA', 'intA' and '|A|' will respectively stand for the closure, interior and cardinality of a set A of a space X. A set $A(\subseteq X)$ is called regular open if A = intclA, and the complement of a regular open set is called regular closed. The set of all regular open (resp. closed) sets of a space X will be denoted by RO(X)(resp. RC(X)). We shall sometimes write A^* for intclA for a subset A of X and $\mathcal{C}^{\#} = \{A^* : A \in \mathcal{C}\}$, for any open cover \mathcal{C} of a space X.

Singal and Arya formulated the following definitions which are quite well known by now.

Definition 1.2 ([10]). A topological space X is called nearly paracompact if every regular open cover of X has a locally finite open refinement.

Definition 1.3 ([9]). A topological space X is said to be almost regular, if for any regular closed set A and any $x \in X \setminus A$, there exist disjoint open sets U and V in X such that $x \in U$ and $A \subseteq V$.

2. Main results

We start by recalling a few definitions from [7] as follows:

Definition 2.1. If X and Y are two topological spaces, then a continuous, injective map $f: X \to Y$ is called a pseudo-embedding of X into Y, if for any $A \in RO(X)$, f(A) is open.

If there is a pseudo-embedding f of X into Y, then we say that X is pseudo-embeddable in Y. If a pseudo-embedding $f : X \to Y$ is surjective, we say that f is a pseudo-embedding of X onto Y.

Near metrizability

It is known [7] that every embedding is a pseudo-embedding; but the converse is false.

Definition 2.2 ([7]). A space X is called nearly metrizable if it is pseudoembeddable in a metric space Y.

Definition 2.3 ([7]). Suppose \mathcal{B} is a family of open subsets of X. We say that \mathcal{B} is a pseudo-base in X if for any $A \in RO(X)$, there is a subfamily \mathcal{B}_0 of \mathcal{B} such that $A = \bigcup \{B : B \in \mathcal{B}_0\}$.

We now define a family \mathcal{B} of open subsets of X to be a pseudo-base at a point $x \in X$ if for each $U \in RO(X)$ containing x, there exists a $B \in \mathcal{B}$ such that $x \in B \subseteq U$. Clearly, a family \mathcal{B} of open subsets of a space X is pseudo-base for X if and only if it is so at each $x \in X$.

We shall call a pseudo-base \mathcal{B} σ -locally finite if \mathcal{B} can be expressed as $\mathcal{B} = \bigcap_{\alpha}^{\infty} \mathbb{R}$ is locally finite for each $\pi \in \mathbb{N}$.

 $\bigcup_{n=1} \mathcal{B}_n, \text{ where } \mathcal{B}_n \text{ is locally finite, for each } n \in \mathbb{N}.$

We now define another type of bases as follows:

Definition 2.4. Let (X, τ) be a topological space.

- (a) A family \mathcal{B} of subsets of X is called nearly regular if for each $U \in \mathcal{B}$ and any point $x \in U$, there exists a regular open set O_x containing x such that the set $\{V \in \mathcal{B} : V \cap O_x \neq \phi \text{ and } V \cap (X \setminus U) \neq \phi\}$ is finite.
- (b) A pseudo-base \mathcal{B} for X is called nearly regular if for each $x \in X$ and any regular open set O_x containing x, there exists a regular open set G_x containing x such that the set $\{U \in \mathcal{B} : U \cap G_x \neq \phi \text{ and } U \cap (X \setminus O_x) \neq \phi\}$ is finite.

Remark 2.5. It is clear from the above definition that a subfamily of a nearly regular family is a nearly regular family.

Proposition 2.6. If \mathcal{B} is a nearly regular pseudo-base for a space X, then so is $\mathcal{B}^{\#} = \{B^* : B \in \mathcal{B}\}.$

Proof. First let $x \in X$ and U a regular open set in X such that $x \in U$. As \mathcal{B} is a pseudo-base for X, there exists $B \in \mathcal{B}$ such that $x \in B \subseteq U$. Then $x \in B^* \subseteq U^* = U$, and hence $\mathcal{B}^{\#}$ is a pseudo-base for X.

Next, let $x \in X$ and O_x be any regular open set in X containing x. As \mathcal{B} is a nearly regular pseudo-base, there exists a regular open set G_x containing x such that the set $\{B \in \mathcal{B} : B \cap G_x \neq \phi \neq B \cap (X \setminus O_x)\}$ is finite.

It suffices to show that $\{B^* \in \mathcal{B}^\# : B^* \bigcap G_x \neq \phi \neq B^* \bigcap (X \setminus O_x)\}$ is finite, for which we need only to show that $\{B^* \in \mathcal{B}^\# : B^* \bigcap G_x \neq \phi \neq B^* \bigcap (X \setminus O_x)\} \subseteq \{B \in \mathcal{B} : B \bigcap G_x \neq \phi \neq B \bigcap (X \setminus O_x)\}$. In fact, $B \bigcap G_x = \phi \Leftrightarrow$ $intclB \bigcap intclG_x = \phi \Leftrightarrow B^* \bigcap G_x = \phi$, and $B \bigcap (X \setminus O_x) = \phi \Rightarrow B \subseteq O_x \Rightarrow$ $B^* \subseteq intclO_x = O_x \Rightarrow B^* \bigcap (X \setminus O_x) = \phi$.

We shall call a space X to be an almost T_3 -space if it is almost regular and Hausdorff.

Theorem 2.7. A T_2 -space X, possessing a nearly regular pseudo-base \mathcal{B} is an almost T_3 -space.

Proof. Let F be a regular closed set and $x \in X \setminus F$. Then there exists a regular open set O_x containing x such that $O_x \cap F = \phi$, i.e., $F \subseteq X \setminus O_x$.

By hypothesis, there exists a regular open set G_x containing x such that the family $\mathcal{U} = \{U \in \mathcal{B} : U \cap G_x \neq \phi \text{ and } U \cap (X \setminus O_x) \neq \phi\}$ is finite. Put $O = O_x \cap G_x$. Then O is a regular open set containing x such that $O \cap F = \phi$. Consider the family $\mathcal{C} = \{U \in \mathcal{B} : U \cap O \neq \phi \text{ and } U \cap F \neq \phi\}$. Since $F \subseteq X \setminus O_x$, \mathcal{C} is finite.

Now for each $U \in \mathcal{C}$, $|U| \ge 2$ as $O \cap F = \phi$.

Let $\mathcal{B}' = \mathcal{B} \setminus \mathcal{C}$. We show that \mathcal{B}' is a pseudo-base for X. In fact, let $p \in X$ and W a regular open set containing p. Let us enumerate \mathcal{C} as $\{W_1, W_2, ..., W_n\}$ and let $x_1, x_2, ..., x_n$ be points from $W_1, W_2, ..., W_n$ respectively different from p.

Since X is T_2 , each $\{x_i\}$ is regular closed and so $X \setminus \{x_1, x_2, ..., x_n\}$ is a regular open set containing p and hence there exists a $B_1 \in \mathcal{B}$ such that $p \in B_1 \subseteq X \setminus \{x_1, x_2, ..., x_n\}$. Again there exists $B_2 \in \mathcal{B}$ such that $p \in B_2 \subseteq W$. Thus there exists $B_3 \in \mathcal{B}$ such that $p \in B_3 \subseteq B_1 \cap B_2 \subseteq W$ i.e., $p \in B_3 \subseteq W$ where $B_3 \notin \mathcal{C}$. This shows that \mathcal{B}' is a pseudo-base for X.

Put $\mathcal{G} = \{U \in \mathcal{B}' : U \cap F \neq \phi\}$ and $G = \bigcup \{U : U \in \mathcal{G}\}$. Then $F \subseteq G$ and $G \cap O = \phi$ with $x \in O$ (since for $U \in \mathcal{G}$, if $U \cap O \neq \phi$ then $U \in \mathcal{C}$, a contradiction).

This shows that F and x are strongly separated. Thus X is almost regular and consequently X is an almost T_3 -space.

Definition 2.8 ([2]). Let X be a topological space and \mathcal{B} a family of subsets of X. An element U of \mathcal{B} is called a maximal element of \mathcal{B} if it is not contained in any element of \mathcal{B} other than U. We denote by $m(\mathcal{B})$, the set of all maximal elements of \mathcal{B} and call $m(\mathcal{B})$ the surface of \mathcal{B} .

Theorem 2.9. Let \mathcal{B} be a nearly regular family which is a cover of X. Then the surface $m(\mathcal{B})$ of \mathcal{B} is a cover of X and is locally finite.

Proof. Let $x \in X$ be taken arbitrarily and kept fixed, and let $U \in \mathcal{B}$ such that $x \in U$. If $U \notin m(\mathcal{B})$, then the family $\lambda_U = \{V \in \mathcal{B} : V \supseteq U\}$ is finite. In fact, by definition of \mathcal{B} , there exists a regular open set O_x containing x such that the collection $\mathcal{D} = \{V \in \mathcal{B} : V \bigcap O_x \neq \phi \text{ and } V \bigcap (X \setminus U) \neq \phi\}$ is finite. Clearly, $\lambda_U \subseteq \mathcal{D}$ and therefore λ_U is finite (note that $x \in V \bigcap O_x$). Consequently λ_U has a maximal element V'(say). Again $x \in V'$ and $V' \in m(\mathcal{B})$. Hence $m(\mathcal{B})$ is a cover of X.

We now show that $m(\mathcal{B})$ is locally finite. As $m(\mathcal{B}) \subseteq \mathcal{B}$ and \mathcal{B} is nearly regular, $m(\mathcal{B})$ is nearly regular. Again every element of $m(\mathcal{B})$ is maximal in $m(\mathcal{B})$ (because it is maximal in \mathcal{B} and $m(\mathcal{B}) \subseteq \mathcal{B}$). Let $x \in X$. Then there exists a $U \in m(\mathcal{B})$ such that $x \in U$. Since $m(\mathcal{B})$ is nearly regular, there exists a regular open set O_x containing x such that the family $\mathcal{B}' = \{V \in m(\mathcal{B}) : V \cap O_x \neq \phi$ and $V \cap (X \setminus U) \neq \phi\}$ is finite. But $V \setminus U \neq \phi$ for all $V \in m(\mathcal{B})$ with $V \neq U$

Near metrizability

(because every element V in $m(\mathcal{B})$ is maximal, there is no set $L \in m(\mathcal{B})$ which properly contains V).

Thus $\{V \in m(\mathcal{B}) : V \bigcap O_x \neq \phi\} = \mathcal{B}' \bigcup \{U\}$ is a finite set and hence $m(\mathcal{B})$ is locally finite. \Box

Theorem 2.10. A space possessing a nearly regular pseudo-base \mathcal{B} is nearly paracompact.

Proof. Let \mathcal{G} be any regular open cover of X and let $\mathcal{G}_{\mathcal{B}} = \{U \in \mathcal{B} : \exists G \in \mathcal{G} \text{ with } U \subseteq G\}.$

We check that $\mathcal{G}_{\mathcal{B}}$ is a pseudo-base for X. In fact, let $x \in X$ and G be any regular open set containing x. Now \mathcal{G} being a cover, there exists $G_1 \in \mathcal{G}$ such that $x \in G_1$. Thus $G \bigcap G_1$ is a regular open set containing x. Since \mathcal{B} is a pseudo-base for X, there exists $U \in \mathcal{B}$ such that $x \in U \subseteq G \bigcap G_1 \subseteq G_1 \in \mathcal{G} \Rightarrow$ $U \in \mathcal{G}_{\mathcal{B}}$ with $x \in U \subseteq G \Rightarrow \mathcal{G}_{\mathcal{B}}$ is a pseudo-base for X.

Since \mathcal{B} is nearly regular and $\mathcal{G}_{\mathcal{B}} \subseteq \mathcal{B}$, $\mathcal{G}_{\mathcal{B}}$ is nearly regular. Thus by Theorem 2.9, $m(\mathcal{G}_{\mathcal{B}})$ is an open cover of X and locally finite. Also clearly $m(\mathcal{G}_{\mathcal{B}})$ is an open refinement of \mathcal{G} . Hence X is nearly paracompact.

Analogous to the concept of uniform base, we now define a special type of base as follows:

Definition 2.11. A pseudo-base \mathcal{B} for a space X is called a uniform pseudobase if for each $x \in X$ and each regular open set O_x containing $x, \mathcal{U}_{O_x} = \{U \in \mathcal{B} : x \in U \text{ and } U \cap (X \setminus O_x) \neq \phi\}$ is finite.

Lemma 2.12. Let \mathcal{B} be a family of open sets of a space X such that $\mathcal{B}^{\#}$ is a uniform pseudo-base for X. Then the surface $m(\mathcal{B}^{\#})$ is a point finite regular open cover of X.

Proof. Let $x \in X$. Then there exists $U^* \in \mathcal{B}^{\#}$ (where $U \in \mathcal{B}$) such that $x \in U^*$. If $U^* \notin m(\mathcal{B}^{\#})$ then the set $\lambda_{U^*} = \{V \in \mathcal{B}^{\#} : V \supseteq U^*\}$ is finite. In fact, U^* is a regular open set containing x and hence the family $\mathcal{V} = \{V \in \mathcal{B}^{\#} : x \in V \text{ and } V \cap (X \setminus U^{\#}) \neq \phi\}$ is finite and $\lambda_{U^*} \subseteq \mathcal{V} \bigcup \{U^*\}$. Then λ_{U^*} has a maximal element $m(\lambda_{U^{\#}})$ which is also a maximal element of $\mathcal{B}^{\#}$ and which also contains x. Hence $m(\mathcal{B}^{\#})$ is a regular open cover of X.

We now show that $m(\mathcal{B}^{\#})$ is point finite. If possible let $x \in X$ be such that x belongs to an infinite collection \mathcal{D} of members of $m(\mathcal{B}^{\#})$. Then we claim that \mathcal{D} is a pseudo-base for X at x.

If \mathcal{D} is not a pseudo-base for X at x, there exists a regular open set W containing x such that $x \in D \subseteq W$ holds for no $D \in \mathcal{D}$, i.e., for all $D \in \mathcal{D}$, $D \bigcap (X \setminus W) \neq \phi$. But $\{B \in \mathcal{D} : B \bigcap (X \setminus W) \neq \phi\}$ is finite as $\mathcal{B}^{\#}$ is a uniform pseudo-base. Hence \mathcal{D} is a pseudo-base for X at x.

Next let, U and V be two distinct (and hence non comparable) elements of \mathcal{D} . Since $x \in U \cap V$ and $U \cap V$ is a regular open set, there exists a $W \in \mathcal{D}$ such that $x \in W \subsetneqq U \cap V$ (note that $U \cap V \notin \mathcal{D}$, since otherwise $U \cap V \subsetneqq U$ would contradict the maximality of $U \cap V$), i.e., $x \in W \subsetneqq U$ and hence W is not a maximal element of \mathcal{D} although $\mathcal{D} \subseteq m(\mathcal{B}^{\#})$, a contradiction. Hence $m(\mathcal{B}^{\#})$ is a point finite regular open cover of X.

Lemma 2.13. Let \mathcal{B} be a family of open sets of a T_2 -space X such that $\mathcal{B}^{\#}$ is a uniform pseudo-base. Then there exists a countable family of point finite regular open covers which taken together is a pseudo-base for X.

Proof. Let $\mathcal{B}_1^{\#} = \mathcal{B}^{\#}$ and $\mathcal{B}_2^{\#} = \mathcal{B}_1^{\#} \setminus m^*(\mathcal{B}_1^{\#})$, where $m^*(\mathcal{B}_1^{\#})$ is the collection of all maximal elements of $\mathcal{B}_1^{\#}$ each of which contains at least two points. We first show that $\mathcal{B}_2^{\#}$ is a pseudo-base for X. In fact, let $x \in X$. Then by Lemma 2.12, x belongs to only finitely many members $U_1, U_2, ..., U_n$ (say) of $m^*(\mathcal{B}_1^{\#})$. Let $x_i \in U_i$ with $x \neq x_i$ for i = 1, 2, ..., n. Since X is $T_2, X \setminus \{x_1, x_2, ..., x_n\}$ is a regular open set containing x and so there exists B in $\mathcal{B}^{\#}$ such that $x \in B \subseteq$ $X \setminus \{x_1, x_2, ..., x_n\}$. Let W be any regular open set containing x. Then there exists a $B' \in \mathcal{B}^{\#}$ such that $x \in B' \subseteq W$. Again there exists $B_1 \in \mathcal{B}^{\#}$ such that $x \in B_1 \subseteq B \cap B' \Rightarrow x \in B_1 \subseteq W$ and $B_1 \notin m^*(\mathcal{B}_1^{\#}) [B_1 \in m^*(\mathcal{B}_1^{\#}) \Rightarrow B_1 = U_i$ for some $i = 1, 2, ..., n \Rightarrow x_i \in B_1$ but $(x_i \notin B) \Rightarrow B_1 \nsubseteq B$, a contradiction]. Therefore, $x \in B_1 \subseteq W$ and $B_1 \in \mathcal{B}_2^{\#}$. Again $\mathcal{B}_2^{\#} \subseteq \mathcal{B}_1^{\#}$ and $\mathcal{B}_1^{\#}$ is a uniform pseudo-base $\Rightarrow \mathcal{B}_2^{\#}$ is a uniform pseudo-base.

Now proceed by induction, if $\mathcal{B}_k^{\#}$ is already defined then put $\mathcal{B}_{k+1}^{\#} = \mathcal{B}_k^{\#} \setminus m^*(\mathcal{B}_k^{\#})$ and as above, $\mathcal{B}_{k+1}^{\#}$ is a uniform pseudo-base for X. Then for each $n \in \mathbb{N}$, $\mathcal{B}_n^{\#}$ is a uniform pseudo-base for X and so $m(\mathcal{B}_n^{\#})$ is a point finite regular open cover of X (by Lemma 2.12).

Consider an arbitrary $x \in X$. For each $n \in \mathbb{N}$, choose $U_n \in m(\mathcal{B}_n^{\#})$ such that $x \in U_n$.

If there is $n \in \mathbb{N}$ satisfying $|U_n| = 1$ then $\{U_n : n \in \mathbb{N}\}$ is a pseudo-base at x. If $|U_n| \ge 2$ for all $n \in \mathbb{N}$ then by definition of $\mathcal{B}_n^{\#}$, $U_n \neq U_m$ for $n \neq m$. Hence $\mathcal{L} = \{U_n : n \in \mathbb{N}\}$ is an infinite set of elements of the uniform pseudo-base $\mathcal{B}_n^{\#}$, each containing x. We claim that \mathcal{L} is a pseudo-base for X at x. If not, then for some regular open set D containing x, there does not exist any $C \in \mathcal{L}$ such that $x \in C \subseteq D$ holds, i.e., for all $C \in \mathcal{L}$, $C \cap (X \setminus D) \neq \phi$. But since $\mathcal{L} \subseteq \mathcal{B}^{\#}$, $\{V \in \mathcal{B}^{\#} : x \in U$ and $U \cap (X \setminus D) \neq \phi\}$ is finite, a contradiction. Consequently, \mathcal{L} is a pseudo-base for X at x. Hence $\{m(\mathcal{B}_n^{\#}) : n \in \mathbb{N}\}$ is the required family. \Box

Definition 2.14 ([11]). Let \mathcal{A} be a family of subsets of a space X. The star of a point $x \in X$ in \mathcal{A} , denoted by $St(x, \mathcal{A})$, is defined by the union of all members of \mathcal{A} which contain x. A family \mathcal{A} of subsets of a space X is said to be a star refinement of another family \mathcal{B} of subsets of X if the family of all stars of points of X in \mathcal{A} forms a covering of X which refines \mathcal{B} .

Theorem 2.15 ([10]). An almost regular space X is nearly paracompact if and only if every regular open covering of X has a regular open star refinement.

Definition 2.16. Let X be a topological space and Γ a family of covers of X. We call Γ refined if for any point $x \in X$ and any regular open set O_x containing

Near metrizability

x, there exists $\mathcal{B} \in \Gamma$ such that $St(x, \mathcal{B}) \subseteq O_x$.

If all the members of Γ are regular open covers, then we say that Γ is a refined family of regular open covers.

Theorem 2.17. Let \mathcal{B} be a family of open sets of an almost T_3 nearly paracompact space X such that $\mathcal{B}^{\#}$ is a uniform pseudo-base for X. Then X has a countable refined family of regular open covers.

Proof. By Lemma 2.13, there exists a countable family of point finite regular open covers \mathcal{B}_n , which taken together is a pseudo-base for X. Since X is almost regular and nearly paracompact, by Theorem 2.15, each \mathcal{B}_n has a regular open star refinement \mathcal{U}_n .

Now fix $x \in X$, and for each $n \in \mathbb{N}$, choose $B_n \in \mathcal{B}_n$ so that $St(x, \mathcal{U}_n) \subseteq B_n$. Then $\{B_n : n = 1, 2, ...\}$ is a pseudo-base for X at x. Let U be a regular open set containing x. Then there exists $B_k(say)$ such that $x \in B_k \subseteq U$ and then $x \in St(x, \mathcal{U}_k) \subseteq B_k \subseteq U$. Thus $\{\mathcal{U}_n : n = 1, 2, ...\}$ is a countable refined family of regular open covers.

Theorem 2.18 ([7]). A space X is nearly metrizable if and only if it is almost T_3 and possesses a σ -locally finite pseudo-base.

Theorem 2.19. Let X be an almost T_3 nearly paracompact space such that X has a countable refined family $\{\mathcal{U}_i\}_{i=1}^{\infty}$ of regular open covers. Then X is nearly metrizable.

Proof. Since X is nearly paracompact, each \mathcal{U}_i has a locally finite open refinement \mathcal{B}_i . Let $\mathcal{B} = \bigcup_{i=1}^{\infty} \mathcal{B}_i$. We show that \mathcal{B} is a pseudo-base for X. In fact, let

 $x \in X$ and U be any regular open set containing x. Then since $\{\mathcal{U}_i\}_{i=1}^{\infty}$ is a refined family of covers there exists $k \in \mathbb{N}$ such that $x \in St(x, \mathcal{U}_k) \subseteq U$. But \mathcal{B}_k being a cover of X, there exists $B_k \in \mathcal{B}_k$ such that $x \in B_k$ and B_k is contained in some member of \mathcal{U}_k containing x and hence is contained in $St(x, \mathcal{U}_k)$. Thus $x \in B_k \subseteq U$. Hence \mathcal{B} is a σ -locally finite pseudo-base for X and hence by Theorem 2.18, X is nearly metrizable.

Theorem 2.20. Let \mathcal{B} be a family of open sets of an almost T_3 nearly paracompact space X such that $\mathcal{B}^{\#}$ is a uniform pseudo-base for X. Then X is nearly metrizable.

Proof. Follows from Theorems 2.17 and 2.19.

Theorem 2.21. Every almost T_3 -space X with a nearly regular pseudo-base \mathcal{B} is nearly mertizable.

Proof. By Theorem 2.10, X is nearly paracompact. Again by Proposition 2.6, $\mathcal{B}^{\#}$ is a nearly regular pseudo-base. Since every nearly regular pseudo-base is a uniform pseudo-base, $\mathcal{B}^{\#}$ is a uniform pseudo-base for X, and then by Theorem 2.20, it follows that X is nearly metrizable.

ACKNOWLEDGEMENTS. The authors are grateful to the referee for some suggestions towards certain improvement of the paper.

References

- A. V. Arhangel'skii and V. I. Ponomarev, Fundamentals of general topology: Problems and exercises, Hindustan publishing corporation(India), 1984.
- [2] R. Engelking, *General Topology*, Sigma series in Pure Mathematics, Berlin, Heldermann, 1989.
- [3] N. Ergun, A note on nearly paracompactness, Yokahama Math. Jour. 31 (1983), 21–25.
- [4] I. Kovačević, Almost regularity as a relaxation of nearly paracompactness, Glasnik Mat. 13 (33)(1978), 339–341.
- [5] I. Kovačević, On nearly paracomapct spaces, Publications De L'institut Mathematique 25 (1979), 63–69.
- [6] M. N. Mukherjee and D. Mandal, On some new characterizations of near paracompactness and associated results, Mat. Vesnik 65, no. 3 (2013), 334–345.
- [7] M. N. Mukherjee and D. Mandal, *Concerning nearly metrizable spaces*, Applied General Topology 14, no. 2 (2013), 135–145.
- [8] T. Noiri, A note on nearly paracompact spaces, Mat. Vesnik 5 (18)(33)(1981), 103–108.
- [9] M. K. Singal and S. P. Arya, On almost regular spaces, Glasnik Mat. 4 (24)(1969), 89–99.
- [10] M. K. Singal and S. P. Arya, On nearly paracompact spaces, Mat. Vesnik 6 (21)(1969), 3–16.
- [11] J. W. Tukey, Convergence and uniformity in topology, Princeton University Press, Princeton, N. J. 1940. ix+90 pp. Transl. (2), 78 (1968), 103–118.