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ABSTRACT

An ideal on a set X is a nonempty collection of subsets of X which sat-
isfies the following conditions (1)A € T and B C A implies B € Z; (2)
A €T and B € T implies AUB € Z. Given a topological space (X, T)
anideal T on X and A C X, R.(A) is defined as U{U € 7* : U—-A € T},
where the family of all a-open sets of X forms a topology [5, 6], denoted
by 7¢. A topology, denoted 7", finer than 7% is generated by the basis
B(Z,7)={V —I:V € 1%x), I €T}, and a topology, denoted (R4 (7))
coarser than 7% is generated by the basis Ra(7) = {Ra(U) : U € 7°}.
In this paper A bijection f : (X,7,Z) — (X,0,J) is called a Ax-
homeomorphism if f : (X, T“*) — (Y, 0“*) is a homeomorphism, R,-
homeomorphism if f : (X,Ra(7)) — (Y,Ra(0)) is a homeomorphism.
Properties preserved by Ax-homeomorphism are studied as well as nec-
essary and sufficient conditions for a Rg-homeomorphism to be a Ax-
homeomorphism.
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1. INTRODUCTION AND PRELIMINARIES

Ideals in topological spaces have been considered since 1930. The sub-
ject of ideals in topological spaces has been studied by Kuratowski [11] and
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Vaidyanathaswamy [18]. Jankovic and Hamlett [10] investigated further prop-
erties of ideal space. In this paper, we investigate a-local functions and its
properties in ideals in topological space [1]. Also, the relationships among
local functions such as local function [19, 10] and semi-local function [7] are
investigated.

A subset of a space (X, 7) is said to be regular open (resp. regular closed)
[12] if A = Int(Cl(A)) (resp. A = Cl(Int(A))). A is called d-open [20] if for
each x € A, there exists a regular open set G such that x € G C A. The
complement of §-open set is called d-closed. A point z € X is called a J-cluster
point of A if int(CI(U)) N A # ¢ for each open set V containing . The set of
all d-cluster points of A is called the J-closure of A and is denoted by Cls(A)
[20]. The é-interior of A is the union of all regular open sets of X contained
in A and its denoted by Ints(A) [20]. A is d-open if Ints(A) = A. d-open sets
forms a topology 7°.

A subset A of a space (X,7) is said to be a-open (resp. a-closed) [5] if
A C Int(Cl(Ints(A))) (resp. Cl(Int(Cls(A))) C A, or A C Int(Cl(Ints(A)))
(resp. Cl(Int(Cls(A))) C A. The family of a-open sets of X forms a topology,
denoted by 7% [6]. The intersection of all a-closed sets contained A is called
the a-closure of A and is denoted by aCIl(A). The a-interior of A, denoted by
alnt(A), is defined by the union of all a-open sets contained in A [5].

An ideal 7 on a topological space (X,Z) is a nonempty collection of subsets

of X which satisfies the following conditions:
(1) A€ ZTand B C Aimplies B € T; (2) A € T and B € Timplies AU
B € Z. Applications to various fields were further investigated by Jankovic
and Hamlett [10] Dontchev et al. [4]; Mukherjee et al. [13]; Arenas et al.
[3]; Navaneethakrishnan et al. [14]; Nasef and Mahmoud [15], etc. Given
a topological space (X,Z) with an ideal Z on X and if p(X) is the set of all
subsets of X, a set operator (.)* : p(X) — p(X), called a local function [11, 10]
of A with respect to 7 and Z is defined as follows: for A C X,

A (Z,1)={x e X |UNA¢TZ, for every U € 7(x)}

where 7(x) = {U €71 |z € U}. A Kuratowski closure operator CI*(.) for a
topology 7*(7,Z), called the x-topology, which is finer than 7 is defined by
Cl*(A) = AU A*(1,T), when there is no chance of confusion. A*(Z) is denoted
by A* and 7* for 7*(Z,7). X* is often a proper subset of X. The hypothesis
X = X* [7] is equivalent to the hypothesis T NZ = ¢. If 7 is an ideal on
X, then (X, 7,7) is called an ideal space. N is the ideal of all nowhere dense
subsets in (X, 7). A subset A of an ideal space (X, 7,7) is *x-closed [4] (resp.
x-dense in itself [7]) if A* C A(respA C A*). A subset A of an ideal space
(X,7,7) is Ty—closed [20] if A* C U whenever A C U and U is open. For every
ideal topological space there exists a topology 7*(Z) finer than 7 generated
by B8(Z,7) ={U - A|U € 7 and A € T}, but in general 3(Z,7) is not always
topology [10]. Let (X,Z,7) ba an ideal topological space. We say that the
topology 7 is compatible with the Z, denoted 7 ~ Z, if the following holds for
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every A C X, if for every x € A there exists a U € 7 such that UN A € Z, then
Ael

Given a space (X, 7,7), (Y,0,J), and a function f : (X,7,Z) = (Y, 7,J), we
call f a x-homomorphism with respect to 7, Z, o, and J if f : (X, 7*) = (Y, 0%)
is a homomorphism, where a homomorphism is a continuous injective function
between two topological spaces, that is invertible with continuous inverse. We
first prove some preliminary lemmas which lead to a theorem extending the
theorem in [17] and apply the theorem to topological groups. Quite recently,
in [2], the present authors defined and investigated the notions R, : p(X) — 7
as follows, ®,(A4) = {# € X : there exists U, € 7% containing x such that
Uy —A € I}, for every A € p(X). In [16], Newcomb defined A = B[modZ] if
(A—B)U(B—A) € T and observe that = [mod Z] is an equivalence relation. In
this paper a bijection f : (X,7,Z) — (X, 0,J) is called a Ax-homeomorphism
if f:(X,7%) = (Y,0%) is a homeomorphism, ®,-homeomorphism if f :
(X, Ra(1)) = (Y, Ra(0)) is a homeomorphism. Properties preserved by Ax-
homeomorphism are studied as well as necessary and sufficient conditions for
a R,-homeomorphism to be a Ax-homeomorphism.

2. a-LOCAL FUNCTION AND ,- OPERATOR

Let (X, 7,Z) an ideal topological space and A a subset of X. Then A% (Z,7) =
{r €e X:UNA¢TIZ, forevery U € 7(x)} is called a-local function of A [1]
with respect to Z and 7, where 7%(x) = {U € 7* : © € U}. We denote simply
A% for A® (T, 7).

Remark 2.1 ([1]).
(1) The minimal ideal is considered {@} in any topological space (X, T)
and the maximal ideal is considered P(X). It can be deduced that
AY ({2}) = Cl,(A) # Cl(A) and A* (P(X)) = @ for every A C X.
(2) If A€ T, then A =@
(3) AZ A and A* ¢ A in general.

Theorem 2.2 ([1]). Let (X, 7,Z) an ideal in topological space and A, B subsets
of X. Then for a-local functions the following properties hold:

(1) If AC B, then A* C B*,
(2) For another ideal J D> T on X, A% (J) C A* (T),
(3) A*" C aCl(A),
(4) A (T) = aCl(A®") C aCl(A) (i.e A% is an a-closed subset of aCl(A)),
(5) (A*)* C A,
(6) (AUB)* = A UB*,
(7) A* —B* = (A—B)* —B* C (A-B)*,
(8) If Ue m%,then UN A =UN(UNA® C(UNA*,
(9) If U 7% then (A—U)* = A% = (AUU)*,
(10) If A C A*", then A% (T) = aCl(A*") = aCl(A).
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Theorem 2.3 ([1]). Let (X, 7,Z) an ideal in topological space and A, B subsets
of X.Then for a-local functions the following properties hold:

(1) 7NZ = ¢;

(2) If I € Z, then alnt(I) = ¢;

(3) For every G € t®, then G C G ;

(4) X =X,

Theorem 2.4 ([1]). Let (X,7,7) be an ideal topological space and A subset of
X. Then the following are equivalent:

(1) Z~*7,

(2) If a subset A of X has a cover a-open of sets whose intersection with
Ais in Z, then A is in Z, in other words A*" = ¢, then A € 7,

(3) Forevery AC X,if ANA* =¢, AcT,

(4) For every AC X, A— AY €1,

(5) For every A C X, if A contains no nonempty subset B with B € B®,
then A € 7.

Theorem 2.5 ([1]). Let (X,Z,7) be an ideal topological space. Then B(Z,T) is
a basis for 7 . B(Z,7) ={V — I, : V € 7%(x), I; € I} and B is not, in general,
a topology.

Theorem 2.6 ([2]). Let (X,7,7) be an ideal topological space. Then the fol-
lowing properties hold:
(1) If AC X, then Ry (A) is a-open.
(2) If A C B, then R,(A) C R.(B).
(3) If A, B € p(X), then R, (AU B) C R(A4) URy(
(4) If A, B € p(X), then R, (AN B) = RN (A) N
(5) IfU € 7%, then U C R, (U).
(6) If AC X, then R.(A) C R, (Ra(A)).
(7) If AC X, then R (A) = Ro(Ra(A)) if and only if
(XA = ((x - Ay
(8) If A€, then Ry(A) =X — X .
(9) If A C X, then AN R,(A) = Int® (A), where Int® is the interior of
7o,
(10) If AC X, I €T, then Ra(A — I) = Ru(A).
(11) I[fAC X, I €T, then Ra(AUT) = Ry (A).
(12) If (A— B)U (B — A) € Z, then R,(4) = R, (B).
Theorem 2.7 ([1]). Let (X, 7,Z) be an ideal topological space and A subset of
X. If T is a-compatible with Z. Then the following are equivalent:
(1) For every A C X, if AN A® = ¢ implies A® = ¢,
(2) For every AC X, (A—A%)* = ¢,
(3) For every A C X,(ANA® )" = A",
Theorem 2.8 ([2]). Let (X,7,Z) be an ideal topological space with T ~* T.
Then R (A) = U{R,(U) : U € 7%, R (U) — A€ T}.
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Proposition 2.9 ([2]). Let (X,7,7) be an ideal topological space with T*NT =
¢.Then the following are equivalent:

(1) AeU(X,7,T),

(2) Ra(A) Nalnt(A*) # ¢,

(3) Ra(A) N A" #9,

(4) Ra(4) # 0,

(5) Int* (A) # ¢,

(6) There exists N € 7* — {@} such that N—A€Z and NNA¢T.

Proposition 2.10 ([2]). Let (X,7,Z) be an ideal topological space. Then T ~°
T, AC X. If N is a nonempty a-open subset of A> NR,(A), then N— A €T
and NNA¢T.

Theorem 2.11 ([2]). Let (X, 7,Z) be an ideal topological space. Then T ~* T
if and only if Ry (A) — A € T for every A C X.

3. A*-HOMEOMORPHISM

Given an ideal topological space (X, 7,Z) a topology 7 finer than (R, (7))
which (R4 (7)) is generated by the basis R,(7) = {R,(U) : U € 7°}.

Definition 3.1 ([5]). A function f: (X,7) = (X, 0) is called
(1) a-continuous if the inverse image of a-open set is a-open.
(2) a-open if the image of a-open set is a-open.

Definition 3.2. Let (X, 7,7Z) and (X,0,J) be an ideal topological space. A
bijection f: (X,7,Z) — (X,0,J) is called
(1) Asx-homeomorphism if f : (X,7%) — (Y,6% ) is a homeomorphism.
(2) Rs-homeomorphism if f : (X,R.(7)) — (Y,Ru(0)) is a homeomor-
phism.

Theorem 3.3. Let (X,7,7) and (X,0,J) be an ideal topological space with
f: (X, Ra(1)) = (X,0,T) an a-open bijective, T ~* T and f(Z) C J. Then
FR.(A)) S RL(f(A)) for every A C X.

Proof. Let A C X and let y € f(Ra(A)). Then f~(y) € R.(A) and there
exists U € 7@ such that f~!(y) € R, (U) and R,(U) — A € Z by Theorem 2.8.
Now f(Ru(U) € 0°(y) and f(Ra(D)) = F(A) = f[Ra(U) — A] € F(T) C T
Thus y € R.(f(A), and the proof is complete. O

Theorem 3.4. Let (X,7,7) and (X,0,J) be an ideal topological space with
f:(X,7) = (X, R.(0)) is a-continuous injection, o ~* J and f~1(J) C .
Then R, (f(A)) C f(Ra(A)) for every A C X.
)

Proof. Lety € Ro(f(A)) where A C X. Then by Theorem 2.8, there exists U €
o® suchthatyeﬁ? (U) and R,(U) — f(A) € J. Now we have f~1(R,(U)) €
P4 (=1 (y) with f~A[Ro(U)— f(A)] € T then £~ [Ry(U)]—A € T and /' (y) €
Ro(A) and hence y € f(R4(A)), and the proof is complete. O
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Theorem 3.5. Let (X, 7,7) and (X,0,J) be a bijective with f(Z) = J. Then
the following properties are equivalent:

(1) fis Ax-homeomorphism;

(2) f(A”) =[f(A)* for every AC X

(3) f(Ra(A)) = Ra(f(A)) for every AC X;

Proof. (1) = (2) Let A C X. Assume y ¢ f(A% ). This implies that f~'(y) ¢
A% and hence there exists U € 7%(f~'(y)) such that U N A € Z. Conse-
quently f(U) € 0 (y) and J(U) N f(A) € J, then y ¢ [f(A)* (T, 0%) =
[f(A)]* (J,o0). Thus [f(A)]a C f(A*). Now assume y ¢ [f(A)]* . This
implies there exists a V' € 0% (y) such that V N f(A) € J, then f~1(V) €
7 (f~Yy)) and f~Y(V)N A € Z. Thus f~'(y) ¢ A* (Z,7%) = A% (Z,7%)
andy ¢ f(A%). Hence f(A) € [J(A)* and f(4°) = [f(A)".
(2) = (3) Let AC X. Then f(R,(A)) = fIX—(X—-A)* | =Y - f(X-A)* =
Y~ ¥ — f(A) = Ra(f(A).

(3) = (1) Let U € 7. Then U C R,(U) by Theorem 2.6 and f(U) C
F(Ro(U)) = Ro(f(U)). This shows that f(U) € 0® and hence f: (X,7%) —
(Y,0%") is 7% -open. Similarly, f=1: (Y,0%) — (X,7%) is ¢ -open and, f is
Ax-homeomorphism. O

*

Theorem 3.6. Let (X,7,7) be an ideal topological space, then (Ko (T )) =
(Ra (7))

Proof. Note that for every U € 7@ and for every I € Z, we have R,(U — I) =
R, (U). Consequently, R,(8) = Ro(7%) and (Ro(8)) = (Ro(7%)), where § is
a basis for 7. It follows directly from Theorem 11 of [9] that (R.(8)) =
(Ra(7%")), hence the theorem is proved.

(|
Theorem 3.7. Let f : (X,7,7) — (Y,0,T) be a bijection with f(Z) = J.
Then the following are hold:
(1) If f is a Ax-homeomorphism, then f is a R,-homeomorphism.
(2) If T ~* T and o0 ~* J and f is a Ne-homeomorphism, then [ is a
Asx-homeomorphism.

Proof. (1) Assume f : (X,7%) — (Y,0%) is a A*-homeomorphism, and let
R.(U) be a basic open set in (R,(7%)) with U € 7*. Then f(R,(U)) =
R.(f(U)) by Theorem 3.5. Then f(R,(U)) € Ro(c® ), but (Ro(7%")) =
(R, (7%)) by Theorem 3.6. Thus f : (X,R.(7)) = (Y,Ra(0)) is a-open. Simi-
larly, f=1: (Y, Ra(0)) = (X, Ra(7)) is a-open and f is R,-homeomorphism.

(2) Assume f is a R,-homeomorphism, then f(R4(A)) = R (f(A4)) for every
A C X by Theorems 3.4 and 3.3. Thus f is a Ax-homeomorphism by Theorem
3.0. (]

4. RESULTS RELATED TO TOPOLOGICAL GROUPS

Given a topological group (X, 7,.) and an ideal Z on X, denoted (X, 7,Z,.)
and z € X, we denote by 2Z = {xI : I € T}. We say that Z is left translation
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invariant if for every « € X we have xZ C 7. Observe that if 7 is left translation
invariant then «Z = 7 for every z € X. We define 7 to be right translation
invariant if and only if Zx = Z for every x € X [8].

Given a topological group (X, 7,7), Z is said to be 7%-boundary [2], if 7NZ =
{6}.

Note that if Z is left or right translation invariant, X ¢ Z, and I ~* Z, then 7
is 7*-boundary.

Definition 4.1 ([2]). Let (X,7,Z) be an ideal topological space. A subset A
of X is called a Baire set with respect to 7% and Z, denoted A € B,.(X,7,T),
if there exists a a-open set U such that A = U [mod Z]. Let U(X,7,Z) be
denoted {A C X : there exists B € B,.(X,7,Z) — Z such that B C A}.

Lemma 4.2. Let (X,7) and (X,0) be two topological spaces and F be a col-
lection of a-open mappings from X toY. Let U € 7 — {¢} and let A be a non
empty subset of U. If f(U) € F(A) ={f(A): f € F} for every f € F, Then
F(A) € o — {o}.

Proof. Let y € F(A), then there exist f € F such that y € f(A4). Now, A C U,
then f(A) C f(U) and y € f(U). Then f(U) is a-open in (Y,0) (as f is a-
open map). So there exists V' € 0%(y) such that y € V C f(U) C F(A). So
F(A) € o —{o}. (]

Theorem 4.3. Let (X, 1) and (X, o) be two topological spaces and I be an ideal
(X,7) with 7 ~* T and 7* NI = {¢}. Moreover, let U € 7* — {¢}, A C X,
U C A NR.(A) and F be a non-empty collection of a-open mappings from
X toY. Supposey € F(U) = UNF Yy) ¢ I, where F~1(y) = U{f1(y) :
feF}. Then F(UNA) € o —{¢}.

Proof. Since U is a non-empty a-open set contained in A**NR,(A) and 7 ~@ Z,
by Proposition 2.10 it follows that U —A € Zand UNA ¢ Z. For any y € F(U),
UNF~Y(y) ¢ Z (by hypothesis) and we have UNF~1(y) = UNF(y)N(AU
A)=[UNFHy)nAUUNF Hy)NA] C[UUF L y)nAU U — A)
(where A = complement of A). Since UNF '(y) ¢ Z and U — A € Z, we
have UNF~Y(y) N A ¢ Z. Then for any y € F(U), UNFL(y) N A # {¢}.
Now for a given f € F, k € f(U) = k € F(U), then there exist € UN A and
z € g~ 1(k) for some g € F, where k = g(z) = k € g(UNA), and k € F(UNA).
Hence f(U) C F(UNA), for all f € F. Then F(UNA) € 0® — {¢} by Lemma
4.2. (]

Lemma 4.4. Let T be a left (right) translation invariant ideal on a topological
group (X,7,.) and x € X. Then for any A C X the following hold:

(1) 2R (A) = Ro(zA), and R, (A)x = Ry (Ax),
(2) AV = (xA)* (resp.A* z = (Ax)*").
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Proof. We assume that Z is right translation invariant, the proof is similar for
the case when 7 is left translation invariant would be .

(1) We first note that for any two subsets A and B of X, (A— B)x = Az — Bx.
In fact, y € (A — B)z, then y = tz, for some t € A — B. Now t € A then
tx € Ax. But tx € Bx = tx = bx for some b € B =t = b € B a contradiction.
Soy=tx € Ax—Bzx. Again,y € Ax—Bx = y € Az and y ¢ Bx = y = ax for
somea € Aand ax ¢ Bx = a ¢ B =y = ax, wherea € A—B =y € (A—B)z.
Now, y € R,(Az) = y € Uz for some U € 7% with U — A € Z. Then
Ur=V er®and (U—- Az =Ux — Az € T where Uz € 7*. Theny € V,
where Ver*andV-Az e T =ye UV er®: V- Az € T} = R, (Ax).
Thus zR,(A) C R, (Az).

Conversely, let y € Ro(Az) = WU € 7* : U—-Az € I} = y € U € 1%,
where U — Az € Z. Put V = Uz~ '. Then V € 7% Now yz~ ! € V and
V-A=Uz'-A=U-Az)z ' € IT=yr ! € Ry(A) = y € Ro(A)z. Thus
R (Az) C Ry (A)x and hence R, (A)z = Na(Az)

(2) In view of (1) Ra(X — A)z = R, ((X — A)z), then [X — A% |z = X — (Ax)*
and X — A%z = X — (Az)® thus A% z = (Az)*". O

Lemma 4.5. Let T be an ideal space on a topological group (X, 7,.) such that
T is left or right translation invariant and 7 ~*Z. Then TN 1% = {¢}.

Proof. Since X ¢ T and 7 ~* Z, by Theorem 2.4 there exist € X such that
for all U € 7%(x),

(4.1) U=UNX¢I

Let Ve In7* If V = {¢} we have nothing to show. Suppose V # {¢}.
Without loosing of generality we may assume that ¢ € V (i denoted the identity
of X). Fory € Vtheny V € 7@ and y~'V € y~'T so that y~'V € T
where i € y~'V. Thus 2V € 7* and #V € 2T and hence 2V € Z. Thus

2V € 7 NZ, where 2V is a neighborhood of z, which is contradicting (4.1)
and hence ZN 7% = {¢}. O

Theorem 4.6. Let (X, 7,.) be a topological group and I be an ideal on X such
that 7 ~* Z. Let P € U(X,7,Z) and S € P(X) —Z. Let UV € 7 such
that UNS* # {¢}, VNalnt(P*)NR(P) # {¢}. fA=UNSNSY and
B =V nalnt(P* )N PNR,(P) then the following hold:
(1) If T is left translation invariant, then BA™! is a non-empty a-open set
contained in PS~!.
(2) If T is right translation invariant, then A~1B is a non-empty a-open
set contained in ST P.

Proof. (1) Since X is a topological group, 7 ~® Z and Z is right translation
invariant, we have by Lemma 4.5, ZN 7% = {¢}. Now by Theorem 2.2
(UNSNS* )" C (UNS)* and by Theorem 2.7 we get (UNSN(UNS)* ) =
(UNS)*". Hence

(4.2) (UNSNS ) =WUnS)*
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Thus by Theorem 2.2 we have UNS* = UN U NS C (UNS) =
(UNSNSY) by (¥). Since UNS* # {¢}, we have A # {¢}. Again,
A =(UNSNS ) DUNSY DUNS* NS =Aie AC A . For each
a € A, define f, : X — X given by f,(r) = za™!, and F = {f, : a € A}. Since
A #{¢}, F # {¢} and each f, is a homeomorphism. Let G = VNalnt((P)* )N
R4 (P). Now it is sufficient to show that G N F~1(y) ¢ T for every y € F(G).
Because then by Theorem 4.3, F(G N P) = F(B) = BA™! is a non-empty
a-open set in X contained in PS~!. Let y € F(G). Then y = wa~! for some
a€ Aand z € G = F '(y) = za 'A. Thus z € za=*A C za~'A" (as
AC AY) C (za'A) (by Lemma 4.4) = (F - Y(y)* = N.NF ' (y) ¢TI
for some N, € 7%(z). Thus BA~! is a nonempty a-open subset of PS~t. So
in particular, as (2) is similar to (1). O

Corollary 4.7. Let (X, 1,.) be a topological group and T be an ideal on X such
that T ~* T. Let A € U(X,7,T) and B € P(X) — 1.
(1) If T is right translation invariant, then [B N B |~'[A N alnt(A®) N
Ra(A)] is a non-empty a-open set contained in B~1A.
(2) IfT is left translation invariant, then [ANaInt(A )NR,(A)][BNB* |~*
is a non-empty a-open set contained in AB™!
Proof. We only show that B # {¢} and ANaInt(A® )NR,(A) # {4}, the rest
follows from Theorem 4.6 by taking U = V = X. In fact, if B* = {¢}, then
BN B* = {¢} which gives in view of Theorem 2.4, B € Z, a contradiction.
Again, A € UX,7,T) = alnt(A*) N R(A) # {¢} (by Lemma 4.5 and
Proposition 2.9) = alnt(A* )NRa(A) € 7@ — {#}. Now, alnt(A* )NR,(A) =
[ANaInt(A® ) NR,(A)U[ANalnt(A® )NR.(A)] ¢ T (by Lemma 4.5). Then
[A° N alnt(A® ) N R.(A)] C [A° N R.(A)] = Ra(A) — A € T by Theorem 2.11.
Thus ANalnt(A% )NR,(A) ¢ T and hence ANalnt(A%)NR,(A) # {¢}. O

Corollary 4.8. Let (X, ,.) be a topological group and T be an ideal on X such
that ZN 7% ={¢} and A e U(X,T,T).

(1) If T is left translation invariant, then e € alnt(A~1A).

(2) If T is right translation invariant, then e € alnt(AA™1).

(3) IfZ is left as well as right translation invariant, then e € alnt(AA™'N

ATLA).

Proof. Tt suffices to prove (1) only. We have, A € U(X, 7,Z) then there exists
B € B.(X,7,Z) — T such that B C A. Now for any z € X, R,(B)z N R.(B) =
Ro(Bzx) N R, (B) = Ro(Bx N B) (by Lemma 4.4 and Theorem 2.6). Thus if
Ro(B)x N R, (B) # {¢}, then Bx N B # {¢}. Now, if x € [R.(B)]~ [ o(B)]
then z = y~'2 for some y,z € Ry(B), then yz = 2z =t (say) = t € R,(B)z
and t € Ry (B) = Ro(B)x NRe(B) £ {¢} =z e {x e X: %G(B)I NR.(B) #
{¢}} then [Ro(B)]"'[Ra(B)] € {z € X : Ro(B)z N Ra(B) # {¢}} C {z €
X :BrxNB # {¢}} C BB C A 'A. Since R,(B) # {¢} by Proposition
29 as B € U(X,7,Z) and R,(B) is a-open for any B C X, we have e €
[Ro(B)] " HRa(B) C alnt(A~1A). O
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