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Abstract

An ideal on a set X is a nonempty collection of subsets of X which sat-
isfies the following conditions (1)A ∈ I and B ⊂ A implies B ∈ I; (2)
A ∈ I and B ∈ I implies A ∪B ∈ I. Given a topological space (X, τ )
an ideal I on X and A ⊂ X, ℜa(A) is defined as ∪{U ∈ τa : U−A ∈ I},
where the family of all a-open sets of X forms a topology [5, 6], denoted

by τa. A topology, denoted τa
∗

, finer than τa is generated by the basis
β(I, τ ) = {V − I : V ∈ τa(x), I ∈ I}, and a topology, denoted 〈ℜa(τ )〉
coarser than τa is generated by the basis ℜa(τ ) = {ℜa(U) : U ∈ τa}.
In this paper A bijection f : (X, τ, I) → (X,σ,J ) is called a A∗-

homeomorphism if f : (X, τa
∗

) → (Y, σa
∗

) is a homeomorphism, ℜa-
homeomorphism if f : (X,ℜa(τ )) → (Y,ℜa(σ)) is a homeomorphism.
Properties preserved by A∗-homeomorphism are studied as well as nec-
essary and sufficient conditions for a ℜa-homeomorphism to be a A∗-
homeomorphism.

2010 MSC: 54A05; 54C10.

Keywords: ℜa-homeomorphism; topological groups; a-local function; ideal
spaces; ℜa-operator; A∗-homeomorphism.

1. Introduction and Preliminaries

Ideals in topological spaces have been considered since 1930. The sub-
ject of ideals in topological spaces has been studied by Kuratowski [11] and
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Vaidyanathaswamy [18]. Jankovic and Hamlett [10] investigated further prop-
erties of ideal space. In this paper, we investigate a-local functions and its
properties in ideals in topological space [1]. Also, the relationships among
local functions such as local function [19, 10] and semi-local function [7] are
investigated.

A subset of a space (X, τ) is said to be regular open (resp. regular closed)
[12] if A = Int(Cl(A)) (resp. A = Cl(Int(A))). A is called δ-open [20] if for
each x ∈ A, there exists a regular open set G such that x ∈ G ⊂ A. The
complement of δ-open set is called δ-closed. A point x ∈ X is called a δ-cluster
point of A if int(Cl(U)) ∩ A 6= φ for each open set V containing x. The set of
all δ-cluster points of A is called the δ-closure of A and is denoted by Clδ(A)
[20]. The δ-interior of A is the union of all regular open sets of X contained
in A and its denoted by Intδ(A) [20]. A is δ-open if Intδ(A) = A. δ-open sets
forms a topology τδ.

A subset A of a space (X, τ) is said to be a-open (resp. a-closed) [5] if
A ⊂ Int(Cl(Intδ(A))) (resp. Cl(Int(Clδ(A))) ⊂ A, or A ⊂ Int(Cl(Intδ(A)))
(resp. Cl(Int(Clδ(A))) ⊂ A. The family of a-open sets of X forms a topology,
denoted by τa [6]. The intersection of all a-closed sets contained A is called
the a-closure of A and is denoted by aCl(A). The a-interior of A, denoted by
aInt(A), is defined by the union of all a-open sets contained in A [5].

An ideal I on a topological space (X, I) is a nonempty collection of subsets
of X which satisfies the following conditions:
(1) A ∈ I and B ⊂ A implies B ∈ I; (2) A ∈ I and B ∈ I implies A ∪
B ∈ I. Applications to various fields were further investigated by Jankovic
and Hamlett [10] Dontchev et al. [4]; Mukherjee et al. [13]; Arenas et al.
[3]; Navaneethakrishnan et al. [14]; Nasef and Mahmoud [15], etc. Given
a topological space (X, I) with an ideal I on X and if ℘(X) is the set of all
subsets of X , a set operator (.)

∗

: ℘(X) → ℘(X), called a local function [11, 10]
of A with respect to τ and I is defined as follows: for A ⊆ X ,

A∗(I, τ) = {x ∈ X | U ∩ A /∈ I, for every U ∈ τ(x)}

where τ(x) = {U ∈ τ | x ∈ U}. A Kuratowski closure operator Cl∗(.) for a
topology τ∗(τ, I), called the ∗-topology, which is finer than τ is defined by
Cl∗(A) = A∪A∗(τ, I), when there is no chance of confusion. A∗(I) is denoted
by A∗ and τ∗ for τ∗(I, τ). X∗ is often a proper subset of X . The hypothesis
X = X∗ [7] is equivalent to the hypothesis τ ∩ I = φ. If I is an ideal on
X , then (X, τ, I) is called an ideal space. N is the ideal of all nowhere dense
subsets in (X, τ). A subset A of an ideal space (X, τ, I) is ⋆-closed [4] (resp.
⋆-dense in itself [7]) if A∗ ⊆ A (respA ⊆ A∗). A subset A of an ideal space
(X, τ, I) is Ig−closed [20] if A∗ ⊆ U whenever A ⊆ U and U is open. For every
ideal topological space there exists a topology τ∗(I) finer than τ generated
by β(I, τ) = {U −A | U ∈ τ and A ∈ I}, but in general β(I, τ) is not always
topology [10]. Let (X, I, τ) ba an ideal topological space. We say that the
topology τ is compatible with the I, denoted τ ∼ I, if the following holds for
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every A ⊂ X , if for every x ∈ A there exists a U ∈ τ such that U ∩A ∈ I, then
A ∈ I.

Given a space (X, τ, I), (Y, σ,J ), and a function f : (X, τ, I) → (Y, τ,J ), we
call f a ∗-homomorphism with respect to τ , I, σ, and J if f : (X, τ∗) → (Y, σ∗)
is a homomorphism, where a homomorphism is a continuous injective function
between two topological spaces, that is invertible with continuous inverse. We
first prove some preliminary lemmas which lead to a theorem extending the
theorem in [17] and apply the theorem to topological groups. Quite recently,
in [2], the present authors defined and investigated the notions ℜa : ℘(X) → τ
as follows, ℜa(A) = {x ∈ X : there exists Ux ∈ τa containing x such that
Ux −A ∈ I}, for every A ∈ ℘(X). In [16], Newcomb defined A = B[mod I] if
(A−B)∪(B−A) ∈ I and observe that = [mod I] is an equivalence relation. In
this paper a bijection f : (X, τ, I) → (X, σ,J ) is called a A∗-homeomorphism
if f : (X, τa

∗

) → (Y, σa∗

) is a homeomorphism, ℜa-homeomorphism if f :
(X,ℜa(τ)) → (Y,ℜa(σ)) is a homeomorphism. Properties preserved by A∗-
homeomorphism are studied as well as necessary and sufficient conditions for
a ℜa-homeomorphism to be a A∗-homeomorphism.

2. a-Local Function and ℜa- operator

Let (X, τ, I) an ideal topological space and A a subset ofX . Then Aa∗

(I, τ) =
{x ∈ X : U ∩ A /∈ I, for every U ∈ τa(x)} is called a-local function of A [1]
with respect to I and τ , where τa(x) = {U ∈ τa : x ∈ U}. We denote simply

Aa∗

for Aa∗

(I, τ).

Remark 2.1 ([1]).

(1) The minimal ideal is considered {∅} in any topological space (X, τ)
and the maximal ideal is considered P (X). It can be deduced that
Aa∗

({∅}) = Cla(A) 6= Cl(A) and Aa∗

(P (X)) = ∅ for every A ⊂ X.

(2) If A ∈ I, then Aa∗

= ∅.
(3) A * Aa∗

and Aa∗

* A in general.

Theorem 2.2 ([1]). Let (X, τ, I) an ideal in topological space and A, B subsets
of X. Then for a-local functions the following properties hold:

(1) If A ⊂ B, then Aa∗

⊂ Ba∗

,

(2) For another ideal J ⊃ I on X, Aa∗

(J) ⊂ Aa∗

(I),
(3) Aa∗

⊂ aCl(A),

(4) Aa∗

(I) = aCl(Aa∗

) ⊂ aCl(A) (i.e Aa∗

is an a-closed subset of aCl(A)),

(5) (Aa∗

)a
∗

⊂ Aa∗

,
(6) (A ∪B)a

∗

= Aa∗

∪Ba∗

,

(7) Aa∗

−Ba∗

= (A−B)a
∗

−Ba∗

⊂ (A−B)a
∗

,
(8) If U ∈ τa, then U ∩ Aa∗

= U ∩ (U ∩ A)a
∗

⊂ (U ∩ A)a
∗

,

(9) If U ∈ τa, then (A− U)a
∗

= Aa∗

= (A ∪ U)a
∗

,
(10) If A ⊆ Aa∗

, then Aa∗

(I) = aCl(Aa∗

) = aCl(A).
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Theorem 2.3 ([1]). Let (X, τ, I) an ideal in topological space and A, B subsets
of X.Then for a-local functions the following properties hold:

(1) τa ∩ I = φ;
(2) If I ∈ I, then aInt(I) = φ;

(3) For every G ∈ τa, then G ⊆ Ga∗

;

(4) X = Xa∗

.

Theorem 2.4 ([1]). Let (X, τ, I) be an ideal topological space and A subset of
X. Then the following are equivalent:

(1) I ∼a τ ,
(2) If a subset A of X has a cover a-open of sets whose intersection with

A is in I, then A is in I, in other words Aa∗

= φ, then A ∈ I,
(3) For every A ⊂ X , if A ∩ Aa∗

= φ, A ∈ I,
(4) For every A ⊂ X , A−Aa∗

∈ I,

(5) For every A ⊂ X , if A contains no nonempty subset B with B ⊂ Ba∗

,
then A ∈ I.

Theorem 2.5 ([1]). Let (X, I, τ) be an ideal topological space. Then β(I, τ) is
a basis for τa

∗

. β(I, τ) = {V − Ii : V ∈ τa(x), Ii ∈ I} and β is not, in general,
a topology.

Theorem 2.6 ([2]). Let (X, τ, I) be an ideal topological space. Then the fol-
lowing properties hold:

(1) If A ⊂ X, then ℜa(A) is a-open.
(2) If A ⊂ B, then ℜa(A) ⊆ ℜa(B).
(3) If A, B ∈ ℘(X), then ℜa(A ∪B) ⊂ ℜa(A) ∪ ℜa(B).
(4) If A, B ∈ ℘(X), then ℜa(A ∩B) = ℜa(A) ∩ ℜa(B).

(5) If U ∈ τa
∗

, then U ⊆ ℜa(U).
(6) If A ⊂ X, then ℜa(A) ⊆ ℜa(ℜa(A)).
(7) If A ⊂ X, then ℜa(A) = ℜa(ℜa(A)) if and only if

(X −A)a
∗

= ((X −A)a
∗

)a
∗

.
(8) If A ∈ I, then ℜa(A) = X −Xa∗

.

(9) If A ⊂ X, then A ∩ ℜa(A) = Inta
∗

(A), where Inta
∗

is the interior of
τa

∗

.
(10) If A ⊂ X, I ∈ I, then ℜa(A− I) = ℜa(A).
(11) If A ⊂ X, I ∈ I, then ℜa(A ∪ I) = ℜa(A).
(12) If (A−B) ∪ (B −A) ∈ I, then ℜa(A) = ℜa(B).

Theorem 2.7 ([1]). Let (X, τ, I) be an ideal topological space and A subset of
X. If τ is a-compatible with I. Then the following are equivalent:

(1) For every A ⊂ X, if A ∩Aa∗

= φ implies Aa∗

= φ,
(2) For every A ⊂ X, (A−Aa∗

)a
∗

= φ,

(3) For every A ⊂ X,(A ∩Aa∗

)a
∗

= Aa∗

.

Theorem 2.8 ([2]). Let (X, τ, I) be an ideal topological space with τ ∼a I.
Then ℜa(A) = ∪{ℜa(U) : U ∈ τa,ℜa(U)−A ∈ I}.
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Proposition 2.9 ([2]). Let (X, τ, I) be an ideal topological space with τa∩I =
φ.Then the following are equivalent:

(1) A ∈ U(X, τ, I),

(2) ℜa(A) ∩ aInt(Aa∗

) 6= φ,

(3) ℜa(A) ∩ Aa∗

6= φ,
(4) ℜa(A) 6= φ,

(5) Inta
∗

(A) 6= φ,
(6) There exists N ∈ τa − {∅} such that N −A ∈ I and N ∩ A /∈ I.

Proposition 2.10 ([2]). Let (X, τ, I) be an ideal topological space. Then τ ∼a

I, A ⊆ X. If N is a nonempty a-open subset of Aa∗

∩ ℜa(A), then N −A ∈ I
and N ∩ A /∈ I.

Theorem 2.11 ([2]). Let (X, τ, I) be an ideal topological space. Then τ ∼a I
if and only if ℜa(A)−A ∈ I for every A ⊆ X.

3. A∗-homeomorphism

Given an ideal topological space (X, τ, I) a topology τa finer than 〈ℜa(τ)〉
which 〈ℜa(τ)〉 is generated by the basis ℜa(τ) = {ℜa(U) : U ∈ τa}.

Definition 3.1 ([5]). A function f : (X, τ) → (X, σ) is called

(1) a-continuous if the inverse image of a-open set is a-open.
(2) a-open if the image of a-open set is a-open.

Definition 3.2. Let (X, τ, I) and (X, σ,J ) be an ideal topological space. A
bijection f : (X, τ, I) → (X, σ,J ) is called

(1) A∗-homeomorphism if f : (X, τa
∗

) → (Y, σa∗

) is a homeomorphism.
(2) ℜa-homeomorphism if f : (X,ℜa(τ)) → (Y,ℜa(σ)) is a homeomor-

phism.

Theorem 3.3. Let (X, τ, I) and (X, σ,J ) be an ideal topological space with
f : (X,ℜa(τ)) → (X, σ,J ) an a-open bijective, τ ∼a I and f(I) ⊆ J . Then
f(ℜa(A)) ⊆ ℜa(f(A)) for every A ⊆ X.

Proof. Let A ⊆ X and let y ∈ f(ℜa(A)). Then f−1(y) ∈ ℜa(A) and there
exists U ∈ τa such that f−1(y) ∈ ℜa(U) and ℜa(U)− A ∈ I by Theorem 2.8.
Now f(ℜa(U)) ∈ σa(y) and f(ℜa(U)) − f(A) = f [ℜa(U) − A] ∈ f(I) ⊆ J .
Thus y ∈ ℜa(f(A), and the proof is complete. �

Theorem 3.4. Let (X, τ, I) and (X, σ,J ) be an ideal topological space with
f : (X, τ) → (X,ℜa(σ)) is a-continuous injection, σ ∼a J and f−1(J ) ⊆ I.
Then ℜa(f(A)) ⊆ f(ℜa(A)) for every A ⊆ X.

Proof. Let y ∈ ℜa(f(A)) where A ⊆ X . Then by Theorem 2.8, there exists U ∈
σa such that y ∈ ℜa(U) and ℜa(U) − f(A) ∈ J . Now we have f−1(ℜa(U)) ∈
τa(f−1(y)) with f−1[ℜa(U)−f(A)] ∈ I then f−1[ℜa(U)]−A ∈ I and f−1(y) ∈
ℜa(A) and hence y ∈ f(ℜa(A)), and the proof is complete. �
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Theorem 3.5. Let (X, τ, I) and (X, σ,J ) be a bijective with f(I) = J . Then
the following properties are equivalent:

(1) f is A∗-homeomorphism;
(2) f(Aa∗

) = [f(A)]a
∗

for every A ⊆ X;
(3) f(ℜa(A)) = ℜa(f(A)) for every A ⊆ X;

Proof. (1) ⇒ (2) Let A ⊆ X . Assume y /∈ f(Aa∗

). This implies that f−1(y) /∈

Aa∗

, and hence there exists U ∈ τa(f−1(y)) such that U ∩ A ∈ I. Conse-
quently f(U) ∈ σa∗

(y) and f(U) ∩ f(A) ∈ J , then y /∈ [f(A)]a
∗

(J , σa∗

) =

[f(A)]a
∗

(J , σ). Thus [f(A)]a
∗

⊆ f(Aa∗

). Now assume y /∈ [f(A)]a
∗

. This
implies there exists a V ∈ σa∗

(y) such that V ∩ f(A) ∈ J , then f−1(V ) ∈

τa
∗

(f−1(y)) and f−1(V ) ∩ A ∈ I. Thus f−1(y) /∈ Aa∗

(I, τa
∗

) = Aa∗

(I, τa)

and y /∈ f(Aa∗

). Hence f(Aa∗

) ⊆ [f(A)]a
∗

and f(Aa∗

) = [f(A)]a
∗

.
(2) ⇒ (3) Let A ⊆ X . Then f(ℜa(A)) = f [X−(X−A)a

∗

] = Y −f(X−A)a
∗

=

Y − [Y − f(A)]a
∗

= ℜa(f(A)).
(3) ⇒ (1) Let U ∈ τa

∗

. Then U ⊆ ℜa(U) by Theorem 2.6 and f(U) ⊆

f(ℜa(U)) = ℜa(f(U)). This shows that f(U) ∈ σa∗

and hence f : (X, τa
∗

) →
(Y, σa∗

) is τa
∗

-open. Similarly, f−1 : (Y, σa∗

) → (X, τa
∗

) is σa∗

-open and, f is
A∗-homeomorphism. �

Theorem 3.6. Let (X, τ, I) be an ideal topological space, then 〈ℜa(τ
a∗

)〉 =
〈ℜa(τ

a)〉.

Proof. Note that for every U ∈ τa and for every I ∈ I, we have ℜa(U − I) =
ℜa(U). Consequently, ℜa(β) = ℜa(τ

a) and 〈ℜa(β)〉 = 〈ℜa(τ
a)〉, where β is

a basis for τa. It follows directly from Theorem 11 of [9] that 〈ℜa(β)〉 =

〈ℜa(τ
a∗

)〉, hence the theorem is proved. �

Theorem 3.7. Let f : (X, τ, I) → (Y, σ,J ) be a bijection with f(I) = J .
Then the following are hold:

(1) If f is a A∗-homeomorphism, then f is a ℜa-homeomorphism.
(2) If τ ∼a I and σ ∼a J and f is a ℜa-homeomorphism, then f is a

A∗-homeomorphism.

Proof. (1) Assume f : (X, τa
∗

) → (Y, σa∗

) is a A∗-homeomorphism, and let
ℜa(U) be a basic open set in 〈ℜa(τ

a)〉 with U ∈ τa. Then f(ℜa(U)) =
ℜa(f(U)) by Theorem 3.5. Then f(ℜa(U)) ∈ ℜa(σ

a∗

), but 〈ℜa(τ
a∗

)〉 =
〈ℜa(τ

a)〉 by Theorem 3.6. Thus f : (X,ℜa(τ)) → (Y,ℜa(σ)) is a-open. Simi-
larly, f−1 : (Y,ℜa(σ)) → (X,ℜa(τ)) is a-open and f is ℜa-homeomorphism.
(2) Assume f is a ℜa-homeomorphism, then f(ℜa(A)) = ℜa(f(A)) for every
A ⊆ X by Theorems 3.4 and 3.3. Thus f is a A∗-homeomorphism by Theorem
3.5. �

4. Results related to topological groups

Given a topological group (X, τ, .) and an ideal I on X , denoted (X, τ, I, .)
and x ∈ X , we denote by xI = {xI : I ∈ I}. We say that I is left translation
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invariant if for every x ∈ X we have xI ⊆ I. Observe that if I is left translation
invariant then xI = I for every x ∈ X . We define I to be right translation
invariant if and only if Ix = I for every x ∈ X [8].

Given a topological group (X, τ, I), I is said to be τa-boundary [2], if τa ∩I =
{φ}.
Note that if I is left or right translation invariant, X /∈ I, and I ∼a I, then I
is τa-boundary.

Definition 4.1 ([2]). Let (X, τ, I) be an ideal topological space. A subset A
of X is called a Baire set with respect to τa and I, denoted A ∈ Br(X, τ, I),
if there exists a a-open set U such that A = U [mod I]. Let U(X, τ, I) be
denoted {A ⊆ X : there exists B ∈ Br(X, τ, I)− I such that B ⊆ A}.

Lemma 4.2. Let (X, τ) and (X, σ) be two topological spaces and F be a col-
lection of a-open mappings from X to Y . Let U ∈ τa −{φ} and let A be a non
empty subset of U . If f(U) ∈ F(A) = {f(A) : f ∈ F} for every f ∈ F , Then
F(A) ∈ σa − {φ}.

Proof. Let y ∈ F(A), then there exist f ∈ F such that y ∈ f(A). Now, A ⊆ U ,
then f(A) ⊆ f(U) and y ∈ f(U). Then f(U) is a-open in (Y, σ) (as f is a-
open map). So there exists V ∈ σa(y) such that y ∈ V ⊆ f(U) ⊆ F(A). So
F(A) ∈ σa − {φ}. �

Theorem 4.3. Let (X, τ) and (X, σ) be two topological spaces and I be an ideal
(X, τ) with τ ∼a I and τa ∩ I = {φ}. Moreover, let U ∈ τa − {φ}, A ⊆ X,
U ⊆ Aa∗ ∩ ℜa(A) and F be a non-empty collection of a-open mappings from
X to Y . Suppose y ∈ F(U) ⇒ U ∩ F−1(y) /∈ I, where F−1(y) = ∪{f−1(y) :
f ∈ F}. Then F(U ∩A) ∈ σa − {φ}.

Proof. Since U is a non-empty a-open set contained in Aa∗∩ℜa(A) and τ ∼a I,
by Proposition 2.10 it follows that U−A ∈ I and U∩A /∈ I. For any y ∈ F(U),
U ∩F−1(y) /∈ I (by hypothesis) and we have U ∩F−1(y) = U ∩F−1(y)∩ (A∪
Ac) = [U ∩ F−1(y) ∩ A] ∪ [U ∩ F−1(y) ∩ Ac] ⊆ [U ∪ F−1(y) ∩ A] ∪ (U − A)
(where Ac = complement of A). Since U ∩ F−1(y) /∈ I and U − A ∈ I, we
have U ∩ F−1(y) ∩ A /∈ I. Then for any y ∈ F(U), U ∩ F−1(y) ∩ A 6= {φ}.
Now for a given f ∈ F , k ∈ f(U) ⇒ k ∈ F(U), then there exist x ∈ U ∩A and
x ∈ g−1(k) for some g ∈ F , where k = g(x) ⇒ k ∈ g(U ∩A), and k ∈ F(U ∩A).
Hence f(U) ⊆ F(U ∩A), for all f ∈ F . Then F(U ∩A) ∈ σa −{φ} by Lemma
4.2. �

Lemma 4.4. Let I be a left (right) translation invariant ideal on a topological
group (X, τ, .) and x ∈ X. Then for any A ⊆ X the following hold:

(1) xℜa(A) = ℜa(xA), and ℜa(A)x = ℜa(Ax),
(2) xAa∗

= (xA)a
∗

(resp.Aa∗

x = (Ax)a
∗

).
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Proof. We assume that I is right translation invariant, the proof is similar for
the case when I is left translation invariant would be .
(1) We first note that for any two subsets A and B of X , (A−B)x = Ax−Bx.
In fact, y ∈ (A − B)x, then y = tx, for some t ∈ A − B. Now t ∈ A then
tx ∈ Ax. But tx ∈ Bx ⇒ tx = bx for some b ∈ B ⇒ t = b ∈ B a contradiction.
So y = tx ∈ Ax−Bx. Again, y ∈ Ax−Bx ⇒ y ∈ Ax and y /∈ Bx ⇒ y = ax for
some a ∈ A and ax /∈ Bx ⇒ a /∈ B ⇒ y = ax, where a ∈ A−B ⇒ y ∈ (A−B)x.
Now, y ∈ ℜa(Ax) ⇒ y ∈ Ux for some U ∈ τa with U − A ∈ I. Then
Ux = V ∈ τa and (U − A)x = Ux − Ax ∈ I where Ux ∈ τa. Then y ∈ V ,
where V ∈ τa and V − Ax ∈ I ⇒ y ∈ ∪{V ∈ τa : V − Ax ∈ I} = ℜa(Ax).
Thus xℜa(A) ⊆ ℜa(Ax).
Conversely, let y ∈ ℜa(Ax) = ∪{U ∈ τa : U − Ax ∈ I} ⇒ y ∈ U ∈ τa,
where U − Ax ∈ I. Put V = Ux−1. Then V ∈ τa. Now yx−1 ∈ V and
V −A = Ux−1−A = (U −Ax)x−1 ∈ I ⇒ yx−1 ∈ ℜa(A) ⇒ y ∈ ℜa(A)x. Thus
ℜa(Ax) ⊆ ℜa(A)x and hence ℜa(A)x = ℜa(Ax)
(2) In view of (1) ℜa(X−A)x = ℜa((X−A)x), then [X−Aa∗

]x = X− (Ax)a
∗

and X −Aa∗

x = X − (Ax)a
∗

thus Aa∗

x = (Ax)a
∗

. �

Lemma 4.5. Let I be an ideal space on a topological group (X, τ, .) such that
I is left or right translation invariant and τ ∼a I. Then I ∩ τa = {φ}.

Proof. Since X /∈ I and τ ∼a I, by Theorem 2.4 there exist x ∈ X such that
for all U ∈ τa(x),

(4.1) U = U ∩X /∈ I

Let V ∈ I ∩ τa. If V = {φ} we have nothing to show. Suppose V 6= {φ}.
Without loosing of generality we may assume that i ∈ V (i denoted the identity

of X). For y ∈ V then y
−1

V ∈ τa and y−1V ∈ y−1I so that y−1V ∈ I
where i ∈ y−1V . Thus xV ∈ τa and xV ∈ xI and hence xV ∈ I. Thus
xV ∈ τa ∩ I, where xV is a neighborhood of x, which is contradicting (4.1)
and hence I ∩ τa = {φ}. �

Theorem 4.6. Let (X, τ, .) be a topological group and I be an ideal on X such
that τ ∼a I. Let P ∈ U(X, τ, I) and S ∈ P(X) − I. Let U, V ∈ τa such

that U ∩ Sa∗

6= {φ}, V ∩ aInt(P a∗

) ∩ ℜa(P ) 6= {φ}. If A = U ∩ S ∩ Sa∗

and
B = V ∩ aInt(P a∗

) ∩ P ∩ ℜa(P ) then the following hold:

(1) If I is left translation invariant, then BA−1 is a non-empty a-open set
contained in PS−1.

(2) If I is right translation invariant, then A−1B is a non-empty a-open
set contained in S−1P .

Proof. (1) Since X is a topological group, τ ∼a I and I is right translation
invariant, we have by Lemma 4.5, I ∩ τa = {φ}. Now by Theorem 2.2

(U ∩S∩Sa∗

)a
∗

⊆ (U ∩S)a
∗

and by Theorem 2.7 we get (U ∩S∩(U ∩S)a
∗

)a
∗

=
(U ∩ S)a

∗

. Hence

(4.2) (U ∩ S ∩ Sa∗

)a
∗

= (U ∩ S)a
∗
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Thus by Theorem 2.2 we have U ∩ Sa∗

= U ∩ (U ∩ S)a
∗

⊆ (U ∩ S)a
∗

=

(U ∩ S ∩ Sa∗

)a
∗

by (*). Since U ∩ Sa∗

6= {φ}, we have A 6= {φ}. Again,
Aa∗

= (U ∩ S ∩ Sa∗

)a
∗

⊇ U ∩ Sa∗

⊇ U ∩ Sa∗

∩ S = A i.e. A ⊆ Aa∗

. For each
a ∈ A, define fa : X → X given by fa(x) = xa−1, and F = {fa : a ∈ A}. Since
A 6= {φ}, F 6= {φ} and each fa is a homeomorphism. LetG = V ∩aInt((P )a

∗

)∩
ℜa(P ). Now it is sufficient to show that G ∩ F−1(y) /∈ I for every y ∈ F(G).
Because then by Theorem 4.3, F(G ∩ P ) = F(B) = BA−1 is a non-empty
a-open set in X contained in PS−1. Let y ∈ F(G). Then y = xa−1 for some

a ∈ A and x ∈ G ⇒ F−1(y) = xa−1A. Thus x ∈ xa−1A ⊆ xa−1Aa∗

(as
A ⊆ Aa∗

) ⊆ (xa−1A)a
∗

(by Lemma 4.4) = (F−1(y))a
∗

⇒ Nx ∩ F−1(y) /∈ I
for some Nx ∈ τa(x). Thus BA−1 is a nonempty a-open subset of PS−1. So
in particular, as (2) is similar to (1). �

Corollary 4.7. Let (X, τ, .) be a topological group and I be an ideal on X such
that τ ∼a I. Let A ∈ U(X, τ, I) and B ∈ P (X)− I.

(1) If I is right translation invariant, then [B ∩ Ba∗

]−1[A ∩ aInt(Aa∗

) ∩
ℜa(A)] is a non-empty a-open set contained in B−1A.

(2) If I is left translation invariant, then [A∩aInt(Aa∗

)∩ℜa(A)][B∩Ba∗

]−1

is a non-empty a-open set contained in AB−1.

Proof. We only show that Ba∗

6= {φ} and A∩aInt(Aa∗

)∩ℜa(A) 6= {φ}, the rest

follows from Theorem 4.6 by taking U = V = X . In fact, if Ba∗

= {φ}, then
B ∩Ba∗

= {φ} which gives in view of Theorem 2.4, B ∈ I, a contradiction.

Again, A ∈ U(X, τ, I) ⇒ aInt(Aa∗

) ∩ ℜa(A) 6= {φ} (by Lemma 4.5 and

Proposition 2.9) ⇒ aInt(Aa∗

)∩ℜa(A) ∈ τa−{φ}. Now, aInt(Aa∗

)∩ℜa(A) =
[A∩aInt(Aa∗

)∩ℜa(A)]∪ [Ac∩aInt(Aa∗

)∩ℜa(A)] /∈ I (by Lemma 4.5). Then

[Ac ∩ aInt(Aa∗

) ∩ ℜa(A)] ⊆ [Ac ∩ ℜa(A)] = ℜa(A)−A ∈ I by Theorem 2.11.
Thus A∩ aInt(Aa∗

)∩ℜa(A) /∈ I and hence A∩ aInt(Aa∗

)∩ℜa(A) 6= {φ}. �

Corollary 4.8. Let (X, τ, .) be a topological group and I be an ideal on X such
that I ∩ τa = {φ} and A ∈ U(X, τ, I).

(1) If I is left translation invariant, then e ∈ aInt(A−1A).
(2) If I is right translation invariant, then e ∈ aInt(AA−1).
(3) If I is left as well as right translation invariant, then e ∈ aInt(AA−1∩

A−1A).

Proof. It suffices to prove (1) only. We have, A ∈ U(X, τ, I) then there exists
B ∈ Br(X, τ, I)− I such that B ⊆ A. Now for any x ∈ X , ℜa(B)x ∩ℜa(B) =
ℜa(Bx) ∩ ℜa(B) = ℜa(Bx ∩ B) (by Lemma 4.4 and Theorem 2.6). Thus if
ℜa(B)x ∩ ℜa(B) 6= {φ}, then Bx ∩ B 6= {φ}. Now, if x ∈ [ℜa(B)]−1[ℜa(B)]
then x = y−1z for some y, z ∈ ℜa(B), then yx = z = t (say) ⇒ t ∈ ℜa(B)x
and t ∈ ℜa(B) ⇒ ℜa(B)x ∩ ℜa(B) 6= {φ} ⇒ x ∈ {x ∈ X : ℜa(B)x ∩ ℜa(B) 6=
{φ}} then [ℜa(B)]−1[ℜa(B)] ⊆ {x ∈ X : ℜa(B)x ∩ ℜa(B) 6= {φ}} ⊆ {x ∈
X : Bx ∩ B 6= {φ}} ⊆ B−1B ⊆ A−1A. Since ℜa(B) 6= {φ} by Proposition
2.9 as B ∈ U(X, τ, I) and ℜa(B) is a-open for any B ⊆ X , we have e ∈
[ℜa(B)]−1[ℜa(B) ⊆ aInt(A−1A). �
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