

On topological groups via a-local functions

Wadei Al-Omeri a, Mohd. Salmi Md. Noorani a and Ahmad. Al-Omari b

Abstract

An ideal on a set X is a nonempty collection of subsets of X which satisfies the following conditions $(1)A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$; $(2)A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. Given a topological space (X, τ) an ideal \mathcal{I} on X and $A \subset X$, $\Re_a(A)$ is defined as $\cup \{U \in \tau^a : U - A \in \mathcal{I}\}$, where the family of all a-open sets of X forms a topology [5, 6], denoted by τ^a . A topology, denoted τ^{a^*} , finer than τ^a is generated by the basis $\beta(\mathcal{I}, \tau) = \{V - I : V \in \tau^a(x), I \in \mathcal{I}\}$, and a topology, denoted $(\Re_a(\tau))$ coarser than τ^a is generated by the basis $\Re_a(\tau) = \{\Re_a(U) : U \in \tau^a\}$. In this paper A bijection $f: (X, \tau, \mathcal{I}) \to (X, \sigma, \mathcal{J})$ is called a $\mathcal{A}*$ -homeomorphism if $f: (X, \mathcal{R}_a(\tau)) \to (Y, \mathcal{R}_a(\sigma))$ is a homeomorphism. Properties preserved by $\mathcal{A}*$ -homeomorphism are studied as well as necessary and sufficient conditions for a \Re_a -homeomorphism to be a $\mathcal{A}*$ -homeomorphism.

2010 MSC: 54A05; 54C10.

KEYWORDS: \Re_a -homeomorphism; topological groups; a-local function; ideal spaces; \Re_a -operator; $\mathcal{A}*$ -homeomorphism.

1. Introduction and Preliminaries

Ideals in topological spaces have been considered since 1930. The subject of ideals in topological spaces has been studied by Kuratowski [11] and

 $[^]a$ Department of Mathematics, Faculty of Science and Technology Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia (wadeimoon1@hotmail.com,msn@ukm.my)

^b Department of Mathematics, Faculty of Science Al AL-Bayat University, P.O.Box 130095, Mafraq 25113, Jordan (omarimutah1@yahoo.com)

Vaidyanathaswamy [18]. Jankovic and Hamlett [10] investigated further properties of ideal space. In this paper, we investigate a-local functions and its properties in ideals in topological space [1]. Also, the relationships among local functions such as local function [19, 10] and semi-local function [7] are investigated.

A subset of a space (X,τ) is said to be regular open (resp. regular closed) [12] if A = Int(Cl(A)) (resp. A = Cl(Int(A))). A is called δ -open [20] if for each $x \in A$, there exists a regular open set G such that $x \in G \subset A$. The complement of δ -open set is called δ -closed. A point $x \in X$ is called a δ -cluster point of A if $int(Cl(U)) \cap A \neq \phi$ for each open set V containing x. The set of all δ -cluster points of A is called the δ -closure of A and is denoted by $Cl_{\delta}(A)$ [20]. The δ -interior of A is the union of all regular open sets of X contained in A and its denoted by $Int_{\delta}(A)$ [20]. A is δ -open if $Int_{\delta}(A) = A$. δ -open sets forms a topology τ^{δ} .

A subset A of a space (X,τ) is said to be a-open (resp. a-closed) [5] if $A \subset Int(Cl(Int_{\delta}(A)))$ (resp. $Cl(Int(Cl_{\delta}(A))) \subset A$, or $A \subset Int(Cl(Int_{\delta}(A)))$ (resp. $Cl(Int(Cl_{\delta}(A))) \subset A$. The family of a-open sets of X forms a topology, denoted by τ^a [6]. The intersection of all a-closed sets contained A is called the a-closure of A and is denoted by aCl(A). The a-interior of A, denoted by aInt(A), is defined by the union of all a-open sets contained in A [5].

An ideal \mathcal{I} on a topological space (X,\mathcal{I}) is a nonempty collection of subsets of X which satisfies the following conditions:

(1) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$; (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup \mathcal{I}$ $B \in \mathcal{I}$. Applications to various fields were further investigated by Jankovic and Hamlett [10] Dontchev et al. [4]; Mukherjee et al. [13]; Arenas et al. [3]; Navaneethakrishnan et al. [14]; Nasef and Mahmoud [15], etc. Given a topological space (X,\mathcal{I}) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^*: \wp(X) \to \wp(X)$, called a local function [11, 10] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subseteq X$,

$$A^*(\mathcal{I}, \tau) = \{x \in X \mid U \cap A \notin \mathcal{I}, \text{ for every } U \in \tau(x)\}$$

where $\tau(x) = \{U \in \tau \mid x \in U\}$. A Kuratowski closure operator $Cl^*(.)$ for a topology $\tau^*(\tau, \mathcal{I})$, called the *-topology, which is finer than τ is defined by $Cl^*(A) = A \cup A^*(\tau, \mathcal{I})$, when there is no chance of confusion. $A^*(\mathcal{I})$ is denoted by A^* and τ^* for $\tau^*(\mathcal{I},\tau)$. X^* is often a proper subset of X. The hypothesis $X=X^*$ [7] is equivalent to the hypothesis $\tau \cap \mathcal{I}=\phi$. If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal space. N is the ideal of all nowhere dense subsets in (X, τ) . A subset A of an ideal space (X, τ, \mathcal{I}) is \star -closed [4] (resp. *-dense in itself [7]) if $A^* \subseteq A$ (resp $A \subseteq A^*$). A subset A of an ideal space (X, τ, \mathcal{I}) is \mathcal{I}_g -closed [20] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is open. For every ideal topological space there exists a topology $\tau^*(\mathcal{I})$ finer than τ generated by $\beta(\mathcal{I}, \tau) = \{U - A \mid U \in \tau \text{ and } A \in \mathcal{I}\}$, but in general $\beta(\mathcal{I}, \tau)$ is not always topology [10]. Let (X, \mathcal{I}, τ) be an ideal topological space. We say that the topology τ is compatible with the \mathcal{I} , denoted $\tau \sim \mathcal{I}$, if the following holds for

every $A \subset X$, if for every $x \in A$ there exists a $U \in \tau$ such that $U \cap A \in \mathcal{I}$, then $A \in \mathcal{I}$.

Given a space (X, τ, \mathcal{I}) , (Y, σ, \mathcal{J}) , and a function $f: (X, \tau, \mathcal{I}) \to (Y, \tau, \mathcal{J})$, we call f a *-homomorphism with respect to τ , \mathcal{I} , σ , and \mathcal{J} if $f:(X,\tau^*)\to (Y,\sigma^*)$ is a homomorphism, where a homomorphism is a continuous injective function between two topological spaces, that is invertible with continuous inverse. We first prove some preliminary lemmas which lead to a theorem extending the theorem in [17] and apply the theorem to topological groups. Quite recently, in [2], the present authors defined and investigated the notions $\Re_a:\wp(X)\to\tau$ as follows, $\Re_a(A) = \{x \in X : \text{there exists } U_x \in \tau^a \text{ containing } x \text{ such that } x \in T^a \text{ containing } x \text{ such that } x \text{ such that } x \text{ such$ $U_x - A \in \mathcal{I}$, for every $A \in \wp(X)$. In [16], Newcomb defined $A = B[mod \mathcal{I}]$ if $(A-B)\cup(B-A)\in\mathcal{I}$ and observe that $=[mod\,\mathcal{I}]$ is an equivalence relation. In this paper a bijection $f:(X,\tau,\mathcal{I})\to (X,\sigma,\mathcal{J})$ is called a $\mathcal{A}*$ -homeomorphism if $f:(X,\tau^{a^*})\to (Y,\sigma^{a^*})$ is a homeomorphism, \Re_a -homeomorphism if f: $(X, \Re_a(\tau)) \to (Y, \Re_a(\sigma))$ is a homeomorphism. Properties preserved by A^* homeomorphism are studied as well as necessary and sufficient conditions for a \Re_a -homeomorphism to be a $\mathcal{A}*$ -homeomorphism.

2. a-Local Function and \Re_a - operator

Let (X, τ, \mathcal{I}) an ideal topological space and A a subset of X. Then $A^{a^*}(\mathcal{I}, \tau) =$ $\{x \in X : U \cap A \notin \mathcal{I}, \text{ for every } U \in \tau^a(x)\}\$ is called a-local function of A [1] with respect to \mathcal{I} and τ , where $\tau^a(x) = \{U \in \tau^a : x \in U\}$. We denote simply A^{a^*} for $A^{a^*}(\mathcal{I},\tau)$.

Remark 2.1 ([1]).

- (1) The minimal ideal is considered $\{\emptyset\}$ in any topological space (X,τ) and the maximal ideal is considered P(X). It can be deduced that $A^{a^*}(\{\varnothing\}) = Cl_a(A) \neq Cl(A)$ and $A^{a^*}(P(X)) = \varnothing$ for every $A \subset X$.
- (2) If $A \in \mathcal{I}$, then $A^{a^*} = \varnothing$.
- (3) $A \not\subseteq A^{a^*}$ and $A^{a^*} \not\subseteq A$ in general.

Theorem 2.2 ([1]). Let (X, τ, \mathcal{I}) an ideal in topological space and A, B subsets of X. Then for a-local functions the following properties hold:

- (1) If $A \subset B$, then $A^{a^*} \subset B^{a^*}$,
- (2) For another ideal $J \supset \mathcal{I}$ on X, $A^{a^*}(J) \subset A^{a^*}(\mathcal{I})$,
- (3) $A^{a^*} \subset aCl(A)$,
- (4) $A^{a^*}(\mathcal{I}) = aCl(A^{a^*}) \subset aCl(A)$ (i.e A^{a^*} is an a-closed subset of aCl(A)),
- (5) $(A^{a^*})^{a^*} \subset A^{a^*}$,
- (6) $(A \cup B)^{a^*} = A^{a^*} \cup B^{a^*},$ (7) $A^{a^*} B^{a^*} = (A B)^{a^*} B^{a^*} \subset (A B)^{a^*},$
- (8) If $U \in \tau^a$, then $U \cap A^{a^*} = U \cap (U \cap A)^{a^*} \subset (U \cap A)^{a^*}$,
- (9) If $U \in \tau^a$, then $(A U)^{a^*} = A^{a^*} = (A \cup U)^{a^*}$,
- (10) If $A \subseteq A^{a^*}$, then $A^{a^*}(\mathcal{I}) = aCl(A^{a^*}) = aCl(A)$.

Theorem 2.3 ([1]). Let (X, τ, \mathcal{I}) an ideal in topological space and A, B subsets of X. Then for a-local functions the following properties hold:

- (1) $\tau^a \cap \mathcal{I} = \phi$:
- (2) If $I \in \mathcal{I}$, then $aInt(I) = \phi$;
- (3) For every $G \in \tau^a$, then $G \subseteq G^{a^*}$;
- (4) $X = X^{a^*}$.

Theorem 2.4 ([1]). Let (X, τ, \mathcal{I}) be an ideal topological space and A subset of X. Then the following are equivalent:

- (1) $\mathcal{I} \sim^a \tau$,
- (2) If a subset A of X has a cover a-open of sets whose intersection with A is in \mathcal{I} , then A is in \mathcal{I} , in other words $A^{a^*} = \phi$, then $A \in \mathcal{I}$,
- (3) For every $A \subset X$, if $A \cap A^{a^*} = \phi$, $A \in \mathcal{I}$,
- (4) For every $A \subset X$, $A A^{a^*} \in \mathcal{I}$,
- (5) For every $A \subset X$, if A contains no nonempty subset B with $B \subset B^{a^*}$, then $A \in \mathcal{I}$.

Theorem 2.5 ([1]). Let (X, \mathcal{I}, τ) be an ideal topological space. Then $\beta(\mathcal{I}, \tau)$ is a basis for τ^{a^*} . $\beta(\mathcal{I},\tau) = \{V - I_i : V \in \tau^a(x), I_i \in \mathcal{I}\}$ and β is not, in general, a topology.

Theorem 2.6 ([2]). Let (X, τ, \mathcal{I}) be an ideal topological space. Then the following properties hold:

- (1) If $A \subset X$, then $\Re_a(A)$ is a-open.
- (2) If $A \subset B$, then $\Re_a(A) \subseteq \Re_a(B)$.
- (3) If $A, B \in \wp(X)$, then $\Re_a(A \cup B) \subset \Re_a(A) \cup \Re_a(B)$.
- (4) If $A, B \in \wp(X)$, then $\Re_a(A \cap B) = \Re_a(A) \cap \Re_a(B)$.
- (5) If $U \in \tau^{a^*}$, then $U \subseteq \Re_a(U)$.
- (6) If $A \subset X$, then $\Re_a(A) \subseteq \Re_a(\Re_a(A))$.
- (7) If $A \subset X$, then $\Re_a(A) = \Re_a(\Re_a(A))$ if and only if $(X-A)^{a^*} = ((X-A)^{a^*})^{a^*}.$
- (8) If $A \in \mathcal{I}$, then $\Re_a(A) = X X^{a^*}$.
- (9) If $A \subset X$, then $A \cap \Re_a(A) = Int^{a^*}(A)$, where Int^{a^*} is the interior of τ^{a^*} .
- (10) If $A \subset X$, $I \in \mathcal{I}$, then $\Re_a(A I) = \Re_a(A)$.
- (11) If $A \subset X$, $I \in \mathcal{I}$, then $\Re_a(A \cup I) = \Re_a(A)$.
- (12) If $(A B) \cup (B A) \in \mathcal{I}$, then $\Re_a(A) = \Re_a(B)$.

Theorem 2.7 ([1]). Let (X, τ, \mathcal{I}) be an ideal topological space and A subset of X. If τ is a-compatible with \mathcal{I} . Then the following are equivalent:

- (1) For every $A \subset X$, if $A \cap A^{a^*} = \phi$ implies $A^{a^*} = \phi$,
- (2) For every $A \subset X$, $(A A^{a^*})^{a^*} = \phi$,
- (3) For every $A \subset X$, $(A \cap A^{a^*})^{a^*} = A^{a^*}$.

Theorem 2.8 ([2]). Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau \sim^a \mathcal{I}$. Then $\Re_a(A) = \bigcup \{\Re_a(U) : U \in \tau^a, \Re_a(U) - A \in \mathcal{I}\}.$

Proposition 2.9 ([2]). Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau^a \cap \mathcal{I} =$ ϕ . Then the following are equivalent:

- (1) $A \in \mathcal{U}(X, \tau, \mathcal{I})$,
- (2) $\Re_a(A) \cap aInt(A^{a^*}) \neq \phi$,
- (3) $\Re_a(A) \cap A^{a^*} \neq \phi$,
- (4) $\Re_a(A) \neq \phi$,
- (5) $Int^{a^*}(A) \neq \phi$,
- (6) There exists $N \in \tau^a \{\emptyset\}$ such that $N A \in \mathcal{I}$ and $N \cap A \notin \mathcal{I}$.

Proposition 2.10 ([2]). Let (X, τ, \mathcal{I}) be an ideal topological space. Then $\tau \sim^a$ $\mathcal{I}, A \subseteq X$. If N is a nonempty a-open subset of $A^{a^*} \cap \Re_a(A)$, then $N - A \in \mathcal{I}$ and $N \cap A \notin \mathcal{I}$.

Theorem 2.11 ([2]). Let (X, τ, \mathcal{I}) be an ideal topological space. Then $\tau \sim^a \mathcal{I}$ if and only if $\Re_a(A) - A \in \mathcal{I}$ for every $A \subseteq X$.

3. $\mathcal{A}*$ -HOMEOMORPHISM

Given an ideal topological space (X, τ, \mathcal{I}) a topology τ^a finer than $\langle \Re_a(\tau) \rangle$ which $\langle \Re_a(\tau) \rangle$ is generated by the basis $\Re_a(\tau) = \{\Re_a(U) : U \in \tau^a\}$.

Definition 3.1 ([5]). A function $f:(X,\tau)\to (X,\sigma)$ is called

- (1) a-continuous if the inverse image of a-open set is a-open.
- (2) a-open if the image of a-open set is a-open.

Definition 3.2. Let (X, τ, \mathcal{I}) and (X, σ, \mathcal{J}) be an ideal topological space. A bijection $f:(X,\tau,\mathcal{I})\to(X,\sigma,\mathcal{J})$ is called

- (1) $\mathcal{A}*-homeomorphism if <math>f:(X,\tau^{a^*})\to (Y,\sigma^{a^*})$ is a homeomorphism.
- (2) \Re_a -homeomorphism if $f:(X,\Re_a(\tau))\to (Y,\Re_a(\sigma))$ is a homeomorphism.

Theorem 3.3. Let (X, τ, \mathcal{I}) and (X, σ, \mathcal{J}) be an ideal topological space with $f:(X,\Re_a(\tau))\to (X,\sigma,\mathcal{J})$ an a-open bijective, $\tau\sim^a\mathcal{I}$ and $f(\mathcal{I})\subseteq\mathcal{J}$. Then $f(\Re_a(A)) \subseteq \Re_a(f(A))$ for every $A \subseteq X$.

Proof. Let $A \subseteq X$ and let $y \in f(\Re_a(A))$. Then $f^{-1}(y) \in \Re_a(A)$ and there exists $U \in \tau^a$ such that $f^{-1}(y) \in \Re_a(U)$ and $\Re_a(U) - A \in \mathcal{I}$ by Theorem 2.8. Now $f(\Re_a(U)) \in \sigma^a(y)$ and $f(\Re_a(U)) - f(A) = f[\Re_a(U) - A] \in f(\mathcal{I}) \subseteq \mathcal{J}$. Thus $y \in \Re_a(f(A))$, and the proof is complete.

Theorem 3.4. Let (X, τ, \mathcal{I}) and (X, σ, \mathcal{J}) be an ideal topological space with $f:(X,\tau)\to (X,\Re_a(\sigma))$ is a-continuous injection, $\sigma\sim^a\mathcal{J}$ and $f^{-1}(\mathcal{J})\subseteq\mathcal{I}$. Then $\Re_a(f(A)) \subseteq f(\Re_a(A))$ for every $A \subseteq X$.

Proof. Let $y \in \Re_a(f(A))$ where $A \subseteq X$. Then by Theorem 2.8, there exists $U \in$ σ^a such that $y \in \Re_a(U)$ and $\Re_a(U) - f(A) \in \mathcal{J}$. Now we have $f^{-1}(\Re_a(U)) \in \mathcal{J}$ $\tau^{a}(f^{-1}(y))$ with $f^{-1}[\Re_{a}(U) - f(A)] \in \mathcal{I}$ then $f^{-1}[\Re_{a}(U)] - A \in \mathcal{I}$ and $f^{-1}(y) \in \mathcal{I}$ $\Re_a(A)$ and hence $y \in f(\Re_a(A))$, and the proof is complete.

Theorem 3.5. Let (X, τ, \mathcal{I}) and (X, σ, \mathcal{J}) be a bijective with $f(\mathcal{I}) = \mathcal{J}$. Then the following properties are equivalent:

- (1) f is A*-homeomorphism;
- (2) $f(A^{a^*}) = [f(A)]^{a^*}$ for every $A \subseteq X$;
- (3) $f(\Re_a(A)) = \Re_a(f(A))$ for every $A \subseteq X$;

Proof. (1) \Rightarrow (2) Let $A \subseteq X$. Assume $y \notin f(A^{a^*})$. This implies that $f^{-1}(y) \notin$ A^{a^*} , and hence there exists $U \in \tau^a(f^{-1}(y))$ such that $U \cap A \in \mathcal{I}$. Consequently $f(U) \in \sigma^{a^*}(y)$ and $f(U) \cap f(A) \in \mathcal{J}$, then $y \notin [f(A)]^{a^*}(\mathcal{J}, \sigma^{a^*}) =$ $[f(A)]^{a^*}(\mathcal{J},\sigma)$. Thus $[f(A)]^{a^*}\subseteq f(A^{a^*})$. Now assume $y\notin [f(A)]^{a^*}$. This implies there exists a $V \in \sigma^{a^*}(y)$ such that $V \cap f(A) \in \mathcal{J}$, then $f^{-1}(V) \in \mathcal{J}$ $\tau^{a^*}(f^{-1}(y)) \text{ and } f^{-1}(V) \cap A \in \mathcal{I}. \text{ Thus } f^{-1}(y) \notin A^{a^*}(\mathcal{I}, \tau^{a^*}) = A^{a^*}(\mathcal{I}, \tau^a)$ and $y \notin f(A^{a^*})$. Hence $f(A^{a^*}) \subseteq [f(A)]^{a^*}$ and $f(A^{a^*}) = [f(A)]^{a^*}$. $f(2) \Rightarrow f(3) \text{ Let } A \subseteq X. \text{ Then } f(\Re_a(A)) = f[X - (X - A)^{a^*}] = Y - f(X - A)^{a^*} = f(X - A)^{a^*}$ $(Y - [Y - f(A)]^{a^*}) = \Re_a(f(A)).$

 $(3) \Rightarrow (1)$ Let $U \in \tau^{a^*}$. Then $U \subseteq \Re_a(U)$ by Theorem 2.6 and $f(U) \subseteq$ $f(\Re_a(U)) = \Re_a(f(U))$. This shows that $f(U) \in \sigma^{a^*}$ and hence $f: (X, \tau^{a^*}) \to \mathbb{R}$ (Y, σ^{a^*}) is τ^{a^*} -open. Similarly, $f^{-1}: (Y, \sigma^{a^*}) \to (X, \tau^{a^*})$ is σ^{a^*} -open and, f is $\mathcal{A}*-homeomorphism.$

Theorem 3.6. Let (X, τ, \mathcal{I}) be an ideal topological space, then $\langle \Re_a(\tau^{a^*}) \rangle =$ $\langle \Re_a(\tau^a) \rangle$.

Proof. Note that for every $U \in \tau^a$ and for every $I \in \mathcal{I}$, we have $\Re_a(U - I) =$ $\Re_a(U)$. Consequently, $\Re_a(\beta) = \Re_a(\tau^a)$ and $\langle \Re_a(\beta) \rangle = \langle \Re_a(\tau^a) \rangle$, where β is a basis for τ^a . It follows directly from Theorem 11 of [9] that $\langle \Re_a(\beta) \rangle =$ $\langle \Re_a(\tau^{a^*}) \rangle$, hence the theorem is proved.

Theorem 3.7. Let $f:(X,\tau,\mathcal{I})\to (Y,\sigma,\mathcal{J})$ be a bijection with $f(\mathcal{I})=\mathcal{J}$. Then the following are hold:

- (1) If f is a A*-homeomorphism, then f is a \Re_a -homeomorphism.
- (2) If $\tau \sim^a \mathcal{I}$ and $\sigma \sim^a \mathcal{J}$ and f is a \Re_a -homeomorphism, then f is a A*-homeomorphism.

Proof. (1) Assume $f:(X,\tau^{a^*})\to (Y,\sigma^{a^*})$ is a $\mathcal{A}*$ -homeomorphism, and let $\Re_a(U)$ be a basic open set in $\langle \Re_a(\tau^a) \rangle$ with $U \in \tau^a$. Then $f(\Re_a(U)) =$ $\Re_a(f(U))$ by Theorem 3.5. Then $f(\Re_a(U)) \in \Re_a(\sigma^{a^*})$, but $\langle \Re_a(\tau^{a^*}) \rangle =$ $\langle \Re_a(\tau^a) \rangle$ by Theorem 3.6. Thus $f: (X, \Re_a(\tau)) \to (Y, \Re_a(\sigma))$ is a-open. Similarly, $f^{-1}:(Y,\Re_a(\sigma))\to (X,\Re_a(\tau))$ is a-open and f is \Re_a -homeomorphism. (2) Assume f is a \Re_a -homeomorphism, then $f(\Re_a(A)) = \Re_a(f(A))$ for every $A \subseteq X$ by Theorems 3.4 and 3.3. Thus f is a A*-homeomorphism by Theorem 3.5.

4. Results related to topological groups

Given a topological group $(X, \tau, .)$ and an ideal \mathcal{I} on X, denoted $(X, \tau, \mathcal{I}, .)$ and $x \in X$, we denote by $x\mathcal{I} = \{xI : I \in \mathcal{I}\}$. We say that \mathcal{I} is left translation invariant if for every $x \in X$ we have $x\mathcal{I} \subseteq \mathcal{I}$. Observe that if \mathcal{I} is left translation invariant then $x\mathcal{I} = \mathcal{I}$ for every $x \in X$. We define \mathcal{I} to be right translation invariant if and only if $\mathcal{I}x = \mathcal{I}$ for every $x \in X$ [8].

Given a topological group (X, τ, \mathcal{I}) , \mathcal{I} is said to be τ^a -boundary [2], if $\tau^a \cap \mathcal{I} =$

Note that if \mathcal{I} is left or right translation invariant, $X \notin \mathcal{I}$, and $I \sim^a \mathcal{I}$, then \mathcal{I} is τ^a -boundary.

Definition 4.1 ([2]). Let (X, τ, \mathcal{I}) be an ideal topological space. A subset A of X is called a Baire set with respect to τ^a and \mathcal{I} , denoted $A \in \mathcal{B}_r(X, \tau, \mathcal{I})$, if there exists a a-open set U such that $A = U \pmod{\mathcal{I}}$. Let $\mathcal{U}(X,\tau,\mathcal{I})$ be denoted $\{A \subseteq X : \text{there exists } B \in \mathcal{B}_r(X, \tau, \mathcal{I}) - \mathcal{I} \text{ such that } B \subseteq A\}.$

Lemma 4.2. Let (X,τ) and (X,σ) be two topological spaces and \mathcal{F} be a collection of a-open mappings from X to Y. Let $U \in \tau^a - \{\phi\}$ and let A be a non empty subset of U. If $f(U) \in \mathcal{F}(A) = \{f(A) : f \in \mathcal{F}\}\$ for every $f \in \mathcal{F}$, Then $\mathcal{F}(A) \in \sigma^a - \{\phi\}.$

Proof. Let $y \in \mathcal{F}(A)$, then there exist $f \in \mathcal{F}$ such that $y \in f(A)$. Now, $A \subseteq U$, then $f(A) \subseteq f(U)$ and $y \in f(U)$. Then f(U) is a-open in (Y, σ) (as f is aopen map). So there exists $V \in \sigma^a(y)$ such that $y \in V \subseteq f(U) \subseteq \mathcal{F}(A)$. So $\mathcal{F}(A) \in \sigma^a - \{\phi\}.$

Theorem 4.3. Let (X,τ) and (X,σ) be two topological spaces and \mathcal{I} be an ideal (X,τ) with $\tau \sim^a \mathcal{I}$ and $\tau^a \cap \mathcal{I} = \{\phi\}$. Moreover, let $U \in \tau^a - \{\phi\}$, $A \subseteq X$, $U \subseteq A^{a*} \cap \Re_a(A)$ and \mathcal{F} be a non-empty collection of a-open mappings from $X \text{ to } Y. \text{ Suppose } y \in \mathcal{F}(U) \Rightarrow U \cap \mathcal{F}^{-1}(y) \notin \mathcal{I}, \text{ where } \mathcal{F}^{-1}(y) = \bigcup \{f^{-1}(y) : g \in \mathcal{F}(U) \}$ $f \in \mathcal{F}$. Then $\mathcal{F}(U \cap A) \in \sigma^a - \{\phi\}$.

Proof. Since U is a non-empty a-open set contained in $A^{a*} \cap \Re_a(A)$ and $\tau \sim^a \mathcal{I}$, by Proposition 2.10 it follows that $U - A \in \mathcal{I}$ and $U \cap A \notin \mathcal{I}$. For any $y \in \mathcal{F}(U)$, $U \cap \mathcal{F}^{-1}(y) \notin \mathcal{I}$ (by hypothesis) and we have $U \cap \mathcal{F}^{-1}(y) = U \cap \mathcal{F}^{-1}(y) \cap (A \cup \mathcal{F}^{-1}(y))$ $A^c) = [U \cap \mathcal{F}^{-1}(y) \cap A] \cup [U \cap \mathcal{F}^{-1}(y) \cap A^c] \subseteq [U \cup \mathcal{F}^{-1}(y) \cap A] \cup (U - A)$ (where A^c = complement of A). Since $U \cap \mathcal{F}^{-1}(y) \notin \mathcal{I}$ and $U - A \in \mathcal{I}$, we have $U \cap \mathcal{F}^{-1}(y) \cap A \notin \mathcal{I}$. Then for any $y \in \mathcal{F}(U)$, $U \cap \mathcal{F}^{-1}(y) \cap A \neq \{\phi\}$. Now for a given $f \in \mathcal{F}$, $k \in f(U) \Rightarrow k \in \mathcal{F}(U)$, then there exist $x \in U \cap A$ and $x \in g^{-1}(k)$ for some $g \in \mathcal{F}$, where $k = g(x) \Rightarrow k \in g(U \cap A)$, and $k \in \mathcal{F}(U \cap A)$. Hence $f(U) \subseteq \mathcal{F}(U \cap A)$, for all $f \in \mathcal{F}$. Then $\mathcal{F}(U \cap A) \in \sigma^a - \{\phi\}$ by Lemma 4.2.

Lemma 4.4. Let \mathcal{I} be a left (right) translation invariant ideal on a topological group $(X, \tau, .)$ and $x \in X$. Then for any $A \subseteq X$ the following hold:

- (1) $x\Re_a(A) = \Re_a(xA)$, and $\Re_a(A)x = \Re_a(Ax)$,
- (2) $xA^{a^*} = (xA)^{a^*} (resp.A^{a^*}x = (Ax)^{a^*}).$

Proof. We assume that \mathcal{I} is right translation invariant, the proof is similar for the case when $\mathcal I$ is left translation invariant would be .

(1) We first note that for any two subsets A and B of X, (A-B)x = Ax - Bx. In fact, $y \in (A - B)x$, then y = tx, for some $t \in A - B$. Now $t \in A$ then $tx \in Ax$. But $tx \in Bx \Rightarrow tx = bx$ for some $b \in B \Rightarrow t = b \in B$ a contradiction. So $y = tx \in Ax - Bx$. Again, $y \in Ax - Bx \Rightarrow y \in Ax$ and $y \notin Bx \Rightarrow y = ax$ for some $a \in A$ and $ax \notin Bx \Rightarrow a \notin B \Rightarrow y = ax$, where $a \in A - B \Rightarrow y \in (A - B)x$. Now, $y \in \Re_a(Ax) \Rightarrow y \in Ux$ for some $U \in \tau^a$ with $U - A \in \mathcal{I}$. Then $Ux = V \in \tau^a$ and $(U - A)x = Ux - Ax \in \mathcal{I}$ where $Ux \in \tau^a$. Then $y \in V$, where $V \in \tau^a$ and $V - Ax \in \mathcal{I} \Rightarrow y \in \bigcup \{V \in \tau^a : V - Ax \in \mathcal{I}\} = \Re_a(Ax)$. Thus $x\Re_a(A) \subseteq \Re_a(Ax)$.

Conversely, let $y \in \Re_a(Ax) = \bigcup \{U \in \tau^a : U - Ax \in \mathcal{I}\} \Rightarrow y \in U \in \tau^a$, where $U - Ax \in \mathcal{I}$. Put $V = Ux^{-1}$. Then $V \in \tau^a$. Now $yx^{-1} \in V$ and $V-A=Ux^{-1}-A=(U-Ax)x^{-1}\in\mathcal{I}\Rightarrow yx^{-1}\in\Re_a(A)\Rightarrow y\in\Re_a(A)x.$ Thus $\Re_a(Ax) \subseteq \Re_a(A)x$ and hence $\Re_a(A)x = \Re_a(Ax)$

(2) In view of (1) $\Re_a(X-A)x = \Re_a((X-A)x)$, then $[X-A^{a^*}]x = X - (Ax)^{a^*}$ and $X - A^{a^*}x = X - (Ax)^{a^*}$ thus $A^{a^*}x = (Ax)^{a^*}$.

Lemma 4.5. Let \mathcal{I} be an ideal space on a topological group $(X, \tau, .)$ such that \mathcal{I} is left or right translation invariant and $\tau \sim^a \mathcal{I}$. Then $\mathcal{I} \cap \tau^a = \{\phi\}$.

Proof. Since $X \notin \mathcal{I}$ and $\tau \sim^a \mathcal{I}$, by Theorem 2.4 there exist $x \in X$ such that for all $U \in \tau^a(x)$,

$$(4.1) U = U \cap X \notin \mathcal{I}$$

Let $V \in \mathcal{I} \cap \tau^a$. If $V = \{\phi\}$ we have nothing to show. Suppose $V \neq \{\phi\}$. Without loosing of generality we may assume that $i \in V$ (i denoted the identity of X). For $y \in V$ then $y^{-1}V \in \tau^a$ and $y^{-1}V \in y^{-1}\mathcal{I}$ so that $y^{-1}V \in \mathcal{I}$ where $i \in y^{-1}V$. Thus $xV \in \tau^a$ and $xV \in x\mathcal{I}$ and hence $xV \in \mathcal{I}$. Thus $xV \in \tau^a \cap \mathcal{I}$, where xV is a neighborhood of x, which is contradicting (4.1) and hence $\mathcal{I} \cap \tau^a = \{\phi\}$.

Theorem 4.6. Let $(X, \tau, .)$ be a topological group and \mathcal{I} be an ideal on X such that $\tau \sim^a \mathcal{I}$. Let $P \in \mathcal{U}(X,\tau,\mathcal{I})$ and $S \in \mathcal{P}(X) - \mathcal{I}$. Let $U,V \in \tau^a$ such that $U \cap S^{a^*} \neq \{\phi\}$, $V \cap aInt(P^{a^*}) \cap \Re_a(P) \neq \{\phi\}$. If $A = U \cap S \cap S^{a^*}$ and $B = V \cap aInt(P^{a^*}) \cap P \cap \Re_a(P)$ then the following hold:

- (1) If \mathcal{I} is left translation invariant, then BA^{-1} is a non-empty a-open set contained in PS^{-1} .
- (2) If \mathcal{I} is right translation invariant, then $A^{-1}B$ is a non-empty a-open set contained in $S^{-1}P$.

Proof. (1) Since X is a topological group, $\tau \sim^a \mathcal{I}$ and \mathcal{I} is right translation invariant, we have by Lemma 4.5, $\mathcal{I} \cap \tau^a = \{\phi\}$. Now by Theorem 2.2 $(U \cap S \cap S^{a^*})^{a^*} \subseteq (U \cap S)^{a^*}$ and by Theorem 2.7 we get $(U \cap S \cap (U \cap S)^{a^*})^{a^*} =$ $(U \cap S)^{a^*}$. Hence

$$(4.2) (U \cap S \cap S^{a^*})^{a^*} = (U \cap S)^{a^*}$$

Thus by Theorem 2.2 we have $U \cap S^{a^*} = U \cap (U \cap S)^{a^*} \subseteq (U \cap S)^{a^*} =$ $(U \cap S \cap S^{a^*})^{a^*}$ by (*). Since $U \cap S^{a^*} \neq \{\phi\}$, we have $A \neq \{\phi\}$. Again, $A^{a^*} = (U \cap S \cap S^{a^*})^{a^*} \supseteq U \cap S^{a^*} \supseteq U \cap S^{a^*} \cap S = A \text{ i.e. } A \subseteq A^{a^*}.$ For each $a \in A$, define $f_a: X \to X$ given by $f_a(x) = xa^{-1}$, and $\mathcal{F} = \{f_a: a \in A\}$. Since $A \neq \{\phi\}, \mathcal{F} \neq \{\phi\}$ and each f_a is a homeomorphism. Let $G = V \cap aInt((P)^{a^*}) \cap A$ $\Re_a(P)$. Now it is sufficient to show that $G \cap \mathcal{F}^{-1}(y) \notin \mathcal{I}$ for every $y \in \mathcal{F}(G)$. Because then by Theorem 4.3, $\mathcal{F}(G \cap P) = \mathcal{F}(B) = BA^{-1}$ is a non-empty a-open set in X contained in PS^{-1} . Let $y \in \mathcal{F}(G)$. Then $y = xa^{-1}$ for some $a \in A$ and $x \in G \Rightarrow \mathcal{F}^{-1}(y) = xa^{-1}A$. Thus $x \in xa^{-1}A \subseteq xa^{-1}A^{a^*}$ (as $A \subseteq A^{a^*} \subseteq (xa^{-1}A)^{a^*}$ (by Lemma 4.4) = $(\mathcal{F}^{-1}(y))^{a^*} \Rightarrow N_x \cap \mathcal{F}^{-1}(y) \notin \mathcal{I}$ for some $N_x \in \tau^a(x)$. Thus BA^{-1} is a nonempty a-open subset of PS^{-1} . So in particular, as (2) is similar to (1).

Corollary 4.7. Let $(X, \tau, .)$ be a topological group and \mathcal{I} be an ideal on X such that $\tau \sim^a \mathcal{I}$. Let $A \in \mathcal{U}(X, \tau, \mathcal{I})$ and $B \in P(X) - \mathcal{I}$.

- (1) If \mathcal{I} is right translation invariant, then $[B \cap B^{a^*}]^{-1}[A \cap aInt(A^{a^*}) \cap$ $\Re_a(A)$ is a non-empty a-open set contained in $B^{-1}A$.
- (2) If \mathcal{I} is left translation invariant, then $[A \cap aInt(A^{a^*}) \cap \Re_a(A)][B \cap B^{a^*}]^{-1}$ is a non-empty a-open set contained in AB^{-1} .

Proof. We only show that $B^{a^*} \neq \{\phi\}$ and $A \cap aInt(A^{a^*}) \cap \Re_a(A) \neq \{\phi\}$, the rest follows from Theorem 4.6 by taking U = V = X. In fact, if $B^{a^*} = \{\phi\}$, then $B \cap B^{a^*} = \{\phi\}$ which gives in view of Theorem 2.4, $B \in \mathcal{I}$, a contradiction. Again, $A \in \mathcal{U}(X, \tau, \mathcal{I}) \Rightarrow aInt(A^{a^*}) \cap \Re_a(A) \neq \{\phi\}$ (by Lemma 4.5 and Proposition 2.9) $\Rightarrow aInt(A^{a^*}) \cap \Re_a(A) \in \tau^a - \{\phi\}$. Now, $aInt(A^{a^*}) \cap \Re_a(A) =$ $[A \cap aInt(A^{a^*}) \cap \Re_a(A)] \cup [A^c \cap aInt(A^{a^*}) \cap \Re_a(A)] \notin \mathcal{I}$ (by Lemma 4.5). Then $[A^c \cap aInt(A^{a^*}) \cap \Re_a(A)] \subseteq [A^c \cap \Re_a(A)] = \Re_a(A) - A \in \mathcal{I}$ by Theorem 2.11. Thus $A \cap aInt(A^{a^*}) \cap \Re_a(A) \notin \mathcal{I}$ and hence $A \cap aInt(A^{a^*}) \cap \Re_a(A) \neq \{\phi\}$. \square

Corollary 4.8. Let $(X, \tau, ...)$ be a topological group and \mathcal{I} be an ideal on X such that $\mathcal{I} \cap \tau^a = \{\phi\}$ and $A \in \mathcal{U}(X, \tau, \mathcal{I})$.

- (1) If \mathcal{I} is left translation invariant, then $e \in aInt(A^{-1}A)$.
- (2) If \mathcal{I} is right translation invariant, then $e \in aInt(AA^{-1})$.
- (3) If \mathcal{I} is left as well as right translation invariant, then $e \in aInt(AA^{-1} \cap AA^{-1})$ $A^{-1}A$).

Proof. It suffices to prove (1) only. We have, $A \in \mathcal{U}(X,\tau,\mathcal{I})$ then there exists $B \in \mathcal{B}_r(X, \tau, \mathcal{I}) - \mathcal{I}$ such that $B \subseteq A$. Now for any $x \in X$, $\Re_a(B)x \cap \Re_a(B) =$ $\Re_a(Bx) \cap \Re_a(B) = \Re_a(Bx \cap B)$ (by Lemma 4.4 and Theorem 2.6). Thus if $\Re_a(B)x \cap \Re_a(B) \neq \{\phi\}, \text{ then } Bx \cap B \neq \{\phi\}. \text{ Now, if } x \in [\Re_a(B)]^{-1}[\Re_a(B)]$ then $x = y^{-1}z$ for some $y, z \in \Re_a(B)$, then yx = z = t (say) $\Rightarrow t \in \Re_a(B)x$ and $t \in \Re_a(B) \Rightarrow \Re_a(B)x \cap \Re_a(B) \neq \{\phi\} \Rightarrow x \in \{x \in X : \Re_a(B)x \cap \Re_a(B) \neq x \in \{x \in X : \Re_a(B)x \cap \Re_a(B)\}\}$ $\{\phi\}\}\$ then $[\Re_a(B)]^{-1}[\Re_a(B)] \subseteq \{x \in X : \Re_a(B)x \cap \Re_a(B) \neq \{\phi\}\} \subseteq \{x \in X : \Re_a(B)x \cap \Re_a(B) \neq \{\phi\}\}$ $X: Bx \cap B \neq \{\phi\}\} \subseteq B^{-1}B \subseteq A^{-1}A$. Since $\Re_a(B) \neq \{\phi\}$ by Proposition 2.9 as $B \in \mathcal{U}(X,\tau,\mathcal{I})$ and $\Re_a(B)$ is a-open for any $B \subseteq X$, we have $e \in$ $[\Re_a(B)]^{-1}[\Re_a(B) \subseteq aInt(A^{-1}A).$

ACKNOWLEDGEMENTS. The authors would like to acknowledge the grant from ministry of high education Malaysia UKMTOPDOWN-ST-06-FRGS0001-2012 for financial support.

References

- [1] W. Al-Omeri, M. Noorani and A. Al-Omari, a-local function and its properties in ideal topological space, Fasciculi Mathematici, to appear.
- [2] W. AL-Omeri, M. Noorani and A. AL-Omari, On Ra- operator in ideal topological spaces, submitted.
- [3] F. G. Arenas, J. Dontchev and M. L. Puertas, Idealization of some weak separation axioms, Acta Math. Hungar. 89, no. 1-2 (2000), 47-53.
- [4] J. Dontchev, M. Ganster, D. Rose, *Ideal resolvability*. Topology Appl. 93 (1999), 1–16.
- [5] E. Ekici, On a-open sets, A*-sets and decompositions of continuity and super-continuity, Annales Univ. Sci. Budapest. 51 (2008), 39-51.
- [6] E. Ekici, A note on a-open sets and e*-open sets, Filomat 22, no. 1 (2008), 89–96.
- [7] E. Hayashi, Topologies denfined by local properties, Math. Ann. 156 (1964), 205–215.
- [8] T. R. Hamlett and D. Rose, Remarks on some theorems of Banach, McShane, and Pettis, Rocky Mountain J. Math. 22, no. 4 (1992), 1329–1339.
- T. R. Hamlett and D. Jankovic, Ideals in topological spaces and the set operator Ψ , Bull. U.M.I. 7 4-B (1990), 863-874.
- [10] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-310.
- [11] K. Kuratowski, Topology, Vol. I. NewYork: Academic Press (1966).
- [7] M. Khan and T. Noiri, Semi-local functions in ideal topological spaces. J. Adv. Res. Pure Math. 2, no. 1 (2010), 36–42.
- [12] M. H. Stone, Application of the Theory of Boolean Rings to General Topology, Trans. Amer. Math. Soc. 41 (1937), 375-481.
- [13] M. N. Mukherjee, R. Bishwambhar and R. Sen, On extension of topological spaces in terms of ideals, Topology Appl. 154 (2007), 3167–3172.
- [14] M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar. 119, no. 4 (2008), 365-371.
- [15] A. A. Nasef and R. A. Mahmoud, Some applications via fuzzy ideals, Chaos, Solitons and Fractals 13 (2002), 825-831.
- [16] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph. D. Dissertation, Univ. of Cal. at Santa Barbara. (1967).
- [17] B. J. Pettis, Remark on a theorem of E. J. McShane, Proc. Amer. Math. Soc. 2(1951), 166-171.
- [18] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company (1960).
- [19] R. Vaidyanathaswamy, The localization theory in set-topology, Proc. Indian Acad. Sci., **20** (1945), 51–61
- [20] N.V. Veličko, H-Closed Topological Spaces, Amer. Math. Soc. Trans. 78, no. 2 (1968), 103 - 118.