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Abstract

In this article we establish the existence of a unique best proximity

point for some generalized non-self contractions on a metric space in

a simpler way using a geometric result. Our results generalize some

recent best proximity point theorems and several fixed point theorems

proved by various authors.
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1. Introduction

Fixed point theory plays an important role in supplying a uniform treatment
for solving equations of the form Tx = x where T is a self mapping defined on
a subset of a metric space, partially ordered metric space, topological vector
space or some suitable space. Given two non-empty subsets A and B of a
metric space (X, d), consider a non-self mapping T : A → B. The mapping T
is said to be a k−contraction if d(Tx, T y) ≤ kd(x, y) hold ∀ x, y ∈ A and for
some k ∈ [0, 1). If T is a self map, that is, if A = B and A is complete, then the
famous Banach contraction principle implies that T has a unique fixed point
in A. As this principle has applications in various fields, many generalizations
of this principle have appeared in the literature (see [12, 13] ) by generalizing
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the contractive condition used by Banach. In 1975, Matkowski [2] used the
following contractive condition:

(1.1) d(Tx, T y) ≤ ϕ(d(x, y)), ∀ x, y ∈ A,

where ϕ is a function from R+, the set of all nonnegative reals, into R+ such
that ϕ is nondecreasing and satisfies limn→∞ϕ

n(t) = 0 for any positive t.
Matkowski [2] proved that T has a unique fixed point if T is a self map and A
is complete. On the other hand, Rhoades [3] in 2001 gave an existence result of
unique fixed point for mappings satisfying the following contractive condition:

(1.2) d(Tx, T y) ≤ d(x, y) − ψ(d(x, y)), ∀ x, y ∈ A,

where ψ : R+ → R+ is a nondecreasing, continuous function with ψ−1(0) = {0}
and limt→∞ ψ(t) = ∞ (If A is bounded, then the infinity condition can be
omitted). Rhoades [3] proved that T has a unique fixed point if T is a self map
and A is complete. Next, we present a brief discussion about best proximity
point.

It is clear that T (A)∩A 6= ∅ is a necessary (but not sufficient) condition for
the existence of a fixed point for the map T : A→ B. If the necessary condition
fails, then d(x, Tx) > 0, for all x ∈ A. This means that the mapping T : A→ B
does not have any fixed point, that is, the equation Tx = x has no solution.
From this point of view, we think of a point x in A which is closest to Tx
in some sense. Best approximation and best proximity point results are being
studied in this direction. The well-known best approximation theorem due to
Ky Fan [14] states that ifM is a non-empty compact convex subset of a normed
linear space E and S : M → E is a continuous function, then there exists a
point x ∈M such that ‖x− Sx‖ = d(Sx,M) = inf{‖Sx− a‖ : a ∈M}. Such
an element x ∈M satisfying ‖x−Sx‖ = d(Sx,M) is called a best approximant.

On the other hand, though a best approximant acts as an approximate
solution of the equation Sx = x, such element is not an optimal solution in
the sense that the distance between x and Sx is minimum. Naturally for given
subsets A and B of a metric space and a mapping T : A → B one can think
of finding a point x∗ ∈ A such that d(x∗, T x∗) = min{d(x, Tx) : x ∈ A}. As
d(x, Tx) ≥ dist(A,B) = inf{d(a, b) : a ∈ A, b ∈ B} ∀ x ∈ A, then an optimal
solution of min{d(x, Tx) : x ∈ A} is one for which the value dist(A,B) is
attained. A point x∗ ∈ A is said to be a best proximity point for the function
T : A→ B if d(x∗, T x∗) = dist(A,B). So a best proximity point of the map T
is an approximate solution of the equation Tx = x which is optimal in the sense
that distance between x and Tx is minimum. It is clear that all best proximity
point theorems work as a natural generalization of fixed point theorems if T
is a self-map. For some interesting best proximity point results one can refer
to [6, 7, 9, 10]. Some applications of best proximity point results can be found
in [15, 16]. Recently V. Sankar Raj [4] obtained the following best proximity
point theorem for mappings satisfying (1.2).

Theorem 1.1 ([4, Theorem 3.1]). Let A,B be two non-empty closed subsets
of a complete metric space (X, d) such that the pair (A,B) has the P-property
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and A0 6= ∅ and T : A → B be a mapping such that T (A0) ⊆ B0 and it satis-
fies(1.2). Then there exists a unique x∗ in A such that d(x∗, T x∗) = dist(A,B).

1.1. Our contribution. In this paper we prove the existence of a unique best
proximity point for mappings satisfying the contractive condition (1.1) and
for mappings satisfying a condition which is a weaker form of condition (1.2)
(where ψ is assumed to be either continuous or nondecreasing and the infinity
condition is not needed). Our result enables us prove the above Theorem 1.1
under weaker assumptions. In addition, our theorem includes the generalization
of Banach’s contraction principle due to Matkowski [2, Theorem 1.2] and help
us to improve [3, Theorem 1] by Rhoades.

2. Preliminaries

In this section we give some definitions and results which are useful and
related to context of our results.

Let A and B be two non-empty subsets of a metric space (X, d). Throughout
this article we denote by A0 and B0 the following sets:

A0 = {x ∈ A : d(x, y) = dist(A,B) for some y ∈ B}
B0 = {y ∈ B : d(x, y) = dist(A,B) for some x ∈ A}.

For the sufficient conditions for the non-emptiness of A0 and B0, one can refer
to [11].

Let (A,B) be a pair of two non-empty subsets of a metric space (X, d) with
A0 6= ∅. Then the pair (A,B) is said to have the P -property [4] if and only if

d(x1, y1) = dist(A,B)

d(x2, y2) = dist(A,B)

}

⇒ d(x1, x2) = d(y1, y2)

where x1, x2 ∈ A0 and y1, y2 ∈ B0.
It is easy to check that for a non-empty subset A of (X, d), the pair (A,A)

has the P -property.

Example 2.1 ([4]). Let A and B be two non-empty closed convex subsets of
a real Hilbert space H , then the pair (A,B) has the P -property.

Example 2.2 ([8]). Let A and B be two nonempty bounded closed convex
subsets of a uniformly convex Banach space X , the pair (A,B) has the P -
property.

3. Main results

We begin this section with the following two auxiliary results.

Lemma 3.1. Let ψ : R+ → R+ be a function such that ψ−1(0) = {0} and ψ
is either nondecreasing or continuous. Then, for any bounded sequence {tn} of
positive reals, ψ(tn) → 0 implies tn → 0.
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Proof. Let {tn} be a bounded sequence of positive reals such that ψ(tn) → 0.
Let us assume that ψ is nondecreasing. Suppose tn 9 0. Then there exists

a subsequence {tnk
} of {tn} such that tnk

≥ δ for some δ > 0 and ∀ k ∈ N. As
ψ is nondecreasing, so ψ(tnk

) ≥ ψ(δ) ∀ k, which is a contradiction.
Let ψ be continuous. Suppose that the sequence {tn} is not convergent.

Then lim tn 6= lim tn. This implies that there exists a subsequence {tnk
}

of {tn} such that tnk
→ t0 > 0 which implies that ψ(tnk

) → ψ(t0) > 0, a
contradiction. Hence tn → lim tn = lim tn = 0. �

Lemma 3.2. Let A and B be two non-empty subsets of a metric space and ψ :
R+ → R+ be a function such that ψ−1(0) = {0} and for any bounded sequence
{tn} of positive reals, ψ(tn) → 0 implies tn → 0. Suppose that T : A→ B be a
mapping such that

d(Tx, T y) ≤ d(x, y)− ψ(d(x, y)) ∀ x, y ∈ A.

Then, for every ǫ > 0, there exist δ > 0 and γ ∈ (0, ǫ) such that for all x, y ∈ A,
d(x, y) < ǫ+ δ implies d(Tx, T y) ≤ γ.

Proof. Suppose that there exists an ǫ0 > 0 such that for every δ > 0 and
γ ∈ (0, ǫ0) there exist x, y ∈ A such that d(x, y) < ǫ0+δ implies d(Tx, T y) > γ.

Let δn = 1
n2 and γn = ǫ0

n2

1 + n2 ∀ n ∈ N, so there exist {xn} and {yn} in A

such that

(3.1) d(xn, yn) < ǫ0 +
1

n2
and d(Txn, T yn) > ǫ0

n2

1 + n2

Now, we get

ǫ0
n2

1 + n2
< d(Txn, T yn) ≤ d(xn, yn)− ψ(d(xn, yn))

< ǫ0 +
1

n2
− ψ(d(xn, yn))

which implies ψ(d(xn, yn)) <
ǫ0

1 + n2 + 1
n2 . Thus ψ(d(xn, yn)) → 0 as n → ∞

and since {d(xn, yn)} is bounded, by the given hypothesis, d(Txn, T yn) → 0 as
n→ ∞. Now by (3.1) limn→∞d(Txn, T yn) ≥ ǫ0, which is a contradiction. �

Now we recall the following result of Hegedűs and Szilágyi [1, Lemma 1].

Lemma 3.3. For a given subset D of R
2
+ = {(x, y) ∈ R

2 : x, y ≥ 0}, the
following statements are equivalent:

(i) for any ǫ > 0, there exist δ > 0 and γ ∈ (0, ǫ) such that for all (t, u) ∈ D,
t < ǫ+ δ implies u ≤ γ;

(ii) there exists a function ϕ : R+ → R+ where ϕ is continuous and nonde-
creasing with ϕ(t) < t, ∀ t > 0 and u ≤ ϕ(t) ∀ (t, u) ∈ D.

The following theorem is our main result which gives sufficient conditions for
the existence of a unique best proximity point for some generalized contractions.
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Theorem 3.4. Let A and B be two non-empty closed subsets of a complete
metric space (X, d) such that the pair (A,B) has the P-property and A0 6= ∅

and T : A→ B be a mapping such that T (A0) ⊆ B0, satisfying any one of the
following contractive conditions:

(I) d(Tx, T y) ≤ φ(d(x, y)), ∀ x, y ∈ A, where φ : R+ → R+ is nondecreasing
and satisfies limn→∞φ

n(t) = 0 for any t > 0.

(II) d(Tx, T y) ≤ d(x, y) − ψ(d(x, y)), ∀ x, y ∈ A, where ψ : R+ → R+ is
either nondecreasing or continuous with ψ−1(0) = {0};

Then there exists a unique x∗ in A such that d(x∗, T x∗) = dist(A,B). More-
over, if x0 ∈ A0 and xn is defined by d(xn, T xn−1) = dist(A,B) ∀ n ∈ N, then
xn → x∗ as n→ ∞.

Proof. Since A0 is non-empty, let x0 ∈ A0. As T (x0) ∈ T (A0) ⊆ B0, by defini-
tion of B0 there exists x1 ∈ A0 such that d(x1, T x0) = dist(A,B). Again, as
T (x1) ∈ T (A0) ⊆ B0, there exists x2 ∈ A0 such that d(x2, T x1) = dist(A,B).
Repeating this process, we can obtain a sequence {xn} ⊆ A0 such that

(3.2) d(xn+1, T xn) = dist(A,B), ∀ n ∈ N.

Assume that xn+1 6= xn ∀ n, otherwise there is nothing to prove. By the
P -property of (A,B) it is clear that

(3.3) d(xn, xn+1) = d(Txn−1, T xn), ∀ n ∈ N.

To prove that {xn} is a Cauchy sequence, we shall first claim that there exists
a function ϕ : R+ → R+ where ϕ is nondecreasing such that ϕ(t) < t, ∀ t > 0,
ϕ(0) = 0 and limn→∞ϕ

n(t) = 0 for any t > 0 and d(Tx, T y) ≤ ϕ(d(x, y)) for
any x, y ∈ A.

Let us assume that T satisfies condition (I). Clearly φ(t) < t for t > 0.
Indeed, if there exists t0 > 0 with φ(t0) ≥ t0, then φn(t0) ≥ t0 ∀ n ∈ N as φ
is increasing, a contradiction. Also note that φ(0) = 0. Therefore our claim is
true by taking ϕ = φ.

Suppose T satisfies (II). Then by applying Lemma 3.1 and Lemma 3.2 we
see that for any ǫ > 0, there exist δ > 0 and γ ∈ (0, ǫ) such that for all x, y ∈ A,
d(x, y) < ǫ+ δ implies d(Tx, T y) ≤ γ.

Now applying Lemma 3.3 to the set D = {(d(x, y), d(Tx, T y)) : x, y ∈ A},
we see that there exists a function ϕ : R+ → R+ such that ϕ is continuous
and nondecreasing with ϕ(t) < t, ∀ t > 0 and d(Tx, T y) ≤ ϕ(d(x, y)) for any
x, y ∈ A. Clearly limn→∞ϕ

n(t) = 0 for any t > 0. Indeed if there exists t0 > 0
such that limn→∞ϕ

n(t0) = β 6= 0, then β = limn→∞ϕ(ϕ
n−1(t0)) = ϕ(β) < β,

a contradiction. Therefore our claim is true. Now,

d(x2, x3) = d(Tx1, T x2) ≤ ϕ(d(x1, x2)) ≤ ϕ2(d(x0, x1)).

By induction we get d(xn, xn+1) ≤ ϕn((d(x0, x1)) ∀ n ∈ N. From the hypoth-
esis it is clear that d(xn, xn+1) → 0 as n → ∞. Thus for a given ǫ > 0 there
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exists N ∈ N such that

(3.4) d(xn, xn+1) ≤ ǫ− ϕ(ǫ) ∀ n ≥ N.

Denoting a ball with center x and radius ǫ by B[x, ǫ], we will show the following
relations

(a) T (B[xN , ǫ] ∩ A) ⊆ B[TxN−1, ǫ];
(b) y ∈ B[TxN−1, ǫ] with d(x, y) = dist(A,B), x ∈ A0 ⇒ x ∈ B[xN , ǫ] ∩ A.

If x ∈ B[xN , ǫ] ∩ A, then

d(Tx, TxN−1) ≤ d(Tx, TxN) + d(TxN , T xN−1)

≤ ϕ(d(x, xN )) + d(xN+1, xN )

≤ ϕ(ǫ) + ǫ− ϕ(ǫ) ≤ ǫ

and hence (a) follows.
Let y ∈ B[TxN−1, ǫ] with d(x, y) = dist(A,B), x ∈ A0. Now by (3.2),

d(xN , T xN−1) = dist(A,B). Therefore by using the P -property of (A,B) we
have d(xN , x) = d(TxN−1, y) and hence (b) follows.

From (3.4), it is clear that xN+1 ∈ B[xN , ǫ] ∩ A and then by (a), we get
TxN+1 ∈ B[TxN−1, ǫ]. From (3.2), d(xN+2, T xN+1) = dist(A,B) with xN+2 ∈
A0. Therefore (b) implies xN+2 ∈ B[xN , ǫ]∩A. Again by (a), we have TxN+2 ∈
B[TxN−1, ǫ] and from (3.2), d(xN+3, T xN+2) = dist(A,B) with xN+3 ∈ A0.
Again (b) implies that xN+3 ∈ B[xN , ǫ] ∩ A. Continuing this process we can
conclude that

xN+m ∈ B[xN , ǫ] ∩ A, ∀ m ∈ N.

Hence {xn} is a Cauchy sequence. As A is closed, there exists an element
x∗ ∈ A such that xn → x∗ as n → ∞. As ϕ(t) < t for t > 0, we have
d(Tx, T y) ≤ d(x, y) ∀ x, y ∈ A which implies that T is continuous in A. There-
fore Txn → Tx∗. From the continuity of the distance function we conclude
that d(xn, T xn) → d(x∗, T x∗). Since d(xn+1, T xn) = dist(A,B) ∀ n, we have
d(x∗, T x∗) = dist(A,B).

If x1 and x2 are two best proximity points of T , by the P -property of (A,B)
we have d(x1, x2) = d(Tx1, T x2). Then,

d(x1, x2) = d(Tx1, T x2) ≤ ϕ(d(x1, x2))

< d(x1, x2) [ since ϕ(t) < t, ∀ t > 0 ]

which implies that x1 = x2. �

Since, for any nonempty subset A of X , the pair (A,A) has the P -property,
we can deduce the following result, as a corollary from the above theorem, by
taking A = B.

Corollary 3.5. Let (X, d) be a complete metric space and A be a nonempty
closed subset of X. Let T : A→ A be a self-map satisfying condition (II). Then
T has a unique fixed point x in A.
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Remark 3.6. If the mapping satisfies conditions (II), it follows from Theorem
3.4 that the assumptions of Theorem 1.1 on the function ψ can be weakened.
The following example illustrates that Theorem 3.4 generalizes Theorem 1.1.

Example 3.7. Let X be the set consists of the interval [0, 1] together with the
natural numbers 2, 3, 4, · · · . Let d : X ×X → R such that

d(x, y) = |x− y| if x = y or both x, y ∈ [0, 1],

= x+ y if one of x, y /∈ [0, 1].

Then (X, d) is a complete metric space (see [5, Remarks 3]). Let A = [0, 1] ∪
{3, 5, 7, · · · } and B = [0, 1]∪ {2, 4, 6, · · · } be two subsets of X . Define the map
T : A→ B by

T (x) = x−
1

2
x2 if x ∈ [0, 1],

= x− 1 if x = 3, 5, 7, · · · .

Now, for x, y ∈ [0, 1] with x 6= y,

d(Tx, T y) =

∣

∣

∣

∣

(x − y)(1−
1

2
(x+ y))

∣

∣

∣

∣

≤ d(x, y)(1 −
1

2
d(x, y)),

if x ∈ {3, 5, · · · } and y ∈ A with x 6= y,

d(Tx, T y) = Tx+ Ty ≤ x+ y − 1 = d(x, y)− 1.

Thus, if we consider the map ψ : [0,∞) → [0,∞) by

ψ(t) =
1

2
t2 0 ≤ t ≤ 1

= 1 1 < t <∞,

then d(Tx, T y) ≤ d(x, y) − ψ(d(x, y)) ∀ x, y ∈ A where ψ is nondecreasing
with ψ−1(0) = {0}. It is easy to check that A,B are closed subsets of X and
(A,B) has the P-property. Also, A0 = B0 = [0, 1] and T (A0) ⊆ B0. Thus, all
the assumptions of Theorem 3.4 hold and note that x∗ = 0 is the unique best
proximity point.

Suppose that T satisfies (1.2) for some ϕ where limt→∞ ϕ(t) = ∞ as A is
unbounded. Consider a sequence {tn}n∈N in R+ where tn = d(0, 2n + 1) for
n ≥ 1. Since tn → ∞ and limt→∞ ϕ(t) = ∞, ϕ(tn) → ∞. Now, for n ≥ 1,

(2n+ 1)− 1 = T (0) + T (2n+ 1)

= d(T (0), T (2n+ 1))

≤ d(0, 2n+ 1)− ϕ(d(0, 2n+ 1)) = (2n+ 1)− ϕ(tn).

Hence, ϕ(tn) ≤ 1 ∀ n ≥ 1, a contradiction. Thus Theorem 1.1 cannot be used
to give the existence of the solution x∗.

Remark 3.8. As a corollary we get [2, Theorem 1.2] due to Matkowski (see
also [12, p. 15]), from Theorem 3.4, by considering A = B when the mapping
satisfies (I).
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Remark 3.9. As (II) includes (1.2), Corollary 3.5 is a generalized version of [3,
Theorem 1] due to Rhoades and the following example justifies that.

Example 3.10. Let (X, d) be the metric space as in Example 3.7 and A = X .
Define the mapping T : A→ A by

T (x) = x−
1

2
x2 if x ∈ [0, 1],

= x− 1 if x = 2, 3, 4, · · · .

Similar to Example 3.7, it is easy to check that

d(Tx, T y) ≤ d(x, y)(1 −
1

2
d(x, y)) if x, y ∈ [0, 1],

≤ d(x, y)− 1 if x ∈ {2, 3, · · · } and y ∈ A with x 6= y.

We see that d(Tx, T y) ≤ d(x, y)−ψ(d(x, y)) ∀ x, y ∈ A, where ψ is the function
as in Example 3.7. Thus Corollary 3.5 guarantees the existence of unique fixed
point of T and note that T (0) = 0. Similar to Example 3.7, it is easy to verify
that T does not satisfy (1.2). Thus [3, Theorem 1] cannot be applied to get
the fixed point.
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