TABLE OF CONTENTS

Abstract		i
Resume	n	iii
Resum		٧
1. INTRO	DDUCTION	1
1.	Citrus improvement by genetic transformation	3
1.1.	Citrus	3
1.1.1.	Taxonomy, origin, and distribution	3
1.1.2.	Citrus biology: some clues on growth and development	4
1.1.2.1.	Vegetative development	4
1.1.2.2.	Reproductive development/biology	5
1.2.	The citrus fruits	8
1.2.1.	Commercialization and socio-economic importance	8
1.2.2.	Morphology/anathomy, development and maturation	9
1.2.3.	Quality attributes of fruit and juice	10
1.2.3.1.	Quality standards for fresh citrus fruits	11
1.3.	Genetic improvement of citrus	12
1.3.1.	Needs for genetic improvement: special focus on scion breeding goals	12
1.3.2.	Rationale of transgenic breeding	14
1.3.3.	Potential applications of genetic engineering in the improvement of citrus scions	15
2.	Risk and concerns related to the field-release and commercialization of GM trees	18
2.1.	Transgene dispersal	20
2.1.1.	By seeds	21
2.1.2.	By pollen	21
2.1.3.	Containement measures	22
2.2.	Unintended effects of transgenes. Importance of pleiotropic effects	23
2.2.1.	Event-specific unintended effects: Position and insertion effects	23
2.2.2.	Pleiotropic effects	24
2.3.	Transgene stability over time	25
2.4.	Conclusion and future prospects	25
3.	The contribution of plants in promoting human health	26
3.1.	Citrus and health: nutri-functional attributes of oranges	26
3.2.	Metabolic engineering towards development of functional food	33
2. OBJE	CTIVES	41
3. RESU	ILTS: CHAPTER 1.	45
Pollen co	ompetition as a reproductive isolation barrier represses transgene flow between	
compatik	ole and co-flowering citrus genotypes	
4. RESU	ILTS: CHAPTER 2.	85

Field performance of transgenic citrus trees: Assessment of the long-term expression of uidA	J		
and nptll transgenes and its impact on relevant agronomic and phenotypic characteristics			
5. RESULTS: CHAPTER 3.	117		
Metabolic engineering of β -carotene in orange fruit increases its in vivo antioxidant properties			
6. GENERAL DISCUSSION AND OUTLOOK	149		
7. CONCLUSIONS	157		
8. LITERATURE CITED IN INTRODUCTION AND GENERAL DISCUSSION	161		
ANNEX	187		