New common fixed point theorems for multivalued maps

Raj Kamal ${ }^{a}$, Renu Chugh ${ }^{a}$, Shyam Lal Singh ${ }^{b, *}$ and Swami Nath Mishra ${ }^{c}$

${ }^{a}$ Department of Mathematics, Maharshi Dayanand University, Rohtak 124001, India.
${ }^{b}$ 21, Govind Nagar, Rishikesh 249201, India.
${ }^{c}$ Department of Mathematics, Walter Sisulu University, Mthatha, 5117, South Africa.

Abstract

Common fixed point theorems for a new class of multivalued maps are obtained, which generalize and extend classical fixed point theorems of Nadler and Reich and some recent Suzuki type fixed point theorems.

2010 MSC: 54H25; 47H10.
KEywords: Fixed point; Banach contraction theorem; Hausdorff metric space

1. Introduction

Let (X, d) be a metric space and $C L(X)$ the family of all nonempty closed subsets of X. $(C L(X), H)$ equipped with the generalized Hausdorff metric H defined by

$$
H(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right\}
$$

where $A, B \in C L(X)$ and $d(x, K)=\inf _{z \in K} d(x, z)$, is called the generalized hyperspace of X.

[^0]For any nonempty subsets A, B of $X, d(A, B)$ denotes the gap between the subsets A and B, while

$$
\begin{aligned}
& \rho(A, B)=\sup \{d(a, b): a \in A, b \in B\} \\
& B N(X)=\{A: \varnothing \neq A \subseteq X \text { and the diameter of } A \text { is finite }\} .
\end{aligned}
$$

As usual, we write $d(x, B)$ (resp. $\rho(x, B)$) for $d(A, B)$ (resp. $\rho(A, B)$) when $A=\{x\}$. For $x, y \in X$, we follow the following notation, where S and T are maps to be defined specifically in a particular context:

$$
M(S x, T y)=\left\{d(x, y), \frac{d(x, S x)+d(y, T y)}{2}, \frac{d(x, T y)+d(y, S x)}{2}\right\}
$$

Recently Suzuki [23] obtained a forceful generalization of the famous Banach contraction theorem. Subsequently, a number of new fixed point theorems have been established and some applications have been discussed (see, for instance, $[1,5,6,7,8,9,10,13,16,20,21,22,24])$.

The following result is essentially due to Kikkawa and Suzuki [8] (see also [22]) which generalizes the classical multivalued contraction theorem due to Nadler [11] (see also [2, 12, 14, 18]).

Theorem 1.1. Let (X, d) be a complete metric space and let $T: X \rightarrow C L(X)$. Assume there exists $r \in[0,1)$ such that for every $x, y \in X$,

$$
d(x, T x) \leq(1+r) d(x, y) \quad \text { implies } \quad H(T x, T y) \leq r d(x, y)
$$

Then there exists $z \in X$ such that $z \in T z$.
The following generalization of Theorem 1.1 is due to Singh and Mishra [20].
Theorem 1.2. Let X be a complete metric space and $T: X \rightarrow C L(X)$. Assume there exists $r \in[0,1)$ such that for every $x, y \in X$,

$$
d(x, T x) \leq(1+r) d(x, y) \quad \text { implies } \quad H(T x, T y) \leq r M(T x, T y)
$$

Then there exists $z \in X$ such that $z \in T z$.
The following general common fixed point theorem is due to Sastry and Naidu [19].
Theorem 1.3. Let X be a complete metric space and S, T maps from X to itself. Assume there exists $r \in[0,1)$ such that for every $x, y \in X$,

$$
\begin{equation*}
d(S x, T y) \leq r \max \left\{d(x, y), d(x, S x), d(y, T y), \frac{d(x, T y)+d(y, S x)}{2}\right\} \tag{1.1}
\end{equation*}
$$

Then S and T have a unique common fixed point.
For an excellent discussion on several special cases and variants of Theorem 1.3 , one may refer to Rus [18]. The generality of Theorem 1.3 may be appreciated from the fact that the condition (1.1) in Theorem 1.3 cannot be replaced by a slightly more general condition:

$$
\begin{equation*}
d(S x, T y) \leq r \max \{d(x, y), d(x, S x), d(y, T y), d(x, T y), d(y, S x)\} \tag{1.2}
\end{equation*}
$$

See [19, Ex. 5]. Notice that the condition (1.2) with $S=T$ is Ćirić's quasicontraction [4]. We remark that, in Rhoades' comprehensive comparison of contractive conditions [15], the condition (1.2) with $S=T$ is considered the most general contraction for a self-map of a metric space.

A particular case of our main result (cf. Theorem 2.1) generalizes Theorems 1.1 and 1.2. Some other special cases are also discussed.

2. Main Results

We shall need the following lemma essentially due to Nadler, Jr. [11] (see also [2], [3], [16, p. 4], [16, 17], [18, p. 76]).
Lemma 2.1. If $A, B \in C L(X)$ and $a \in A$, then for each $\varepsilon>0$, there exists $b \in B$ such that $d(a, b) \leq H(A, B)+\varepsilon$.

Theorem 2.2. Let X be a complete metric space and let S and T maps from X to $C L(X)$. Assume there exists $r \in[0,1)$ such that for every $x, y \in X$,

$$
\min \{d(x, S x), d(y, T y)\} \leq(1+r) d(x, y) \quad \text { implies } \quad H(S x, T y) \leq r M(S x, T y)
$$

Then there exists an element $u \in X$ such that $u \in S u \cap T u$.
Proof. Obviously $M(S x, T y)=0$ iff $x=y$ is a common fixed point of S and T. So we may assume that $M(S x, T y)>0$.

Let $\varepsilon>0$ be such that $\beta=r+\varepsilon<1$. Let $u_{0} \in X$ and $u_{1} \in T u_{0}$. By Lemma 2.1, their exists $u_{2} \in S u_{1}$ such that

$$
d\left(u_{2}, u_{1}\right) \leq H\left(S u_{1}, T u_{0}\right)+M\left(S u_{1}, T u_{0}\right)
$$

Similarly, their exists $u_{3} \in T u_{2}$ such that

$$
d\left(u_{3}, u_{2}\right) \leq H\left(T u_{2}, S u_{1}\right)+\varepsilon M\left(T u_{2}, S u_{1}\right)
$$

Continuing in this manner, we find a sequence $\left\{u_{n}\right\}$ in X such that

$$
u_{2 n+1} \in T u_{2 n}, u_{2 n+2} \in S u_{2 n+1}
$$

and

$$
\begin{aligned}
d\left(u_{2 n+1}, u_{2 n}\right) & \leq H\left(T u_{2 n}, S u_{2 n-1}\right)+M\left(T u_{2 n}, S u_{2 n-1}\right) \\
d\left(u_{2 n+2}, u_{2 n+1}\right) & \leq H\left(S u_{2 n+1}, T u_{2 n}\right)+\varepsilon M\left(S u_{2 n+1}, T u_{2 n}\right)
\end{aligned}
$$

Now, we show that for any $n \in N$,

$$
\begin{equation*}
d\left(u_{2 n+1}, u_{2 n}\right) \leq \beta d\left(u_{2 n-1}, u_{2 n}\right) \tag{2.1}
\end{equation*}
$$

Suppose if $d\left(u_{2 n-1}, S u_{2 n-1}\right) \geq d\left(u_{2 n}, T u_{2 n}\right)$, then

$$
\min \left\{d\left(u_{2 n-1}, S u_{2 n-1}\right) d\left(u_{2 n}, T u_{2 n}\right)\right\} \leq(1+r) d\left(u_{2 n-1}, u_{2 n}\right)
$$

```
R. Kamal, R. Chugh, S. L. Singh and S. N. Mishra
```

Therefore by the assumption,

$$
\begin{aligned}
d\left(u_{2 n+1}, u_{2 n}\right) & \leq H\left(S u_{2 n-1}, T u_{2 n}\right) \\
& \leq r M\left(S u_{2 n-1}, T u_{2 n}\right) \\
& \leq r M\left(S u_{2 n-1}, T u_{2 n}\right)+\varepsilon M\left(S u_{2 n-1}, T u_{2 n}\right) \\
& =\beta M\left(S u_{2 n-1}, T u_{2 n}\right) \\
& =\beta \max \left\{d\left(u_{2 n-1}, u_{2 n}\right), \frac{d\left(u_{2 n-1}, S u_{2 n-1}\right)+d\left(u_{2 n}, T u_{2 n}\right)}{2}\right. \\
& \left.\frac{d\left(u_{2 n-1}, T u_{2 n}\right)+d\left(u_{2 n}, S u_{2 n-1}\right)}{2}\right\} \\
& \leq \beta \max d\left(u_{2 n-1}, u_{2 n}\right), d\left(u_{2 n}, u_{2 n+1}\right)
\end{aligned}
$$

This yields (2.1).
Suppose, if $d\left(u_{2 n}, T u_{2 n}\right) \geq d\left(u_{2 n-1}, S u_{2 n-1}\right)$, then

$$
\min \left\{d\left(u_{2 n-1}, S u_{2 n-1}\right), d\left(u_{2 n}, T u_{2 n}\right)\right\} \leq(1+r) d\left(u_{2 n-1}, u_{2 n}\right)
$$

Therefore by the assumption,

$$
\left.\begin{array}{l}
\begin{array}{rl}
d\left(u_{2 n+1}, u_{2 n}\right) & \leq H\left(S u_{2 n-1}, T u_{2 n}\right) \\
& \leq r M\left(S u_{2 n-1}, T u_{2 n}\right) \\
& \leq r M\left(S u_{2 n-1}, T u_{2 n}\right)+\varepsilon M\left(S u_{2 n-1}, T u_{2 n}\right) \\
& =\beta M\left(S u_{2 n-1}, T u_{2 n}\right)
\end{array} \\
=\beta \max \left\{d\left(u_{2 n-1}, u_{2 n}\right), \frac{d\left(u_{2 n-1}, S u_{2 n-1}\right)+d\left(u_{2 n}, T u_{2 n}\right)}{2},\right. \\
\\
\left.\quad \frac{d\left(u_{2 n-1}, T u_{2 n}\right)+d\left(u_{2 n}, S u_{2 n-1}\right)}{2}\right\}
\end{array}\right\}
$$

This prove (2.1). In an analogous manner, we show that

$$
\begin{equation*}
d\left(u_{2 n+2}, u_{2 n+1}\right) \leq \beta d\left(u_{2 n+1}, u_{2 n}\right) \tag{2.2}
\end{equation*}
$$

We conclude from (2.1) and (2.2) that for any $n \in N$,

$$
d\left(u_{n+1}, u_{n}\right) \leq \beta d\left(u_{n}, u_{n-1}\right)
$$

Therefore $\left\{u_{n}\right\}$ is a Cauchy sequence and has a limit in X. Call it u. Since $u_{n} \rightarrow u$, there exists $n_{0} \in N$ (natural numbers) such that

$$
d\left(u, u_{n}\right) \leq \frac{1}{3} d(u, y) \quad \text { for } y \neq u \text { and all } n \geq n_{0}
$$

Then as in [23, p. 1862],

$$
\begin{aligned}
(1+r)^{-1} d\left(u_{2 n-1}, S u_{2 n-1}\right) & \leq d\left(u_{2 n-1}, S u_{2 n-1}\right) \\
& \leq d\left(u_{2 n-1}, u_{2 n}\right) \\
& \leq d\left(u_{2 n-1}, u\right)+d\left(u, u_{2 n}\right) \\
& \leq \frac{2}{3} d(y, u) \\
& =d(y, u)-\frac{1}{3} d(y, u) \\
& \leq d(y, u)-d\left(u_{2 n-1}, u\right) \\
& \leq d\left(u_{2 n-1}, y\right)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
d\left(u_{2 n-1}, S u_{2 n-1}\right) \leq(1+r) d\left(u_{2 n-1}, y\right) \tag{2.3}
\end{equation*}
$$

Now either $d\left(u_{2 n-1}, S u_{2 n-1}\right) \leq d(y, T y)$ or $d(y, T y) \leq d\left(u_{2 n-1}, S u_{2 n-1}\right)$. In either case, by (2.3) and the assumption,

$$
\begin{aligned}
d\left(u_{2 n}, T y\right) & \leq H\left(S u_{2 n-1}, T y\right) \\
& \leq r M\left(S u_{2 n-1}, T y\right) \\
& \leq r \max \left\{d\left(u_{2 n-1}, y\right), \frac{d\left(u_{2 n-1}, S u_{2 n-1}\right)+d(y, T y)}{2}\right. \\
& \left.\frac{d\left(u_{2 n-1}, T y\right)+d\left(y, S u_{2 n-1}\right)}{2}\right\}
\end{aligned}
$$

Making $n \rightarrow \infty$,

$$
\begin{align*}
d(u, T y) & \leq r \max \left\{d(u, y), \frac{d(u, u)+d(y, T y)}{2}, \frac{d(u, T y)+d(y, u)}{2}\right\} \\
& \leq r \max \left\{d(u, y), \frac{d(u, T y)+d(u, y)}{2}\right\} \tag{2.4}
\end{align*}
$$

It is clear from (2.4) that

$$
\begin{equation*}
d(u, T y) \leq r d(u, y) \tag{2.5}
\end{equation*}
$$

Now we show that

$$
\begin{equation*}
H(S u, T y) \leq r \max \left\{d(u, y), \frac{d(u, S u)+d(y, T y)}{2}, \frac{d(u, T y)+d(y, S u)}{2}\right\} \tag{2.6}
\end{equation*}
$$

Assume that $y \neq u$. Then for every $n \in N$, there exists $z_{n} \in T y$ such that

$$
d\left(u, z_{n}\right) \leq d(u, T y)+\frac{1}{n} d(y, u)
$$

So we have by (2.5),

$$
\begin{aligned}
d(y, T y) & \leq d\left(y, z_{n}\right) \\
& \leq d(y, u)+d\left(u, z_{n}\right) \\
& \leq d(y, u)+d(u, T y)+\frac{1}{n} d(y, u) \\
& \leq d(y, u)+r d(u, y)+\frac{1}{n} d(u, y) \\
& =\left(1+r+\frac{1}{n}\right) d(y, u)
\end{aligned}
$$

Hence

$$
\begin{equation*}
d(y, T y) \leq(1+r) d(y, u) \tag{2.7}
\end{equation*}
$$

Now either $d(u, S u) \leq d(y, T y)$ or $d(y, T y) \leq d(u, S u)$.
So in either case by (2.7) and the assumption, $H(S u, T y) \leq r M(S u, T y)$, which is (2.6).
Now taking $y=u_{2 n}$ in (2.6), we have

$$
\begin{aligned}
& d\left(S u, u_{2 n+1}\right) \leq H\left(S u, T u_{2 n}\right) \\
& \leq r \max \left\{d\left(u, u_{2 n}\right), \frac{d(u, S u)+d\left(u_{2 n}, u_{2 n+1}\right)}{2},\right. \\
&\left.\frac{d\left(u, u_{2 n+1}\right)+d\left(u_{2 n}, S u\right)}{2}\right\} .
\end{aligned}
$$

Passing to the limit this obtains $d(S u, u) \leq \frac{r}{2} d(S u, u)$. So $u \in S u$, as $S u$ is closed.

In an analogous manner, we can show that $u \in T u$.
Corollary 2.3. Let X be a complete metric space and $S, T: X \rightarrow X$. Assume there exists $r \in[0,1)$ such that for every $x, y \in X$,

$$
\min \{d(x, S x), d(y, T y)\} \leq(1+r) d(x, y) \quad \text { implies } \quad d(S x, T y) \leq r M(S x, T y)
$$

Then S and T have a unique common fixed point.
Proof. It comes from Theorem 2.2 that S and T have a common fixed point. The uniqueness of the common fixed point follows easily.

Corollary 2.4. Theorem 1.2.
Corollary 2.5 ([20]). Let X be a complete metric space and $T: X \rightarrow X$. Assume there exists $r \in[0,1)$ such that for every $x, y \in X$,

$$
d(x, T x) \leq(1+r) d(x, y) \quad \text { implies } \quad d(T x, T y) \leq r M(T x, T y)
$$

Then T has a unique fixed point.
Proof. It comes from Corollary 2.3 when $S=T$.
Now we give an application of Corollary 2.3.

Theorem 2.6. Let $P, Q: X \rightarrow B N(X)$. Assume there exists $r \in[0,1)$ such that for every $x, y \in X$,

$$
\begin{equation*}
\min \{\rho(x, P x), \rho(y, Q y)\} \leq(1+r) d(x, y) \tag{2.8}
\end{equation*}
$$

implies

$$
\begin{equation*}
\rho(P x, Q y) \leq r \max \left\{d(x, y), \frac{\rho(x, P x)+\rho(y, Q y)}{2}, \frac{d(x, Q y)+d(y, P x)}{2}\right\} \tag{2.9}
\end{equation*}
$$

Then there exsits a unique point $z \in X$ such that $z \in P z \cap Q z$.
Proof. Choose $\lambda \in(0,1)$. Define single-valued maps $S, T: X \rightarrow X$ as follows. For each $x \in X$, let $S x$ be a point of $P x$ which satisfies

$$
d(x, S x) \geq r^{\lambda} \rho(x, P x)
$$

Similarly, for each $y \in X$, let $T y$ be a point of $Q y$ such that

$$
d(y, T y) \geq r^{\lambda} \rho(y, Q y)
$$

Since $S x \in P x$ and $T y \in Q y$,

$$
d(x, S x) \leq \rho(x, P x) \quad \text { and } \quad d(y, T y) \leq \rho(y, Q y)
$$

So (2.8) gives
(2.10) $\min \{d(x, S x), d(y, T y)\} \leq \min \{\rho(x, P x), \rho(y, Q y)\} \leq(1+r) d(x, y)$,
and this implies (2.9). Therefore

$$
\begin{aligned}
d(S x, T y) \leq & \rho(P x, Q y) \\
\leq & r \cdot r^{-\lambda} \max \left\{r^{\lambda} d(x, y), \frac{r^{\lambda} \rho(x, P x)+r^{\lambda} \rho(y, Q y)}{2}\right. \\
& \left.\frac{r^{\lambda} d(x, Q y)+r^{\lambda} d(y, P x)}{2}\right\} \\
\leq & r^{1-\lambda} \max \left\{d(x, y), \frac{d(x, S x)+d(y, T y)}{2}, \frac{d(x, T y)+d(y, S x)}{2}\right\}
\end{aligned}
$$

So (2.10), viz., $\min \{d(x, S x), d(y, T y)\} \leq\left(1+r^{\prime}\right) d(x, y)$ imlpies

$$
d(S x, T y) \leq r^{\prime} \max \left\{d(x, y), \frac{d(x, S x)+d(y, T y)}{2}, \frac{d(x, T y)+d(y, S x)}{2}\right\}
$$

where $r^{\prime}=r^{1-\lambda}<1$.
Hence by Corollary 2.3, S and T have a unique point $z \in X$ such that $S z=T z=z$. This implies $z \in P z \cap Q z$.

The following result show that Theorem 2.6 is a generalization of the result of Singh and Mishra [20, Theorem 3.6].

Corollary 2.7. Let $P: X \rightarrow B N(X)$. Assume there exists $r \in[0,1)$ such that

$$
\rho(x, P x) \leq(1+r) d(x, y)
$$

implies

$$
\rho(P x, P y) \leq r \max \left\{d(x, y), \frac{\rho(x, P x)+\rho(y, P y)}{2}, \frac{d(x, P y)+d(y, P x)}{2}\right\}
$$

Then there exists a unique point z in X such that $z \in P z$.
Proof. It comes from Theorem 2.6 when $Q=P$.
We remark that Corollaries 2.5 and 2.7 generalize fixed point theorems from $[11,14,18]$ and others.

Now we give two examples to show the generality of our results.
Example 2.8. Let $X=\{(0,0),(4,0),(0,4),(4,5),(5,4)\}$ and d be defined by

$$
d\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|
$$

Let S and T be such that

$$
S\left(x_{1}, x_{2}\right)=\left\{\begin{array}{ll}
\left(x_{1}, 0\right) & \text { if } x_{1} \leq x_{2} \\
\left(0, x_{2}\right) & \text { if } x_{1}>x_{2}
\end{array} \text { and } \quad T\left(x_{1}, x_{2}\right)= \begin{cases}\left(0, x_{1}\right) & \text { if } x_{1} \leq x_{2} \\
\left(0, x_{2}\right) & \text { if } x_{1}>x_{2}\end{cases}\right.
$$

Then maps S and T do not satisfy (1.1) of Theorem 1.3 (e.g. $(x, y)=((4,5),(5,4)))$. However, S and T satisfy all the hypotheses of Corollary 2.3.

Example 2.9. Let $X=\{(1,1),(4,1),(1,4),(4,5),(5,4)\}$ and d be defined by

$$
d\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|
$$

Let T be such that

$$
T\left(x_{1}, x_{2}\right)= \begin{cases}\left(x_{1}, 1\right) & \text { if } x_{1} \leq x_{2} \\ \left(1, x_{2}\right) & \text { if } x_{1}>x_{2}\end{cases}
$$

Then T satisfies all the hypotheses of Corollary 2.5, but does not satisfy Ciric's quasi-contraction, viz. (1.2) with $S=T(e . g . x=(4,5), y=(5,4)$).

We close this paper with the following.
Question 2.10. Can we replace " $H(S x, T y) \leq r M(S x, T y)$ " in Theorem 2.1 by the following:
(2.11) $H(S x, T y) \leq r \max \left\{d(x, y), d(x, S x), d(y, T y), \frac{d(x, T y)+d(y, S x)}{2}\right\}$.

We remark that (2.11) with $S=T$ is the Ciric's generalized contraction [3] for $T: X \rightarrow C L(X)$.

Acknowledgements. The authors thank Editor-in-Chief Professor Salvador Romaguera for his suggestions in this paper. The third author (SLS) acknowledges the support by the UGC, New Delhi under Emeritus Fellowship.

New common fixed point theorems for multivalued maps

References

[1] A. Abkar and M. Eslamian, Fixed point theorems for Suzuki generalized nonexpansive multivalued mappings in Banach spaces, Fixed Point Theory Appl. 2010 (2010), 10 pp.
[2] N. A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math. 43 (1972), 553-562.
[3] Lj. B. C̀iric̀, Fixed points for generalized multivalued contractions, Mat. Vesnik 9, no. 24 (1972), 265-272.
[4] Lj. B. C̀iric̀, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267-273.
[5] B. Damjanovic̀ and D. Doric̀, Multivalued generalizations of the Kannan fixed point theorem, Filomat 25, no. 1 (2011), 125-131.
[6] S. Dhompongsa and H. Yingtaweesittikul, Fixed points for multivalued mappings and the metric completeness, Fixed Point Theory Appl. 2009 (2009), 15 pp.
[7] D. Doric̀ and R. Lazovic̀, Some Suzuki-type fixed point theorems for generalized multivalued mappings and applications, Fixed Point Theory Appl. 2011 (2011), 13 pp.
[8] M. Kikkawa and T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal. 69, no. 9 (2008), 2942-2949.
[9] M. Kikkawa and T. Suzuki, Some notes on fixed point theorems with constants, Bull. Kyushu Inst. Technol. Pure Appl. Math. 56 (2009), 11-18.
[10] G. Mots and A. Petruşel, Fixed point theory for a new type of contractive multi-valued operators, Nonlinear Anal. 70, no. 9 (2008), 3371-3377.
[11] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
[12] S. B. Nadler, Hyperspaces of Sets, Marcel Dekker, New York, 1978.
[13] O. Popescu, Two fixed point theorems for generalized contractions with constants in complete metric space, Cent. Eur. J. Math. 7, no. 3 (2009), 529-538.
[14] S. Reich, Fixed points of multi-valued functions. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 51, no. 8 (1971), 32-35.
[15] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290.
[16] B. D. Rouhani and S. Moradi, Common fixed point of multivalued generalized φ-weak contractive mappings, Fixed Point Theory Appl. 2010 (2010), 13 pp.
[17] I. A. Rus, Fixed point theorems for multivalued mappings in complete metric spaces, Math. Japon. 20 (1975), 21-24.
[18] I. A. Rus, Generalized Contractions And Applications, Cluj-Napoca, 2001.
[19] K. P. R. Sastry and S. V. R. Naidu, Fixed point theorems for generalized contraction mappings, Yokohama Math. J. 25 (1980), 15-29.
[20] S. L. Singh and S. N. Mishra, Coincidence theorems for certain classes of hybrid contractions, Fixed Point Theory Appl. 2010 (2010), 14 pp.
[21] S. L. Singh and S. N. Mishra, Remarks on recent fixed point theorems, Fixed Point Theory Appl. 2010 (2010), 18 pp.
[22] S. L. Singh and S. N. Mishra, Fixed point theorems for single-valued and multi-valued maps. Nonlinear Anal. 74, no. 6 (2011), 2243-2248.
[23] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136, no. 5 (2008), 1861-1869.
[24] T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal. 71, no. 11 (2009), 5313-5317.

[^0]: *Corresponding author.

