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Abstract

Common fixed point theorems for a new class of multivalued maps are

obtained, which generalize and extend classical fixed point theorems of

Nadler and Reich and some recent Suzuki type fixed point theorems.
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1. Introduction

Let (X, d) be a metric space and CL(X) the family of all nonempty closed
subsets of X . (CL(X), H) equipped with the generalized Hausdorff metric H

defined by

H(A,B) = max

{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}

,

where A,B ∈ CL(X) and d(x,K) = inf
z∈K

d(x, z), is called the generalized hy-

perspace of X .
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For any nonempty subsets A,B of X, d(A,B) denotes the gap between the
subsets A and B, while

ρ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B},

BN(X) = {A : ∅ 6= A ⊆ X and the diameter of A is finite}.

As usual, we write d(x,B) (resp. ρ(x,B)) for d(A,B) (resp. ρ(A,B)) when
A = {x}. For x, y ∈ X, we follow the following notation, where S and T are
maps to be defined specifically in a particular context:

M(Sx, T y) =

{

d(x, y),
d(x, Sx) + d(y, T y)

2
,
d(x, T y) + d(y, Sx)

2

}

.

Recently Suzuki [23] obtained a forceful generalization of the famous Banach
contraction theorem. Subsequently, a number of new fixed point theorems have
been established and some applications have been discussed (see, for instance,
[1, 5, 6, 7, 8, 9, 10, 13, 16, 20, 21, 22, 24]).

The following result is essentially due to Kikkawa and Suzuki [8] (see also
[22]) which generalizes the classical multivalued contraction theorem due to
Nadler [11] (see also [2, 12, 14, 18]).

Theorem 1.1. Let (X, d) be a complete metric space and let T : X → CL(X).
Assume there exists r ∈ [0, 1) such that for every x, y ∈ X,

d(x, Tx) ≤ (1 + r)d(x, y) implies H(Tx, T y) ≤ rd(x, y).

Then there exists z ∈ X such that z ∈ Tz.

The following generalization of Theorem 1.1 is due to Singh and Mishra [20].

Theorem 1.2. Let X be a complete metric space and T : X → CL(X).
Assume there exists r ∈ [0, 1) such that for every x, y ∈ X,

d(x, Tx) ≤ (1 + r)d(x, y) implies H(Tx, T y) ≤ rM(Tx, T y).

Then there exists z ∈ X such that z ∈ Tz.

The following general common fixed point theorem is due to Sastry and
Naidu [19].

Theorem 1.3. Let X be a complete metric space and S, T maps from X to

itself. Assume there exists r ∈ [0, 1) such that for every x, y ∈ X,

d(Sx, T y) ≤ rmax

{

d(x, y), d(x, Sx), d(y, T y),
d(x, T y) + d(y, Sx)

2

}

.(1.1)

Then S and T have a unique common fixed point.

For an excellent discussion on several special cases and variants of Theo-
rem 1.3, one may refer to Rus [18]. The generality of Theorem 1.3 may be
appreciated from the fact that the condition (1.1) in Theorem 1.3 cannot be
replaced by a slightly more general condition:

d(Sx, T y) ≤ rmax{d(x, y), d(x, Sx), d(y, T y), d(x, T y), d(y, Sx)}.(1.2)
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See [19, Ex. 5]. Notice that the condition (1.2) with S = T is Ćirić’s quasi-
contraction [4]. We remark that, in Rhoades’ comprehensive comparison of
contractive conditions [15], the condition (1.2) with S = T is considered the
most general contraction for a self-map of a metric space.

A particular case of our main result (cf. Theorem 2.1) generalizes Theo-
rems 1.1 and 1.2. Some other special cases are also discussed.

2. Main Results

We shall need the following lemma essentially due to Nadler, Jr. [11] (see
also [2], [3], [16, p. 4], [16, 17], [18, p. 76]).

Lemma 2.1. If A,B ∈ CL(X) and a ∈ A, then for each ε > 0, there exists

b ∈ B such that d(a, b) ≤ H(A,B) + ε.

Theorem 2.2. Let X be a complete metric space and let S and T maps from

X to CL(X). Assume there exists r ∈ [0, 1) such that for every x, y ∈ X,

min{d(x, Sx), d(y, T y)} ≤ (1 + r)d(x, y) implies H(Sx, T y) ≤ rM(Sx, T y).

Then there exists an element u ∈ X such that u ∈ Su ∩ Tu.

Proof. Obviously M(Sx, T y) = 0 iff x = y is a common fixed point of S and
T . So we may assume that M(Sx, T y) > 0.

Let ε > 0 be such that β = r + ε < 1. Let u0 ∈ X and u1 ∈ Tu0. By
Lemma 2.1, their exists u2 ∈ Su1 such that

d(u2, u1) ≤ H(Su1, T u0) +M(Su1, T u0).

Similarly, their exists u3 ∈ Tu2 such that

d(u3, u2) ≤ H(Tu2, Su1) + εM(Tu2, Su1).

Continuing in this manner, we find a sequence {un} in X such that

u2n+1 ∈ Tu2n, u2n+2 ∈ Su2n+1

and

d(u2n+1, u2n) ≤ H(Tu2n, Su2n−1) +M(Tu2n, Su2n−1),

d(u2n+2, u2n+1) ≤ H(Su2n+1, T u2n) + εM(Su2n+1, T u2n).

Now, we show that for any n ∈ N ,

d(u2n+1, u2n) ≤ βd(u2n−1, u2n).(2.1)

Suppose if d(u2n−1, Su2n−1) ≥ d(u2n, T u2n), then

min{d(u2n−1, Su2n−1)d(u2n, T u2n)} ≤ (1 + r)d(u2n−1, u2n).
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Therefore by the assumption,

d(u2n+1, u2n) ≤ H(Su2n−1, T u2n)

≤ rM(Su2n−1, T u2n)

≤ rM(Su2n−1, T u2n) + εM(Su2n−1, T u2n)

= βM(Su2n−1, T u2n)

= βmax

{

d(u2n−1, u2n),
d(u2n−1, Su2n−1) + d(u2n, T u2n)

2
,

d(u2n−1, T u2n) + d(u2n, Su2n−1)

2

}

≤ βmax d(u2n−1, u2n), d(u2n, u2n+1).

This yields (2.1).
Suppose, if d(u2n, T u2n) ≥ d(u2n−1, Su2n−1), then

min{d(u2n−1, Su2n−1), d(u2n, T u2n)} ≤ (1 + r)d(u2n−1, u2n).

Therefore by the assumption,

d(u2n+1, u2n) ≤ H(Su2n−1, T u2n)

≤ rM(Su2n−1, T u2n)

≤ rM(Su2n−1, T u2n) + εM(Su2n−1, T u2n)

= βM(Su2n−1, T u2n)

= βmax

{

d(u2n−1, u2n),
d(u2n−1, Su2n−1) + d(u2n, T u2n)

2
,

d(u2n−1, T u2n) + d(u2n, Su2n−1)

2

}

≤ βmax{d(u2n−1, u2n), d(u2n, u2n+1)}.

This prove (2.1). In an analogous manner, we show that

d(u2n+2, u2n+1) ≤ βd(u2n+1, u2n).(2.2)

We conclude from (2.1) and (2.2) that for any n ∈ N ,

d(un+1, un) ≤ βd(un, un−1).

Therefore {un} is a Cauchy sequence and has a limit in X . Call it u.
Since un → u, there exists n0 ∈ N (natural numbers) such that

d(u, un) ≤
1

3
d(u, y) for y 6= u and all n ≥ n0.
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Then as in [23, p. 1862],

(1 + r)−1d(u2n−1, Su2n−1) ≤ d(u2n−1, Su2n−1)

≤ d(u2n−1, u2n)

≤ d(u2n−1, u) + d(u, u2n)

≤
2

3
d(y, u)

= d(y, u)−
1

3
d(y, u)

≤ d(y, u)− d(u2n−1, u)

≤ d(u2n−1, y).

Therefore

d(u2n−1, Su2n−1) ≤ (1 + r)d(u2n−1, y).(2.3)

Now either d(u2n−1, Su2n−1) ≤ d(y, T y) or d(y, T y) ≤ d(u2n−1, Su2n−1).
In either case, by (2.3) and the assumption,

d(u2n, T y) ≤ H(Su2n−1, T y)

≤ rM(Su2n−1, T y).

≤ rmax

{

d(u2n−1, y),
d(u2n−1, Su2n−1) + d(y, T y)

2
,

d(u2n−1, T y) + d(y, Su2n−1)

2

}

.

Making n → ∞,

d(u, T y) ≤ rmax

{

d(u, y),
d(u, u) + d(y, T y)

2
,
d(u, T y) + d(y, u)

2

}

≤ rmax

{

d(u, y),
d(u, T y) + d(u, y)

2

}

.(2.4)

It is clear from (2.4) that

d(u, T y) ≤ rd(u, y).(2.5)

Now we show that

H(Su, T y) ≤ rmax

{

d(u, y),
d(u, Su) + d(y, T y)

2
,
d(u, T y) + d(y, Su)

2

}

(2.6)

Assume that y 6= u. Then for every n ∈ N , there exists zn ∈ Ty such that

d(u, zn) ≤ d(u, T y) +
1

n
d(y, u).
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So we have by (2.5),

d(y, T y) ≤ d(y, zn)

≤ d(y, u) + d(u, zn)

≤ d(y, u) + d(u, T y) +
1

n
d(y, u)

≤ d(y, u) + rd(u, y) +
1

n
d(u, y)

=

(

1 + r +
1

n

)

d(y, u).

Hence

d(y, T y) ≤ (1 + r)d(y, u).(2.7)

Now either d(u, Su) ≤ d(y, T y) or d(y, T y) ≤ d(u, Su).
So in either case by (2.7) and the assumption, H(Su, T y) ≤ rM(Su, T y), which
is (2.6).
Now taking y = u2n in (2.6), we have

d(Su, u2n+1) ≤ H(Su, Tu2n)

≤ rmax

{

d(u, u2n),
d(u, Su) + d(u2n, u2n+1)

2
,

d(u, u2n+1) + d(u2n, Su)

2

}

.

Passing to the limit this obtains d(Su, u) ≤ r
2
d(Su, u). So u ∈ Su, as Su is

closed.
In an analogous manner, we can show that u ∈ Tu. �

Corollary 2.3. Let X be a complete metric space and S, T : X → X. Assume

there exists r ∈ [0, 1) such that for every x, y ∈ X,

min{d(x, Sx), d(y, T y)} ≤ (1 + r)d(x, y) implies d(Sx, T y) ≤ rM(Sx, T y).

Then S and T have a unique common fixed point.

Proof. It comes from Theorem 2.2 that S and T have a common fixed point.
The uniqueness of the common fixed point follows easily. �

Corollary 2.4. Theorem 1.2.

Corollary 2.5 ([20]). Let X be a complete metric space and T : X → X.

Assume there exists r ∈ [0, 1) such that for every x, y ∈ X,

d(x, Tx) ≤ (1 + r)d(x, y) implies d(Tx, T y) ≤ rM(Tx, T y).

Then T has a unique fixed point.

Proof. It comes from Corollary 2.3 when S = T . �

Now we give an application of Corollary 2.3.
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Theorem 2.6. Let P,Q : X → BN(X). Assume there exists r ∈ [0, 1) such

that for every x, y ∈ X,

min{ρ(x, Px), ρ(y,Qy)} ≤ (1 + r)d(x, y)(2.8)

implies

ρ(Px,Qy) ≤ rmax

{

d(x, y),
ρ(x, Px) + ρ(y,Qy)

2
,
d(x,Qy) + d(y, Px)

2

}

(2.9)

Then there exsits a unique point z ∈ X such that z ∈ Pz ∩Qz.

Proof. Choose λ ∈ (0, 1). Define single-valued maps S, T : X → X as follows.
For each x ∈ X , let Sx be a point of Px which satisfies

d(x, Sx) ≥ rλρ(x, Px).

Similarly, for each y ∈ X , let Ty be a point of Qy such that

d(y, T y) ≥ rλρ(y,Qy).

Since Sx ∈ Px and Ty ∈ Qy,

d(x, Sx) ≤ ρ(x, Px) and d(y, T y) ≤ ρ(y,Qy).

So (2.8) gives

min{d(x, Sx), d(y, T y)} ≤ min{ρ(x, Px), ρ(y,Qy)} ≤ (1 + r)d(x, y),(2.10)

and this implies (2.9). Therefore

d(Sx, T y) ≤ ρ(Px,Qy)

≤ r.r−λ max

{

rλd(x, y),
rλρ(x, Px) + rλρ(y,Qy)

2
,

rλd(x,Qy) + rλd(y, Px)

2

}

≤ r1−λ max

{

d(x, y),
d(x, Sx) + d(y, T y)

2
,
d(x, T y) + d(y, Sx)

2

}

.

So (2.10), viz., min{d(x, Sx), d(y, T y)} ≤ (1 + r′)d(x, y) imlpies

d(Sx, T y) ≤ r′ max

{

d(x, y),
d(x, Sx) + d(y, T y)

2
,
d(x, T y) + d(y, Sx)

2

}

,

where r′ = r1−λ < 1.
Hence by Corollary 2.3, S and T have a unique point z ∈ X such that

Sz = Tz = z. This implies z ∈ Pz ∩Qz. �

The following result show that Theorem 2.6 is a generalization of the result
of Singh and Mishra [20, Theorem 3.6].

Corollary 2.7. Let P : X → BN(X). Assume there exists r ∈ [0, 1) such that

ρ(x, Px) ≤ (1 + r)d(x, y)
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implies

ρ(Px, Py) ≤ rmax

{

d(x, y),
ρ(x, Px) + ρ(y, Py)

2
,
d(x, Py) + d(y, Px)

2

}

.

Then there exists a unique point z in X such that z ∈ Pz.

Proof. It comes from Theorem 2.6 when Q = P . �

We remark that Corollaries 2.5 and 2.7 generalize fixed point theorems from
[11, 14, 18] and others.

Now we give two examples to show the generality of our results.

Example 2.8. Let X = {(0, 0), (4, 0), (0, 4), (4, 5), (5, 4)} and d be defined by

d[(x1, x2), (y1, y2)] = |x1 − y1|+ |x2 − y2|.

Let S and T be such that

S(x1, x2) =

{

(x1, 0) if x1 ≤ x2

(0, x2) if x1 > x2

and T (x1, x2) =

{

(0, x1) if x1 ≤ x2

(0, x2) if x1 > x2

Then maps S and T do not satisfy (1.1) of Theorem 1.3 (e.g. (x, y) = ((4, 5), (5, 4))).
However, S and T satisfy all the hypotheses of Corollary 2.3.

Example 2.9. Let X = {(1, 1), (4, 1), (1, 4), (4, 5), (5, 4)} and d be defined by

d[(x1, x2), (y1, y2)] = |x1 − y1|+ |x2 − y2|

Let T be such that

T (x1, x2) =

{

(x1, 1) if x1 ≤ x2

(1, x2) if x1 > x2

Then T satisfies all the hypotheses of Corollary 2.5, but does not satisfy Ciric’s
quasi-contraction, viz. (1.2) with S = T (e.g.x = (4, 5), y = (5, 4)).

We close this paper with the following.

Question 2.10. Can we replace “H(Sx, T y) ≤ rM(Sx, T y)” in Theorem 2.1 by
the following:

H(Sx, T y) ≤ rmax

{

d(x, y), d(x, Sx), d(y, T y),
d(x, T y) + d(y, Sx)

2

}

.(2.11)

We remark that (2.11) with S = T is the Ciric’s generalized contraction [3] for
T : X → CL(X).
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