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ABSTRACT

Common fixed point theorems for a new class of multivalued maps are
obtained, which generalize and extend classical fixed point theorems of
Nadler and Reich and some recent Suzuki type fixed point theorems.
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1. INTRODUCTION

Let (X, d) be a metric space and CL(X) the family of all nonempty closed
subsets of X. (CL(X), H) equipped with the generalized Hausdorff metric H
defined by

H(A, B) = max { sup d(z, B), sup d(y, A)},
z€A yeB
where A, B € CL(X) and d(z, K) = in£ d(z,z), is called the generalized hy-
ze
perspace of X.
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For any nonempty subsets A, B of X,d(A, B) denotes the gap between the
subsets A and B, while

p(A, B) = sup{d(a,b) : a € A,b € B},
BN(X)={A: 2 # A C X and the diameter of A is finite}.

As usual, we write d(x, B) (resp. p(z,B)) for d(A, B) (resp. p(A,B)) when
A = {x}. For z,y € X, we follow the following notation, where S and T are
maps to be defined specifically in a particular context:

M(Sx. Ty) {d(x, ), 2@, 52) -2F dy, Ty) d,Ty) -2F d(y, Sz) }
Recently Suzuki [23] obtained a forceful generalization of the famous Banach
contraction theorem. Subsequently, a number of new fixed point theorems have
been established and some applications have been discussed (see, for instance,
[1,5,6,7,38,9, 10, 13, 16, 20, 21, 22, 24]).
The following result is essentially due to Kikkawa and Suzuki [8] (see also

[22]) which generalizes the classical multivalued contraction theorem due to
Nadler [11] (see also [2, 12, 14, 18]).

Theorem 1.1. Let (X, d) be a complete metric space and let T : X — CL(X).
Assume there exists r € [0,1) such that for every z,y € X,

d(xz,Tz) < (14 r)d(z,y) implies H(Tz,Ty) < rd(z,y).
Then there exists z € X such that z € Tz.
The following generalization of Theorem 1.1 is due to Singh and Mishra [20].

Theorem 1.2. Let X be a complete metric space and T : X — CL(X).
Assume there exists r € [0,1) such that for every x,y € X,
d(z,Tz) < (14 r)d(z,y) implies H(Tz,Ty) <rM(Tz,Ty).
Then there exists z € X such that z € T'z.
The following general common fixed point theorem is due to Sastry and

Naidu [19].

Theorem 1.3. Let X be a complete metric space and S, T maps from X to
itself. Assume there exists r € [0,1) such that for every xz,y € X,

d(z,Ty) + d(y, Sx) }
5 :

(1.1)  d(Sz,Ty) < rmax {d(m, y),d(z, Sz),d(y, Ty),

Then S and T have a unique common fized point.

For an excellent discussion on several special cases and variants of Theo-
rem 1.3, one may refer to Rus [18]. The generality of Theorem 1.3 may be
appreciated from the fact that the condition (1.1) in Theorem 1.3 cannot be
replaced by a slightly more general condition:

(1.2) d(Sz,Ty) < rmax{d(z,y),d(x, Sz),d(y, Ty), d(z, Ty),d(y, Sz)}.
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See [19, Ex. 5]. Notice that the condition (1.2) with § = T is Ciri¢’s quasi-
contraction [4]. We remark that, in Rhoades’ comprehensive comparison of
contractive conditions [15], the condition (1.2) with S = T is considered the
most general contraction for a self-map of a metric space.

A particular case of our main result (cf. Theorem 2.1) generalizes Theo-
rems 1.1 and 1.2. Some other special cases are also discussed.

2. MAIN RESULTS

We shall need the following lemma essentially due to Nadler, Jr. [11] (see
also [2], [3], [16, p. 4], [16, 17], [18, p. 76]).

Lemma 2.1. If A/B € CL(X) and a € A, then for each € > 0, there ezists
b € B such that d(a,b) < H(A,B) +¢.

Theorem 2.2. Let X be a complete metric space and let S and T maps from
X to CL(X). Assume there exists v € [0,1) such that for every z,y € X,

min{d(z, Sz),d(y, Ty)} < (1 +r)d(z,y) implies H(Sxz,Ty) <rM(Sxz,Ty).
Then there exists an element u € X such that u € SunNTu.

Proof. Obviously M (Sz,Ty) = 0 iff z = y is a common fixed point of S and
T. So we may assume that M (Sz, Ty) > 0.

Let ¢ > 0 be such that 8 = r +¢ < 1. Let up € X and u; € Tug. By
Lemma 2.1, their exists us € Su; such that

d(ug,u1) < H(Suy, Tug) + M (Su1,Tug).
Similarly, their exists us € Tug such that
d(ug,uz) < H(Tug, Su1) + eM(Tua, Suq).
Continuing in this manner, we find a sequence {u,} in X such that
Ugn+1 € TUop, Uopnt2 € Suopi1
and

(T'uom, Suon—1) + M(Tugp, Stan—1),

d(uant1,uon) < H
< H(Sugpy1, Tuzy) + e M (Suzny1, Tuzn).

d(Uzn+2, Uznt1)
Now, we show that for any n € N,
(2.1) d(uzn+1,u2n) < Bd(uzn—1,uzn).
Suppose if d(uap—1, Suon—1) > d(usn, Tuay,), then

min{d(uzn—1, Suan—1)d(uan, Tuzn)} < (14 7)d(u2n—1,u2n).

© AGT, UPV, 2014 Appl. Gen. Topol. 15, no. 2 | 113



R. Kamal, R. Chugh, S. L. Singh and S. N. Mishra

Therefore by the assumption,

H(Suap—1, Tuap)

rM(Suan—1, Tuay)

rM (Sugn—1, Tusy) + eM (Sugn—1, Tuay,)
M (Suzpn—1,Tuan)

d(u2n+1, u2n)

IN N IA

d(u2n—1, Suzn—1) + d(uan, Tuay)
2 b
d(uzn—1, Tusn) + d(uzn, Suon—1) }
2

< Bmax d(uan—1, U2n), d(Uon, U2n+1).

B
B

max {d(u2n—1, U2n),

This yields (2.1).
Suppose, if d(ugpn, Tuoy) > d(ugn—1, Suzn—1), then

min{d(uzn—1, Suzn—1), d(Uzn, Tu2,)} < (14 7)d(uzn—1, U2n).
Therefore by the assumption,
H(Sugn—1,Tuzn)
T‘M(S’U,Qn_l, Tu2n)

’I”M(S’Ugn,l, TUQn) + EM(SUanl, T’U,Qn)
ﬂM(S'Uanlv TuQn)

d(u2n+1, U2n)

ININ TN

= fmax {d(uin, ), d(uzn—1, SU2n712> + d(ugn, Tuzy) ,

d(u2n—1, Tusn) + d(uzn, Susn—1) }
2

< Bmax{d(uzn—1,U2n), d(Uzn, U2n+1)}

This prove (2.1). In an analogous manner, we show that

(2.2) d(ugn 2, uant1) < Bd(ugn 1, tzn).

We conclude from (2.1) and (2.2) that for any n € N,
A(Unp1, Un) < Bd(thy, Un—1).

Therefore {u,} is a Cauchy sequence and has a limit in X. Call it u.
Since u,, — u, there exists ng € N (natural numbers) such that

1
d(u,uy,) < gd(u,y) for y # u and all n > nyg.
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Then as in [23, p. 1862],

(1+7) " d(ugn—1, Sugn—1) < d(ugn—_1, Stuzn_1)
d(u2n—1, U2n)

d(u2n_1, u) + d(u, U2n)
2
_d(yv u)

VAN VAN VAN

IN

(y7 ’U,) - %d(yv u)

3

d

d(y,u) — d(uzn—1,u)
d(u2n—1,Y).

IN A

Therefore
(23) d(Uanl, SUanl) S (1 + T)d(’UJanl, y)

Now either d(uapn—1, Suan—1) < d(y,Ty) or d(y, Ty) < d(uzn—1, Suzn—_1).
In either case, by (2.3) and the assumption,
d(u2na Ty) < H(Su2n717 Ty)
<rM(Suzn-1,Ty).

d(ugn_1, Sugy,_ d(y, T
grmax{d(u%—l,y), (U2n—1 UQ21)+ t y),

d(ugn—1,Ty) + d(y, Suzn_1) }

2

Making n — oo,

d(u, Ty) < r max {d(u, ), d(u,u) +d(y, Ty) d(u, Ty) + d(y, u) }

2 ’ 2
(2.4) < rmax {d(u, ), d(u, Ty);— d(, ) }
It is clear from (2.4) that
(2.5) d(u, Ty) < rd(u, y).

Now we show that

(2.6) H(Su.Ty) < rmax {d(u, W), d(u, Su) +d(y, Ty) d(u,Ty) + d(y, Su)}

2 ’ 2
Assume that y # u. Then for every n € N, there exists z,, € T'y such that

d(u, z) < d(u, Ty) + ~d(y, u).
n
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So we have by (2.5),

d(y, Ty) < d(y, zn)

d
d(y,u) + d(u, z,)

VARVAN

IN

d(y, w) + d(u, Ty) + %d(y, w)
< d(y, u) + rd(u,y) + %d(u,y)

= (1 +r+ %)d(y,u)
Hence
(2.7) d(y, Ty) < (1 +r)d(y, u).

Now either d(u, Su) < d(y,Ty) or d(y, Ty) < d(u, Su).
So in either case by (2.7) and the assumption, H (Su, Ty) < rM (Su, Ty), which
is (2.6).
Now taking y = ua, in (2.6), we have

d(Su,uon+1) < H(Su, Tuay)
d(u, Su) =+ d(’LLQn, ’(,L2n+1)

2 3
d(u, ugnt1) + d(uan, Su)
5 .

Passing to the limit this obtains d(Swu,u) < £d(Su,u). So u € Su, as Su is

closed.
In an analogous manner, we can show that u € Tu. (|

< rmax {d(u, U2n ),

Corollary 2.3. Let X be a complete metric space and S, T : X — X. Assume
there exists r € [0,1) such that for every z,y € X,

min{d(z, Sz),d(y, Ty)} < (1 +r)d(z,y) implies d(Sz,Ty) < rM(Sxz,Ty).
Then S and T have a unique common fized point.

Proof. 1t comes from Theorem 2.2 that S and T" have a common fixed point.
The uniqueness of the common fixed point follows easily. O

Corollary 2.4. Theorem 1.2.

Corollary 2.5 ([20]). Let X be a complete metric space and T : X — X.
Assume there exists r € [0,1) such that for every xz,y € X,

d(z,Tx) < (1 +r)d(z,y) implies d(Tx,Ty) < rM(Tz,Ty).
Then T has a unique fized point.
Proof. 1t comes from Corollary 2.3 when S =1T. O

Now we give an application of Corollary 2.3.
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Theorem 2.6. Let P,Q : X — BN(X). Assume there exists r € [0,1) such
that for every x,y € X,

(2.8) min{p(z, Pz), p(y,Qy)} < (14 r)d(z,y)

implies

(29) p(Pa,Qy) < rmax{da.p) Q) !

Then there exsits a unique point z € X such that z € PzNQz.

p(z, Pr) + p(y, Q) d(z,Qy) +d(y, Px) }

Proof. Choose A € (0,1). Define single-valued maps S,T : X — X as follows.
For each x € X, let Sz be a point of Pz which satisfies

d(z,Sz) > r*p(z, Px).
Similarly, for each y € X, let T'y be a point of Qy such that

d(y, Ty) > ply, Qy).
Since Sx € Pz and Ty € Qy,

d(z, Sz) < p(z, Pr) and d(y,Ty) < p(y, Qy).
So (2.8) gives
(2.10) - min{d(z, Sx),d(y,Ty)} < min{p(z, Pz), p(y, Qu)} < (1 +r)d(z,y),
and this implies (2.9). Therefore
d(Sz, Ty) < p(Px, Qy)
A {r,\d(% ), e Pr) + 2 p(y, Qu)

< r.or~ " max

2 )
d(x, Qy) + r\d(y, Px) }
2
S Tlf)\ max {d(I, y)7 d({E, S.I) ;— d(yv Ty), d({E, Ty) _2|— d(yv S.I) }

So (2.10), viz., min{d(z, Sx),d(y, Ty)} < (1 + r')d(z,y) imlpies
d(z, Sz) +d(y, Ty) d(=z,Ty) +d(y, Sz) }

d(Sz,Ty) < r’' max {d(% Y), B ’ 2

where 1/ = r17* < 1.
Hence by Corollary 2.3, S and T have a unique point z € X such that
Sz =Tz = z. This implies z € Pz N Qz. (]

The following result show that Theorem 2.6 is a generalization of the result
of Singh and Mishra [20, Theorem 3.6].

Corollary 2.7. Let P: X — BN (X). Assume there exists r € [0,1) such that
pla, Pr) < (1+r)d(z,y)
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implies

p(Pz, Py) < rmax {d(x,y), p(x, Px) + p(y, Py) d(z, Py) + d(y, Px) }

2 ’ 2
Then there exists a unique point z in X such that z € Pz.

Proof. Tt comes from Theorem 2.6 when Q = P. ]

We remark that Corollaries 2.5 and 2.7 generalize fixed point theorems from
[11, 14, 18] and others.
Now we give two examples to show the generality of our results.

Example 2.8. Let X = {(0,0), (4,0),(0,4),(4,5), (5,4)} and d be defined by

dl(z1,22), (Y1,92)] = |1 — y1| + |22 — Y2|.
Let S and T be such that

S(xl,xg) = {

Then maps S and T do not satisfy (1.1) of Theorem 1.3 (e.g. (z,y) = ((4,5), (5,4))).
However, S and T satisfy all the hypotheses of Corollary 2.3.

Example 2.9. Let X = {(1,1), (4,1),(1,4),(4,5),(5,4)} and d be defined by

(,Tl,O) if I S To
(0,1‘2) if 11 > o

(0,1:1) if I S i)

d T(zy,25) =
o (Il $2) {(O,l‘g) if 11 > 9

dl(z1,22), (Y1,y2)] = |z1 — y1| + |22 — 2|
Let T be such that
(Il, 1) if X1 S i)
(1,z2) if @1 > o

T(,Tl,xg) = {

Then T satisfies all the hypotheses of Corollary 2.5, but does not satisfy Ciric’s
quasi-contraction, viz. (1.2) with S =T(e.g.z = (4,5),y = (5,4)).
We close this paper with the following.

Question 2.10. Can we replace “H(Sx,Ty) < rM(Sz,Ty)” in Theorem 2.1 by
the following:

(2.11) H(Sz,Ty) < rmax {d(x,y), d(z, Sz),d(y, Ty), d(z,Ty) + d(y, Sx) }

2

We remark that (2.11) with S = T is the Ciric’s generalized contraction [3] for
T:X — CL(X).
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