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On the product of two π-decomposable soluble

groups

L. S. Kazarin, A. Mart́ınez-Pastor and M. D. Pérez-Ramos

Abstract

Let the group G = AB be a product of two π-decomposable sub-
groups A = Oπ(A)×Oπ′(A) and B = Oπ(B)×Oπ′(B) where π is a set
of primes. The authors conjecture that Oπ(A)Oπ(B) = Oπ(B)Oπ(A)
if π is a set of odd primes. In this paper it is proved that the conjecture
is true if A and B are soluble. A similar result with certain additional
restrictions holds in the case 2 ∈ π. Moreover, it is shown that the
conjecture holds if Oπ′(A) and Oπ′(B) have coprime orders.

2000 Mathematics Subject Classification. 20D20, 20D40.
Key words. Products of groups, π-decomposable groups, Hall sub-

groups.

1 Notation and Preliminaries

All groups considered are finite.
The aim of this paper is to study groups G = AB which are factorized as

the product of π-decomposable subgroups A and B, for a set of primes π. A
group X is said to be π-decomposable if X = Xπ×Xπ′ is the direct product
of a π-subgroup and a π′-subgroup, where π′ stands for the complementary
of π in the set of all prime numbers. Moreover, we always use Xπ to denote
a Hall π-subgroup of any group X.

More precisely we take further the study that was started in [12]. The
main result in that paper states the following:

Theorem 1. Let π be a set of odd primes. Let the group G = AB be
the product of a π-decomposable subgroup A and a π-subgroup B. Then
Aπ = Oπ(A) ≤ Oπ(G).

It is worth recalling the following result, which is Lemma 1 in [12] and
provides an equivalent statement to this theorem.
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Lemma 1. Let the group G = AB be the product of a π-decomposable
subgroup A = Aπ ×Aπ′ and a π-subgroup B. Then the following statements
are equivalent:

(i) Aπ ≤ Oπ(G);

(ii) G contains Hall π-subgroups and AπB = BAπ is a Hall π-subgroup of
G.

The starting point for our work is the theorem of Kegel and Wielandt
which states the solubility of a group which is the product of two nilpotent
subgroups.

For the proof of this theorem Kegel found a very useful criterion for
the non-simplicity of a finite group in terms of some suitable permutability
conditions on subgroups ([13, Satz 3]). It was improved by Wielandt in [15,
Satz 1]. (See also [1, Lemmas 2.4.1, 2.5.1].) We state here a reformulation
of these results which is convenient for our purposes.

Lemma 2. Let the group G = AB be the product of the subgroups A and
B and let A0 and B0 be normal subgroups of A and B, respectively. If
A0B0 = B0A0, then Ag0B0 = B0A

g
0 for all g ∈ G.

Assume in addition that A0 and B0 are π-groups for a set of primes π.
If Oπ(G) = 1, then [AG0 , B

G
0 ] = 1.

(We note that this result is applicable in particular if A = Aπ ×Aπ′ and
B = Bπ ×Bπ′ are π-decomposable and considering A0 = Aπ and B0 = Bπ.)

Proof. Let g ∈ G and consider g = ab with a ∈ A and b ∈ B. Since A0

and B0 are normal subgroups of A and B, respectively, and they permute,
we have:

Ag0B0 = Aab0 B0 = (A0B0)b = (B0A0)b = B0A
ab
0 = B0A

g
0.

Now the final assertion follows from [1, Lemma 2.5.1].

If G = AB is the product of nilpotent subgroups A and B, then the
hypotheses of this result for A0 = Ap and B0 = Bp, the Sylow p-subgroups
of A and B, respectively, and for any prime p, hold. This fact is in the core
of the solubility of the group G.

Our aim is to find a more general structure involving π-decomposable
groups for which these hypotheses also hold. Then, together with Lemma 2,
our results also provide non-simplicity criteria for a group G.

Precisely we conjecture the following:
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Conjecture. Let π be a set of odd primes. Let the group G = AB be the
product of two π-decomposable subgroups A = Aπ ×Aπ′ and B = Bπ ×Bπ′.
Then AπBπ = BπAπ and this is a Hall π-subgroup of G.

Theorem 1 provides already a first approach to this conjecture. We
state next another case for which the conjecture holds and that follows from
Theorem 1. For notation, we set π(G) for the set of prime divisors of |G|,
the order of the group G.

Proposition 1. Let π be a set of odd primes. Let the group G = AB be the
product of two π-decomposable subgroups A = Aπ ×Aπ′ and B = Bπ ×Bπ′.
Assume in addition that (|Aπ′ |, |Bπ′ |) = 1. Then AπBπ = BπAπ.

Proof. Since 2 ∈ π′ and (|Aπ′ |, |Bπ′ |) = 1 we may assume w.l.o.g. that
2 6∈ π(B). Now we consider the set of odd primes σ := π(B)∪ π(Aπ). Then
G is the product of the σ-decomposable subgroup A and the σ-subgroup
B. From Theorem 1 it follows that B and Aσ = Aπ permutes. Consider-
ing now the group BAπ, we can deduce that Bπ permutes with Aπ as desired.

It is worthwhile emphasizing that the conjectured result holds in the signif-
icant case when (|A|, |B|) = 1. In particular, our results extend previous
ones of Berkovich [4], Arad and Chillag [3], Rowley [14] and Kazarin [9],
where products of a 2-decomposable group and a group of odd order, with
coprime orders, were considered.

In this paper we will study as a first step the structure of a minimal
counterexample to our conjecture. Afterwards we will prove it under the
additional hypotheses that A and B are soluble groups. In the case of sol-
uble factors, we will consider also the analogous problem when π is a set of
primes containing the prime 2. As a consequence of these results we deduce
in Corollary 1 a criterion of π-separability for a group which is the product
of π-decomposable soluble factors, for an arbitrary set of primes π.

First we state some more notation. If n is an integer and p a prime num-
ber, we denote by np the largest power of p dividing n. A group G satisfies
the Cπ-property if G possesses a unique conjugacy class of Hall π-subgroups.
Moreover G satisfies the Dπ-property if it satisfies the Cπ-property and ev-
ery π-subgroup of G is contained in some Hall π-subgroup of G. We recall
that a π-separable group satisfies the Dπ-property.

We need specifically the following result (see [1, Corollary 1.3.3]).
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Lemma 3. Let the group G = AB be the product of the subgroups A and
B. Then for each prime p there exist Sylow p-subgroups Ap of A and Bp of
B such that ApBp is a Sylow p-subgroup of G.

For products of soluble subgroups the following lemma will be also used.

Lemma 4. Let G = AB = AN = BN be a group with A and B soluble
subgroups of G and with a unique minimal normal subgroup N , which is
non-abelian. Let N = N1 × . . .×Nr with N1

∼= Ni be a non-abelian simple
group, i = 1, . . . , r. Then:

(i) A and B act transitively by conjugacy on the set Ω = {N1, . . . , Nr} of
direct factors of N . Moreover, N ∩ A = ×ri=1(Ni ∩ A) and N ∩ B =
×ri=1(Ni ∩B).

(ii) |N1| divides |Out(N1)||N1 ∩A||N1 ∩B|.

Proof. See Lemmas 2.3 and 2.5 of [10].

2 The minimal counterexample

Proposition 2. Let π be a set of odd primes. Assume that the group G =
AB is the product of two π-decomposable subgroups A = Aπ × Aπ′ and
B = Bπ×Bπ′, and G is a counterexample of minimal order to the assertion
AπBπ = BπAπ.

Then G has a unique minimal normal subgroup N = N1×· · ·×Nr, which
is a direct product of isomorphic non-abelian simple groups N1, . . . , Nr.
Moreover G = AN = BN = AB, (|Aπ′ |, |Bπ′ |) 6= 1 and Aπ′ ∩Bπ′ = 1.

Proof. First note that Aπ 6= 1 and Bπ 6= 1. Moreover, |π(G) ∩ π| >
1, because of Lemma 3, and also (|Aπ′ |, |Bπ′ |) 6= 1 by Proposition 1; in
particular, Aπ′ 6= 1 and Bπ′ 6= 1. We split the proof into the following steps:

1. The group G has a unique minimal normal subgroup N , which is nei-
ther a π-group nor a π′-group. In particular, N is not soluble. Conse-
quently, N = N1× . . .×Nr with N1

∼= Ni a non-abelian simple group,
i = 1, . . . , r.

Let N be a minimal normal subgroup of G and assume that there
exists M 6= N another minimal normal subgroup of G. The choice of
G implies that AπBπN/N is a subgroup of G/N and AπBπM/M is a
subgroup of G/M . Then

Oπ(〈Aπ, Bπ〉) ≤ N ∩M = 1.
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This implies that 〈Aπ, Bπ〉 is a π-group and, consequently, 〈Aπ, Bπ〉 =
AπBπ, a contradiction.

If N is a π-group, then 〈Aπ, Bπ〉 ≤ AπBπN is a π-group which implies
the contradiction 〈Aπ, Bπ〉 = AπBπ, as |AπBπ| = |G|π is the largest
π-number dividing |G|.
Assume now that N is a π′-group. Note that

|Aπ(BπN)| = |Aπ||Bπ||N |
|Aπ ∩BπN |

and so |AπBπN/N | is a π-number. Consequently, X := AπBπN is
a π-separable group and, in particular, it satisfies the Dπ-property.
We deduce now that there exists a Hall π-subgroup Xπ of X and an
element x ∈ X such that AπBx

π ⊆ 〈Aπ, Bx
π〉 ≤ Xπ. But |AπBx

π | = |G|π
which implies in particular that AπBx

π = Xπ is a subgroup of G. Since
G = AB and Aπ and Bπ are normal subgroups of A and B respectively,
it follows that AπBπ is a subgroup of G.

Put now H = 〈Aπ, Bπ〉. Then the following properties hold:

2. N ≤ H �G.

From [1, Lemma 1.2.2] we have that NG(H) = NA(H)NB(H). If
NG(H) is a proper subgroup of G, then AπBπ is a subgroup of G
by the choice of G, which is a contradiction. Hence H is a normal
subgroup of G and so N ≤ H.

3. G = AH = BH = AB.

Observe that AH = A(AH ∩ B). If AH is a proper subgroup of G,
then the choice of G implies again the contradiction AπBπ = BπAπ.
Therefore G = AH and, analogously, G = BH.

4. H = AπBπN .

This is clear since AπBπN is a subgroup of G and N ≤ H ≤ AπBπN ≤
H.

5. Aπ′N = Bπ′N = Aπ′Bπ′N .

Since G = AH = ABπN , we deduce that

B = Bπ(B ∩AN) = Bπ((Bπ ∩AN)× (Bπ′ ∩AN)) =
= Bπ(Bπ′ ∩AN) = BπBπ′ .
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Then Bπ′ = Bπ′ ∩ AN , that is, Bπ′ ≤ AN and, consequently, Bπ′ ≤
Aπ′N .

Analogously the equality G = BH = BAπN implies that Aπ′ ≤ Bπ′N .

Therefore Aπ′N = Bπ′N = Aπ′Bπ′N .

6. G/N = Oπ′(G/N)×Oπ(G/N).

Note first that H/N = AπBπN/N ∈ Hallπ(G/N) and H/N � G/N .
On the other hand, we deduce from Step 5 that Aπ′N/N = Bπ′N/N
is a Hall π′-subgroup of G/N normalized by AN/N and by BN/N ,
that is, it is normal in G/N , and the assertion follows.

7. Aπ′ ∩Bπ′ = 1.

If L = Aπ′∩Bπ′ , then N ≤ 〈Aπ, Bπ〉 ≤ CG(L), and so L ≤ CG(N) = 1.

8. Assume that 1 6= M�G and K := AM 6= G. Then Oπ(K) = 1, AπB̃π ∈
Hallπ(K) and [AKπ , B̃

K
π ] = 1, where B̃π := Bπ ∩ AM = Bπ ∩ AπM .

Moreover, B̃π 6= 1 and Bπ ∩M = B̃π ∩M = 1.

First observe that [Oπ(K), N ] ≤ Oπ(K) ∩ N = 1, which implies
Oπ(K) ≤ CG(N) = 1. Moreover, since K = AM = A(AM ∩ B) < G,
the choice of G implies that T := AπB̃π = B̃πAπ ∈ Hallπ(K). Hence,
from Lemma 2, it follows that [AKπ , B̃

K
π ] = 1.

Suppose now that B̃π = 1. Then T = Aπ ∈ Hallπ(K) and Aπ ∩M ∈
Hallπ(M). Note that Aπ ∩M 6= 1 because otherwise M would be a
π′-group, which contradicts Step 1. Since π is a set of odd primes,
then M satisfies the Cπ-property by [8, Theorem A] and so, by the
Frattini argument, we conclude that G = MNG(Aπ ∩M). Hence

|G : NG(Aπ ∩M)| = |M : NM (Aπ ∩M)|

is a π′-number, since Aπ ∩M ∈ Hallπ(NM (Aπ ∩M)), and so |G|π =
|NG(Aπ ∩M)|π. Note also that NG(Aπ ∩M) 6= G, by Step 1. Then,
by the choice of G, NG(Aπ ∩M) = A((Bπ ∩ NG(Aπ ∩M)) × (Bπ′ ∩
NG(Aπ ∩M)) satisfies the theorem, that is,

Aπ(Bπ ∩NG(Aπ ∩M)) ∈ Hallπ(NG(Aπ ∩M)).

But |Aπ(Bπ ∩ NG(Aπ ∩ M))| = |NG(Aπ ∩ M)|π = |G|π = |AπBπ|
implies that Bπ ∩ NG(Aπ ∩M) = Bπ and so AπBπ is a subgroup, a
contradiction. This proves that B̃π 6= 1.
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Finally note that Bπ ∩M = B̃π ∩M is normalized by both Bπ and
Aπ because [Aπ, B̃π] = 1. Hence N ≤ 〈Aπ, Bπ〉 normalizes Bπ ∩M
and so [Bπ ∩M,N ] ≤ Bπ ∩M ∩ N = Bπ ∩ N = 1, since this is a
π-group normalized by N . Therefore Bπ ∩M ≤ CG(N) = 1 and the
last assertion follows.

9. A acts transitively on the set Ω = {N1, · · · , Nr}.
Assume that this is not true and take R := ∩ri=1NG(Ni) � G. Then
AR < G and we can apply Step 8 with M = R. In particular, from
the facts that B̃π = Bπ ∩ AR 6= 1 and Bπ ∩ R = B̃π ∩ R = 1 we
deduce that B̃π 6≤ R. Then there exists 1 6= b ∈ B̃π \R. Without loss
of generality we may assume that b 6∈ NG(N1), and so |Ω〈b〉(N1)| ≥
2, where Ω〈b〉(N1) denotes the orbit of N1 under the action of b on
Ω = {N1, · · · , Nr}. On the other hand, since B̃π ≤ RAπ, then b = ca
for some c ∈ R and a ∈ Aπ. Since R normalizes each Ni, we have
Ω〈b〉(N1) = Ω〈a〉(N1). Now note that [N1, 〈b〉] = Ni1 × · · · × Nik ,
where Ω〈b〉(N1) = {N1 = Ni1 , . . . , Nik} ⊆ Ω. Analogously, [N1, 〈a〉] =
Ni1 × · · ·×Nik = [N1, 〈b〉]. Therefore [N1, 〈a〉] = [N1, 〈b〉] ≤ [N1, B̃π]∩
[N1, Aπ]. Now from Step 8 we have that

[[N1, B̃π], [N1, Aπ]] ≤ [AKπ , B̃
K
π ] = 1

and so N1, Ni2 , . . . , Nik are abelian, which is a contradiction. The
assertion is now proved.

10. G = AN = BN = AB.

Assume that this is not true and, for instance, AN < G. Then we
can apply Step 8 with M = N . In particular, [AKπ , B̃

K
π ] = 1, where

K = AN , B̃π = Bπ ∩AN = Bπ ∩AπN and B̃π 6= 1. Since CG(N) = 1
we may assume that there exists 1 6= b ∈ B̃π such that [N1, 〈b〉] 6= 1.
But this means that N1 ≤ [N1, 〈b〉] and Aπ centralizes this subgroup.
Since A acts transitively on Ω = {N1, · · · , Nr} and Aπ �A, it follows
that Aπ centralizes each Ni, for i = 1, . . . , r, and so Aπ ≤ CG(N) = 1,
a contradiction which proves that AN = G.

By the symmetry between A and B we can also prove G = BN and
we are done.
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3 The soluble case with π a set of odd primes

Theorem 2. Let π be a set of odd primes. Let the group G = AB be
the product of two π-decomposable soluble subgroups A = Aπ × Aπ′ and
B = Bπ ×Bπ′. Then AπBπ = BπAπ and this is a Hall π-subgroup of G.

Proof. Assume the result is not true and let G be a counterexample
of minimal order. We know by Proposition 2 that G has a unique minimal
normal subgroup N = N1×· · ·×Nr, which is a direct product of isomorphic
non-abelian simple groups N1, . . . , Nr. Moreover, G = AB = AN = BN
and so, by Lemma 4, A and B act transitively on the set Ω = {N1, . . . , Nr}
and |N1| divides |Out(N1)||N1 ∩ A||N1 ∩ B|. Clearly Aπ 6= 1, Bπ 6= 1, and,
moreover, Aπ′ 6= 1, Bπ′ 6= 1. Recall also that Aπ′ ∩Bπ′ = 1.

From [10] we know that Ni should be isomorphic to one of the groups in
the set:

M = {L2(q), q > 3;L3(q), q < 9;L4(2),M11,PSp4(3), U3(8)}.

We claim first that N = N1 is a simple group.
We note that eitherN1∩A 6= 1 orN1∩B 6= 1 because |N1| does not divide

|Out(N1)|. We set {σ, σ′} = {π, π′}. We may assume that N1 ∩ Aσ 6= 1.
Then Aσ′ normalizes N1. This holds also for Bσ′ because Aσ′N = Bσ′N
since G = AN = BN . If in addition N1 ∩ Aσ′ 6= 1 we have also that Aσ
normalizes N1 and consequently N = N1 is simple, since G = AN , and the
claim is proved. We get analogously to the same conclusion if N1 ∩Bσ′ 6= 1.
Let us assume now that N1∩Aσ′ = 1 = N1∩Bσ′ . In particular, N1∩A and
N1 ∩B are σ-groups. On the other hand, we recall that N is not a σ-group.
Hence 1 6= |N1|σ′ divides |Out(N1)|. We discard next this case by checking
the different possibilities for N1:

• N1 ∈ M, N1 6∼= M11, N1 6∼= L2(q), q = pn. If r is a prime dividing
|Out(N1)|, then r ∈ {2, 3}. But in all the considered cases |N1|r >
|Out(N1)|r and so these are not possible cases for N1.

• N1
∼= M11. This case cannot occur since Out(M11) = 1.

• N1
∼= L2(q), q = pn. From Lemma 4 we have that N ∩A = ×ri=1(Ni ∩

A), and so N ∩ Aσ′ = ×ri=1(Ni ∩ Aσ′) = 1. Moreover, since Aσ′

normalizes N1, it normalizes Ni for any i = 1, . . . , r, because A acts
transitively on the set Ω = {N1, . . . , Nr}. Therefore Aσ′ ∼= Aσ′N/N is
a subgroup of Out(N1)× . . .×Out(Nr). Analogously Bσ′ ∼= Bσ′N/N .
Moreover Aσ′N/N = Bσ′N/N . By the structure of Out(L2(q)) we
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deduce that there exists a prime r ∈ σ′ such that A and B have
normal Sylow r-subgroups. From Lemmas 3 and 2 we deduce that N
is abelian, which is a contradiction.

Therefore our claim follows and N is a simple group.

We recall that G = AN = BN = AB and so we deduce that |N ||A∩B| =
|N ∩A||N ∩B||G/N |. In particular, if X,Y are maximal soluble subgroups
of N such that N∩A ≤ X and N∩B ≤ Y , then |N | divides |X||Y ||Out(N)|.
Then we will use the fact that the orders of X and Y are known from the
proof of [2, Lemma 2.5].

We recall also that Aπ 6= 1, Bπ 6= 1, Aπ′ 6= 1, Bπ′ 6= 1. Moreover, we
have that |π(G) ∩ π| > 1 and |π(G) ∩ π′| > 1 because of Lemmas 3 and 2,
as N is non-abelian.

We check next that each of the possibilities for the group N leads to a
contradiction.

• N ∼= L3(3) and N ∼= PSp4(3). In both cases |G| would be divided only
by three distinct primes which is a contradiction.

• N ∼= M11. In this case Out(N) = 1 and so G = N is simple. Since all
subgroups of the group M11 are known, it is easily deduced that this
case cannot occur.

• N ∼= L3(4) or N ∼= L3(7). These cases can be excluded since, as proved
in [2, Lemma 2.5], for these groups it is not possible that |N | divides
|X||Y ||Out(N)|, for soluble subgroups X and Y of N .

• N ∼= L3(5). In this case |N | = 25 · 3 · 53 · 31 and |Out(N)| = 2. By
[2, Lemma 2.5] we may suppose w.l.o.g. that |N ∩ A| divides 31 · 3
and |N ∩ B| divides 24 · 53. Hence the case G = N cannot occur by
order arguments. So |G/N | = 2 and G ∼= Aut(N). This means that
|N ∩ A| = 31 · 3 and |N ∩ B| = 24 · 53. Since B is neither a π-group
nor a π′-group and 2 ∈ π′ it should be 5 ∈ π. This fact forces the
primes 3 and 31 to be in different sets of primes. But this also leads
to a contradiction, since a Sylow 31-subgroup of N is self-centralizing.

• N ∼= L3(8). In this case |N | = 29 · 32 · 72 · 73 and by [2, Lemma 2.5]
we may assume that |N ∩A| divides 73 · 3 and |N ∩B| divides 29 · 72 .
Since |Out(N)| = 2 · 3 and |N | divides |G/N ||N ∩A||N ∩B|, the cases
G = N and |G/N | = 2 are not possible by order arguments.
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If either |G/N | = 3 or |G/N | = 2 · 3, it follows that |N ∩ A| = 73 · 3.
Since a Sylow 73-subgroup of N is self-centralizing in Aut(N), we can
deduce that A is either a π-group or a π′-group, a contradiction.

• N ∼= L4(2) ∼= A8. In this case, there is no factorization G = AB with
A, B soluble subgroups.

• N ∼= U3(8). Then |N | = 29 · 34 · 7 · 19 and |Out(N)| = 2 · 32. By [2,
Lemma 2.5], we may assume that |N ∩ A| divides 3 · 19 and |N ∩ B|
divides 29 ·7·3. Hence by order arguments it follows that |G| ≥ |N |·32.
Note also that since Out(N) is not a direct product of a 2-group and a
3-group, G/N should be a π-group or a π′-group. By [2, Lemma 2.5],
we may assume that |N ∩A| divides 3 ·19 and |N ∩B| divides 29 ·7 ·3.

If |G/N | = 32, then |N∩A| = 3·19 and |N∩B| = 29 ·7·3. Now the fact
that a Sylow 19-subgroup of N is self-centralizing in N forces 3 and
19 to belong to the same set of primes, that is, π∩π(G) = {3, 19} and
π′ ∩ π(G) = {2, 7}. But then A would be a π-group, a contradiction.

Now assume that |G/N | = 2 ·32, that is, G ∼= Aut(N). Then |N∩A| =
3 · 19, |N ∩ B| = 28 · 7 · 3 and 2, 3 are in the same set of primes, that
is, π′ ∩ π(G) = {2, 3} and π ∩ π(G) = {7, 19}. But this cannot occur
again because a Sylow 19-subgroup of N is self-centralizing.

• N ∼= L2(q), q = pn.

Recall that, in this case, |N | = εq(q2 − 1), ε = (p − 1, 2)−1, and
Out(N) is a cyclic group of order ε−1n. From [2, Lemma 2.5] it follows
that, apart from some exceptional cases with q ∈ {5, 7, 11, 23} that we
will study later, the maximal soluble subgroups X and Y of N satis-
fies the condition {X,Y } = {NN (Np), Dν(q+1)}, with Np ∈ Sylp(N),
|NN (Np)| = εq(q − 1) and Dν(q+1) a dihedral group of order ν(q + 1)
with ν = (2, p).

We claim that p does not divide (|N ∩A|, |N ∩B|). Assume first that
p ∈ π. If p would divide (|N∩A|, |N∩B|), then Aπ′∩N = 1 = Bπ′∩N ,
since the centralizer of any element of order p in N is a p-group.
Therefore Aπ′ ∼= Aπ′N/N is a subgroup of Out(N) and, analogously,
Bπ′ ∼= Bπ′N/N . Moreover, Aπ′N/N = Bπ′N/N . By the structure of
Out(N) we deduce that there exists a prime r ∈ π′ such that A and B
have normal Sylow r-subgroups. Again from Lemmas 3 and 2 we get
the contradiction that N is abelian. Note that the same conclusion
follows if p ∈ π′.
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Assume, therefore, w.l.o.g. that p does not divide |N ∩ A|. Hence we
can deduce that |N ∩ B| divides |NN (Np)| = q(q − 1)/(2, q − 1) and
|N ∩ A| divides |Dν(q+1)| = ν(q + 1). In particular, it follows that
N ∩ B is either a π-group or a π′-group, since the centralizer of any
element of order p in N is a p-group.

We claim now that p divides |G/N | and, in particular, n > 1. Since
|N | divides |G/N ||N ∩A||N ∩B|, if p does not divide |G/N |, it follows
that |N |p = |N ∩ B|p. Then a Sylow p-subgroup of N ∩ B is a Sylow
p-subgroup of N contained in B. Hence B must be a π-group or a
π′-group, because the centralizer in Aut(N) of any Sylow p-subgroup
of N is a p-group by [11, 1.17], which is a contradiction.

We have that G/N = BN/N and also that |N |p divides |G/N |p|N ∩
B|p. Since Bπ 6= 1, Bπ′ 6= 1 and n > 1, it is clear that there exists some
outer automorphism φ centralizing a Sylow p-subgroup of N∩B. Then
it follows that |CN (φ)|p ≥ |N ∩ B|p ≥ q/n. But |CN (φ)|p ≤ q1/2 (see,
for instance, [5, Chapter 12]). Hence q ≤ q1/2n, that is, q = pn ≤ n2.
This leads to a contradiction, except for the cases p = 2 and n ≤ 4.

The case (p, n) = (2, 3) can be easily excluded, since the group L2(23) =
L2(8) has order divisible only by three distinct primes. Finally, the
case (p, n) = (2, 4) is also excluded, because in this case B would be a
π′-group, which is not possible.

For q ∈ {5, 7, 11, 23} there exists another possibility for the maximal
soluble subgroups X and Y (see [2, Lemma 2.5]). But note that in all
these cases G = N and one of the subgroups A = N∩A or B = N∩B is
contained in NN (Np) for some Np ∈ Sylp(N). Then A or B should be
either a π-group or a π′-group, which provides the final contradiction.

4 The soluble case with 2 ∈ π

Theorem 3. Let π be a set of primes with 2 ∈ π. Let the group G = AB
be the product of two soluble π-decomposable subgroups A = Aπ × Aπ′ and
B = Bπ ×Bπ′. Assume that the following simple groups are not involved in
G:

(i) L2(2n), n ≥ 2, except if either n = 3 or q = 2n + 1 > 5 is a Fermat
prime,

(ii) L2(q), q > 3 odd, except if q is a Mersenne prime.

Then AπBπ = BπAπ and this is a Hall π-subgroup of G.
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Proof. Assume the result is not true and let G be a couterexample of
minimal order. Obviously Aπ 6= 1 and Bπ 6= 1. Moreover |π(G) ∩ π| > 1
because of Lemma 3.

We can argue as in Step 1 of Proposition 2 to deduce that G has a unique
minimal normal subgroup N , which is neither a π-group nor a π′-group. We
note that N = N1 × . . . ×Nr, where Ni are isomorphic non-abelian simple
groups for i = 1, . . . , r, CG(N) = 1 and N �G ≤ Aut(N).

On the other hand, we have by Theorem 2 that Aπ′Bπ′ is a Hall π′-
subgroup of G. Consequently, if Aπ′ 6= 1 and Bπ′ 6= 1, it would follow from
Lemma 2 the contradiction [N,N ] ≤ [AGπ′ , BG

π′ ] = 1. Therefore, w.l.o.g. we
may assume that Bπ′ = 1, i.e., B = Bπ, and Aπ′ 6= 1. We recall that now
Lemma 1 implies that the conditions AπBπ = BπAπ and Aπ ≤ Oπ(G) are
equivalent.

We claim first that G = AπN and N is a simple group.
The choice of G implies that AπN/N ≤ T/N := Oπ(G/N)(BN/N). In

particular, N ≤ T = Aπ(T ∩Aπ′)B. If T were a proper subgroup of G, then
Aπ ≤ Oπ(T ) ≤ CG(N) = 1, which is a contradiction. Consequently G/N is
a π-group and, in particular, Aπ′ ≤ N . Then X := AπN = A(B ∩ X). If
X were a proper subgroup of G, we would argue as above to conclude the
contradiction Aπ ≤ Oπ(X) = 1. Therefore X = AπN = G.

We can deduce now that Aπ′ = (N1 ∩ Aπ′) × . . . × (Nr ∩ Aπ′) is a Hall
π′-subgroup of N and Aπ acts transitively by conjugacy on the components
N1, . . . , Nr of N . This implies r = 1, that is, N is a simple group and the
claim is proved.

We prove next that G = BN .
Assume that NB < G. We claim that N = BAπ′ , N ∩ Aπ = 1 and

|Aπ| = t for some prime t.
Let us consider M := NB = B(NB ∩ A) = BAπ′(NB ∩ Aπ). If we

denote R = NB ∩ Aπ, we deduce by the choice of G that R ≤ Oπ(M) = 1
and, in particular, N ∩Aπ = 1. Since G = NAπ = (NB)Aπ, we deduce that
|N | = |NB| and so B ≤ N = BAπ′ .

Now let C be a subgroup of Aπ of order t, for some prime t, and assume
that X := NC = BAπ′C is a proper subgroup of G. Again we deduce that
C ≤ Oπ(X) = 1, a contradiction. Therefore, |Aπ| = t for some prime t.

Since N is a non-abelian simple group factorized as the product of two
soluble subgroups of coprime orders, we have from [10] and [7, Theorem
1.1] that N should be isomorphic to one of the following: M11, L3(3), L2(q)
with q > 3 odd and q ≡ −1(4), L2(8) and L2(2n) with 2n + 1 > 5 a Fermat
prime. (Recall that the remainder cases for L2(2n), n ≥ 2, are excluded by
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hypothesis.) We discard next all these possibilities for the group N which
will show that G = NB.

• N ∼= M11.

We have that Aπ 6= 1 is a isomorphic to a subgroup of Out(M11) = 1,
a contradiction.

• N ∼= L3(3).

In this case π∩π(G) = {2, 3} and π′∩π(G) = {13}. Moreover the outer
automorphism of order 2 of N should centralize a Sylow 13-subgroup
of N but this is not true.

• N ∼= L2(q), q > 3 a Mersenne prime.

In this case |Out(N) = 2|, so Aπ has order 2.

The possible factorizations for N can be found in [7]. So we have
that {B,Aπ′} should be a pair of subgroups of N among pairs of
subgroups of N of type {NN (Nq), Dq+1}, with Nq ∈ Sylq(N) and
Dq+1 a dihedral group of order q+1. Moreover the subgroups in these
pairs are maximal subgroups of N . Since 2 ∈ π and 2 divides q+ 1 we
have B = Dq+1 and Aπ′ = NN (Nq); in particular q ∈ π′. But then it
is not possible that Aπ centralizes Aπ′ = NN (Nq), since CAut(N)(Nq)
is a q-group by [11, 1.17].

• N ∼= L2(2n), for either n = 3 or 2n + 1 > 5 is a Fermat prime.

The only factorizations of L2(q), q = 2n, as product of soluble sub-
groups of coprime orders should be among pairs of subgroups of N
of type {NN (N2), Cq+1}, with Cq+1 a cyclic group of order q + 1 and
N2 ∈ Syl2(N) (see for instance [7]). Since 2 ∈ π we have B = NN (N2)
and Aπ′ = Cq+1. But then there exists an outer automorphism of
order t in Aπ centralizing the subgroup Aπ′ = Cq+1 which is not the
case.

Now we have proved that G = AN = BN = AB and so |N ||A ∩ B| =
|N ∩ A||N ∩B||G/N |. From now on X and Y will denote maximal soluble
subgroups of N such that N ∩ A ≤ X and N ∩ B ≤ Y , respectively, and
we will use [2, Lemma 2.5]. We check next that each of the possibilities for
the group N leads to a contradiction which will conclude the proof. Recall
that we have excluded the cases L2(2n), n ≥ 2, except if either n = 3 or
r = 2n + 1 > 5 is a Fermat prime, and the cases L2(q), q odd, except if q is
a Mersenne prime.
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• N ∼= L3(3). In this case |N | = 33 ·24 ·13 and |Out(N)| = 2. Moreover,
X and Y should satisfy {|X|, |Y |} = {13·3, 33·24}. By order arguments
23 · 33 divides either |N ∩ A| or |N ∩ B|. Then, since a Sylow 3-
subgroup of N is self-centralizing, we have π ∩ π(G) = {2, 3} and
π′ ∩ π(G) = {13}. Moreover, since a Sylow 13-subgroup of N is also
self-centralizing, the case |N∩A| = 13·3 is not possible and so |N∩A| =
13. Hence the case G = N cannot occur and it follows G ∼= Aut(G).
But in this case, there would exist an automorphism of N of order 2
centralizing a Sylow 13-subgroup of N , which is not possible (see [6]).

• N ∼= PSp4(3). In this case |N | = 26 · 34 · 5 and |Out(N)| = 2. From
[2, Lemma 2.5] it follows that {|X|, |Y |} = {25 · 5, 34 · 24}. By order
arguments we have that 2 and 5 divides either |N ∩A| or |N ∩B| and
34 divides the other. Then 5 ∈ π, because there are no 2-elements in
N centralizing a Sylow 5-subgroup of N . Also 3 ∈ π, since a Sylow
3-subgroup of N is self-centralizing in Aut(N). Consequently, G is a
π-group, which is a contradiction.

• N ∼= M11. In this case G = N is simple and {|A|, |B|} = {55, 24 · 32},
which gives a contradiction with the fact that Aπ 6= 1 and Aπ′ 6= 1.

• N ∼= L3(4) or N ∼= L3(7). These cases can be excluded as said in the
proof of Theorem 2.

• N ∼= L3(5). By [2, Lemma 2.5], one of the numbers |N ∩ A| and
|N ∩ B| divides 31 · 3 and the other divides 24 · 53. Hence the case
G = N cannot occur by order arguments. So we may deduce that
G ∼= Aut(N) and |G/N | = 2. Since a Sylow 5-subgroup of N is self-
centralizing in Aut(N), this forces the primes 2 and 5 to be in the
same set of primes. Recall also that 2 ∈ π and B is a π-group, so we
have |N ∩B| = 24 · 53 and |N ∩A| = 31 · 3. Since a Sylow 31-subgroup
of N is self-centralizing in Aut(N) (see [6]), we deduce that A should
be a π-group, which is a contradiction.

• N ∼= L3(8). Now |N | = 29 · 32 · 72 · 73, |Out(N)| = 2 · 3 and from [2,
Lemma 2.5] it follows that one of the numbers |N ∩ A| and |N ∩ B|
divides 73 · 3, and the other divides 29 · 72. The cases G = N and
|G/N | = 2 cannot occur by order arguments. Moreover, since G/N is
a π-group, we have {2, 3} ⊆ π. The fact that B is a π-group and a
Sylow 73-subgroup of N is self-centralizing forces that π = {2, 3, 73}
and π′ = {7}. The case |G/N | = 3 and |N ∩A| = 29 · 72 cannot occur
since a Sylow 2-subgroup of N is self-centralizing. So, |G/N | = 2 · 3
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and |N ∩ A| = 28 · 72. But in this case N ∩ A would be a normal
subgroup of a Borel subgroup of N containing a central subgroup of
order 72 which is a contradiction.

• N ∼= L4(2) ∼= A8. This case is not possible because there is no factor-
ization of G with soluble factors.

• N ∼= U3(8). Recall that |N | = 29 · 34 · 7 · 19, |Out(N)| = 2 · 32 and
by [2, Lemma 2.5], it should be |G| ≥ |N | · 32. Moreover, G/N is a
π-group and {2, 3} ⊆ π.

If |G/N | = 32, then {|N ∩ A|, |N ∩ B|} = {3 · 19, 29 · 7 · 3}, and
so the fact that a Sylow 19-subgroup is self-centralizing in N leads
to π ∩ π(G) = {2, 3, 19}. But if π′ ∩ π(G) = {7}, there would be
an element of order 7 in N centralizing a Sylow 2-subgroup of N , a
contradiction.

Now assume that |G/N | = 2 · 32 and so {|N ∩ A|, |N ∩ B|} = {3 ·
19, 28 · 7 · 3} or {|N ∩ A|, |N ∩ B|} = {3 · 19, 29 · 7 · 3}. In any case
it follows 19 ∈ π, since a Sylow 19-subgroup of N is self-centralizing.
But π′ ∩ π(G) = {7} cannot occur again because this would mean in
both cases that a Borel subgroup of N would have a subgroup of order
7 centralizing a subgroup of order 28, which is not possible.

• N ∼= L2(q), q > 3 a Mersenne prime.

In this case, we know from [2, Lemma 2.5] that |Out(N)| = 2 and
{X,Y } = {NN (Nq), Dq+1}, with Nq ∈ Sylq(N) and Dq+1 a dihedral
group of order q + 1 = 2n, for some n ≥ 2. (For q = 23 − 1 = 7 there
exist another factorization which will be considered later.)

Since Dq+1 is a 2-group, it follows that N ∩ A ⊆ NN (Nq). Now by
order arguments q divides |N ∩ A|. Since a Sylow q-subgroup of N is
self-centralizing in Aut(N), we deduce that A is either a π-group or a
π′-group which is a contradiction.

If q = 7, it might be also possible that {X,Y } = {NN (Nq), S4} with
Nq ∈ Sylq(N) and S4 the symmetric group of degree 4. Since Nq is
self-centralizing in Aut(N), we deduce that N ∩ B ⊆ NN (Nq) and
N ∩ A ⊆ S4. Then the factorization A = Aπ × Aπ′ with Aπ′ 6= 1 and
Aπ 6= 1 is not possible.

• N ∼= L2(2n), for either n = 3 or 2n + 1 > 5 a Fermat prime.

Set q = 2n. Recall that, in this case, |N | = q(q2 − 1), and Out(N)
is a cyclic group of order n. From [2, Lemma 2.5] it follows that
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{X,Y } = {NN (N2), D2(q+1)}, with N2 ∈ Syl2(N), |NN (N2)| = q(q−1)
and D2(q+1) a dihedral group of order 2(q + 1). Since the subgroups
of prime order q + 1 in N are self-centralizing in Aut(N) and q + 1
does not divide |Out(N)|, we deduce that N ∩ A 6≤ D2(q+1). Hence
N ∩ A ≤ NN (N2). But again the fact that a Sylow 2-subgroup of N
is self-centralizing in Aut(N) provides the final contradiction.

Remark. In [12, Final examples, 3] it has been shown that the conclu-
sion of Theorem 3 is not true for the groups L2(2n), n ≥ 2, except if either
n = 3 or 2n + 1 is a Fermat prime.

Next we show that Theorem 3 is also false for groups involving L2(q),
q > 3 odd, except if q is a Mersenne prime. (We note that L2(4) ∼= L2(5).)
To see this we consider the group G = PGL2(q), q odd. Note that |G :
L2(q)| = 2. Thus |G| = q(q2 − 1) and it is known that this group has cyclic
subgroups of orders (q − 1) and (q + 1). Then G = AB where A ∼= Cq+1 is
a cyclic group of order q+ 1 and B = NG(Gp), Gp ∈ Sylp(G), is a subgroup
of order q(q−1). Clearly π(A)∩π(B) = {2}. Set π = π(NG(Gp))) and note
that 2 ∈ π. Then A = Oπ(A)×Oπ′(A) is a π-decomposable group and B is
a π-group, but Oπ(A)B is not a subgroup, except if q + 1 is a power of 2,
that is, q is a Mersenne prime, in which case G is a π-group.

As a consequence of Theorems 2 and 3 we deduce the following result
for an arbitrary set of primes π.

Corollary 1. Let π be a set of primes. Let the group G = AB be the product
of two soluble π-decomposable subgroups A = Aπ × Aπ′ and B = Bπ × Bπ′.
Assume that the following simple groups are not involved in G:

(i) L2(2n), n ≥ 2, except if either n = 3 or q = 2n + 1 > 5 is a Fermat
prime,

(ii) L2(q), q odd, except if q is a Mersenne prime.

Then the composition factors of G belong to one of the following types:

1) π-groups,

2) π′-groups,

3) the following groups in the list of Fisman [7, Theorem 1.1]:

(i) L2(2n), n ≥ 2, with either n = 3 or q = 2n + 1 > 5 is a Fermat
prime,

16



(ii) L2(q) with q > 3 and q is a Mersenne prime,

(iii) L3(3),

(iv) M11.

In particular, let the group G = AB be the product of the two soluble π-
decomposable subgroups A = Aπ × Aπ′ and B = Bπ × Bπ′ and assume that
the simple groups L2(q), q > 3, L3(3) and M11 are not involved in G. Then
the group G is π-separable.

Proof. The last statement of the corollary follows directly from the first
part. Assume that this one is not true and let G be a counterexample of
minimal order. Since G/M satisfies the corresponding hypotheses for each
normal subgroup M , we may assume that G has a unique minimal normal
subgroup, say N . We can also deduce that Oπ′(G) = Oπ(G) = 1, and so N
is non-abelian. Assume, for instance, that 2 ∈ π′. From Theorem 2 we have
that AπBπ = BπAπ and, by Lemma 2, we deduce that [AGπ , B

G
π ] = 1, which

is a contradiction to the fact that N is non-abelian, unless either Aπ = 1 or
Bπ = 1. Now applying Theorem 3 in a similar way we deduce that either
Aπ′ = 1 or Bπ′ = 1. Then, in any of the cases, G would be the product
of a π-group and a π′-group and the conclusion follows from [7, Theorem 1.1].
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C/ Doctor Moliner 50, 46100 Burjassot (València), Spain
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