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ON SUBGROUPS OF ZJ TYPE
OF AN §-INJECTOR FOR FITTING CLASSES
§ BETWEEN ¢,., AND ¢,.6,

A. MARTINEZ PASTOR™)

Abstract

Let G be a finite group and p a prime. We consider an §-injector
K of G, being § a Fitting class between €+, and €,« S, and we
study the structure and normality in G of the subgroups ZJ(K)
and ZJ*(K), provided that G verify certain conditions, extending
some results of G. Glauberman (A characteristic subgroup of a p-
stable group, Canad. J. Math. 20 (1968), 555-564).

1. Introduction and notation

In this paper we consider a finite group G verifying certain conditions
of stability and constraint, and we study the structure and normality
in G of the subgroups ZJ(K) and ZJ*(K), being K and F-injector of
G and § a Fitting class such that €, C § C €,«6,, extending some
results of Glauberman [6].

All groups in this paper are assumed to be finite. Given a fixed prime
p, 6, will denote the class of all p-groups, €+, the class of all p*-groups,
€,~p the class of all p*p-groups and €,. &, that of all p*-by-p-groups.
The corresponding radicals in a group G are denoted by O,(G), Op=(G),
Op+p(G) and Oy, ,(G) respectively. For all definitions we refer to Bender
(3].

The notation for Fitting classes is taken from [4]. The remainder of
the notation is standard and it is taken mainly from [7] and [8]. In
particular, E(G) is the semisimple radical of G and F*(G) = F(G)E(G)
the quasinilpotent radical of G. If H is a subgroup of G, C&(H) is the
generalized centralizer of H in G (see [3]). Note that C&(F*(G)) <
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F(G), in every group G. A group G is said to be J-constrained if
Cce(F(G)) < F(G), that is, if E(G) = 1.

Moreover, 7(G) is the set of primes dividing the order of G, d(G)
is the maximum of the orders of the abelian subgroups of G, A(G) is
the set of all abelian subgroups of order d(G) in G and J(G) is the
subgroup generated by 2(G), that is, the Thompson subgroup of G. We
set ZJ(G) = Z(J(G)).

In [6] G. Glauberman proves his well-known ZJ-Theorem and also
introduces the subgroup ZJ*(P) proving the following: “Let p be an
odd prime and let P be a Sylow p-subgroup of a group G. Suppose
that Cq(0,(G)) < Op(G) and that SA(2,p) is not involved in G. Then
ZJ*(P) is a characteristic subgroup of G and Cg(ZJ*(P)) < ZJ*(P)”.

On the other hand, Arad and Glauberman study in [2] the structure
and normality of the subgroup ZJ(H), H being a Hall n-subgroup of a
m-soluble group G with abelian Sylow 2-subgroups and O,/ (G) = 1.

Some related results were obtained by Arad in [1], by Ezquerro in [5]
and by Pérez Ramos in [11] and [12].

Here we study the structure of the subgroups ZJ(K) and ZJ*(K)
where K is an §-injector of G, being § a Fitting class such that &,., C
§ C €,.6,, and we obtain that it depends only of G. Also, we obtain
some analogous to Glauberman’s ZJ and ZJ* Theorems for such Fitting
classes. Recall that such a Fitting class § is dominant in the class of
all finite groups, so every finite group G has a unique conjugacy class
of F-injectors (see [10}). Moreover, for such § every finite group is §-
constrained in the sense of [9] (see [3]).

In the following § will be a Fitting class such that €,«, € § C €, 5.

2. Preliminary results

Remark 1.
Let K be an F-injector of a group G. By [10] we know that

K = (0p-(G)P)g

where P is a Sylow p-subgroup of G. Moreover, Oy« (K) = Op+(G), s0
Op(K) = Op(G) and Op(F(K)) = Op(F(G)). On the other hand,
since F*(G) < K, we have E(K) = E(G).

Remark 2.
Suppose that K is an €,«Sp-group, that is, K = Op~(K)S where S is
a Sylow p-subgroup of K. Since [Op+(K), Op(K)] =1, it is clear that K
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acts nilpotently on Op(K), i.e. K = Ck(Op(K)). In particular, we can
deduce that

Cx(E(K)Op (F(K))) = Ck (F*(K)) < F(K).

Lemma 2.1.

Let G be a group and let K be an &, &,-subgroup of G containing
F*(G). Then n(ZJ(K)) C n(F(G)) = n(F(K)). Moreover if the prime
p belongs to m(F(G)) then p € n(ZJ(K)).

Proof:

Since 7(F(K)) = n(Z(F(K)) and Z(F(K)) < Ce(F*(G)) < F(G),
the first statement can be easily obtained. On the other hand if p €
7(F(G)) and P is a Sylow p-subgroup of K we have 1 # Z(P)NO,(K) <
Z(K) < ZJ(K) since K = PO, (K), and so the result holds. B

Lemma 2.2.

Let G be a group and let K be an €p»G&y-subgroup of G containing
Op(G). Let B be a nilpotent normal subgroup of G and let A be any
nilpotent subgroup of K. Then AO,(B) is nilpotent.

Proof:
By the Remark 2 A acts nilpotently on O,(B) < O,(K), so the result
follows. ®

Next we will deal with the subgroup ZJ*(K) of an arbitrary group K
and its properties:

Definition 2.3. [5].

For any group K define two sequences of characteristic subgroups of
K as follows. Set ZJYK) =1 and Ko = K. Given ZJ*K) and K;,
i >0, let ZJ**1(K) and K41 the subgroups of K that contain ZJ*(K)
and satisfy:

ZJYK)/ZTH(K) = ZJ(K:/ZJ'(K))
Ki11/ZJUK) = Ck,jzs:x)(ZTHHK) /2T (K)).
Let n be the smallest integer such that ZJ*(K) = ZJ"1(K), then

ZJ"(K)=ZJ""(K) and K,, = K, for every n > 0. Set ZJ*(K) =
ZJ"(K) and K, = K,.
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Example.

In general, the subgroups ZJ(K) and ZJ*(K) of a group K are dif-
ferent. To see this, we can consider, as an example, the group K =
[@s x Cs3]S3 generated by the elements a, b, ¢, z, y with the following
relations:

1 1

,S=1,a"=a,b°=bad=y*=12¢=y71,

L =ca¥=bbW=a,c=c

a*=1,a’=0% ab=0a"

a® =ba, b* =a”
Then we can get check that d(K) = 18, Z(K) = Z(Qs) = (a?), ZJ(K) =
Z(Qg) x Cs, K1 = [Qs x Ca](x) = J(K) and ZJ*(K) = ZJ*(K) = K5 =
[Qs x Cs].

Remark 3.
For every group K:
i) ZJ(K;/ZJHK)) = ZJ(Kiy1/ZJYK)) = Z(Ki11/ZT{K)), for
every ¢ > 0.
i) Z(K;) < Z(K;+1), for every 4 > 0.
Lemma 2.4.
For any group K and for every ¢ > 0O:
i) ZJ'(K) is nilpotent. ‘
iy F(K;/ZJ"(K))=F(K;)/ZJ'(K).

Proof:

i) By induction on i, assume that ZJ*(G) is nilpotent, for every
group G. By ([5, Prop. II 3.6]) we have that ZJ*1(K)/ZJY(K) =
ZJYK,/ZJ'(K)), so this is a nilpotent group. Now, by the previous
remark, ZJY(K) = ZJ(K) < Z(K1) < Z(K;), and ZJ"H(K) < K,
hence ZJ**1(K) is nilpotent.

ii) By induction on i. The assertion is clear for ¢ = 0. Assume now
that F(K;/ZJ'(K)) = F(K;)/ZJ'(K). We have:

F(Ki1/2T7(K)) & F(Ki1/20(K) /2T (K) /2T (K))
and since ZJ"Y(K)/ZJHK) = Z(K;41/Z2JH(K)), it follows
P(Ki/27(K) /2T () 2T(K)) =
F(Kiy1/2J(K))/ 2T (K) /2T (K).
But applying the inductive hypothesis we have:
F(Ki41/ZJYK)) = F(K;/ZJ'(K)) N Kiy1/ZJ(K) =
F(K)/ZJ (K)N K1 /ZJ(K) = F(Ki1/ZJH(K)
and so we can conclude that F(K;1/ZJ Y K)=F(K;1)/ZJYK). &
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3. The structure of the Z.J-subgroup
and the ZJ*-subgroup

In this section we will study the structure of the subgroups ZJ(K) and
ZJ*(K) being K an €, G,-subgroup of a group G containing O,(G) and
satisfying that Op«(K) = Op+(G), properties that hold for an §-injector
of G, as we have seen.

Theorem 3.1.

Let G be an N-constrained group and let K be an €,«GSp-subgroup of
G containing Op(G) and such that Op-(K) = Op+(G). Assume that at
least one of the following conditions hold:

1) Oy (F(G)) < ZJ(K),
ity F(G) is abelian, :

iii) d(K) is odd and O2(G) is abelian.
Then:

a) {Op(A)|4 € A(K)} = A(Op(K)).
b) Op(ZJ(K)) = ZJ(Op(K)).

c) {Op(A)|A € A(K)} = A(Qp-(G)).
d) Op(ZJ(K)) = ZJ(Op(G)).

In particular, if we assume Oy (F(G)) < ZJ(K) then for every A €

A(K) '

Op(A) = Oy (Z2J(K)) = Op (F(G)).
Moreover the prime numbers divisors of d(K), |ZJ(K)|, |F(K)| and
|F(G)| coincide.

Proof:

Let A € A(K). Since F*(G) < K we know that E(K) = E(G) =1,
so K is an M-constrained group. Leading from our assumptions we can
obtain that AF(G) is nilpotent (if we assume i) Lemma 2.2 applies;
if we assume ii) or iii) Proposition 1 of [2] applies). Moreover, since
Op (K) = Op+(G) we have Op (F(K)) = Oy (F(G)).

a) Let A € 2A(K). Since AF(G) is nilpotent Op(A) centralizes
Oy (F(G)) and so applying Remark 2 we obtain
Op(A4) < Ck (Op (F(K))) < F(K)
s0 Op(A) < Op(K).

Let B € %4(0p(K)). Since AO,(K) is nilpotent by Lemma 2.2, O (A)
centralizes Op(K), so Op (A)B is an abelian subgroup of K and then

0p (A)B| < |A] = |Op (A)Op(A) |-
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Hence d(Op(K)) < |Op(A)|. Since Op(A) < Op(K) the equality
d(0,(K)) = |05(4)] holds.
Thus, for every B € A(0p(K)), Op (A) x B € A(K). So we have

{Op(4)|A € A(K)} = A(Op(K))-

b) This follows easily from a):

0,(2J(K)) = 0,(N{AA € A(K)})
— {0(A)|A € A(K)} = ZJ(0,(K)).

c) Let A € A(K). By a) we know that Op(A4) < ( ). On the other
hand, since K is an €+ &,-group we have Op (A) < OP(K) = Op+(K) =
0,-(G).

Let B € 2(0p+(G)). Since [Op+ (G), Op(K)] = 1, Op(A) centralizes B
so Op(A)B is an abelian subgroup of K and then

|0p (A)B] < |A] = |05(A)Op (A)].

Hence d(Op«(G)) < |Op(A)]. Since Op(A) < Op=(G) it follows
d(0p+(G)) = |Op (A)|. Therefore, for every B € (O, (G), Op(A)x B €
A(K). This proves c}.

d) This follows from c¢) as in b).

If we assume Oy (F(G)) < ZJ(K) then it is clear that Op (ZJ(K)) =
Oy (F(K)) = Op(F(G)). Let A € A(K). Since ZJ(K) = N{A|A €
A(K)} and AF(QG) is nilpotent we obtain that O, (A) < Ce(F(G)) <
F(G) and so the equality Oy (F(G)) = Op(ZJ(K )) = Op(A) holds.

Now since F*(G) < K we can apply Lemma 2.1 and our assumptions
to obtain 7(ZJ(K)) = n(F(G)) = =n(F(K)). Moreover, if A € A(K)
it is clear that 7(ZJ(K)) C n(A) = w(d(K)). On the other hand, if ¢
is a prime number such that ¢ # p and ¢ € w(A), then ¢ € 7(F(G)),
by the foregoing assertion. Finally, if we assume that p € n(A), then
p € m(F(K)) = n(F(Q)) because of a), and so the result follows. B

Corollary 3.2.
Let G be an N-constrained group, H an €. Sp-injector of G and K =

Hj its associated F-injector of G. If one of the following conditions
holds:

1) Op(F(G)) < ZJ(K),
i) F(G) is abelian,
ili) d(K) is odd and Oz(G) is abelian,
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then
ZJ(K)=ZJ(Op(G)) x ZJ(Op(H)) = ZJ(H).

So, in particular, ZJ(K) does not depend on the Fitting class §.

Proof:

Given A in A(H), by Remark 2 we see that Op(A) < O,(H) = Op(K).
On the other hand, due to the structure of the injectors considered here,
one has Op (A) < OP(H) = Op+(H) = Op«(G) < K. Therefore A(H) =
A(K). Then apply Theorem 3.1 parts b) and d) to the subgroups H and
K nu

Corollary 3.3.

If G is an MN-constrained group and K and F-injector of G such that
Oy (F(G)) < Z(K), then

K =0y (F(G)) x P
where P is a Sylow p-subgroup of G. In particular,
U(K) = {0p (F(G))AlA € A(P)}-

Proof:

Since K = PO,~(G), P a Sylow p-subgroup of K and Oy (F(G)) <
Z(K), due to 6.11 in [3], we can write [P, Op-(G)] = 1. Now by M-
constraint, K is nilpotent and hence it is an &, &p-injector of G (see
[10]); therefore P is a Sylow p-subgroup of G and K = Oy (F(G))xP. &

Our next goal is to study the structure of the Z.J*-subgroup.

Theorem 3.4.

Let G be an M-constrained group. Let K be an €, Sp-subgroup of
G containing Op(G) and such that Op-(K) = Op+(G). Assume that
Oy (F(G)) < ZJ(K). Denote P = Oy(K). Then for every i > 1,
Op (ZJYK)) = Oy (F(K;)) = Oy (F(G)), K; is a nilpotent group and

Op(ZJ(K)) = ZJ'(P) Op(K:i) = P,

with the notation gien in Definition 2.3. In particular Op(ZJ*(K)) =
ZJ*(P), Op(Ky) = Py and

ZJ*(K) = ZJ*(P) x Oy (F(G)).
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Proof:

Since Oy (ZJ(K)) < Op(ZJ(K)) < Op(F(K.) < Op(F(K)) =
Op (F(G)), the first statement is clear.

Notice that Op (F(G)) < ZJ(K)< Z(K1), so Op- (K1) <Ce(F(G)) <
F(G). Hence Op+ (K1) = Op (F(K1)) < Z(K1) and K; is a nilpotent
gorup. Now apply that for every ¢ > 1, K; < K;. .

We will prove that O,(ZJ*(K)) = ZJ*(P) and O,(K;) = P; by in-
duction on i. By Propositiom 3.2 we have ZJ(P) = Op(ZJ(K)). On
the other hand P = O,(K) centralizes Op (ZJ(K)), so Cp(ZJ(P)) <
Ck(ZJ(K)) and then we obtain

0,(K1) = PNK; = PN Cx(ZJ(K)) = Cp(ZJ(P)) = P\.

Thus, the statement is clear for ¢ = 1.

Now suppose that O,(ZJ(K)) = ZJ*(P) and Op(K;) = P,. Applying
Lemma 2.4 and the fact that Oy (F(K;)) = Oy (ZJ'(K)), we get that
K;/ZJY(K) = F(K;)/ZJ'(K) is a p-group. Then it follows that

K;/ZJ K) = P,ZJY(K)/ZJ"(K) = P;/ZJ"(K) N P; = P;/ZJ*(P)
by the inductive hypothesis. Thus

ZJHNK)[ZT(K) = ZJ(K:/2T'(K)) = ZJ(P;/ 2. (P))
= ZJHY(P)/ZJ'(P).

and since ZJY(K) = ZJY(K)(ZJ*+1(K) N P;) we can conclude
O0p(ZJHK)) = ZJ"HK) N Oy(K;) = ZJHK) N P, = ZJTH(P).

Now we will prove that Op(K;41) = Pit1. It is clear that Op(Kit1) <
Op(K;) = P; and
(0p(Kit1), 2T (P)] < [Op(Kiy1), ZTTHK))
< Op(Kiy1) N ZJ(K) = ZJ'(P).
Hence by the definition of P, it follows that Op/(K;4+1) < P;11. On the

other hand, P41 < P, < K; and since Oy (F(G)) < ZJ(K) < Z(K;),
we have

[Piv1, ZTHK)] = [Pigr, ZTH(P)) < ZJH(P) < ZJY(K).

Thus, by the definition of K;1; we obtain P41 < K;4;. Now, since
Op(K;41) is the Sylow p-subgroup of K41 the result follows. B
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Corollary 3.5.

Let G be an M-constrained group. Let H be an €y Sp-injector of G
and assume that Oy (F(G)) < ZJ(H). Let K = Hy be an §-injector of
G. Then

ZJ*(K) = Op(F(G)) x ZJ*(Op(H)) = ZJ*(H).
In particular, ZJ*(K) does not depend on §.

Proof:

Because of Corollary 3.2 we have ZJ(K) = ZJ(H). Now Theorem 3.4
is applied, keeping in mind that Oy(K) = O,(H). B

4. The normality of the ZJ-subgroup
and the ZJ*-subgroup

In this section we prove some results related to the normality of the
Z J-subgroup and the normality and self-centrality of the ZJ*-subgroup
of an F-injector K of a group G, provided that G verifies certain con-
ditions of stability. Concretely, we will use the following version of p-
stability:

Definition 4.1.

A group G is said to be p-stable if whenever A is a subnormal p-
subgroup of G' and B is a p-subgroup of Ng(A) satisfying [A, B, B] = 1,
then

Proposition 4.2.

Let G be a p-stable group. Let K be an €,» S,-subgroup of G containing
the €prp-radical of G, Op«p(G). If N is an abelian normal subgroup of
K then N 94 G and N < F(G). In particular ZJ(K) < F(G). .

Proof:

First notice that Op-p(G) < K implies Op»(
4.22]). Thus, Op(N) < Op(G) < Opp(G) <
Opp(G)-

On the other hand, it holds [O,(G), O,(N), Op(N)] = 1 and so apply-
ing the p-stability of G we have:

K) = Op(G) (see [3,
K, and so Op(N) <

Op(N)C:(0p(G))/Ci(05(G)) < 0p(G/Cc(0p(G)))
= C5(0p(G))/Ce(0p(G))
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(see [3, 3.8]). Then we obtain
Op(N) < C&(05(G)) N Co(E(G)0p (F(G))) < Co(F(G)) < F(G)
50 Op(N) < Op+p(G) and the result follows. B

Theorem 4.3.

Let G be a p-stable group, p and odd prime and assume that Op(G) # 1.
If K is an §-injector of G then

14 0,(ZJ(K)) <G.
Moreover, if Oy (F(G)) < ZJ(K), then 1 # ZJ(K) 2 G.

Proof:

First note that O,(ZJ(K)) < G implies O,(ZJ(K)) char G, because
of the conjugacy of the §-injectors.

By Proposition 4.2, we know that O,(ZJ(K)) < Op(G), and by
Lemma 2.1 O,(ZJ(K)) # 1. Now, to obtain the theorem it is enough
to prove that if B is a normal p-subgroup of G, then BN O,(ZJ(K)) is
normal in G.

Assume the result false and suppose that G is a minimal counterex-
ample. Suppose that B is a normal p-subgroup of G of least order such
that BN O,(ZJ(K)) is not normal in G.

Set Z = 0,(ZJ(K)) and let B* be the normal closure of BN Z in G,
then BNZ = B*NZ and by our minimal choice of B we obtain B = B*.

Moreover, since B’ < B we have that B’ N Z is a normal subgroup of
G. Thus, for any g in G we have (BN Z)9,B|=[BNZ,B]Y < B'NZ.
Since B is generated by all such (BN Z)9, it follows that B’ < Z. In
particular BN Z centralizes B’, and applying the foregoing argument we
get [B,B,B] = 1.

Let A € 2(K). By Lemma 2.2 we know that AB is nilpotent, so there
exists some positive integer n such that [B, A;n] = 1. Moreover, since p
is an odd prime [A, B]' < B’ has odd order.

Now by Glauberman’s replacement Theorem ([1, Corollary 2.8]) we
can conclude that there exists an element A in A(K) such that B <
Ng(A), and therefore [B, A, A] = 1.

In particular, [B, Op(A), Op(A)] = 1. Since G is p-stable we have:

0,(A)C/C < 0,(G/C) =T/C 4 G/C

where C = Cg(B) and T = C%(B). Moreover, since Op(A) < Cg(B)
we get

ALT.
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If T = G, then G/C is a p-group, so KC is a subnormal subgroup of
G. Since KC normalizes BN Z, KC < G. Let M be a normal proper
subgroup of G such that KC < M. Clearly M verifies the hypothesis of
the theorem, K being an F-injector of M, so by our minimal choice of
G, we get Z < M, and then Z char M. Therefore, Z < G, contrary to
our choice of G.

Thus, we have T < G. Since A < K NT, it follows that A(K NT) C
AK), J(KNT) < J(K) and ZJ(K) < ZJ(KNT). It is clear that
T verifies the hypothesis of the theorem, being K N'T an F-injector of
T. Thus, by the minimal choice of G, O,(ZJ(K NT)) char T and then
Op(ZJ(K NT)) < G. Since B is the normal closure of BN Z in G we
obtain B < O,(ZJ(K NT)). In particular, B is abelian.

If J(K) = J(KNT) then O,(ZJ(K)) = O,(ZJ(KNT)) < G, contrary
to the choice of G. Thus, there exists an element A; € A(K) such that
Aj is not a subgroup of T'. Then we must have [B, A1, A;] # 1. Among
all such A;, choose A; such that |A; N B| is maximal. As B does not
normalize A;, by Thompson’s replacement Theorem ([1, Theorem 2.5],
there exists an element A in A(K) such that A; N B < A;N B and A,
normalizes A;. The maximal choice of A; implies that [B, Az, Az] =1
and A; < T. Hence, B < ZJ(KNT) < Ay < Ng(A;) and this is the
last contradiction.

Finally, if in addition we assume Op(F(G)) < ZJ(K), then Op(F(G)) =
ZJ(K) and the result follows. B

Corollary 4.4 (compare with Glauberman’s ZJ-Theorem [6]).

Let G be a p-stable group such that Cq(Op(G)) < Op(G), p and odd
prime. If P is a Sylow p-subgroup of G then ZJ(P) < G.

Proof:

Leading from our assumptions we have Op+(G) = Op(G) =1, 0 P is
actually an €. &p-injector of G and Theorem 4.3 applies. W

Theorem 4.5.

Let p be an odd prime and K an §-injector of a group G, being §
a Z-extensible and Qz-closed Fitting class. Assume that SA(2,p) is
not involved in G and that Oy (F(G)) < ZJ(K). Then ZJY(K) is a
characteristic subgroup of G for every i > 0.

Proof:

Assume the result to be false and let G be a minimal counterexample.
Since SA(2,p) is not involved in G, we know that G is p-stable (using
Definition 4.1 above, proceed as in [6]). Therefore applying Theorem 4.3
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we have ZJ(K) char G. Because of the choice of G we can assume
14 ZJ(K).

Set C = Ce(ZJ(K)). Assume that C < G. Then for every i > 0 we
have ZJ*(K N C) char C, and so ZJ*(K N C) < G. Now since J(K) <
KnNC, it follows that J(K) = J(KNC) and ZJ(K) = ZJ(KNC). Also
K1 = Ck(ZJ(K)) = Cknc(ZJ(KNC)) and applying induction on ¢ we
can obtain ZJ*(K) = ZJ*(K N C) < G, contrary to the choice of G.

Therefore C = G and then ZJ(K) = Z(G). Since |G/Z(G)| < G
and K/Z(G) is an F-injector of G/Z(G) we obtain ZJ*(K/Z(G)) char
G/Z(Q), for every i > 0. Now since K; = Cx(ZJ(K)) = K, using ([5,
Prop. 11.3.6]) we can deduce ZJY(K/Z(G)) = ZJ**Y(K)/Z(G), and so
ZJ7Y(K) char G for every i > 0, which is the last contradiction. ®

Remark 4.

Recall that for any group K, Cx(ZJ*(K))<K,and K,./Cx(ZJ*(K))
is nilpotent (by [5, Prop. II 3.7]). Using this facts it is easy to see that
for any group K the following statements are equivalent:

i) Cx(ZJNK)) < ZJ*(K) i) K. = ZJ*(K).

Also, we know that Cx(K,) < Cx(ZJ*(K)) < K., using ([5, Prop. II
3.7

Remark 5.

Let K be an F-injector of a group G. Then K is also an F-injector
of any subgroup of G containing K (see [10]). In particular, K is an §-
injector of Ng(K,), and so by the previous remark Z(K.) = Cx(K,.) =
Ce(K.) N K is an F-injector of Ce(K.). Thus if z € Cg(K.), since
(z, Z(K,)) is an abelian subgroup of Ng(K.) with Z(K.,) <{(z,Z(K,)) <
Ca(K,), we can conclude that Z(K,) = (z, Z(K.)). Therefore, we have
proved that Cg(K.) < K..

Proposition 4.6.

Let K be an F-injector of a group G and assume Oy (F(G)) < ZJ(K).
Then the following are equivalent:
i) G is an M-constrained group.
i) Ky = ZJ*(K).
i) Ce(Z2J*(K) < ZJ*(K).
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Proof:

First notice that, applying Lemma 2.1, since K, /ZJ*(K) is an €5« G-
group, ZJ(K,./ZJ*(K)) = 1 implies Op(K,/ZJ*(K)) = 1. Now ap-
plying Lemma 2.4 and the fact that Oy (F(G)) < ZJ(K) we obtain
that F(K,/ZJ*(K)) = F(K.)/ZJ*(K) is a p-group and so we conclude
ZJ*(K) = F(K.,).

i) = ii) Since F(G) < K it follows that Cx(F(K)) < F(K), and so
on Ck, (F(K,)) < F(K,). Bearing in mind that ZJ*(K) = F(K,) and
Cx(ZJ*(K)) = Ck.(ZJ*(K)), ii) follows from Remark 4.

ii) = iii) By the Remark 5.

iii) = 1) Since ZJ*(K) is nilpotent we have E(G) < Ce(ZJ*(K)) <
ZJ*(K), and then E(G) = 1, that is, G is an 9l-constrained group. B

Corollary 4.7.

Let p be an odd prime and K an §-injector of an MN-constrained group
G, being § a Z-extensible and Qz-closed Fitting class. Assume that
SA(2,p) is not involved in G and that Op(F(G)) < ZJ(K). Then
ZJ*(K) is a characteristic subgroup of G and Cg(ZJ*(K)) < ZJ*(K).

Recall that both the classes €., and €,.,&, are Z-extensible and Q z-
closed Fitting classes (see [3] and [10]), so the previous result applies for
such classes. Moreover, as in the case of the ZJ-theorem we can also
recover the Glauberman’s ZJ*-Theorem quoted at the beginning as a
consequence of the above corollary.

5. Final remarks

Remark 6.
There exist 91-constrained groups G such that O (F(G)) < ZJ(K),

being K an €,«Sp-injector of G, verifying that SA(2,p) is not involved
in G, p odd, and however with Oy (G) # 1.

Proof:

It is enough to take the group G = SA(3,3) = [N]|H, with N =
C3 x C3 x C3 and H = SL(3,3) and the prime p = 13. Really, G is
an N-constrained group with O (F(G)) = N, an €,«&-injector of G is
K = 0,+(G)P = NP where P = C3, and ZJ(K) = N. Moreover, it is
clear that SA(2,13) is not involved in G, bearing the orders in mind. W
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Remark 7.

In [2] and [12], the authors consider a 7-soluble group G with abelian
Sylow 2-subgroups and O,/(G) = 1, and they study the structure of the
subgroup ZJ(H), where H is a Hall w-subgroup of G, or H is an -
injector of G for certain Fitting classes §, respectively. Recall that such
a group is an N-constrained group (see [2]), and moreover it is a p-stable
group for any prime number p (see [12}]).

Moreover, since the p-nilpotent groups are &,+ S,-groups, we can easily
generalizes Lemma 4 of [2], as follows:

“Let G be a group and let P be a p-subgroup of K = Op«, »,(G).

Assume that P centralizes E(G)O, (F(G)). Then P < O,(G)”.

For the proof, let K = Oy, p(G); since F*(K) = F*(G), applying
Remark 2 it follows that P < Cx (E(K)Oy (F(K))) < F(K), and hence
P < 0,(K) = 0,().
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