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Abstract 

Nowadays mobile and fixed devices are used interchangeably for surfing the web due to the 

huge improvements performed in mobile devices in the recent years. Both mobile and fixed 

devices with Internet connectivity are supplied with different types of connection, thus users 

can select the best one at any time depending on their environment. In general, the mobile 

devices allow users access to Internet using the 3G network or a common WiFi connection, 

and the fixed ones generally use a wireless or wired connection. Selecting one or another type 

of connection implies different features of the network environment, so Internet Service 

Providers need to adapt their infrastructure to guarantee acceptable levels of Quality of 

Service in every type of connection. In this paper we study the behavior of the devices 

according to their nature, that is, if it is a mobile or fixed device. First, we have classified the 

most significant network parameters and software application values in order to know the 

nature of the device. Our proposal uses an intelligent system based on neural networks and 

finite state machines that lets the Internet Service Provider know the type of device belongs 

to the traffic going to its network. The system analyzes the transport and application layers 

from TCP packets to discriminate the percentage of Internet traffic generated by mobile and 

fixed devices. Test results show the success of the developed system. 

Keywords: Device detection, Network Protocols, Traffic classification, Traffic Engineering. 

 

mailto:diabrmo@upv.es
mailto:alcasol@upv.es
mailto:jtomas@upv.es


 Network Protocols and Algorithms 

ISSN 1943-3581 

2013, Vol. 5, No. 2 2013, Vol. 5, No. 2 

www.macrothink.org/npa 73 

1. Introduction  

Internet traffic generated by mobile devices has grown impressively in recent years. They 

can access to Internet using 3G or any other technology such as WiFi. It is important for 

mobile phone providers and Internet Service Providers to know which device is using their 

infrastructure in order to accommodate it to the user’s demand or even study the most 

appropriate offers [1].  

Traffic classification mechanisms allow allocating resources according to the service 

provider rules in TCP/IP networks. Moreover, it lets providers control and manage these 

resources, and enhance the security by knowing the type of traffic or device accessing 

Internet. In addition, it will help to deploy QoS-aware mechanisms successfully. 

Most papers seek different techniques to classify IP traffic [2,3,4] and several methods 

have been researched. First of all, the port-based classification [5] was considered in order to 

identify the application that generated each flow by its transport level source and destination 

ports, but today this method has been rejected because well-known port numbers cannot be 

assumed to indicate the application reliably [6]. Then, other methods have been studied, such 

as statistical classification in order to probabilistically assign flows to classes, e.g., machine 

learning [2] or statistical clustering [3,4,6,7], payload-classification [8] or multi-level 

methodology [9]. 

But, our goal is to identify the type of device connected to Internet because we consider 

that, by knowing this information, it is easier to predict the behavior of users on the network, 

or foresee the connection time or level of attention to the requested service [10], regardless of 

the type of traffic which is generating. Moreover, providers will be able to offer better 

services for users adapting the transmission to the end-device because usually mobile devices 

have fewer resources than fixed ones. 

The first problem that must be solved is to know if it is possible to recognize the 

operating system of the host connected behind a router by monitoring small variations in 

certain variables. Some recent studies have proved that some type of traffic classification can 

be performed [11,12]. Moreover, traffic variations generate patterns based on the operating 

system, which can be recognized by an intelligent system. The main issue is to determine the 

appropriate variables to be included in the intelligent system.  

The objective of this work is to develop a TCP/IP classifier that is capable to distinguish 

between mobile devices (phones, smartphones, tablets, etc...) and fixed devices (running 

Windows, Linux or Mac OS). In order to achieve our goal, we will use statistical techniques 

applied to artificial intelligence. This paper is an extension of the paper published in [13].  

The remainder of this paper is structured as follows. Section 2 shows the main related 

works. Section 3 explains the experiments performed to know the variables that can be used 

in the intelligent system. Our device recognition system is introduced in Section 4. Section 5 

describes the experimental framework used to validate our approach. Finally, section 6 shows 

the conclusion and future work. 
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2. Related Works  

Device fingerprinting identification can be classified into two groups: active and passive 

approach.  

In active approach the system send specific requests to the device and analyzes the 

response to detect implementation-specific characteristics. D. E. Comer and J. C. Lin 

demonstrated in [11] that active probing can be used to recognize TCP implementations. 

Therefore, this technique is only applicable to devices acting as server.  

In the passive approach, the system only analyzes the traffic sent by devices. In [12], 

authors developed a naive Bayesian classifier based on TCP/IP fingerprints. This classifier is 

able to count the number of host devices masquering behind a Network Address Translation 

(NAT) router, analyzing the network messages, based on four variables: time to live (TTL), 

don’t fragment bit (DF), window size (WS) and options block size (OBS).  

Some statistical techniques applied to artificial intelligence have been implemented in 

several works with success. An example is the work presented by E. Hjelmvik and W. John in 

[14]. They introduce a statistical protocol identification algorithm using various statistical 

flow and application layer data features. 

Most published studies focus on detecting some characteristic parameters of the software 

implementation, such as the browser type or the TCP/IP stack. In [15], the author introduces 

the HTTP fingerprinting technique to identify the server operating system. In [16], the author 

demonstrates that browser fingerprinting is a powerful technique that reveals quite a lot of 

information that remains overwhelmingly tractable with the implementation of a new browser 

fingerprinting method. Moreover, J. Oshio et al. [17] propose a new clustering method for 

controlling the congestion window, identifying different versions of TCP at the relay router in 

real time.  

It is very important for Internet Service Providers to know which types of devices are 

using their infrastructure in order to provide the best quality of experience to the end user. In 

this line we propose a method to identify whether the traffic has been generated by a mobile 

device or by a fixed device. Our system uses a passive approach to capture the network traffic 

and artificial intelligence techniques to classify the Internet packets into two classes: mobile 

device and fixed device. But, as far as we know there is not any device fingerprint detection 

system like the one described in this paper. 

 

3. Test bench Measurements  

In order to see where we can find the information that can be used for our purpose, we 

performed several experiments. The topology used in these experiments is shown in Fg 1. We 

placed all devices in a local area network using a single public IP address for Internet access. 

The local area network has 2 networks separated by a router. One of them uses Network 

Address Translation and is used to place all devices to be monitored: a PC with Windows XP, 

and a PC with Ubuntu 10.04, and a WiFi access point to connect the wireless devices: Nokia 
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C7-00 with Symbian OS 9.5 Symbian^3, iPhone with OS 6_1_2, SonyEricsson with Android 

2.3.7, Nokia C6 SymbOS with S60, LG-p700 with Android 4.0.3, a tablet Acer with Android 

3.2.1 and a MacBook Pro with Mac OSX 10.6.8. They use private IP addresses. In Internet 

there is a PC with a video streaming server. It allows us to measure the different features of 

each device. All devices start to watch a video from the server at the same time and 

meanwhile Wireshark [18] is used to sniff the network traffic for monitoring purposes. 

 

Figure 1. Network Topology 

3.1. QoS Parameters Experiment 

This experiment let us measure the round trip time, delay and jitter of mobile and fixed 

devices. Fig. 2, 4 and 6 show these parameters for the group of mobile devices and Fig. 3, 5 

and 7 for the fixed devices. 

As expected, these figures show that the time required for mobile devices to transmit and 

receive packets from a network is higher than for fixed devices because their packets have to 

cross the wireless network. 

The round trip time is the time required to transmit one TCP packet from a source device 

to a specific destination plus the time required for the acknowledgment to get back to the 

source from the destination. Fig. 2 and 3 show this time for mobile and fixed devices 

respectively. As we can see, the round trip time for fixed devices is almost zero, lower than 

0.05 seconds, apart from some specific peaks; in contrast, this time has an average of 0.2 

seconds for mobile devices. 
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Figure 2. Round Trip Time in Mobile Devices 

 
Figure 3. Round Trip Time in Fixed Devices 

The same happens when we measure the delay, which is the time required for a TCP 

message to travel from a source to a destination. Fig. 4 and 5 show that the delay for mobile 

devices has an average value of 0.10 seconds and it is lower than for fixed devices, which is 

0.02 seconds.  
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Figure 4. Delay in Mobile Devices 

 

Figure 5. Delay in Fixed Devices 

When we measured the jitter, which is the difference between the delay of two 

consecutive packets, we also obtained different values. Fig. 6 shows that these values are 0.10 

seconds in the most of cases for mobile devices and, in Fig. 7, it is shown that these values 

are around zero for fixed devices.  
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Figure 6. Jitter in Mobile Devices 

 

Figure 7. Jitter in Fixed Devices 

As expected, the throughput needed is also different for mobile and fixed devices. But, as 

we can see in Fig. 8 and 9, this difference is not so significant in this case. 

Fig. 8 and 9 show the overall packets and bytes transmitted by mobile and fixed devices 

while they are watching the video received from the video server. As we can see the 

throughput is a little bit higher for fixed devices than for mobile devices at the beginning of 

the transmission. It makes sense because the bandwidth is usually greater in fixed devices. 

However, it decreases slightly at the end of the transmission in fixed devices and it remains 

similar during all the transmission in mobile devices. 
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Figure 8. Consumed throughput in packets per second 

 
Figure 9. Consumed throughput in bytes per second 

3.2. Application Layer Experiment 

The goal of this experiment is to find differences at the application layer. We have found 

that for the HTTP protocol, the user-agent field allows us to identify both the operating 

system and the device. Moreover, we have found differences in the TTL, WS and OBS 

variables. The presence of the DF bit determines that these messages are the first ones of the 

communication. 
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The following list shows the information obtained in the field user-agent for all tested 

devices: 

• SonyEricsson ST 25i: Mozilla/5.0 (Linux; U; Android 2.3.7; es-es; 
SonyEricssonST25i Build/6.0.B.1.564)  

• iphone 5: com.google.ios.youtube/1.2.1.5201 (iPhone5,2; U; CPU iPhone OS 6_1_2 
like Mac OS X; es_ES)  

• Nokia C7: Mozilla/5.0 (Symbian/3; Series60/5.3 NokiaC7-00/111.030.0609; 
Profile/MIDP-2.1 Configuration/CLDC-1.1)  

• Nokia C6: Opera/9.80 (S60; SymbOS; Opera Mobi/SYB-1204232254; U; es-ES)  

• LG-P700: Mozilla/5.0 (Linux; U; Android 4.0.3; es-es; LG-P700 Build/IML74K)  

• Macbook Pro: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8)  

• Acer A500: Mozilla/5.0 (Linux; U; Android 3.2.1; es-es; A500 Build/HTK55D)  

• PC (Windows XP): Mozilla/5.0 (Windows NT 5.1)  

• PC (Linux Ubuntu 10.04): Mozilla/5.0 (X11; Linux x86_64)  

Moreover, in our laboratory, after several experiments, we have confirmed that the three 

variables used by R. Beverly in [12] to classify operating system have slight differences 

depending on the device and the operating system that is being connected to Internet. Table 1 

shows the obtained values for these variables. 

Table 1. TTL, Window Size and Options Block Size Comparison. 

Device (Operating System) TTL WS OBS 

Smartphone (Nokia C6 Symbian S60) 69 64,980 12 

Iphone (iOS 6) 64 8,192 12 

Smartphone (Nokia C7 Symbian OS 9.5 Symbian^3) 69 12,227 12 

Smartphone (LG-p700 Android 4.0) 64 229 12 

Smartphone (SonyEricsson Android 2.3) 64 2,920 12 

Tablet (Acer A500 Android 3.2) 64 1,004 12 

PC (Windows XP) 128 65,535 0 / 8 

PC (Linux Ubuntu 10.04) 64 501 12 

MacBook Pro (OSX 10.6.8) 64 524,280 12 

 

3.3. Transport Layer Experiment 

The aim of this second experiment is to confirm that the values of TTL, WS and OBS are 

independent of the used protocol. Using the same configuration shown in Fig. 1 we have 

taken several messages from the nine devices using different protocols. In order to do this 

experiment we have used Skype, Google Talk and Youtube.  

We have observed the same values for TTL, WS and OBS (TTL=63, WS=524280 and 

OBS=12). They are the same values than the ones used by Mac OSX 10.6 for HTTP protocol 

(see Table 1).  
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In one of our experiments, we saw a TTL value of 68. We know from Table 1 that TTL = 

69 represents Nokia smartphones. So, it is not possible to know the type of device only using 

the TTL value, but it is possible comparing this value with the value in others messages in the 

network. For example, in our experiments we were able to identify Nokia devices when there 

are more messages from others devices (including fixed devices), because they have higher 

TTL values. 

Next, we performed some experiments in order to detect which device is used to watch a 

video from Youtube. We observed that Youtube uses the HTTP protocol, for this reason the 

values that we observe are the same than in Table 1. 

We also obtained OBS=0, which indicates the absence of the options block. The values 

of these variables are comparable with the values of a computer with Windows XP for HTTP 

protocol (shown in Table 1). 

3.4. Data Flow Experiment 

Last experiments permit to identify the device only on the first message of the 

communications. In this experiment we wanted to identify the device responsible of the data 

flow in two senses. In order to perform it, we used the identification of the device to 

determine the class of the device (Fixed device / Mobile device) and the sockets information 

in the first message to make a 5-tuple (IP direction / port source, IP direction / port 

destination, class) and we have stored this information on a connection tracking table. 

 

4. Device Recognition System  

Bearing in mind all performed experiments, we have developed a system that lets us 

know which type of device is the origin of the traffic. 

In order to achieve our goal we have designed and developed an intelligent system that is 

able to classify and measure the TCP/IP messages that come from different mobile devices 

and computers, by using the available information in the application and transport layers [19]. 

In this intelligent classifier, we use a neural network in order to take the most accurate results. 

The block diagram structure is shown in Fig. 10. As we can see, our system is composed 

by seven blocks: 

• libPCAP: Monitor the network traffic and capture packets.   

• Packet analyzer: Extracts the main features shown on Table 2 of the network packet. 

• Neural Network: Estimates the device class for the packets containing don’t 

fragment bit. 

• Connection Tracking: Finite state machine with two states (Computer and Mobile 

device) that uses the information on the connection tracking & class table as state transition 

rules. This block sends the packet class to statistics block. 
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• Connection Tracking & Class Table: Table where the sockets communication 

information and class is stored in a 5-tuple. 

• Statistics: Count the amount of packets of each class in the net from the start of the 
system. 

• Output: Shows statistics information to the user. 

In other words, by using libPCAP [20], our system can read network packets. Then, these 

packets are sent to the analyzer block. Next the analyzer block extracts the main features (see 

Table 2) and builds features vectors. These features vectors are send to the neural network 

block and to the connection-tracking block. Our neural network is able to recognize which 

device is the origin of the communication by the first packet of this communication, but it is 

not able to do it for the others packets. For this reason, it is necessary to work also with a 

flow TCP basis [21]. The connection-tracking block is a finite state machine with two 

possible states: computer and mobile device, which uses the information on the connection 

tracking & class table as state transition rules. The flow information is represented by a 

5-Tuple (IP address / port source, IP address / port destination, state), and the current state is 

saved on the connection-tracking table. The statistics block is responsible for counting the 

packets received from each class, and prepares the system output, which is the percentage of 

each class. 

The main features of the network packets needed to recognize the device class and to 

monitor the traffic flow are shown on Table 2. The automatic labeling method used to label 

the features vectors for the training of the neural network is shown in Fig. 10. This block 

diagram is composed by: 

• libCAP.   

• Packet analyzer. 

• Device Table. 

• Output: Builds an arff file with the information on Device table to train the neural 

network using Weka [22]. 

During the packet-labeling period, the set of packets captured by libCAP are examined 

by the packet analyzer to build the set of main features vectors with the values of the TTL, 

OBS and WS of the packets with the DF. Next, it labels features vectors according to the 

value of the user-agent. This field has two classes: Computer and Mobile device.  

All these vectors were collected in the device table and used to make the arff file to train 

the neural network with Weka. 
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Figure 10. Block diagram of statistics computation. 

Table 2. Main features of a network packet. 

Name Abbreviation 

Protocol P 

Time to Live TTL 

Options Block Size OBS 

Don’t fragment bit  DF 

Window size WS 

IP address source IPS 

Port source PS 

IP address destination IPD 

Port destination PD 

 

5. Device Recognition System Experiments  

By doing some experiments, we have developed a system which allows us to identify 

which type of device is the source of the traffic. 

5.1. Analytical model. 

The neural network used in our system is a multilayer perceptron [23]. In order to find a 

network that maximizes the classification results, we performed a training phase using a set 

of training samples is given with their corresponding class labels. It is represented by :  
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                         (1) 

 

Where, 

    are the training samples that will be used as inputs in our network 

   are the class labels 

  are the family class discriminant functions 

 

The class labels are defined by: 

 

     
                                

                             
   (2) 

 

Our aim is to find a probabilistic approach, where given an input sample, the network 

will provide us the corresponding class, fulfilling            . 

The activation function used in our neural network to carry out the training phase is a 

linear function. Therefore, it fulfills that: 

 

          (3) 

 

The topology of our neural network is shown in Fig. 12. This is a multilayer perceptron 

with three layers, three nodes in the input layer (TTL, WS and OBS), ten nodes in the hidden 

layer and two nodes on the output layer (fixed and Mobile). 

 

Figure 12. Neural network topology 
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This topology is defined by        , where, 

   are the set of input nodes, 

  are the rest of the nodes defined by discriminant functions, 

  are the connectors  

     are the weights of each connection 

The algorithm procedure is shown in Fig. 13. For each input pattern, the system performs 

a forward sweep to find the actual output. Then, it estimates the network error. If it is higher 

than a threshold then it executes the backpropagation to determine weight changes and update 

them. 

 

Figure 13. Algorithm procedure. 

The multilayer perceptron is defined by a combination of linear discriminant functions 

grouped into two layers as it is given in: 

 

  
            

   
     

              
   

       
   
   

    
       (5) 

 

Because the activation functions are linear, equation (4) can be expressed as: 
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The neurons of the hidden layer are between         , where      . The 

neurons of the input layer are between         , where     , and the ones of the 

output layer are between         , where       

Finally, we define the learning algorithm which minimizes the classification error. 

Backpropagation has been the used algorithm. Therefore, given the topology         of 

the multilayer perceptron and the set                        , with          
       

  , 

the objective is to find           which minimizes the mean square error for n training 

samples. 

So, given the error in: 

          
 

  
           

           
   

   
 
     (6) 

we minimize it by the descending gradient method: 

    
     

         

    
    (7) 

In this algorithm, the update of the weights in both hidden and output layer, for all 

training samples (n=40920), each iteration is defined by the sigmoidal function-common in 

Multi Layer Perception (the sigmoidal function gives a value in range of 0 to 1): 

1) In the output layer, for                      we have: 

 

    
       

         
       

 
     (8) 

  
               

         
    

         (9) 

 

2) In the hidden layer, for                      we have: 

 

    
       

          
 
    (10) 

  
            

           
       

          (11) 

 

Ideally, when it finds a global minimum, the function converges. It happens when 

equation (12) happens. 

                 
       (12) 

So, if we arrive to this situation, the network will be overtraining. Therefore, in order to 

avoid it, we have selected two criteria to stop the system, one based on the number of epochs 
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and another focused on the validation error. 

To sum up, given an input conditions such as network topology, training set, learning 

factor and convergence conditions and after performing the backpropagation algorithm, we 

obtain the weights of the connections which minimizes the mean square error . 

Because we have a balanced data model, we can take as a classification measurement the 

accuracy defined in [24] by H. He and E. A. Garcia. However we will also take another error 

value, which is the precision.  

 

5.2. Test Bench 

The process is divided into two parts. On the one hand the automatic labeling of samples 

to perform the neural network training and on other hand the statistical calculation test. 

In order to test the proposed system, we used the devices shown in Table 1 to generate 

network traffic. After the automatic filtering and labeling we had a set of 14,429 samples of 

packets from mobile devices, and 36,721 samples of packets from computers. We split it in  

80% for training set and 20% for validation set. Table 3 contains the number of samples for 

training and validation sets. 

Table 3. Number of samples for training and validation sets. 

Class Training set Validation set 

Mobile device 11,543 2,886 

Fixed device 29,377 7,344 

 

We trained this multilayer perceptron using 10-folds cross validation. Based on the 

confusion matrix shown in Table 4, we obtain the training results shown in equation (13) and 

(14). 

Table 4. General confusion matrix 

Prediction/real Positive Negative 

Positive VP FP 

Negative FN VN 

 

            
  

     
       (13) 

 

          
     

           
        (14) 

 

Finally, we have also taken into account the error obtained on the area under the ROC 

(Relative Operating Characteristic) curve which has resulted in 91.3%. The ROC curve 
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analysis provides tools for selecting optimal models and possibly discards suboptimal models 

irrespective of the cost of the distribution of the two classes is decided on. A random method 

describes a ROC curve horizontally through the diagonal, with a value of 50%. The 

classifiers at least should make the classification better than this, so far their performance is 

related to the area under the ROC curve, the larger this area is the better the performance of 

the classifier is.  

Once the neural network was trained, we generated this model and incorporated it to the 

system in order to test the whole system with the complete traffic trace generated before. This 

trace was composed by 47,642 packets from mobile devices and 75,307 from fixed devices. 

Thus, the expected values are 38.75% for mobile devices and 61.25% for fixed devices. 

As we can see in Fig. 14, the observed values on the system output were 33.90% of 

packets as traffic from mobile devices and the 66.10% of packets as traffic from fixed devices 

(computers), comparing the expected values with the observed we found a 4.85% of error in 

global classification.  

 

Figure 14. Expected and observed values on the output. 

In Table 5 the confusion matrix is shown with numerical values. It let us know the 

classifiers performance in detail. We see that 12,816 samples of mobile devices where 

classified as fixed devices. It means 26.90% of error in the mobile devices class. For the fixed 

device class we see that there were 6,858 samples classified as mobile devices. It means 9.11% 

of error in fixed device class. 

Table 5. Confusion matrix. 

   Predicted Class 

  Mobile Device Fixed Device 

 Mobile device 34,826 12,816 

Actual Class Fixed Device 6,858 68,449 
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6. Conclusion  

In this paper we have presented an intelligent system to detect the type of the device 

generating Internet traffic in the data network of the Internet Service Provider. The neural 

network used in our system is a multilayer perceptron. We have concluded that it is possible 

to recognize the type of devices behind of a router using Network Address Translation by 

monitoring small variations in certain variables. These variations generate patterns based on 

the operating system, which can be easily recognized by an intelligent system. The success of 

our implemented system demonstrates it. 

In future works we will include in our system a reinforcement-learning block. This new 

block will be able to learn by the use, and will reduce the error in classification, especially in 

mobile devices class. 
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