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Abstract 

Recent technological advances in the Power Generation and Information Technologies areas are 

helping to change the modern electricity supply system, in order to comply with higher energy 

efficiency and sustainability standards. Smart Grids are an emerging trend which introduces 

intelligence in the power grid to optimize resource usage. In order for this intelligence to be 

effective, it is necessary to retrieve enough information about the grid operation together with 

other context data such as environmental variables and intelligently modify the behaviour of the 

network elements accordingly. This paper presents a Multi-Agent System model for Virtual Power 

Plants, a new power plant concept in which generation no longer occurs in big installations, but is 

the result of the cooperation of smaller and more intelligent elements. The proposed model is not 

only focused on the management  of the different elements, but includes a set of agents which are 

embedded with Artificial Neural Networks for collaborative forecasting of disaggregated energy 

demand of domestic end users, the results of which are also shown in this paper. 

Keywords: Distributed Intelligence; Multi-Agent System; Smart Grid; Virtual 

Power Plant. 

1 Introduction 

Following the principles of “green” trends and the restrictions imposed by the 

ever increasing demand and prices of oil and other fuels, Power Generation and 

Distribution systems have been constantly evolving during the last years into 

more sustainable models compatible with environmental protection. This will be 

the key to achieve a sustainable (energy) economy in accordance with the 

provisions of the Treaty of Lisbon. 

In addition, energy markets are facing a set of global challenges. These include: 
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 Global deregulation. 

 Innovative elements are being gradually integrated into the Energy Grid, 

such as Distributed Energy Resources (DER) or Distributed Generation 

(DG) [1]: compact, sometimes mobile, energy generation devices (diesel 

engines, fuel cells, thin film photovoltaics, and mini wind turbines). 

 The imminent massive irruption of electric vehicles.  

 Increasing consumer involvement: consumers modify their behaviour 

according to green trends and financial savings [2]. 

Moreover, utilities have been encouraged through government policies to 

incorporate new smart devices. For example, Smart Meters are deployed at users’ 

homes and data collectors are installed in electric substations. Additionally, Smart 

Homes allow autonomous control of electric devices [3, 4]. 

This increasing intelligence of power grid nodes has led to the concept of Smart 

Grids: intelligent power grids capable of performing autonomous adaptation of its 

elements in order to optimize resource consumption (e.g., minimize energy 

transport due to localized production, reshape demand through the usage of 

automated devices in smart homes).  

Inside Smart Grids, a new energy production model called a Virtual Power Plant 

(VPP) [5] emerges, in which the power plant is no longer a monolithic 

installation, but an aggregation of smaller cooperating intelligent elements. The 

aggregation of generators and loads running together covers a physical or logical 

autonomous unit where all elements operate coherently, as in an industrial park, a 

residential area with solar panels or the distributed resources of a utility.  

However, management of these VPPs poses a challenge for Information 

Technologies. VPPs comprise a plethora of different elements designed to solve 

local problems, but that need to interact together in order to behave as a unit (the 

VPP). Protocols and tools are needed to let these elements communicate, 

discriminate and decide among the different (and sometimes diverging) 

requirements, make decisions affecting several entities, and coordinate coherent 

behaviours to carry out complex tasks. At the same time, the VPP devices are 

extremely heterogeneous: they are built and managed by very different 

organizations with very different purposes, and follow different standards for 

control and communication. 
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In addition to big plants, the power grid landscape of the future embraces many 

smaller elements: solar panels in houses, small wind turbines for residential areas, 

and small plants in industrial parks. While these elements can operate isolated, 

their integration will facilitate a more efficient usage of the entire energy resource 

base. It is possible to imagine a VPP autonomously redirecting energy from solar 

panels of empty houses to cover peak demands from other homes (billing the 

users accordingly), automatically selecting the best moment to recharge electric 

vehicles (taking advantage of wind peaks during the night), or sell surplus energy 

to a nearby industrial park. 

In the current state of the art, Multi-Agent System (MAS) [6] models have been 

proposed to control elements of Smart Grids, most notably for large area power 

networks (such as supporting an intelligent energy market) [7, 8]. MAS are a 

novel computing paradigm in which multiple entities within an environment 

influence and are influenced by other entities in the same environment. 

Additionally, load forecasting is a recurrent problem in energy grids, and as such 

many solutions have been proposed [9], although most are designed for large 

geographic areas. 

In this paper, we introduce an architectural solution to the challenge of VPP 

management through the application of a MAS and propose a solution for energy 

load forecasting in small (microgrid) scale environments, which will be employed 

by all its elements to adapt their behaviour in advance, facilitating demand re-

shaping and generation planning. While existing works [7-9] focus on large area 

management and large area load forecasting, our model manages VPPs and load 

forecasting for much smaller and more detailed environments.  

This paper is organized as follows: Section 2 defines in detail the concept of VPP. 

Section 3 describes the new possibilities offered by ITs. Section 4 presents the 

proposed architectural model relying on a Multi-Agent System and the demand 

forecasting system validated with real data. Section 5 ends the paper with the 

conclusions. 

 

2 Virtual Power Plants 

As new intelligent agents and Distributed Energy Resources (DERs) are 

incorporated into power generation, transforming old infrastructures into Smart 
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Grids, a new paradigm needs to be developed to ensure coordination among all 

the implied entities. VPPs emerge as a decentralized, self-organized intelligent 

solution.  

A single small generation unit cannot offer cost-effective capacity, reliability, 

flexibility and controllability in an electricity market. A VPP is a cluster of 

distributed generation installations that operate independently, but together could 

be seen as a single generation plant with its own generation schedule and limits, 

as well as its own operating cost and demand characteristics. A VPP plays two 

main roles. The first one is Commercial Virtual Power Plant (CVPP). It is aimed 

at the economic optimisation. CVPP contracts power from DERs in exchange for 

optimised generator revenues, compiling their technical and economical 

parameters and building an optimized bid/offer table. Once bids are accepted, 

CVPP controls contract execution. The second one is Technical Virtual Power 

Plant (TVPP). It manages optimal and secure operation of the system according to 

physical constraints and ensures the technical feasibility of the 

generation/consumption program based on date submitted by the CVPP.  

In short, VPPs facilitate the integration of new smart devices and DERs into the 

electricity wholesale market, offering system management and support services. 

Figure 1 shows the elements comprising a VPP, such as generators (PV plants, 

wind plants, biomass plants), consumers (smart homes and smart buildings) and 

some producers/consumers (electric vehicle and storage).  
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Figure 1. Elements of a Virtual Power Plant. 

 

Moreover, VPPs treat information and actors separately from the physical 

components.  For example, generators in separate locations can be controlled 

coherently to optimize their performance both locally in each of their physical 

environments and globally, as a single entity connected to the power grid; 

similarly, a physical area can house several VPPs simultaneously. 

Finally, VPPs utilize security measures to guarantee data integrity and privacy. 

This has become a critical research field [10, 11] because VPPs handle privacy 

and personal information. For example, smart meters disaggregate demand and 

consumption patterns while smart homes and next generation electric vehicles 

monitor the behaviour of their users. These VPPs are subject to failures and may 

be the object hostile attacks and viruses. 

3 Information Technologies in the Smart Grid 

scenario 

3.1 Information Technologies in VPP Physical Structure 

VPPs rely on Distributed Intelligence (DI) that monitors and controls all their 

elements. Figure 2 shows the generic control architecture of a VPP. The VPP data 

flow begins with data sources such as smart meters (SMs) or weather stations and 

sends data to the intelligent agents in low-voltage (LV) substations via data 

concentrator (DC) systems. Most basic functions are performed at the lowest level 

of the hierarchical structure, where devices make decisions regarding their own 

local operations, such as activating a generator or switching off a smart home 

device. Virtual Power Plant Control (VPPC) coordinates these operations 

according to the global internal status of the VPP [12], and provides interfaces 

with the external power grid (represented by the second VPP in Figure 2) 

according to the external status of other smart elements. For instance, through 

these VPP interfaces, companies may collectively facilitate the creation of a smart 

energy market, or VPPs of several industrial parks and residential areas can 

exchange load and generation information to share energy locally instead of 

buying it from a global market. 
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Figure 2. Distributed intelligence via a VPP. 

 

3.2 Control Processes within a Virtual Power Plant 

Three different types of processes have to be controlled within a VPP:  market-

related issues (Commercial VPP - CVPP), those related to performance and 

functional problems (Technical VPP - TVPP), and those involving both. Power 

grid agents and VPP external processes are listed here, together with the 

corresponding TVPP or/and CVPP: 

 

 State of Network (TVPP): Propagates status (e.g., events, failures) 

 State of Generation (CVPP and TVPP): Shares information about current 

generation capacity and generation forecasts 

 State of Demand (CVPP and TVPP): Distributes  information about 

current demand and demand forecasts 

 Bids (CVPP and TVPP) : VPP requests/offers energy from/to other 

external power grid elements 

 Tariff  (CVPP): Disseminates energy prices offered by the VPP 

 Roaming of Generators and Loads  (CVPP and TVPP): Shares 

information about elements switching dynamically between VPPs 

 

Internal VPPC control processes are listed next, with the corresponding TVPP 

or/and CVPP: 
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 Troubleshooting (TVPP): Manages potential network and communication 

failures 

 Generation Control (CVPP and TVPP): Ensures distributed generation 

elements  do not cause grid imbalances 

 Generation Forecasting (CVPP): Predicts generation capabilities per 

element 

 Demand Control (CVPP and TVPP):  Controls energy demand in its area 

through customer rates and on the basis of contracts 

 Demand Forecasting (CVPP): Predicts end users’ demand for energy 

(decentralized in the case of distributed intelligence near end-use points) 

 Energy Balance Management (CVPP): Offers different tariffs to optimize 

the final balance, in accordance with the current VPP control strategy 

 Tariff Updater  (CVPP): Informs customers, in real time, about rates set by 

the Energy Balance Manager 

 Customer Control (CVPP and TVPP): Manages customer services 

 Network Stability Control (TVPP): Monitors and controls VPP grid 

performance, quality, reliability and safety parameters 

 Communication with other VPPs (CVPP and TVPP): Communicates bi-

directionally to other elements 

 Weather Station Control (TVPP): Manages meteorological station(s), 

collects and processes their data, and serves raw and processed 

information to other architecture elements (e.g., Demand and Generation 

Forecasting) 

 Storage Control (CVPP and TVPP): Monitors and controls VPP energy 

storage. 

 

3.3 Multi-Agent System (MAS) Approach 

The VPP environment is a complex structure of decision-making processes 

running separately but interdependently. Extremely distributed architectures are 

difficult to control using traditional centralized approaches. Therefore, a new 

control system needs to be implemented, and the MAS programming paradigm is 

well suited because, on one hand, in MAS, many actors interact by competing or 

co-operating. Local software agents focus on the interest of local subsystems, and 

they influence the global system by negotiating with other software agents, and, in 

the other hand, MASs implement decision-making processes in an open, flexible 

and extensible way.  

This work presents a MAS model for VPPs in two aspects: demand forecasting 

and coordination of producers/consumers in order to balance energy production. 

The first is a pure agent solution, since it does not focus on creating a framework, 

but on coding the solution following MAS principles. Therefore, the forecasting 

algorithm is implemented using agents.  
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The second aspect is approached differently. Rather than implementing the 

distributed algorithm, a MAS framework is created implementing a model of the 

different roles and tasks involved in a VPP, and coding the behaviour of each 

agent. The design of this framework is accomplished using an Agent Oriented 

Software Engineering solution named INGENIAS. INGENIAS follows the Model 

Driven Paradigm, therefore the diagrams we show are actually converted into 

program code or documents.  

4 Architectural model for management and 

forecasting 

4.1 A MAS oriented framework for VPP control 

The MAS is designed taking into account the behaviour we expect from VPP.  It 

is a design inspired by working group discussions during the SOAR workshop 

[13]. These behaviours are expressed in three use cases where three actors 

participate. There is a Producer that generates the electricity; Consumers which 

are regular users demanding a fixed amount of power; and Flexible Consumers 

that make special deals to reduce power consumption when there is a shortage. 

The market is assumed to regulate power consumption by means of consumers 

that agree to consume less power when needed in exchange for specified benefits. 

The three use cases defined are as follows: 

 A producer identifies a power shortage. In this case, the producer detects 

the problem and contacts all flexible consumers to ask them to reduce their 

power consumption. 

 A consumer identifies a power shortage and contacts the producer. The 

consumer together with the producer need to investigate what has 

happened. 

 A consumer requires more power. Some installations, like a big factory, 

may occasionally demand additional power. In this case, the producer 

must contact other flexible consumers to ask them to reduce power 

consumption. 

We present a MAS that addresses these use cases. It has been designed and 

implemented using the INGENIAS MAS methodology [14]. System agents are 

represented through roles which are reusable pieces of functionality. System 
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agents are represented in Figure 3.b and they coordinate agents already identified 

in the case studies: Producer, Consumer, and Flexible Consumer. Each role 

pursues a goal, expressed with the GTPursues relationship. For example, in 

addition to consuming power, a Flexible Consumer tries to reduce its consumption 

when possible or when requested. The roles are expected to fulfil their goals and 

may extend other roles using the ARoleInheritance relationship, which implies the 

extending role acquires all goals and associated tasks from the parent role. 

  

 

 

(a) 

 

(b) 

 

(c) 

Figure 3. MAS Model Management and Forecasting System. (a) INGENIAS Notation (b) 

Actors; (c) Interactions among actors. 

 

Agents are expected to interact in order to realise the use cases previously 

discussed. The interactions depicted in Figure 3.c embody agent information 

exchanges. In an interaction there is always one, and only one, agent starting the 
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interaction, named the initiator (relationship IInitiates), and at least another agent 

is waiting to interact, which are called collaborators (relationship IColaborates). 

Figure 3.c illustrates that a Consumer asks Producers what power can be arranged 

and at what prices. It is a one-to-many interaction, which means all power grid 

producers are queried. Once a single producer is selected, the arrangement is 

accomplished in a different interaction, AskingForPower. These interactions can 

be started when there is need for additional power (third use case) or there is a 

power shortage detected by the client (second use case). In the latter case, the 

client would adhere to new power sources. When there is insufficient energy to 

satisfy the demand and the producer knows this (first use case), it interacts with 

clients asking Flexible Consumers to reduce their power consumption. When 

sufficient power reduction is achieved, the Apply Power Reduction Interaction is 

started. 

We have implemented a fully-operation MAS based on the INGENIAS model-

driven features. Figure 4 shows one of the screens used by the INGENIAS 

infrastructure to debug the activities performed by the agents. Because it is model 

driven and there are computational representations for the elements depicted in 

Figure 3, INGENIAS uses the same elements to communicate with the developer. 

This way, the developer receives debugging information using the same concepts 

applied during the design. In this case, the focus of the debugging is a Consumer 

activity which takes as input a Power Shortage event. This kind of event would be 

expected from devices detecting energy drops. The designed behavior for the task 

implies starting an interaction of type Querying Power (see Figure 3.c) with 

alternative electricity producers. The requested amount of kW from each one is 

stored in a slot of the Power Query entity. Without the debugging mode, the agent 

would just proceed automatically and get the requested amount of electricity. 
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Figure 4. MAS specification execution with INGENIAS. 

 

4.2 MAS model for Smart Home/Smart House Energy Demand 

Forecasting 

Of all the control processes explained previously, one of the most critical for the 

flexible operation of the VPP is Demand Forecasting, which allows the VPP to 

know in advance the amount power that will be required so that generation 

planning is feasible. Here we described our MAS implementation of the Demand 

Forecasting System (DeF) for a VPP.  

The objective of the MAS Demand Forecasting system is to forecast VPP users’ 

energy demand by disaggregated sectors. To perform this task, the VPP needs to 

communicate with other Agents and collaborate with the other processes to ensure 

VPP stability. DeF agent tasks include: 

 DeF - Historical Control Agent (DeF-HcA): This agent decides what 

historical data will be used in forecast-network retraining. 

 DeF – Smart Meter Control Agent (DeF-McA): This agent is responsible 

for ensuring that smart meters are sending consumption data correctly. 

 DeF – Smart Home/House Data Control Agent (DeF-DcA): These agents 

coordinate with the DeF-McA to verify the relevancy of the obtained data, 

and report this data to the pre-processing agent. 

 DeF – Data Preprocessing Agent (DeF-DpA): These agents are responsible 

for standardizing the data entered into the database, and for detecting and 

solving potential irregularities.  



 

12 

 DeF – Forecasting Agent (DeF-FoA): These agents are in charge of 

triggering demand forecasting in accordance with a common clock 

controlled by the DeF system.  

 DeF – Retraining Control Agent (DeF-ReA): This agent is in charge of 

controlling when the forecasting architecturel model needs to be re-

trained.  

 DeF – New Smart Home/House Control Agent (DeF-NcA): These agents 

are in charge of creating all needed agents and reporting new customer 

incorporations to the other agents. They also delete agents when a client 

no longer uses VPP services. 

 DeF – External Control Agent (DeF-EcA): The task of these agents is to 

communicate with the DeF system to learn about customer exchanges 

between different VPPs and to report the other involved VPP agents. 

4.3 Demand Forecasting 

The system presented in the previous section utilizes a Demand Forecasting 

subsystem, depicted in Figure 5. This subsystem is based on Artificial Neural 

Networks (ANN), and, while the literature presents a lot of examples of demand 

prediction in aggregated environments such as countries, this one is aimed at 

providing a prediction of the power demand in small environments such as small 

towns.  

ANNs are a computing paradigm based on the aggregation of small computing 

elements, called neurons, which are interconnected resembling the operation of 

the human brain. The ANN can present several different architectures, and is 

normally configured to learn from experience when confronted with a base truth 

known a priori. The complete forecasting system is shown in Figure 5.a, where 

load curves and weather variables are introduced into the database (as weather 

variables have a clear influence on electric demand in a VPP scenario [14]).  

The first stage is ANN Self-Organizing Map (SOM) for unattended classification 

of different training 24-hour demand patterns. Demand patterns with similar 

features are clustered together. One cluster could represent the smallest 

consumption days, such as summer weekends and bank holidays, while a different 

one could represent the highest consumption days, such as weekdays in winter. 

This stage is represented in Figure 5.b, and uses the following parameters as 
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input: three weather variables (average temperature, global solar radiation and 

relative humidity), type of sector (industrial=0, commercial=1, domestic=2, 

administration=3 and other uses=4), day of the week (Sunday=0, Monday=1,..., 

Friday=5 and Saturday=6), month (January=1, February=2,..., November=11 

and December=12), and load curve (24 demand values, one value for each hour of 

the day). 

The second stage is an algorithm to select to which cluster to which a day belongs 

using weather variables, calendar (day of the week, month and holidays or 

working days) and load curve (24 values for the load curve of the previous day 

and the first two hours of demand).  

Finally, a third stage is employed in which a set of ANNs, based on a MultiLayer 

Perceptron (MLP), one for each of the clusters identified, forecast the following 

22 hours of demand (ANN output). This is represented in Figure 5.c with the 

following input variables for each training pattern: 

 Ld1 and Ld2: represent the 2 values for the load curve of the next day, so 

that generation/storage planning can be made in advance by the 

appropriate agents of the system. 

 L(d-1)1, L(d-1)2, L(d-1)3,…, L(d-1)24:  represent the 24 values for the load curve 

of the previous day. 

 Day of the week d-1:  presented as the two terms sine and cosine (to 

improve ANN performance), sin[(2·π·day)/7](d-1) and cos[(2·π·day)/7](d-

1), with days ranging from 0 to 6 (Sunday=0, Monday=1,…, Friday=5, 

Saturday=6). 

 Month d-1: presented as two terms sine and cosine, sin[(2·π·day)/12](d-1) 

and cos[(2·π·day)/12](d-1), with months ranging  from 1 to 12 

(January=1, February=2,…, November=11, December=12). 

As shown in Figure 5.c, the three stages are connected, although the first stage is 

performed off-line. 
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Figure 5. (a) System Complete; (b) representation of the three stages; c) inputs and outputs 

for MLP models. 
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The demand forecasting sub-system is validated with hourly electric demand data 

from Soria, a small size town in Spain, from the 1
st
 of January, 2008 to the 31

st
 of 

December, 2010, obtaining a mean prediction error as low as 1.5%, depending on 

the cluster considered. 

Figure 6 illustrates an example of the ANN model. Figure 6.a presents the 

clustered load curves after the first stage, with each cluster identified by a 

different colour. It is easy to see how daily load patterns with similar features are 

grouped together. There are several facts worth mentioning about the load: a 

region of low energy consumption is observed during the night hours, between 

22h and 8h, while two peaks are found normally at 11h-12h and 18h—19h; during 

the low consumption period, patterns are quite similar, and differences increase 

during the high one.  

Figure 6.b presents an example load curve forecasting for one day, with the target 

load curve in black, the prediction in red, and the other members of the cluster to 

which that specific input was assigned in green. 
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Figure 6. Load Forecasting results; (a) clustering of load curves (9 clusters, each of them 

represented by a different colour); (b) example of load forecasting for a day: target load in 

black, prediction in red, other load curves members of the cluster in green.  

5 Conclusion 

This paper has presented a MAS design to allow an easy implementation of VPPs. 

This distributed computing approach is capable of perfectly modelling the 

different entities involved in VPPs, facilitating their interaction and collaborative 

management. Applications of MAS have been reported in the literature, typically 

devoted to management of smart grid structures at large scales. In contrast, this 

work presents a detailed model for low-level management of VPPs. 
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In order for VPP agents to be able to take informed choices, they need detailed 

information about what is happening in the network as well as predictions about 

what will potentially happen in the future. That is why this MAS design has been 

enriched with a demand forecasting algorithm based on Artificial Neural 

Networks that has been validated successfully with real data. Existing prediction 

algorithms have been utilized to facilitate predictions at a big, aggregated scale 

(nations, regions, etc.), but the one we propose forecasts load at a smaller, 

microgrid scale, that better fits the VPP size. Evaluation of the implementation 

results in errors around 1.5%, which are low enough to feed the agents of the 

MAS with relevant data and allow them to make informed decisions. 
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