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The propagation of nonlinear compressional waves in a one-dimensional granular chain driven at one end
by a harmonic excitation is studied. The chain is described by a Fermi-Pasta-Ulam (FPU) lattice model with
quadratic nonlinearity (α-FPU model), valid for strong initial compression of the chain by an external static
force. A successive approximations method is used to obtain the analytical expressions for the amplitudes of
the static displacement field and of the fundamental and second harmonics propagating through the lattice. Both
propagating and evanescent second harmonics are shown to influence the nonlinear propagation characteristics
of the fundamental frequency. The propagating regime is characterized by a periodic energy transfer between
first and second harmonics, resulting from dispersion, which disappears when the second harmonic becomes
evanescent.
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I. INTRODUCTION

The acoustic propagation in three-dimensional granular
media is, in general, an extremely complex problem, since the
number of parameters involved in the description is usually
large and the parameters themselves are difficult to connect to
the acoustic properties (the statistical distributions of shape,
size, and constitutive materials of the grain assembly, the
dynamical behavior of individual contacts, or the geometry
of the contact lattice, to cite some). For that reason, one often
relies on simplified configurations that are more suitable for
analysis but still capture some of the basic features of nonlinear
wave propagation in granular materials. The simplest and
most widely used model of granular material consists of a
one-dimensional chain of identical spherical beads maintained
in contact at rest. The study of nonlinear wave propagation in
such granular chains has been, since the pioneering works of
Nesterenko [1], an active field of both fundamental and applied
research. The nonlinearity results from the specific type of
restoring force between two adjacent elastic spheres, which is
governed by the Hertz law [2] and is located at the contacts,
where the deformation occurs. Often an external static force
is applied, resulting in a precompression of the chain. In this
way, the properties of the chain and in particular the strength
of the nonlinearity can be controlled. Depending on the
magnitude of the applied force, two limit situations have been
investigated, namely the strongly and the weakly compressed
chains. In the weak compression limit where the imposed
dynamic deformation can be larger than the deformation
associated with the static force the chain behavior is highly
nonlinear and supports the propagation of solitary waves with
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compact spatial extension [3–6] or discrete breathers [7,8] for
example. The opposite limit, the strongly compressed chain,
has been much less explored. In this case, the model reduces
under some assumptions to a Fermi-Pasta-Ulam equation with
quadratic nonlinearity (also known as the α-FPU problem in
the literature [9]). As is well known, for disturbances with
a characteristic scale much larger than the particle diameter
(the so-called long-wavelength approximation) one can ignore
discreteness effects and apply a continuum approach, which
leads to the Korteweg-de Vries (KdV) equation. This equation
is a canonical model for weakly nonlinear, weakly dispersive
systems and is completely integrable.

Although the literature on the Fermi-Pasta-Ulam (FPU)
problem is extremely vast (see a recent review in Ref. [9]), most
of the studies have been performed for initial value conditions,
where one considers the evolution of an initial distribution
of the particle displacements along the chain. This is not the
typical situation with granular chains, where the propagation
of a signal injected at one end is of interest. Thus, for granular
chains the problem must be formulated as a boundary value
problem.

An approach to this problem was presented in Ref. [10],
where the excitation of the chain with two different but close
high frequencies was considered. There, the self-demodulation
phenomenon (generation and propagation of the difference
frequency mode) was examined. In particular, the propagative
low frequency component was shown to carry information
about the high frequencies (nonpropagative or evanescent)
lying above the cutoff frequency. There are also few recent
studies on the propagation of harmonic signals, submitted at
one boundary, in nonlinear chains or lattices. In the long-
wavelength limit, experimental results on the generation of
harmonics are found to be consistent with the Hertz theory
for precompressed granular chains [11,12]. A widely studied

043203-11539-3755/2013/88(4)/043203(8) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.043203
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discrete system, both theoretically and experimentally, is the
electrical transmission line [13]. Some remarkable results
of this system are the existence of envelope (bright) and
hole (dark) solitons related to modulationally unstable wave
solutions [13], the propagation of signals even when the
chain is driven above the cutoff frequency (supratransmission
phenomenon) [14,15], or bistable transmission regimes [16].
Recently, harmonic generation and self-action in a weakly
nonlinear diatomic granular chain have been studied ex-
perimentally and theoretically [17]. The second-harmonic
generation is described with a weakly nonlinear approach con-
sidering only the quadratic nonlinearity. The strong self-action
effects, leading to an amplitude dependent band structure are
explained via the role of the hysteretic nonlinearity of normal
contacts. In Ref. [18], the harmonic balance method has been
applied to the prediction of amplitude dependent effects on
the dispersion curves in monoatomic and diatomic Hertzian
granular chains, as well as in two-dimensional granular
lattices.

The problem considered in this paper is the propagation
of an initially harmonic signal through a strongly compressed
granular chain. The chain dynamics is described here by a
discrete FPU equation with quadratic nonlinearity. Particular
attention is paid to the dispersive regime, where the input
frequency is of the same order of magnitude as the cutoff
frequency (or band edge frequency) of the chain, where
the continuous (long-wavelength) limit fails and discreteness
effects become important [19]. The main motivation of this
work is the study of the second-harmonic generation process
in boundary-driven nonlinear chains, realistic in experiments
[17,19]. The precise analytical description of nonlinear acous-
tic effects in nonlinear discrete lattices is intended to be imple-
mented in the future studies on nonlinear phononic processes
in acoustics. Applications could be the design of materials able
to suppress nonlinear wave distortion, able to maximize energy
conversion between harmonics, or more generally to conceive
bricks of more advanced wave tailoring devices, rectifiers,
for instance [20,21]. Although boundary harmonic driving
has been considered in FPU lattices with cubic nonlinearity
(the β-FPU model) in Ref. [22], the nonlinearly generated
higher harmonics were neglected. In this work we observe
both analytically and numerically the presence of propagating
and evanescent second harmonics depending on the driving
frequency, the generation of a constant displacement, and the
associated effects on the fundamental wave. We note that,
although the physical system modeled in this work is a granular
lattice, the results may found applicability for other systems
described by the FPU equation.

The outline of the paper is as follows. In Sec. II the model
for a granular chain with power law (Hertz) nonlinearity is
presented, and the equation of motion of the chain in the
quadratic approximation and its dispersion relation are derived.
Next, a successive approximations technique is introduced to
analyze both the nondispersive (Sec. III) and the dispersive
(Sec. IV) limits of the chain, and a hierarchy of linear
equations is presented. In the dispersive case, analytical
solutions are presented, for both propagative and evanescent
second harmonics. The results are compared with numerical
simulations. Finally, in Sec. V the concluding remarks are
presented.

II. THE α-FPU LIMIT OF THE GRANULAR CHAIN

Consider a homogeneous one-dimensional chain of spher-
ical beads in contact, each with a mass m and a radius R, as
shown in Fig. 1. In the absence of external loading [Fig. 1(a)]
the distance between centers is a = 2R. Under the effect of an
external constant force F0 [Fig. 1(b)] the chain is compressed,
and the distance between centers is reduced by an amount δ0

resulting in a = 2R − δ0. Denoting by un the displacement
of the nth bead from its equilibrium position and assuming
that the beads repel upon Hertz-type potential V (δ) ∝ δ3/2,
with δ = δ0 − (un − un−1) being the bead-bead overlap, the
dynamics of the chain is described by a system of coupled
differential equations [2],

m
d2un(t)

dt2
= A[(δ0 − un + un−1)3/2 − (δ0 − un+1 + un)3/2],

(1)

where A = Y
√

2R/[3(1 − σ 2)], with Y and σ denoting,
respectively, the Young’s modulus and the Poisson’s ratio
of the grain material. Impulse propagation in Eq. (1) has
been extensively studied [2]. Most of the previous work was
conducted in the limit of weakly compressed chain δ0 �
|un − un−1|, where highly nonlinear solitary structures were
predicted and observed. The opposite limit δ0 � |un − un−1|,
corresponding to a strongly compressed chain [3], has received
much less attention. Under such a condition, the power terms
in Eq. (1) can be expanded in series, and in the quadratic
approximation this results in

m
d2un(t)

dt2
= α(un+1 − 2un + un−1)

− β

2
[(un+1 − 2un + un−1)(un+1 − un−1)], (2)

where α = (3A/2)δ1/2
0 and β = (3A/4)δ−1/2

0 are the linear
and nonlinear (quadratic) coupling coefficients, respectively.
Although in Eq. (2) the position is identified by the bead index
n, it is useful to define a discrete spatial coordinate xn = na.
As stated in the Introduction, Eq. (2) is equivalent, after the
proper scalings, to the α-FPU lattice model [9].

It is possible, and convenient for the subsequent analysis,
to reduce the number of parameters in Eq. (2). We introduce
the normalized displacement un = un/u0, where u0 is a
characteristic amplitude. We also define a dimensionless

2R

2R-δ0

F0

(a)

(b)

FIG. 1. (Color online) Chain of spherical beads in contact (a)
and compressed chain under the action of an external static force
F0 (b).
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time t ′ = ωct , with ωc = 2
√

α/m being the cutoff frequency,
and a dimensionless spatial coordinate x ′

n = kcxn, where
kc = 1/a. Finally, the dimensionless nonlinearity parameter
is defined as ε = u0β/α = u0/2δ0. These definitions lead to
the dimensionless equation

d2un(t)

dt2
= 1

4
(un+1 − 2un + un−1)

− ε

8
[(un+1 − 2un + un−1)(un+1 − un−1)], (3)

where the primes have been removed. We consider a driven
lattice, subjected to the boundary condition u0(t) = cos (�t),
where � = ω/ωc. In this way, we are considering that the
characteristic amplitude u0 is the amplitude of the harmonic
displacement externally imposed to the first element in the
chain. Note that, in Eq. (3), the forcing amplitude appears
implicitly in the nonlinearity coefficient ε. We assume that
the waves propagate only in one direction, i.e., the chain is
considered to be semi-infinite, or alternatively that it possesses
a nonreflecting (absorbing) termination.

In the linear limit (ε → 0) the solutions have the form un =
exp[i(�t − kn)], with k being the wave number normalized to
kc = 1/a, which leads to the lattice linear dispersion relation

� = | sin(k/2)|. (4)

Note that, in terms of normalized magnitudes, the band edge
corresponds to the values �B = 1, kB = π .

In the next two sections we consider the chain behavior in
two different cases: the nondispersive regime corresponding
to low frequencies � � 1 (long-wavelength limit), where the
dispersion relation takes the form � � k/2, and the dispersive
regime valid for � = O(1), where discreteness effects must
be taken into account.

III. NONDISPERSIVE CASE

Let us adopt the standard continuum approximation, as-
suming that displacement variations occurring between two
neighboring beads are much smaller than the initial separation
between their centers. Then, the discrete variable can be
substituted by a continuous one, un(t) = u(x,t), and the
displacement of the nearest-neighbor beads can be expressed,
using Taylor expansion, as

un±1 = u ± ∂u

∂x
+ 1

2

∂2u

∂x2
+ · · · , (5)

where |∂2u/∂x2| � |∂u/∂x| � |u|. Inserting Eq. (5) into
Eq. (3) leads, to the leading order, to the nonlinear wave
equation,

∂2u

∂t2
− 1

4

∂2u

∂x2
= ∂

∂x

[
−ε

8

(
∂u

∂x

)2
]

≡ ∂σNL

∂x
, (6)

where

σNL = −ε

8

(
∂u

∂x

)2

(7)

can be interpreted, using the analogy with wave propagation
in solids, as a nonlinear stress term.

Equation (6) is of the form of Boussinesq equation and
has been studied for a long time in the context of nonlinear
plane acoustic waves in fluids. It is known that Eq. (6) can
develop shock waves from initially harmonic waves [23,24].
Approximate solutions of Eq. (6) can be obtained by pertur-
bative methods, in particular by a successive approximations
approach. The use of perturbative methods is based on the exis-
tence of a small parameter in the original model. Under the
assumptions used in the derivation of Eq. (3), it follows that
the nonlinearity parameter ε � u0/δ0 � 1. On the other hand,
the displacement un is on the order 1. Then we can express the
displacement as

u(x,t) = u(0) + εu(1) + ε2u(2) + · · · , (8)

which substitution in (6) leads to a hierarchy of equations at
different orders in ε. At order O(ε(0)) one retrieves the linear
wave equation

∂2u(0)

∂t2
− 1

4

∂2u(0)

∂x2
= 0, (9)

which can be solved as u(0) = cos(�t − kx). At the next order
O(ε(1)) we find

∂2u(1)

∂t2
− 1

4

∂2u(1)

∂x2
= ∂

∂x

[
−1

8

(
∂u(0)

∂x

)2
]
, (10)

where the normalized nonlinear stress (the term between
square brackets) is

σNL = −�2

4
[1 − cos(2�t − 2kx)] , (11)

which contains both stationary (nonoscillating) and oscillating
contributions.

Let us consider the stationary part of the stress. It must be
accompanied by a stationary contribution to the strain, and
therefore the offset displacement (the equilibrium position) of
any bead in the chain, obtained by integration of the strain,
must increase linearly with distance,

〈u(1)〉 ∝ x, (12)

where 〈·〉 denotes temporal average. In other words, the
presence of a nonlinear static stress results in an expansion
of the chain in the positive direction of the x axis. This effect
is similar, but in the opposite sense, to that created by the initial
static force F0 applied to the chain, which also results in an
offset displacement as shown in Fig. 1. On the other hand, if
we directly substitute Eq. (11) into (10) we get

∂2u(1)

∂t2
− 1

4

∂2u(1)

∂x2
= �3 sin(2�t − 2kx), (13)

where the oscillating source term in the right-hand side
indicates that only the second harmonic is generated; i.e., only
the oscillating part of u(1) appears. This apparent contradiction
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is, however, mathematical and can be resolved by such physical
arguments as those mentioned above. In fact, Eq. (12) was
obtained by implicitly allowing for the material to expand only
in the positive direction of x axis, while in accordance with
Eq. (5) any stress homogeneous in space (without gradient)
produces zero acceleration and cannot displace the material.

To get Eq. (12) it is necessary to assume that there exists
a boundary at the right of the material (say at infinity). The
points of this boundary are not in symmetrical situation; all
the others in the chain are. The nonlinear forces are acting on
them only from the left, they start to move, and finally all the
material 0 < x < +∞ is expanded as t → +∞.

The contradiction can be resolved by a proper mathematical
formulation. Instead of the harmonic solution for the linear
problem, we consider a weakly damped solution by adding a
small attenuation to the linear wave,

u(0) = cos(�t − kx)e−αx. (14)

Substituting (14) into (10), performing a time averaging, and
keeping the leading contribution of nonlinear nonoscillating
stress, we obtain

∂〈u(1)〉
∂x

= �2e−2αx. (15)

Finally, the offset displacement can be found integrating
Eq. (15), and taking into account the boundary condition
〈u(1)(x = 0)〉 = 0 to evaluate the integration constant. We get,

〈u(1)〉 = �2

2α
(1 − e−2αx), (16)

which in the limit α → 0, and turning into the original
variables, results in

〈u(x,t)〉 = ε�2x. (17)

Considering the oscillating terms, and proceeding further with
the perturbation analysis, one can find the amplitudes of the
higher harmonics. The result is known and is not discussed
here: The synchronous propagation of the nonlinearly gener-
ated higher harmonics leads to shock formation in a finite time.
Especially in a nondispersive medium, all the harmonics of the
initial monochromatic wave propagate synchronously; there-
fore, the spectrum broadens during propagation and the energy
is continuously pumped into the higher harmonics, leading to
wave-form distortion and eventually to the formation of shock
fronts [23,24].

IV. DISPERSIVE CASE

The results of the previous section are valid in the
small frequency limit, where the continuous approach finds
applicability. However, for arbitrary frequencies the behavior
of the solutions is substantially different, and discreteness
and dispersive effects play an important role. The successive
approximations approach of the previous section can be again
used, but taking into account the discrete and dispersive char-
acter of the system. We start assuming that the displacement
can be expressed as a power series in terms of ε, as

un = u(0)
n + εu(1)

n + ε2u(2)
n + · · · . (18)

After substituting Eq. (18) in (3), and collecting terms at each
order in ε, we obtain the following system of equations:

L
(
u(0)

n

) = 0, (19a)

L
(
u(1)

n

) = − 1
8

(
u

(0)
n+1 − 2u(0)

n − u
(0)
n−1

)(
u

(0)
n+1 − u

(0)
n−1

)
, (19b)

L
(
u(2)

n

) = − 1
8

[(
u

(0)
n+1 − 2u(0)

n − u
(0)
n−1

)(
u

(1)
n+1 − u

(1)
n−1

)
+ (

u
(0)
n+1 − u

(0)
n−1

)(
u

(1)
n+1 − 2u(1)

n − u
(1)
n−1

)]
, (19c)

L
(
u(3)

n

) = · · · , (19d)

with the linear operator defined as

L
(
u(j )

n

) = d2u
(j )
n

dt2
− 1

4

(
u

(j )
n+1 − 2u(j )

n − u
(j )
n−1

)
. (20)

The above equations can be solved recursively, as in the
previous section. We separate the analysis in two cases, corre-
sponding to two different regimes depending on whether the
frequency of the second harmonic belongs to the propagation
band, i.e., propagative regime (0 < � < 1/2) or it is above the
cutoff value, i.e., evanescent regime (1/2 < � � 1).

A. Propagative second harmonic

The solution to the O(ε0) problem, Eq. (19a), compatible
with the boundary condition, is u(0)

n = cos θn, with the phase
term defined as θn = �t − k(�)n. However, as stated in the
previous section, such a solution fails in predicting a constant
strain component in the lattice. Instead, we consider a damped
solution,

u(0)
n = cos θne

−αn, (21)

which introduces the necessary lattice asymmetry and gives
the correct results for α → 0.

The solution to the O(ε1) problem can be sought as a
combination of stationary and oscillating terms. Since the
right-hand side of Eq. (19b) contains terms with frequencies 0
and 2�, the general solution is of the form

u(1)
n = An + 1

2B2�ei2θn + 1
2B ′

2�ei2ϕn + c.c., (22)

where An = 〈u(1)
n 〉. The solution contains two kinds of os-

cillating terms for the second harmonics: a free oscillation,
satisfying the dispersion relation [with phase 2ϕn = 2�t −
k(2�)n], corresponding to the kernel of the linear operator
L(1), and a forced one with phase 2θn = 2�t − 2k(�)n. Note
that B2� = −B ′

2�, in order to fulfill the boundary conditions
(absence of frequency 2� at the boundary).

Substituting Eqs. (21) and (22) into Eq. (19b), and after
time averaging we get the equation for the amplitude of the
stationary mode,

An+1 − 2An + An−1 = sinh α (cos k − cosh α)e−2αn. (23)

The solution of Eq. (23) can be readily found as

An = 1

2 sinh α
(cosh α − cos k)(1 − e−2αn). (24)

It is time to recover the real situation where dissipation is
absent (or negligible). Then, taking the limit α → 0 in Eq. (24)
and recovering the original variables, it follows that

〈un〉 = ε sin2

(
k

2

)
n = ε�2n, (25)
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which corresponds to a constant strain along the chain and is
the discrete version of Eq. (17).

To find the amplitudes of the oscillating terms we can
neglect the decay term (the artifact is needed only to account
for the correct solution for the stationary mode). Equating the
terms with the same phase 2θn we get the amplitude of the
second harmonic,

B2� = i

4
cot

(
k

2

)
. (26)

At the next order, Eq. (19c), with the solution given by
Eq. (22), generates terms with the phases ±θn, ±(2ϕn ± θn),
±3θn, so the solution can be written as

u(2)
n = 1

2C�(eiθn − ei(2ϕn−θn))

+ 1
2C3�(ei3θn − ei(2ϕn+θn)) + c.c. (27)

In particular, C� results in contributions to the amplitude
of the first harmonic obtained at previous orders. Substituting
Eq. (27) into (19c) and equating terms with the phase 2ϕn − θn,
we obtain

C� = 1

8

{
sin[k(2�)/2]

sin[
k(�)/2]
− 1

}
. (28)

where 
k(�) = 2k(�) − k(2�) is the wave number mismatch
due to dispersion. Finally, the solution including up to the
second harmonic reads

un = ε�2n + 1

2

[
1 − i2C�ε2 sin

(

k

2
n

)
ei 
k

2 n

]
eiθn

+ ε

4
cot

(
k

2

)
sin

(

k

2
n

)
ei 
k

2 nei2θn + c.c. (29)

The amplitudes of the harmonic components at first and
second order must be B2� � O(1) and C� � O(1), respec-
tively, to keep the expansion (18) valid. According to Eq. (26),
(1/4) cot(k/2) � 1, which imposes a minimum value of the
wave number and frequency, kmin � 1/2 and �min � 1/4.
Consequently, the solution is not valid in the low frequency
limit (where B2� and C� diverge to infinity), and dispersion
becomes small.

In the derivation procedure, the time-independent term was
assumed to be an order O(ε) term, Eqs. (18) and (22). However,
due to the absence of asynchronism with the linear term, it is
nonlinearly accumulated with distance, such that it can, in
principle, become of the order 1. This effect, as stated before,
corresponds to a shift in the equilibrium (static) position of the
beads and a constant strain. However, it is easy to show that
only the static strain contributes to Eqs. (19b) and (19c), and
it remains small compared to the oscillating linear one (itself
small compared to δ0/2R).

In Fig. 2 the spatial growth rate of the stationary mode for
a given frequency and nonlinearity parameter is plotted, as
obtained from the numerical integration of Eq. (3) (symbols)
and from the theoretical prediction given by Eq. (25) (solid
line). The one-dimensional FPU lattice has been numerically
simulated by implementing an explicit fourth-order Runge-
Kutta scheme [25] with a harmonic boundary condition im-
posed to the first bead. The numerical results were performed
for a chain with n = 512 beads and a time step 
t = 0.001.
Nevertheless, numerical tests with higher number of beads

10−6

10−5

10−4

10−3

10−2

10−1

0.1 1

FIG. 2. (Color online) Spatial slope of the static mode at the
excitation boundary as a function of the excitation frequency for
different nonlinear parameters ε. The numerical simulations are
shown in symbols and the theoretical results from Eq. (25) are in
continuous line.

and smaller time steps confirmed the convergence to the same
results. In Fig. 2 the slope amplitude of the static mode spatial
growth is evaluated at the boundary n = 0, as a function of the
frequency � and for different values of the nonlinear parameter
ε. The numerical results (in symbols) exhibit a continuous
increase as a function of � up to the cutoff frequency � = 1.
The plotted theoretical results shown in continuous lines
correspond to the derived Eq. (25), in the case of a propagating
second harmonic, i.e., � < 0.5. A good agreement is observed
between numerical and theoretical results in the validity region
of Eq. (25), � < 0.5, for all the presented values of the
nonlinear parameter ε. For � > 0.5 a good agreement is
observed for sufficiently small values of ε [as predicted also by
Eq. (30) for evanescent second harmonic]. However, a growing
mismatch is observed for � > 0.5 and values of ε > 0.05. In
this case of evanescent second harmonic and sufficiently large
nonlinearity, higher order terms are needed to describe the
initial growth of the static mode. The observed discrepancy
between the analytical results and the numerical simulations
for � close to 1 could be attributed to the fact that more and
more time is required for the numerical solution evaluation.
This diverging time could be related to the wave energy travel
time (over a given distance), which scales as the inverse of the
group velocity c−1

g (�) ∝ (1 − �2)−1/2 [10]. Considering that
� approaches 1, i.e., � = 1 − μ with μ � 1, the wave energy
travel time diverges as ∝μ−1/2. Moreover, close to the band gap
frequency, modulational wave instability could occur. These
phenomena are not accounted for in the developed model and
go beyond the present study.

The prediction for the other propagating modes is also in-
vestigated. In Fig. 3 the theoretical (solid lines) and numerical
(dots) results are compared, for a chain driven with frequency
� = 0.4 and nonlinearity parameter ε = 0.1. Note that, as
predicted by Eq. (29), the effect of finite dispersion causes
a beating in the amplitudes of the different harmonics. The
displacement in the fundamental frequency wave is maximum
when the contribution of the second harmonic vanishes, which
occurs when (
k/2)n = mπ , or alternatively at n = 2mπ/
k.
For the case shown in Fig. 3 it follows that n � 30, 60, 90,
which is in good agreement with the numerical simulation.
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FIG. 3. (Color online) Comparison of the theoretical result from
Eq. (20) (lines) and the numerical simulation of Eq. (3) (circles)
for � = 0.4 and ε = 0.1. Vertical green dashed lines represent beat
wavelengths for m = 1, 2, and 3.

The study also reveals that the amplitude of the fundamental
wave as it propagates along the chain is nontrivially influenced
by the presence of the second harmonic, since a part of
the energy injected at the boundary flows into higher order
modes. The resulting fundamental amplitude is determined by
the transfer function Eq. (28), which vanishes as the driving
frequency � approaches the edge of the propagation band, and
becomes complex when � is at the center of the propagation
band (denoting the transition from propagative to evanescent
second harmonic). We note that in [10] similar conclusions
were obtained concerning the influence of a biharmonic
excitation approaching the cutoff frequency on the nonlinearly
generated difference frequency signal.

The time dependence of the displacement at different
positions along the chain can be also obtained from Eq. (29),
by fixing the value of n. In Fig. 4 the temporal profiles (wave
forms) are shown, as obtained from numerical solutions of
Eq. (3) (left column) and from analytical solution Eq. (29)
(right column) for three different distances, n = 20, 50, and
100. The case ε = 0.3, � = 0.3 is presented.

Note that, the temporal profiles change along the lattice, but
repeat after some distance. This behavior is related to the effect
of dispersion modifying the phase with distance between the
different harmonics. Note also that the inclusion of only the
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FIG. 4. (Color online) Temporal wave forms from numerical
simulation of Eq. (3) (left column) and from Eq. (29) (right column)
for � = 0.3 and ε = 0.3, at different locations along the chain. (a)
n = 20, (b) n = 50, (c) n = 100.

first two harmonics is accurate enough to describe the wave
forms and other wave propagation characteristics.

B. Evanescent second harmonic

When the driving frequency belongs to the upper half of
the propagation band, its second harmonic lies above the cutoff
frequency. Therefore, the second harmonic is strongly damped
and one may expect that it plays no role in the chain behavior at
long distances (n � 1). Under this assumption, in the analysis
of similar problems (see, e.g., Ref. [6]) the presence of the
second harmonic was ignored (i.e., the amplitude was assumed
to vanish). Next we show that, even being an evanescent
wave, the second harmonic must be taken into account in
the expansion since it has a non-negligible contribution to the
amplitude of the fundamental mode, even at long distances.
This contribution comes from the forced solution at the second
harmonic, which reaches a stationary but finite value along the
chain.

Consider now a driving frequency in the range 1/2 < � <

1. In this case 2� > 1, the dispersion relation Eq. (4), does
not support purely real solutions, so the corresponding wave
number should be complex. Then, from Eq. (4) and as it is
proposed in Ref. [10], it can be written that k(2�) = 1 − ik′′,
with k′′ = 2 acosh(2�). Now the mismatch term takes the form

k = 2k(�) − k(2�) = 2k(�) − 1 + ik′′ = k′ + ik′′, where
k′ = 2k(�) − 1. Since we keep the same order O(ε2) solution
as defined in Eq. (27), the expressions found in the propagative
case remain valid, but now the solution given by Eq. (29) reads

un = ε�2n + 1

2
[1 − C�ε2(1 − e−k′′neik′n)]eiθn

− ε

8
cot

(
k

2

)
(1 − e−k′′neik′n)ei2θn + c.c., (30)

and the transfer function C�, given by Eq. (28), becomes
complex.

In Fig. 5 the analytical results (lines) are shown together
with the results of the numerical simulation (dots) for � = 0.6.

Note that, in the evanescent regime shown in Fig. 5 there
is good agreement with the theoretical results except for the
amplitude of the stationary mode. The theoretical solution
represents here a rather good approximation close to the
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FIG. 5. (Color online) Displacement amplitudes of the harmonics
versus distance. Comparison of the theoretical result from Eq. (30)
(lines) and the numerical simulation of Eq. (3) (discs) for � = 0.6
and ε = 0.1.

boundary, but higher order terms may be needed for a more
accurate solution.

V. CONCLUSIONS

In this work we have considered the propagation of
nonlinear compressional waves in a one-dimensional granular
chain, consisting of an array of spherical beads in contact,
driven at one end by a harmonic excitation. The nonlinearity
of the chain, located at the contacts and modeled by a Hertz
type law, leads to the appearance of higher harmonics of the
driving (fundamental) frequency as the wave propagates along
the chain. Also, the discrete nature of the chain results in a
highly dispersive regime for the propagating waves, which

obey a particular dispersion relation. An analytical study of
the chain behavior is performed in the weakly nonlinear limit
(corresponding to small amplitude injected signal, or also
to a strongly compressed chain), where the chain dynamics
can be described by a (discrete) FPU equation with quadratic
nonlinearity. By means of perturbative techniques we obtain
analytical expressions for the amplitudes of the fundamental
and second-harmonic modes, and also for the stationary, dc
mode whose amplitude grows linearly with distance. The
second harmonic is shown to have a finite amplitude even
when its frequency is above the band edge, i.e., when it
is an nonpropagating or evanescent mode. These theoretical
predictions are validated by the numerical simulation of
the FPU equation. These results on the analytical treatment
of the harmonic generation in a one-dimensional granular
chain constitute the first step towards the in-depth study of
nonlinear phononic processes for dispersive acoustic waves. It
is expected that spectacular nonlinear effects (such as harmonic
total suppression or oppositely, total energy transfer from one
frequency component to the other, interaction between waves
with opposite group velocities) could be conceived. These
results could be extended to the case of two-dimensional
granular membranes [26] (and even three-dimensional gran-
ular crystals) and can be useful for the design of granular
protectors, waves’ sensors, and nonlinear acoustic lenses, as
well as acoustic switching and rectification devices [20,21].
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