
DOI: 10.2298/CSIS120213016P

Including Functional Usability Features in a
Model-Driven Development Method

Jose Ignacio Panach1, Natalia Juristo2, and Oscar Pastor3

1
Escola Tècnica Superior d'Enginyeria, Departament d’Informàtica, Universitat de

València
 Avenida de la Universidad, s/n, 46100 Burjassot, Valencia, Spain

joigpana@uv.es
2
 Universidad Politécnica de Madrid, Campus de Montegancedo, 28660 Boadilla del

Monte, Madrid, Spain
 natalia@fi.upm.es

3
Centro de Investigación en Métodos de Producción de Software, Universitat

Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
 opastor@pros.upv.es

Abstract. The Software Engineering (SE) community has historically
focused on working with models to represent functionality and
persistence, pushing interaction modelling into the background, which
has been covered by the Human Computer Interaction (HCI) community.
Recently, adequately modelling interaction, and specifically usability, is
being considered as a key factor for success in user acceptance,
making the integration of the SE and HCI communities more necessary.
If we focus on the Model-Driven Development (MDD) paradigm, we
notice that there is a lack of proposals to deal with usability features
from the very first steps of software development process. In general,
usability features are manually implemented once the code has been
generated from models. This contradicts the MDD paradigm, which
claims that all the analysts’ effort must be focused on building models,
and the code generation is relegated to model to code transformations.
Moreover, usability features related to functionality may involve
important changes in the system architecture if they are not considered
from the early steps. We state that these usability features related to
functionality can be represented abstractly in a conceptual model, and
their implementation can be carried out automatically.

Keywords: model-driven development, usability, conceptual model.

1. Introduction

Nowadays, there is an ever-increasing need to improve the quality of
computer systems in order to be able to compete commercially in the
computer market. For this reason, many members of the Human-Computer
Interaction (HCI) community have focused their efforts on improving the
quality characteristics defined in the ISO/IEC 9126-1 [16]. There are two types

mailto:joigpana@uv.es

Jose Ignacio Panach, Natalia Juristo

, and Oscar Pastor

1000 ComSIS Vol. 10, No. 3, June 2013

of recommendations according to HCI. The first type is composed of
presentation issues with slight modifications of the UI design (e.g., buttons,
colours, fonts, layout). The second type of recommendations are strongly
related to the system functionality and may involve changes in the system
architecture if they are not considered from the early steps of the software
development process [2,12]. These features are called functional usability
features [17] and these are the target usability features of our research. An
example of functional usability feature is the Undo action, which allows the
user to go back.

The Software Engineering (SE) community has been working several years
on the Model-Driven Development (MDD) paradigm [22], which states that the
analysts’ entire effort should be focused on a conceptual model and the
system should be implemented by means of model to code transformations.
In MDD, a conceptual model is used to represent a system independently of
platform and technology. This conceptual model is the input for a model
compiler which includes transformation rules to generate the code according
to the target platform. Even though existing MDD methods such as WebML [7]
or UWE [19] are very powerful in building conceptual models, they do not
support specific conceptual primitives to represent usability features in them.
Usability features are usually included manually once the code has been
generated, decreasing the analyst’s efficiency, who must model the system
and; later on, must implement the usability features in the code. This
contradicts the ideas that claim to include functional usability features from the
early steps [2, 12], and manual changes in the system architecture may result
in inconsistencies between the model and the code.

To mellow these problems, we propose dealing with functional usability
features within a conceptual modelling perspective. Our approach aims to
represent functional usability features abstractly in any MDD method by
means of conceptual primitives. By conceptual primitive, we mean modelling
elements that have the capability of abstractly representing a feature of the
system. Examples of conceptual primitives in an Object Model are classes of
a class diagram, attributes and services of classes, etc. Conceptual primitives
are gathered in a model, which aims to represent a view of the system. For
example, we can use an Object Model to represent the persistency and a
Task Model to represent the interaction. All the models together compose a
conceptual model, which is a way of viewing domains specifically [24].

We aim to define conceptual primitives to allow functional usability features
to be precisely modelled so that usable systems can be generated from a
conceptual model. The main advantages of our proposal are:

 Usability can be abstractly represented in a precise notation by
means of conceptual primitives.

 Usability features can be automatically or semi-automatically
implemented together with the business logic by means of a model
compiler. Moreover, the model compiler designs the system hidden
from the analyst, which improves the analyst’s efficiency [15, 28].

 The usability represented in a conceptual model is reusable. The
same conceptual model can generate a system for different

Including Functional Usability Features in a Model-Driven Development Method

ComSIS Vol. 10, No. 3, June 2013 1001

platforms (Web, Desktop, PDA, etc.) depending on the existing
model compiler capability.

The proposal to include usability in an MDD method is described in an
abstract way so that it can be applied to any MDD-based method. However, in
order to exemplify our proposal, we have selected the OO-Method [26], which
has been successfully applied in an industrial tool called INTEGRANOVA [6].

The paper is structured as follows. Section 2 explains the functional
usability features used in the paper. Section 3 describes our approach to
include usability modelling in an MDD method. Section 4 shows a practical
application of this approach to the OO-Method. Section 5 presents a
metamodel to represent functional usability features abstractly. Section 6
reviews the literature. Finally, section 7 presents the conclusions.

2. Background: Functional Usability Features

Many authors have identified a set of functional features with strong impact on
usability such as, Comstock [8], Lauesen [20], Perzel [27] or Tidwell [30],
among others. From all the existing works, we have used the features called
Functional Usability Features (FUF) [17]. This choice is based on the following
reasons: (1) FUFs are defined with usability requirements guidelines, which
are composed of questions that analysts ask the users in order to extract
usability requirements. These guidelines are useful to identify which
conceptual primitives are needed to represent each usability mechanism. (2)
FUFs definition includes usability design patterns, which describe how to
include the functionality of the FUFs in the architecture and how to implement
them. These patterns are very useful to specify the changes in the model
compiler to support the code generation. (3) These FUFs have been
evaluated in experiments, such a way we can ensure that the effort to include
these features is high since there is dependence with the architecture [18].

FUFs are defined as recommendations for improving system usability that
have an impact on the architectural design. These FUFs have been derived
from usability heuristics, rules, and principles. As Folmer [12] and Bass [2]
state, FUFs must be included in the system architecture together with the
business logic of the system as another functional requirement. Each FUF is
divided into several usability mechanisms, which are different subtypes of the
FUF. In other words, each FUF has a main goal that can be specialized into
more detailed goals called usability mechanisms. Next, we present a
summary of the FUFs, but more details can be viewed in [14]:

 Feedback: This keeps the user informed at all times. The usability
mechanisms are: System Status; Progress Feedback; Warning.

 Wizard: This helps the users to carry out tasks that require several
steps of user interaction. The only usability mechanism is Step by
Step.

Jose Ignacio Panach, Natalia Juristo

, and Oscar Pastor

1002 ComSIS Vol. 10, No. 3, June 2013

 User Input Error Prevention: This helps to prevent the users from
making data input errors. The only usability mechanism is Structured
Text Entry.

 User Profile: This lets the users adapt the system to their
preferences. The only usability mechanism is Favourites.

 Cancel: This lets the users go back at least one step. The usability
mechanisms are: Global Undo; Abort Operation.

 Help: This provides different help levels for different users. The only
usability mechanism is Multilevel Help.

Juristo proposes including these FUFs throughout the entire software
development process, from requirements capture to implementation. In the
first step (requirements capture), usability requirements guidelines help the
analysts to extract the user requirements related to FUFs. These guidelines
are composed of questions that the analyst asks to the end user. There is a
guideline for each usability mechanism. For example, some questions of the
guideline to capture requirements of the mechanisms called Structured Text
Entry (from User Input Error Prevention) are: Where is input from the user
required, and in which format? How to guide the user to introduce such input
in the required format? , If the chosen option allows the user to choose from a
list, discuss with the user whether or not such list has a fixed number of items.
In next steps, usability patterns are used by the analysts to build the analysis
and design models from the captured requirements. Finally, in the last step,
the analyst implements the system with these models.

3. A Method for Including Usability Features in MDD
Environments

The main target of this paper is the definition of a method for including
usability features in any MDD software development process. We have called
this method, Method to Incorporate Functional Usability Features into MDD
(MIFUM). We have used usability mechanisms defined by Juristo to identify
the required conceptual primitives inside the MDD method to represent them
in an abstract way. Note that our approach is not exclusive for FUFs. We have
used FUFs because they present a set of advantages with regard to other
existing features (as we have mentioned in section 2), but any guideline to
capture usability features related to functionality can be used in the same way
as we use the guidelines of FUFs.

MIFUM is divided into two stages; in the first stage we identify the
properties to model and in the second stage we propose changes in the MDD
method to include these properties. The first stage is defined in two steps: (1)
Definition of modes of use; (2) Identification of properties. These steps are
performed by a usability expert who knows how to work with usability
guidelines. The second stage is composed of two steps: (3) Definition of
changes in the conceptual model; (4) Description of changes in the model
compiler. These steps are performed by the MDD designer, who must

Including Functional Usability Features in a Model-Driven Development Method

ComSIS Vol. 10, No. 3, June 2013 1003

enhance the MDD method to support usability features. Next, we detail these
four steps that compose the method MIFUM.

Definition of Modes of Use.
A usability mechanism can be applied to the system in different ways to fulfil
its goal. We have called each one of these ways Mode of Use (MoU).
Therefore, each MoU has a specific target to be reached within the general
goal of the usability mechanism. Targets of different MoUs that belong to the
same usability mechanism attempt to reach the same overall goal and do not
contradict each other. We have extracted modes of use from requirements
guidelines defined by Juristo [17]. As stated in section 2, these guidelines
have a questionnaire that the analysts must fill out with the user. We have
used these questions [14] to detect MoUs in each usability mechanism.

We take the usability mechanism called Structured Text Entry as an
example to illustrate the definition of MoUs from the requirements capture
guidelines. This mechanism aims to help the user to insert data in a specific
format. For example, a Date, a Boolean value, or an Enumerated value. We
have identified that this goal can be reached through three modes of use: (1)
Specify the widget type to enter data with a specific format (checkbox,
radiobutton, etc.); (2) Mask definition that specifies the required format of an
input text; (3) Default values in order to help the user to enter information. The
first mode of use has been derived from the question of the requirements
guideline, what is the required format for the input data? Both the second and
the third mode of use have been derived from the question, how should the
user be guided to introduce data with a required format? It is important to note
that even though the last questions are the same, the goal of each mode of
use is different. The second one aims to define a mask while the third one
aims to define default values.

Identification of Properties.
The requirements guidelines also include questions to capture usability
requirements related to configuration options. We have denoted the different
configuration possibilities that a MoU has to adapt itself to usability
requirements as properties. For example, the MoU Specify the widget type to
enter data with a specific format has a property to specify the widget type
(called Type of input widget). Possible values for this property are all the
widget types supported by the development method (checkbox, radiobutton,
etc). This property is derived from the question of the requirements guideline,
which is the format for data entry? As in the definition of MoUs, the same
question of the guideline can derive several properties, each of which has the
goal of configuring a different option of the MoU.

In most cases, analysts must adapt these properties to a specific system.
In other cases, properties can be configured automatically by means of the
model compiler without any intervention by the analysts. Therefore, there are
two types of properties: configurable and non-configurable.

 Configurable properties: This type is composed of properties that require
an analyst to make decisions about how to configure them. The analyst

Jose Ignacio Panach, Natalia Juristo

, and Oscar Pastor

1004 ComSIS Vol. 10, No. 3, June 2013

must configure these properties according to user’s preferences. For
instance, the MoU called Mask definition has two configurable properties:
one property named Input field selection, to select the widget with the
mask; and another property named Regular expression, to define the
mask through a regular expression. Both of them depend on user’s
decisions.

 Non-configurable properties: This type is composed of properties that do
not have any alternative in the requirement guidelines or most guidelines
agree on the same configuration for all cases. These properties are not
configured by the analyst because their configuration must be the same in
all developed systems. In an MDD method, the model compiler is
responsible for including non-configurable properties in all generated
systems, assuring that the same configuration is used in all of them. Note
importantly that the use of non-configurable properties restricts the
analyst’s decisions, since these properties are configured in a hidden way
from the analyst. However, we improve the efficiency of developing the
system, since the analyst has to work with less conceptual primitives. It is
important to get a good balance between configurable and non-
configurable properties, classifying as non-configurable only those
properties whose values are supported by several usability guidelines and
they are not critical for the system. For instance, there is a non-
configurable property called Undoable Elements that represents the
number of undoable actions in the usability mechanism Undo cancel.
Usability guidelines determine that the stack of undo actions should
contain about twelve elements to be considered as usable [30].

In our research work, we have already applied the two steps that compose
the first stage: Definition of MoUs and Identification of properties. A detailed
explanation of the 15 MoUs with all their Properties that resulted from the run
of the process can be viewed in [23]. The outcomes of this stage can be
applied to any MDD method.

Definition of Conceptual Primitives.
In this step, the conceptual model of the MDD method chosen to include
functional usability features is enriched with new conceptual primitives that
represent configurable properties. Of the two types of properties, only
configurable properties imply changes in the conceptual model. Since there
are as many conceptual models as MDD methods, the definition of new
concrete conceptual primitives depends on a concrete conceptual model and,
consequently, on a concrete MDD method.

The current step consists of verifying whether or not there are already
conceptual primitives that represent each configurable property. If there is no
conceptual primitive to represent these properties, or some configuration
possibilities cannot be represented, we have to enrich the conceptual model
with new conceptual primitives that ensure the required expressiveness. The
steps for enriching the conceptual model are the following:
1. To identify which model of all the models that compose the conceptual

model should include the configurable property. This choice depends on

Including Functional Usability Features in a Model-Driven Development Method

ComSIS Vol. 10, No. 3, June 2013 1005

the functionality of the property. For instance, if the property is related to
visualization options, the modification must be applied to the model that
represents the system interface.

2. To identify conceptual primitives that must be included in the model. Each
configurable property needs at least one conceptual primitive to represent
it abstractly. In this step, we have to include the conceptual primitives that
represent all the configuration possibilities in the model selected
previously.

Changes Required in the Model Compiler.
The last step for including functional usability features inside an MDD method
consists of describing the changes that must be applied to the model
compiler. This step, such as the step where new conceptual primitives are
defined, depends on the MDD method chosen because the model compiler is
specific to that method. Changes for the model compiler derive from:

 New conceptual primitives that represent configurable properties: The
model compiler must have the capability to recognize new conceptual
primitives and generate the code that implements them. To do this, the
resulting software must be able to represent any valid configuration
alternative that could be specified with configurable properties.

 Non-configurable properties: Although these properties do not involve
changes in the conceptual model, they concern the model compiler. The
model compiler must include the functionality of non-configurable
properties automatically in the generated code.

Both of these changes involve including new attributes, services and
classes in the generated code. We have used the architectural usability
patterns of Juristo [18] as the basis to propose the changes in the model
compiler. To describe the changes in the model compiler, we use a graphical
notation with UML class diagrams. Each usability mechanism is represented
by means of a class diagram, which is used to represent new software
classes, new attributes and new methods that must include the functionality of
MoUs in the generated code. The reason why we have used class diagrams
is that they are abstract enough to be understandable independently of the
transformation language used by the model compiler since there are many
languages to specify transformation rules (e.g. Xpand [32]). The changes in
the generated code specified with a class diagram are valid for any
transformation language. Each MDD designer must modify the model
compiler to support MoUs according to its language.

4. A Lab Experiment: The OO-Method

This section presents a practical application of MIFUM to a specific MDD
method widely used in the industry: the OO-Method [6]. We want to
emphasize that what we apply specifically to the OO-Method could also be
instantiated to any other MDD-based method by adapting the abstract

Jose Ignacio Panach, Natalia Juristo

, and Oscar Pastor

1006 ComSIS Vol. 10, No. 3, June 2013

concepts to the specific features of the conceptual model being considered.
We have selected the OO-Method based on two characteristics. First, the
OO-Method is supported by an industrial tool called INTEGRANOVA which
allows us to explain how the analyst can work with FUFs once they have been
included. Second, the conceptual model of OO-Method is abstract enough to
include new conceptual primitives that express all FUF properties. The OO-
Method conceptual model is composed of four complementary views:

 The Object Model: This specifies the system structure in terms of classes
of objects (with attributes and services) and their relations.

 The Dynamic Model: This represents the valid sequences of events for
objects.

 The Functional Model: This specifies how events change object states.

 The Interaction Model: This models the interaction between the system
and the user by means of two views: the Abstract Interaction Model and
the Concrete Interaction Model [1]. The Abstract Interaction Model
represents the interface independently of the types of interaction and the
peculiarities of the platform. The Concrete Interaction Model specifies the
interface representation in terms of elements that can be perceived by the
end-user.

As an example of how to include FUFs in the OO-Method, we selected
Feedback, whose goal is to provide feedback to the user. We selected one of
the usability mechanisms of this FUF: System Status Feedback. This
mechanism aims to provide feedback to the user about the system all the
time. We have selected this usability mechanism because it contains several
MoUs that are not yet supported by the OO-Method and its goal is very
simple, which facilitates the didactic task.

The system selected to demonstrate the effects of including this usability
mechanism is a (necessarily simple) system for managing a car rental
business. The users of this system are employees that are distributed
throughout several offices. Next we explain the two steps of the first stage:
Definition of modes of use and Identification of properties.

4.1. Modes of Use of System Status Feedback

This usability mechanism has the functionality of informing about important
changes in the system or when an error occurs. We have derived the
following MoUs:

 MoU_SSF1: Inform about the success or failure of an execution: This
MoU has the functionality of informing whether or not a service has been
executed successfully. This MoU is extracted from the question of the
usability guideline [17, 14]: Does the user want to be provided with
notification of system failures? This MoU ensures that the user is aware of
the system state after a service execution. For instance, in the rent-a-car
system, after each service is executed, the system should inform about its
success or its failure.

Including Functional Usability Features in a Model-Driven Development Method

ComSIS Vol. 10, No. 3, June 2013 1007

 MoU_SSF2: Show the state of the stored information: This MoU aims to
show information about the system state that is useful for the end-user
before triggering a service. The question of the guideline used to define
this MoU is [17, 14]: Will the system have the capability to report system
status? This question has the goal of capturing usability requirements to
show the system state not only after the service execution, but also
before. For instance, in the rent-a-car system, it is essential to show the
number and model of available cars before executing the service rent car.

 MoU_SSF3: Show the state of visible actions: Depending on the system
status, some visible actions can or cannot be executed. Actions that
cannot be executed will show an error message when the user triggers
them. In order to avoid errors of this type, this MoU states that actions
which cannot be executed should be disabled. The question of the
requirements guidelines used to define this MoU is [17, 14]: Will the
system have the capability to report system status? Even though the
origin of this MoU and MoU_SSF2 is the same question, the goal of each
one is different. In MoU_SSF2, the goal is to show the system status as
information, while in this MoU the goal is to prevent errors. For instance,
in the rent-a-car system, the button for printing an invoice should only be
available when the client has returned the car or has finished the rental.

4.2. Properties of System Status Feedback

This section shows the properties that are grouped by modes of use. The first
mode of use, Inform about the success or failure of an execution
(MoU_SSF1), has two configurable properties:

 Service selection: This property specifies which services will show the
success or failure of its execution. This property is non-configurable
because, according to the ergonomic criteria Immediate feedback of
Bastien and Scapin [3], all the services should inform about success or
failure. This property is derived from the question of the guideline: Which
failures does the user want to be notified about?

 Message visualization: The feedback can be represented in different
ways: using icons or textual messages, in an emergent window or in the
main window. Analysts must take the best option to satisfy user’s
requirements; therefore, this property is configurable. The property is
derived from the following questions of the guideline: Which information
will have to be displayed obtrusively because it is related to a critical
situation? Which information will have to be highlighted because it is
related to an important situation? Which information will be displayed in
the status area? All these questions have the goal of capturing how the
users want to visualize the information about the system status.

The second mode of use, Show the state of the stored information
(MoU_SSF2), has three configurable properties:

Jose Ignacio Panach, Natalia Juristo

, and Oscar Pastor

1008 ComSIS Vol. 10, No. 3, June 2013

 Static information: This property defines the information about the system
state that will be shown statically in all the interactions. It is derived from
the question of the guideline: Which information will be shown to the
user?

 Dynamic information: This property specifies which information could be
extracted from the system database dynamically in order to show the
state of the system. The analysts should be capable of defining formulas
based on stored information in order to extract this type of information.
The question of the guideline that is used to derive this property is the
same as the question used in the previous property. Both properties
together specify the content of the information that shows the system
state.

 Message visualization: This property is used to specify how the system
state will be shown to the user. The questions of the guideline used to
derive this property are: Which information will have to be displayed
obtrusively because it is related to a critical situation? Which information
will have to be highlighted because it is related to an important situation?
Which information will simply be displayed in the status area?

The third mode of use Show the state of visible actions (MoU_SSF3)
has two configurable properties:

 Action selection: This property has the goal of selecting the actions that
should be disabled depending on the system state. The question of the
guideline used to derive this property is: Which information will have to be
disabled?

 Condition to disable: This property is used to define the predicate that
must be satisfied to disable the actions according to the system state.
This property is also derived from the same question as the previous
property.

Next, we explain how the outcomes of the first stage drive the changes in
the MDD method (INTEGRANOVA) throughout the steps of the second stage:
Definition of conceptual primitives and Changes required in the model
compiler. Both steps must be performed by the INTEGRANOVA designer.

4.3. New Conceptual Primitives for System Status Feedback

Each configurable property implies changes in the OO-Method conceptual
model and thus, in the industrial tool that supports the OO-Method:
INTEGRANOVA. The INTEGRANOVA designer must include new conceptual
primitives that represent every configurable property. Analysts that work with
INTEGRANOVA will deal with FUFs in the developing systems by means of
those conceptual primitives. In the following, we present these changes.

Inform about the success or failure of an execution (MoU_SSF1):
This mode of use has two properties: Service selection and Message

visualization. Only the second one affects the conceptual model since the first
one is non-configurable. Currently, generated systems with INTEGRANOVA

Including Functional Usability Features in a Model-Driven Development Method

ComSIS Vol. 10, No. 3, June 2013 1009

inform when a service execution fails but the analyst cannot specify how the
message is displayed. Table 1 explains why Message visualization is not
completely supported by INTEGRANOVA. In order to support the property
Message visualization completely, we must change the following two OO-
Method models:

 Concrete Interaction Model: The analysts must use new conceptual
primitives for modelling the visual feature in these two circumstances: (1)
messages when the execution has finished successfully; (2) messages
when the execution has failed. For both circumstances, the analysts must
choose among these display options:

Table 1. Unsupported property of MoU_SSF1 in INTEGRANOVA

Property Elements of the property that are not supported

Message
visualization

-INTEGRANOVA does not allow specifying how the
messages are displayed to the user.

-INTEGRANOVA allows defining error messages
belonging to constraints or preconditions related to a
service, but they cannot define error messages
caused by triggering the execution of a service in an
invalid state of the object (a transition between states
that is not defined in the Dynamic Model). In this case,
the error message is a generic textual message.

o Showing the message textually: The possible values are:

 Within a new window:
1. Obtrusively (modal)
2. Type of message: warning, error or alert
3. Text font
4. Size
5. Colour
6. Alignment

 Within the main window
1. Position in the window
2. Text font
3. Size
4. Colour
5. Alignment

o Showing the message graphically: The possible values are:
 An icon to show, for instance, when the execution

finishes successfully and when the execution fails
 Where to show the icon within the main window

o Not showing any information about the execution state
Each one of these alternatives is represented by means of a conceptual

primitive. In order to facilitate the analysts’ work, these conceptual primitives
should have a default value in case analysts do not want to configure them.

Jose Ignacio Panach, Natalia Juristo

, and Oscar Pastor

1010 ComSIS Vol. 10, No. 3, June 2013

Default values should be the values that are the most frequently used.
Analysts can change these default values to adapt the conceptual primitives
to the user’s requirements. By default, the value of these conceptual

primitives is to notify the successful execution graphically with the icon in
the right corner within the status bar of the main window. Default values for
error messages are to show the message textually in a modal window of error
type with Arial font, size 10, black colour, and centred alignment.

Figure 1 shows a prototype of the Concrete Model of INTEGRANOVA to
model the format of the success message with the new conceptual primitives.
In that window, the analyst can decide the different visualization possibilities
for the service Create a car. This figure shows the default options.

Fig. 1. Example of modelling MoU_SSF1 in the Concrete Interaction Model

 Object Model: This model is enriched with two conceptual primitives that
are used to define textual messages.
o Error message by an invalid transition between states: This error

occurs when a user triggers an action within a state of the object
where this action cannot be executed. If the analyst does not define
any message, the model compiler will include a textual generic
message. Since texts of the other error messages (constraint and
precondition violation) can be currently defined, they do not require
new conceptual primitives.

o Success message: For each service of the Object Model, the analyst
can decide the text that will be shown to the user when the execution
has been a success. If the analyst does not define any message, the
model compiler will include a generic message for all the services.

We propose including a new window in INTEGRANOVA where analysts

can insert either of these text messages. Figure 2 shows the two components
that must be included in the Object Model of INTEGRANOVA to model the
success and failure messages (only for an invalid transition between two
states of the object).

Show the state of the stored information (MoU_SSF2):
The second mode of use, Show the state of the stored information

(MoU_SSF2), can be applied to the definition of navigation buttons with
dynamic information in their aliases. Currently, OO-Method can only specify

Including Functional Usability Features in a Model-Driven Development Method

ComSIS Vol. 10, No. 3, June 2013 1011

static aliases for the navigations, therefore, OO-Method only supports the
property Static information. Using dynamic information in navigation
buttons, the user can query information of the target context without
performing the navigation. For example, in the rent-a-car system, the user
can navigate from the list of customers to the list of orders and invoices for
a specific customer.

Fig. 2.Example of modelling MoU_SSF1 in the Object Model

Applying dynamic aliases to these buttons, the system can display the
number of orders, the number of unresolved invoices, and the number of paid
invoices for a selected customer without performing the navigation. This
dynamic information is displayed in the label of the navigation buttons. Figure
3 shows an example of buttons that support dynamic information.

Fig. 3. Dynamic alias in navigation buttons with visualization format by default

Table 2 specifies which configurable properties are not supported currently
in INTEGRANOVA: Dynamic information and Message visualization. The
property Static Information is already supported by aliases of navigation
buttons defined in the Abstract Interaction Model.

Table 2. Unsupported properties of MoU_SSF2 in INTEGRANOVA

 Properties Elements of the property that are not supported

Dynamic
information

The analyst cannot specify aliases on navigation
buttons that depend on stored information.

Message
visualization

The analyst cannot define how the aliases will be
displayed to the user.

In order to support the properties Dynamic information and Message
visualization and solve the problems specified in Table 2, we must change the
following OO-Method models:

 Abstract Interaction Model: This model should include a conceptual
primitive to specify the formula that represents the property Dynamic
information. The formula could be built using class attributes, standard
functions, user functions, and arithmetic operators.

Figure 4 shows how the analyst can model the Dynamic information in the
Abstract Interaction Model in INTEGRANOVA. This is a part of the window
where the analyst defines navigations. The field Static Alias currently exists,

Orders (5) Invoices (1 unresol., 1 paid)

Jose Ignacio Panach, Natalia Juristo

, and Oscar Pastor

1012 ComSIS Vol. 10, No. 3, June 2013

but the field Dynamic Alias has been added as a new element. The bulb is a
wizard that defines the formula for the dynamic alias. The glass is a zoom that
defines a formula with many sentences.

Fig. 4. Example of modelling MoU_SSF2 in the Abstract Interaction Model

 Concrete Interaction Model: This model must be modified to support the
property Message visualization. New conceptual primitives must
represent the different possibilities for visual features: text format of the
navigation button; text size of the navigation button; alignment of the text;
colour of the text; icon of the navigation button; size of the navigation
button. By default, the text format of the label will be Arial, size 12, align
centred, black colour, and the button size will be the size necessary to
include the alias.

Fig. 5. Example of modelling MoU_SSF2 in the Concrete Interaction Model

Figure 5 shows how to model the format of the navigations in the Concrete
Interaction Model of INTEGRANOVA. The window includes several primitives
to model all the possibilities of the property Message visualization.

Show the state of visible actions (MoU_SSF3):
The third mode of use Show the state of visible actions (MoU_SSF3) is not

yet supported by the OO-Method. The application of this mode of use is useful
in two actions that can be triggered by the user: service execution and
navigation to other contexts.

 Service execution: The buttons that execute a service should be disabled
if the service cannot be triggered due to a precondition or a state of the
object that is not valid.

Including Functional Usability Features in a Model-Driven Development Method

ComSIS Vol. 10, No. 3, June 2013 1013

 Navigation to other contexts: Navigation buttons can be disabled
depending on a condition specified by the analyst (e.g. when the target
context is empty).

Table 3. Unsupported properties of MoU_SSF3 in INTEGRANOVA

Properties Elements of the property that are not supported

Action selection INTEGRANOVA cannot specify which services and
navigations must be disabled when a condition is
satisfied.

Condition to
disable

INTEGRANOVA allows defining conditions that must
be satisfied to execute a service; therefore this property
already exists for services. However, the analyst cannot
relate a condition to a navigation.

Both properties of Show the state of visible actions (Action selection and

Condition to disable) are not supported by INTEGRANOVA currently (Table
3). In order to solve the problems specified in Table 3 and provide a complete
support to MoU_SSF3, we must change the following OO-Method models:

 Object Model: This model must include a conceptual primitive per service
to specify when the service must be disabled. This primitive allows
modelling the property Action selection for a service.

 Abstract Interaction Model: The definition of navigations in this model
must be enhanced with two new primitives. First, we need a conceptual
primitive per navigation to specify whether or not the navigation can be
disabled. This primitive allows modelling the property Action selection for
a navigation. Second, we need a conceptual primitive also per navigation
to specify the condition when the navigation will be disabled. This
primitive aims to support the property Condition to disable for navigations.

Fig. 6. Example of modelling MoU_SSF3 in INTEGRANOVA

Figure 4 shows a portion of the window that models the navigation in the
Abstract Interaction Model. In this example, the analyst has specified that the
navigation defined in Figure 4 will be disabled when the target context is
empty.

All new conceptual primitives specified in this section must be included in
INTEGRANOVA by the designers. Once they have been included,

Jose Ignacio Panach, Natalia Juristo

, and Oscar Pastor

1014 ComSIS Vol. 10, No. 3, June 2013

INTEGRANOVA will allow the analysts to work with FUFs by means of
interfaces like the prototypes used in this section.

4.4. Changes Required in the Model Compiler by System Status
Feedback

Both configurable properties and non-configurable properties require changes
in the model compiler. The designer of the MDD method must specify the
changes in the model compiler needed to generate the code that implements
the FUFs. Generated code in the OO-Method has a client/server architecture,
and changes affect both the client and the server. Client classes represent
interaction issues, which can be divided into three types of Interaction Units
(IU) in the OO-Method: (1) an IU called Instance that shows a specific object;
(2) a IU called Population that shows a list of objects that are instances of the
same class; (3) a IU called Service for entering data required to execute a
service. Server classes implement the business logic and carry out service
executions. To understand the practical implications of the conceptual
updates that have been proposed, we give a brief description of the classes
affected by the changes that we have introduced:

 Class X action implements the business logic of the system in the server.
There is one of these classes for each class defined in the Object Model.
The letter X represents all the classes defined in the Object Model: for
instance, in the rent-a-car system, the class Car, which is represented
abstractly in the Object Model, generates a class in C# called Class car
action, which implements the business logic of the car.

 FrmGnInstance implements a context that shows the information of an
object instance.

 FrmGnPopulation implements a context that shows the list of object
instances.

 Form X implements a context used to insert data and trigger a service that
needs this data. This class has OK and Cancel buttons.

 Service wrapper is used to connect client classes with server classes.

 Alert manager controls how the information about the system state will be
shown to the user.

 Navigation implements a navigation inside FrmGnInstance and
FrmGnPopulation from one context to another.

The class diagram in Figure 7 shows the architecture to represent all the
modes of use of System Status Feedback. New software classes that need to
implement a usability mechanism appear with a grey background; classes
with some methods that have been modified to add the usability feature
appear with a background crossed by diagonal lines; finally, those classes
that do not change appear with a white background. The only class included
from scratch is Alert manager. The classes OK and Cancel should not be
modified. The rest of the classes must add new methods or attributes:

Including Functional Usability Features in a Model-Driven Development Method

ComSIS Vol. 10, No. 3, June 2013 1015

 FrmGnInstance and FrmGnPopulation should add methods to request
disabling actions and navigations in order to implement the properties
Action selection and Condition to disable of MoU_SSF3.

 Service wrapper should add a method called Invoke_disable_actions to
trigger Class X action in order to verify actions and navigations to disable.
This change implements the properties Action selection and Condition to
disable of MoU_SSF3.

 Form X should add methods to trigger the methods of Alert manager that
inform the user about the success or failure of the execution by means of
a message. It should also add an attribute to save the visualization
options of that message. These changes implement the properties
Service Selection and Message visualization of MoU_SSF1.

 Class X action should add a method to check which actions must be
disabled. This change implements the properties Action selection and
Condition to disable of MoU_SSF3

 Navigation should add attributes to represent the alias of the navigation,
whether or not the navigation can be disabled and the condition to
disable. The alias also needs a method to obtain the dynamic part. These
changes implement the properties Static information, Dynamic
information, and Message visualization of MoU_SSF2 and Action
selection and Condition to disable of MoU_SSF3.

Fig. 7. Class diagram for System Status Feedback

The inclusion of these changes in the model compiler assures the
automatic generation of the code that implements the FUFs starting from a
conceptual model. Figure 8 shows examples of interfaces that include the

+Show_action_message (message:

Text, parameters:

TActionFeedbackParameters)

Alert manager

+Invoke_disable_actions()

Service wrapperClassX action

+Execute_action(action:

Taction)

+Check_disable_actions

()
+Action_executed(action:Tactio

n)

VisualizationOption:Tvisualizati

on

Message:String

FormX

+Cancel_action()

Cancel

OK_action()

OK

0..N

0..1

0..N

0..1

1..N111..N

+Disable_action(action:Tacti

on)

+Disable_navigation(navigat

ion:Tnavigation)

FrmGnPopulation

+Disable_action(action:Tacti

on)

+Disable_navigation(navigat

ion:Tnavigation)

FrmGnInstance

1..N

1

1

1..N

1..N

0..1

+Obtain_Dynamic_Text(Dyna

mic_text: Tformula)

Static_Text: String

Dynamic_Text: Tformula

Text_Format:Tformat

Button_Aspect:Tbutton

Disable: Boolean

Condition to disable: Tformula

Navigation

0..N0..N

0..N

0.N

Jose Ignacio Panach, Natalia Juristo

, and Oscar Pastor

1016 ComSIS Vol. 10, No. 3, June 2013

System Status Feedback mechanism. The left part of the figure displays an
example of MoU_SSF1 with two types of messages. The failure is
represented by means of an emergent window while the success is
represented with an icon in the main window. The values for MoU_SSF1
properties are:

 Service selection: Create a new account for a customer.

 Message visualization: Error messages are displayed in an emergent
window while success messages are displayed with an icon in the main
window.

With regard to the right part of the figure, we can see an example of
dynamic information depending on the selected car (MoU_SSF2) and an
example of the state of visible actions (MoU_SSF3). The values for
MoU_SSF2 properties are:

 Static information: Orders and Invoices.

 Dynamic information: The number of orders, the number of unresolved
invoices and the number of paid invoices.

 Message visualization: Text is displayed with Arial font and with a blue
arrow.

Moreover, the navigation button to the list of orders is disabled when there
are no instances in the target context. The values for MoU_SSF3 properties
are:

 Action selection: Navigation to Orders.

 Condition to disable: When the list of orders is empty.
Modelling the values of these properties with the conceptual primitives we

have presented in this section, the generated system has the interfaces
shown in Figure 8. This paper focuses only on the usability mechanism
System Status Feedback, but there are other 8 usability mechanisms that we
have not described in this paper due to space reasons. The list of all the
MoUs, properties, changes in the INTEGRANOVA conceptual model and
model compiler is detailed in [25].

Fig. 8. Examples of interfaces with usability mechanisms

Car listCar list

Invoices (1 Unresol, 1 paid)Orders (0)

RentCarRentCar

File Edit Customers Rents Invoices HelpFile Edit Customers

ErrorError

The account number must be a

numerical string

OK

Including Functional Usability Features in a Model-Driven Development Method

ComSIS Vol. 10, No. 3, June 2013 1017

5. A Metamodel to Represent the Modes of Use

In our approach, there is a dependence on the MDD method where we
include functional usability features. Definition of Modes of Use (first step) and
Identification of Properties (second step) is valid for any MDD method.
However, Definition of Conceptual Primitives (third step) and Changes
Required in the Model Compiler (fourth step) depend on a specific MDD
method, since each MDD method has an exclusive conceptual model and an
exclusive model compiler. We have defined new primitives and changes in the
model compiler for OO-Method as illustrative example. The changes applied
to OO-Method can be useful to guide the analyst to apply the proposal to
other MDD method different from OO-Method. However, the reuse of
conceptual primitives and changes in the model compiler is not
straightforward. In order to mellow this drawback, we need a notation to
represent Modes of Use abstract enough to be used in any MDD method.
Metamodels [13] are used in software engineering when we aim to define a
new language, an alternative to UML. Since usability features depend on
interaction features (apart from functionality), and these features are hardly
represented within UML, we propose using a metamodel to deal with our
approach. The Properties of the Modes of Use are represented in the meta-
model by means of classes, attributes and relationships among classes.

Figure 9 shows the metamodel that represents Modes of Use identified
from FUFs [23]. Each Mode of Use is represented with a class with the prefix
MoU in the meta-model. Next, we explain the meaning of each class:

 Class, Attribute and Service: they represent a class with attributes
and services.

 User interface: this represents an interface.

 Navigation: this represents a navigation between two interfaces.

 Widget: this represents a widget inside an interface.

 Display option: this represents how customizable elements will be
displayed, such as labels, backgrounds, buttons, etc. A textual
language such as UsiXML [21], can be used to define the visual
appearance.

 Menu entry: this represents an option of the menu.

 MoU_SSF1: this represents MoU_SSF1 (Inform about the success or
failure of an execution), which informs about the success or failure of
each service. The analyst can customize how the feedback will be
displayed to the user.

 MoU_SSF2: this represents MoU_SSF2 (Show the state of the stored
information), which provides dynamic and static alias.

 MoU_SSF3: this represents MoU_SSF3 (Show the state of visible
actions), which disables navigations and services that cannot be
triggered on a specific condition.

 MoU_PF: this represents MoU_PF (Show the progress of the
execution), which shows a progress bar for complex services. The
analyst can choose different display options for the bar.

Jose Ignacio Panach, Natalia Juristo

, and Oscar Pastor

1018 ComSIS Vol. 10, No. 3, June 2013

 MoU_W: this represents MoU_W (Warning message), which warns
subjects about the consequences of executing a service that cannot
be undone.

 MoU_WD: this represents MoU_WD (Define a wizard), which splits
complex services into easier steps.

 Step: this represents a step of a MoU_WD. Every step has a previous
step and a next step (except for the first and the last one,
respectively)

 MoU_STE1: this represents MoU_STE1 (Specify the widget type to
enter data with a specific format), which allows to specify the type of
the input widget that better helps the user to insert information with a
specific format.

 MoU_STE2: this represents MoU_STE2 (Mask definition), which
specifies a mask to help the user insert data according to a specific
format.

 MoU_STE3: this represents MoU_STE3 (Default values), which
specifies default values to help the user insert data according to a
specific format.

 MoU_F: this represents MoU_F (Favourites definition), which allows
the end-user to define shortcuts to access to favourite interfaces.

 MoU_GU1 and MoU_GU1: they represent MoU_GU1 and MoU_GU2
(Undo change and Redo change), which allow the end-user to undo
and to redo last changes respectively.

 MoU_AO1: this represents MoU_AO1 (Cancel during the execution),
which allows the end-user to cancel the execution of a service.

 MoU_AO2: this represents MoU_AO2 (Exit from a scene), which
allows the end-user to leave from interfaces.

 MoU_MH1: this represents MoU_MH1 (Dynamic help), which
displays a dynamic help that appears automatically when the user
needs it.

 MoU_MH2: this represents MoU_MH2 (Static help), which includes in
the system a set of help files.

Each instance of this metamodel is a different configuration of functional
usability features for a system. There are several advantages of working with
the metamodel. First, we can define transformation rules to derive the code
that supports the Properties from the instances of the metamodel. These
transformations can be defined with existing languages, such as Xpand [32].
Second, the metamodel can be enriched with new usability features that have
not been currently studied (different to FUFs), such as, multiple windows or
use of toolbars. If we aim to include new features, we must identify new
Modes of Use and their Properties and enrich the metamodel to represent
identified Properties. Next, we must define new transformation rules to
generate the code that implements these new Properties.

Including Functional Usability Features in a Model-Driven Development Method

ComSIS Vol. 10, No. 3, June 2013 1019

Fig. 9. Metamodel to support FUFs

To sum-up, our approach has two alternatives to include usability features
in an existing MDD method: (1) modifying the existing MDD method (its
conceptual model and its model compiler) such as we have applied for OO-
Method; (2) instantiating the metamodel according to usability requirements,
applying transformation rules to generate the code, and combining this code
with the code already supported by the existing MDD method. This paper

Jose Ignacio Panach, Natalia Juristo

, and Oscar Pastor

1020 ComSIS Vol. 10, No. 3, June 2013

focuses on the first alternative by several reasons: (1) if we use an existing
MDD method that generates fully functional systems (such as OO-Method),
we can extend the existing conceptual model with new primitives and the
existing model compiler with new rules. At the end, we can generate
automatically fully functional systems that support usability features. (2)

The code generated from the metamodel only supports the implementation
of functional usability features. Next, we must combine this code with the code
generated with the existing MDD method (for example, system functionality or
persistency are not included in the metamodel). This combination is not easy
in general, and may involve some manual work. (3) The inclusion of new
usability features is also supported if we enrich the existing MDD method with
new primitives and rules in the model compiler. In this case, the changes are
applied directly to the existing MDD method, adding new conceptual primitives
and modifying the model compiler.

6. State of the Art

The concept of pattern is one of the most widely used concepts to include
usability in the first steps of the software development process because it
combines both interaction and functionality. Many authors, such as Tidwell
[30], have worked on the definition of usability patterns. The patterns
described by Tidwell represent not only usability, but also interaction.
Following the same trend, Perzel [27] describes a set of patterns that are
oriented to web environments. Perzel distinguishes between patterns for web
applications (users must introduce data) and patterns for web sites (users
only navigate and visualize information). Another work that aims to bring
usability patterns closer to the end-user is proposed by Welie [31]. The
patterns of Tidwell and Perzel differ from the patterns of Welie in that Welie
distinguishes between the user’s perspective and the designer’s perspective.

The design patterns proposed by all these authors contain short
descriptions about the implications of including patterns in the architecture.
However, these descriptions do not explain in detail how to include the
patterns in the system and should be expanded with guidelines. This
ambiguity is minimized in our proposal, where we specify a set of conceptual
primitives to represent usability features and the changes in the model
compiler to generate the code that implements these primitives.

Other researchers have been working on defining techniques to capture
usability requirements. One of the most relevant works is the one by Bevan
[4], who has proposed including usability in the process of requirements
capture. The main disadvantage of Bevan’s proposal is that he does not
specify how the steps should be carried out. Other studies adapt existing
requirements models to specifically capture usability requirements (e.g.,
Cysneiros [9]). Cysneiros proposes modelling usability requirements using the
i* notation. He suggests building a catalogue to guide the requirements
capture. This notation provides a total view of the requirements and their

Including Functional Usability Features in a Model-Driven Development Method

ComSIS Vol. 10, No. 3, June 2013 1021

relationships with each other including the relationship between usability and
functional requirements. The main disadvantages of the Cysneiros’s work with
regard to our proposal is that the i* notation is ambiguous, far from natural
language, and may present contradictions [10]. In our proposal, we present an
unambiguous method to deal with usability features. We aim to define
conceptual primitives not far from natural language in order to minimize the
difficulty in working with them.

The inclusion of usability in an MDD method has not been widely promoted
in the HCI and SE communities. When it is discussed, there is a lack of
precise detail that makes it difficult to understand how these approaches
could work correctly in practical settings. Only a few authors such as
Fernández [11], Cachero [5] or Tao [29] have dealt with usability in MDD.
Fernández has proposed a Usability Model to evaluate, not model, system
usability from conceptual models. His Usability Model has been built using
attributes and sub-characteristics defined in the ISO/IEC 9126-1 [16] and in
ergonomic criteria [3]. The main disadvantage of Fernández’s proposal is that
the Usability Model does not include metrics for subjective attributes, such as
attractiveness. Cachero proposes measuring the usability of the systems
based on navigational models provided by Web engineering methodologies.
The author has defined a process to evaluate and progress navigational
models. However, some usability features are strongly related to functionality,
such as our work states. Therefore, the usability of the system cannot be
measured or improved only with a navigational model. Tao has proposed
modelling usability by means of State Transition Diagrams, which is very
limited. In his proposal, each state transition diagram can be used to
represent an interaction between the system and the user. However, when
this proposal was evaluated with students in an academic environment, the
results showed that this representation is very complex to work with. Also,
state transition diagrams cannot represent all the usability features.

Based on the related work, we can conclude that usability is a
characteristic of quality that must be considered from initial steps of the
software development process to reduce analysts’ effort. However, few works
have been done to include usability in a holistic software development
process based on model-driven development. The contribution of our
proposal is to establish how to precisely represent usability characteristics at
an abstract level. From the analyst perspective, the system architecture must
combine usability and system functionality.

7. Conclusions

This paper proposes a concrete method (called MIFUM) for including
functional usability features in any MDD method, where usually, usability
features are manually implemented. We have focused our work on FUFs
defined by Juristo, but our approach can be applied to other usability features.
Proposals different from FUFs with guidelines that describe the alternatives to

Jose Ignacio Panach, Natalia Juristo

, and Oscar Pastor

1022 ComSIS Vol. 10, No. 3, June 2013

configure the usability features are better to apply MIFUM than guidelines with
few details, since we can identify conceptual primitives easier.

As an example to illustrate the practical applicability of MIFUM, we have
used the OO-Method, an MDD industrial method that generates full functional
systems from conceptual models. New primitives and changes in the model
compiler of the OO-Method can be customized to any other software
development method based on conceptual models. The difficulty of including
FUFs in a specific MDD method exclusively depends on the expressiveness
of its conceptual model and the level of automation of the model compiler.
The OO-Method has a model to represent the interaction and the model
compiler can generate full functional systems automatically. However, MDD
tools with no model to represent the interaction and a model compiler that
generates code semi-automatically would require more effort to include FUFs.

Our approach focuses on enriching the existing conceptual model of the
MDD method and its model compiler to support Modes of Use. We have also
presented an alternative to this process based on a metamodel. This way,
usability features are exclusively represented in the metamodel and we do not
need to modify the conceptual model and the model compiler of the existing
MDD method. Pros and cons of using this metamodel have been discussed.

The existence of conceptual primitives to represent functional usability
features does not guarantee that analysts will use them properly. As future
work, we plan to define a tutorial with “best practices” in order to guide the
analyst in the use of the new conceptual primitives. In addition, we plan to
perform an experiment to measure the level of usability improvement in the
generated systems after applying MIFUM to the OO-Method. If functional
usability features are defined with primitives, we can define metrics to
measure the system usability before generating the system, just using these
primitives. As future work, we plan to define metrics to anticipate usability
problems. To sum up, this paper is a step forward to provide a holistic MDD
method where the conceptual model represents not only functionality and
persistency, such as the SE community has been working on, but also
interaction and usability features.

Acknowledgment. This work has been developed with the support of MICINN
(PROS-Req TIN2010-19130-C02-02, TIN2011-23216), UV (UV-INV-PRECOMP12-
80627), GVA (ORCA PROMETEO /2009 /015), and co-financed with ERDF. We also
acknowledge the support of the ITEA2 Call 3 UsiXML (20080026) and funding by the
MITYC under the project TSI-020400-2011-20.

References

1. Aquino, N., Vanderdonckt, J, Valverde, F., Pastor, O.: Using Profiles to Support
Model Transformations in the Model-Driven Development of User Interfaces, Proc.
of 7th Int. Conf. on Computer-Aided Design of User Interfaces CADUI’2008,
Albacete, Spain, Springer, 35-46, (2008).

Including Functional Usability Features in a Model-Driven Development Method

ComSIS Vol. 10, No. 3, June 2013 1023

2. Bass, L., and Bonnie, J.: Linking Usability to Software Architecture Patterns
Through General Scenarios, The journal of systems and software, Vol. 66, 187-
197, (2003).

3. Bastien, J.M., Scapin, D.: Ergonomic Criteria for the Evaluation of Human-
Computer Interfaces, Rapport technique de l’INRIA, (1993).

4. Bevan, N., and Bogomolni, I.: Incorporating User Quality Requirements in the
Software Development Process, Proc of International Software and Internet
Quality Week Conference (QWE), (2000).

5. Cachero, C., Meli, S., Genero, M., Poels, G., and Calero, C.: Towards improving
the navigability of Web applications: a model-driven approach, European Journal
of Information Systems, vol. 16, 420–447, (2007).

6. CARE Technologies S.A., 2013, http://www.care-t.com
7. Ceri, S., Fraternali, P. and Bongio, A.: Web Modeling Language (WebML): A

Modeling Language for Designing Web Sites. Computer Networks and ISDN
Systems, 33(1-6), 137-157, (2000).

8. Comstock, E. and W. Duane (1996). Embed User Values in System Architecture:
The Declaration of System Usability. CHI 96.

9. Cysneiros, L. and Kushniruk, A.: Bringing Usability to the Early Stages of Software
Development, Proc of 11th International Requirements Engineering Conference,
California, USA, IEEE, 359- 360, (2003).

10. Estrada, H., Martínez, A., Pastor, O. and Mylopoulos, J.: An empirical evaluation
of the i* framework in a model-based software generation environment, Proc of
18th CAISE, Luxemburg, Springer LNCS 4001, 513-527, (2006).

11. Fernández, A., Abrahao, S. and Insfran, E.: A Web Usability Evaluation Process
for Model-Driven Web Development. 23rd International Conference on Advanced
Information Systems Engineering, CAiSE2011, London, Springer.108-122, (2011).

12. Folmer, E., Bosch, J.: Architecting for usability: A Survey. Journal of Systems and
Software, Vol. 70(1), 61-78, (2004).

13. Fuentes-Fernández, L. and A. Vallecillo-Moreno (2004). "An Introduction to UML
Profiles " European Journal for the Informatics Professional 5(2): 5-13.

14. FUFs 2013: http://hci.dsic.upv.es/FUFandMoU/FUFList.html
15. Hailpern B., Tarr, P.: Model-Driven Development: the Good, the Bad, and the

Ugly, IBM Syst. J., vol. 45, pp. 451-461, (2006).
16. ISO/IEC 9126-1, Software engineering - Product quality - 1: Quality model, (2001).
17. Juristo, N., Moreno, A.M. and Sánchez-Segura, M.: Guidelines for Eliciting

Usability Functionalities, IEEE Transactions on Software Engineering, Vol.
33,744-758, (2007).

18. Juristo, N., Moreno, A.M., Sánchez-Segura, M.: Analysing the Impact of Usability
on Software Design. Journal of System and Software, Vol. 80(9), 1506 -1516,
(2007).

19. Koch, N., Knapp, A., Zhang, G., and Baumeister, H.: UML-Based Web
Engineering, An Approach Based On Standards. In Web Engineering, Modelling
and Implementing Web Applications, Springer, 157-191, (2008).

20. Lauesen, S. (1998). Usability Requirements in a Tender Process. Computer
Human Interaction Conference, 1998, Australia.

21. Limbourg, Q., Vanderdonckt, J.: Usixml: A User Interface Description Language
Supporting Multiple Levels Of Independence. Engineering Advanced Web
Applications. Rinton Press, Paramus, New Jersey (2004).

22. Mellor, S., Clark, A.N., and Futagami, T.: Guest Editors' Introduction: Model-
Driven Development. IEEE Software, Vol. 20, 14-18, (2003).

23. MoU 2013: http://hci.dsic.upv.es/FUFandMoU/UW_list.html
24. Olivé, A.: Conceptual Modeling of Information Systems, Springer, (2007).

Jose Ignacio Panach, Natalia Juristo

, and Oscar Pastor

1024 ComSIS Vol. 10, No. 3, June 2013

25. Outcomes 2013: http://hci.dsic.upv.es/FUFandMoU/ChangesList.html
26. Pastor, O. and Molina, J.: Model-Driven Architecture in Practice. Valencia,

Springer, (2007).
27. Perzel, K. and Kane, D.: Usability Patterns for Applications on the World Wide

Web, Proc. of PloP’99 Conference, (1999).
28. Sendall S. and Kozaczynski W.: Model Transformation: The Heart and Soul of

Model-Driven Software Development, IEEE Software, vol. 20, pp. 42-45, (2003).
29. Tao, Y.: An Adaptive Approach to Obtaining Usability Information for Early

Usability Evaluation, Proc of IMECS, 1066-1070, (2007).
30. Tidwell, J.: Designing Interfaces, O'Reilly Media, (2005).
31. Welie, M.v., Traetteberg, H.: Interaction Patterns in User Interfaces. Proc of 7th

Pattern Languages of Programs Conference, Illinois, USA, (2000).
32. Xpand: http://www.eclipse.org/modeling/m2t/?project=xpand

Dr. Jose Ignacio Panach Navarrete is assistant professor at the Universidad
de Valencia. Ignacio got his Ph. D in Computer Science in May 2010. His
research activities focus on the model-driven development and usability. He
has more than 20 research papers in conferences, journals and books.
Ignacio has participated in several research projects.

Dr. Natalia Juristo is full professor of software engineering with the
Computing School at the Technical University of Madrid (UPM) in Spain. She
has been Program Chair EASE13, ISESE04 and SEKE97; General Chair for
ESEM07, SNPD02 and SEKE01; Guest Editor of special issues in several
journals.

Dr. Oscar Pastor is full professor and Director of the Centro de Investigación
en Métodos de Producción de Software (ProS) based at the Universidad
Politécnica de Valencia (UPV) in Spain. He has (co-) authored more than 100
research papers in conferences, journals and books, and he has received
numerous research grants.

Received: February 13, 2012; Accepted: January 25, 2013

