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Abstract: Rich-sensor smart phones have made possible the recent birth of the  

mobile sensing research area as part of ubiquitous sensing which integrates other  

areas such as wireless sensor networks and web sensing. There are several types of  

mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of 

sensing can be people-centered or environment-centered. The sensing domain can be 

home, urban, vehicular… Currently there are barriers that limit the social acceptance of 

mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws 

in some countries and the absence of economic incentives that might encourage people to 

participate in a sensing campaign. Several technical barriers are phone energy savings and 

the variety of sensors and software for their management. Some existing surveys partially 

tackle the topic of mobile sensing systems. Published papers theoretically or partially solve 

the above barriers. We complete the above surveys with new works, review the barriers of 

mobile sensing systems and propose some ideas for efficiently implementing sensing, 

fusion, learning, security, privacy and energy saving for any type of mobile sensing 

system, and propose several realistic research challenges. The main objective is to reduce 

the learning curve in mobile sensing systems where the complexity is very high. 
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1. Introduction 

Ubiquitous Computing is a research area that has significantly changed the way computing and 

communication resources are used nowadays. Reeves [1] affirmed that Ubiquitous Computing has 

some evident possibilities that will appear attractive to various stakeholders in public and private 

sectors: there are enabling technologies in our days and in the near future, projection of technology in 

Society and these technologies can be potentially embedded everywhere, leading to a proliferation  

of different technologies and services. Examples of enabling ubiquitous technologies are: (a) Wireless 

Sensor Networks (WSNs) embedded in people, furniture, homes, urban, rural, abovewater, underwater…;  

(b) Sensor Webs [2] that aggregate sensed data of geographically distributed robots, satellites, ships, 

airplanes…; (c) Rich-sensor smart phones and related mobile computing devices which have been used 

for Social Sensing [3]. The combination of WSN, rich-sensor smart phones and Web results in a 

powerful ubiquitous computing platform [4]. 

A Mobile Sensing System (MSS) requires a user level Application (App) running on the phone for 

reading an internal phone’s sensor, or external sensors in the WSN and reporting sensed data to the 

Web. To do this, the phone operating system must offer an Application Programming Interface (API) 

to manage the data reading and reporting. 

The App of an individual MSS only runs on one phone that does not cooperate with other Apps 

installed in other phones. In a participatory MSS [5] the App is executed on several phones in a 

distributed manner and a sensing campaign is organized in order the phone’s users (participants) to 

sense disjoint parts of the area to be sensed. There is a sensing campaign administrator that is in charge 

of organizing the entire campaign. In a crowd MSS a requester can start a campaign using his  

phone [6] or a large number of different MSS Apps can be coordinated in order to avoid redundant 

sensing in a determined area [7]. A type of crowd sensing is place-centric sensing [8]. In opportunistic 

sensing, participants try their best to participate full or part time. The last three kinds of MSS use a 

server, normally accessible via the Internet. The data contributed by multiple participants are combined 

(integrated) in this server to build views of sensed data or to elaborate statistics. 

The application domain of a MSS depends on the location of the phone. It could be personal 

(healthcare sensing), vehicular (vehicular sensing), home (smart homes), urban (urban sensing) or city 

(smart cities), rural, a local geographic area or a global geographic area... The role of a person in urban 

sensing should be opportunistic [9]. Depending on the object of sensing a MSS could collect data 

about people (people-centric) or about the environment (environment-centric). A MSS can implement 

sensing processes continuously, trigged by a user action, upon receiving a message of another 

participant… Continuous MSS presents several key research challenges: (a) since a MSS relies on 

volunteer participants, consequently, collected samples are typically randomly distributed in space and 

time, and are incomplete; (b) learning techniques must be used to infer participant context and activities. 

Recently, Xu et al [10] applied unsupervised learning in the phone using microphone sensor to count the 
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number of people speaking; (c) participant privacy must be preserved [11,12]; (d) evaluation of 

trustworthiness of the sensed data; (e) assure the phone energy conservation. The LittleRock  

project [13] proposed a low-power co-processor to manage sensors’ events. The optimal clock 

frequency and entering low-power standby mode between frames was used for image sensing in [14]; 

(f) coverage control and the particular mobility patterns of the participants. In [15] some initial ideas 

are presented about controlling the movement of participants avoiding driving them into areas with 

little to no sensing coverage, allowing for greater coverage with fewer participants and higher densities 

of measurements in a specific region; (g) due to sensing, the highly skewed spatial-temporal sensing 

frequency [16] depends on the phones that will participate in the sensing process; and  

(h) stimulation of participation [17] because, a priori, participants are doing philanthropic work. 

In the published surveys several examples of MSS have been presented. There is a plethora of  

MSS: some of them are commercial, others are only a proof-of-concept, and others are systems that 

have only been tested in research laboratories. The typical example of people-centric MSS is 

healthcare, which uses continuous sensing for serious diseases, or monitoring people [18]. Typical 

examples of environment-centric MSS are, among others, catastrophes, traffic monitoring, 

collaborative weather prediction, noise level monitoring in cities and air pollution. There are mobile 

applications that use the combination of different sensors [19,20]. Each published survey about MSS 

reviews a number of systems [5,21,22], but there are many MSS that have not been reviewed in those 

surveys. Now we present some of them. 

People-centric Apps such as EyePhone [23] infer the position of the eye on the phone display and 

lets the user activate the phone with the eyes. WakeNsmile [24] detects when a sleeper was most likely 

to wake up with a smile and hopefully in a better mood. SoundSense [25] classifies the ambient sound, 

music, speech and learns new sound events in different users’ daily life. WalkSafe [26] implements a 

classification pipeline to help people cross roads while they are walking and talking. That App alerts 

the user of a potentially unsafe situation using sounds and vibrations from the phone. 

Some sensing Apps use location sensors. Apps such as LifeMap [27] provide indoor location 

information combining the information with Wireless Fidelity (WiFi), and Global Positioning System 

(GPS) to generate user context in daily life. BeepBeep [28] is a high-accuracy ranging and localization 

library that Windows Mobile 5.0 applications can load and use. For example, the Draw-In-The-Air 

(DITA) App used the BeepBeep library to turn the device on or off with a tickle or cross gesture and a 

left-leaning or right-leaning gesture to switch to the previous or next channel. The Point&Connect App 

used BeepBeep to pair a user’s phone with another nearby device by making a simple hand gesture to 

point her phone towards the intended target. Android phones are used in [29] for semantic localization 

such as points of interest, street or city names. Authors showed that the learning of different pedestrian 

movement types, such as walking and running, requires more sensing information, for example from 

an accelerometer. Semantic data segments can be designed to classify the user’s activities such as 

sitting, standing and running using the accelerometer sensor [30]. ConceptNet [31] is a semantic 

network designed for commonsense contextual reasoning to be applied to a specific sensor fusion 

problem involving both user location and activity. The sensed data from GPS, Google Maps, camera 

and accelerometer are classified, labeled and fused together on a common sense basis. 

In the healthcare domain an App was considered a gateway between the medical devices and  

the Web using Bluetooth and WiFi [32]. Mobile Ultra Violet Monitor App [33] processed the UV 
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radiation level measured by a handheld sensor and displayed the post-processed data to the user to 

limit overexposure. 

A prototype of participatory MSS applied to bus arrival time prediction based on bus passengers’ 

participation was presented in [34]. It solely relied on the participants and it was independent of the 

bus operating companies. ParkSense [35] is an App that tries to help car drivers to find parking spots. 

The developers studied the consumption of different sensors of the phone in order to optimize their use 

and presented a survey of related works. CoenoFire [36] is a participatory MSS for improving 

firefighter work in real scenarios. The sensing campaign is organized by the fire chiefs and sensed data 

are shared on a server. A participatory MSS similar to Bikenet [37] was presented in [38]. They used 

an external sensor located in a bike for acquiring periodic CO and CO2 measurements and sending 

values to an Android phone. Bluetooth connection was used between the App and the sensor. Then, 

sensed data were compressed and transmitted to a monitoring server using a specific WiFi Access 

Point (AP) available on the bike sharing racks. The monitoring server validated and interpolated  

data acquired by bikers and produced urban pollution level maps. There was a feedback since the biker 

could know the healthiest route. CO pollution was analyzed in [39] using a Bluetooth connection 

between a sensor located in a car and the phone and commercial servers to share tasks among social 

sensing participants. 

The platform for 3D map-based visualization on mobile devices presented in [40], powered by 

augmented reality named ARCAMA-3D, offered context-aware interactions to enable users to 

navigate in an area with their mobile devices and interactively discover their surroundings. The system 

integrated real-time GPS and other embedded sensors and exploited user’s context and preferences in 

order to provide him/her with the necessary information. In return, the user consults the information 

such as text, photo, audio or video files that were published on the 3D model with the help of an 

augmented reality technique. 

An Ambient intelligence approach can be used to implement continuous patient monitoring for 

improving the communication between patients and doctors [41]. This approach can be used to 

automatically generate individual patients’ profiles, self-control and education modules for their 

chronic diseases. 

Social sensing includes social interactions such as co-located, face-to-face interaction, excluding 

electronically mediated interactions such as chat, social network activity and other kinds of electronic 

communication. Crowd++ [10] is an App for counting people in different geographical scenarios.  

The phone camera can be used to measure body orientations [42]. The accelerometer can be used to 

detect chest wall vibrations and hence speech activity. WiFi can be used for distance estimation. The 

challenges of social sensing [43] and a middleware, such as Comm2Sense [44] that uses the WiFi 

signal to detect physical proximity have been presented. 

A survey about some future applications of mobile sensing was presented in [45]; it reviews 

different ways to do mobile sensing, the challenges of mobile sensing and the use of Web services for 

mobile sensing and introduced social and community aware intelligence. In [46], this concept was 

refined as the application of mobile sensing, Web sensing and other kinds of ubiquitous sensing 

techniques to society. In this context, Community Similarity Networks [47] can be used to implement 

efficient groups for participatory sensing. A step beyond this work is the concept of Guo et al. [48] 

named embedded intelligence (―the knowledge learned from human-IoT interaction which refers to the 
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knowledge about human life, ambient dynamics, and social connection/interaction‖). They present the 

three dimensions of embedded intelligence: user, ambient and social; and the architecture of embedded 

intelligence applications. In this architecture, the lowest level is built on the Internet of Things (IoT) a 

term which allows sensing devices to register digital traces of people-environment interactions. 

Examples of devices are mobile phones which can be used to discover individual and social 

information of people (social intelligence). 

We focus our work on MSS that potentially interoperates with WSN using a communication 

middleware and Web services. This kind of system is complex to implement efficiently. There are 

several research challenges like saving the phone’s battery energy, privacy and security. A cloud 

computing infrastructure can be used to treat with the complexity of fusion or calculation of thing’s 

context. If the participants meet themselves, it will be recommendable to use social network software 

to allow richer patterns of social participation [49]. 

As shown a large number of works have been published and a considerable number of mobile 

sensing applications developed. The learning curve in mobile sensing could be very large. For this 

reason, in this paper we present challenges and solutions for practical MSS. Then, we present an 

practical MSS architecture proposal considering not only technical, but also social issues. 

The remainder of the paper is organized as follows: in Section 2 we review sensors and software for 

their management in order to establish realistic assumptions that will help us to present the ideas of a 

practical MSS. Section 3 presents important design issues for MSS: fusion and learning, security and 

privacy, and saving energy. Our ideas to design MSS taking into account current research trends and 

presenting research challenges are discussed in Section 4. Finally, in Section 5, we draw our main 

conclusions and describe future work. 

2. Mobile Sensors and Their Software 

This section is devoted to reviewing the sensors available on most smart phones, the operating 

system software for managing the sensors to do mobile sensing, and some preliminary works that use 

sensors and the appropriate software to do mobile sensing. 

Most mobile phones include the following sensors: GPS for outdoors localization, an Accelerometer 

Sensor (AS) to measure acceleration, a Compass Sensor (CS) to determine the angle by which the 

phone is rotated relative to the Earth’s magnetic North Pole, a Gyroscope Sensor (GS) to measure the 

angular rate of how quickly the object turns, an Image Sensor (IS) to capture images and record videos, 

an Ambient Light Sensor (ALS) to detect how much luminance is present, a Proximity Sensor (PS) to 

detect how close the phone is to the user’s body, Touch Sensors (TS) to detect the presence and 

location of a touch with a finger or stylus pen within the display area, and a Temperature Sensor (TS), 

Humidity Sensor (HS) and Atmospheric Pressure Sensor (APS) to detect real-time environmental 

temperature, humidity and atmosphere pressure, respectively. AS, CS, GS and GPS are mainly used in 

mobile sensing. 

Mobile operating systems provide an API to manage phone’s sensors. They are summarized in  

Table 1. BlackBerry OS exports a Java
TM

 development environment that includes a BlackBerry IDE, a 

phone simulator, and API for Java 2 Micro Edition (J2ME) Platform. 
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The Windows
TM

 Mobile
®

 operating system provides Microsoft.Devices.Sensors and System.Device. 

Location namespaces for accessing sensors. The complete toolset Qt framework [50], available for 

Symbian phones and the Nokia N9, provides the Qt Mobility Language (QML), a JavaScript based 

declarative language. The QtMobility Project includes the API shown in Table 1. 

Table 1. Examples of APIs for managing phones’ sensors. 

BlackBerry 

AccelerometerData and 

AccelerometerSensor 

AS readings. AS changes can be detected using the  

interface AccelerometerListener. 

GPSSettings and GPSInfo They provide access to the GPS. 

TouchEvent, TouchGesture 

and Touchscreen 

TouchEvent contains touch input events originating from the user. 

TouchGesture detects gestures. Touchscreen provides low-level 

access to the touch screen. 

Windows
TM

 

Mobile
®
 

Microsoft.Devices.Sensors 

AS, CS, and GS readings. Motion class handles the low level 

sensor calculation and allows applications to obtain the device’s 

attitude, rotational and linear acceleration. Other classes are: 

Accelerometer, Compass and Gyroscope. 

System.Device.Location 
It exports the Windows Phone Location Service API enabling the 

development of location-aware applications. 

Symbian 

Sensors 
API for receiving events from AS, ALS, CS, GS, PS, light, 

magnetometer, orientation, rotation, and tap sensors. 

Location 
API that gives users the capability to develop  

location-aware applications. 

Multimedia 
API that gives developers a simplified way to use audio and video 

playback, and access IS functionality. 

Android 

SensorManager 

Class to access and list sensors (getSensorList() method),  

register sensor event listeners (registerListener()), and acquire 

orientation information. 

Sensor 

Class representing a specific sensor (some methods: 

getResolution(), getPower(), getMinDelay()  

and getMaximumRange()). 

SensorEvent 

Class to create a sensor event object to know the type of sensor 

that generated the event, the accuracy of the data, and the  

time at which the event happened. 

SensorEventListener 

Interface to create two callback methods that receives notifications 

(sensor events) when sensor values change or when sensor 

accuracy changes. 

iOS 

CMMotionManager, 

CMAccelerometerData, 

CMAttitude, 

CMDeviceMotion, 

CMGyroData and 

CMMagnetometerData 

CMMotionManager for AS, magnetometer and GS readings. 

Processing data of attitude, rotation rate, calibrated magnetic 

fields, the direction of gravity, and the acceleration. 

CMAccelerometerData represents an AS event. CMAttitude offers 

three different representations of attitude. CMDeviceMotion to 

know values of the attitude, rotation rate, and acceleration  

of a device. CMGyroData contains a single measurement  

of the device’s rotation rate. CMMagnetometerData which  

encapsulates measurements of the magnetic field made by the 

device’s magnetometer. 
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The Android [51] Software Development Kit (SDK), which includes an emulator of a run time 

environment for testing and debugging, exports classes and interfaces of the Android Sensor Framework 

in Java language. The sensor framework is part of the android.hardware package. 

The iOS SDK [52], Xcode and Interface Builder export classes of the Core Motion Framework in 

Objective C language. 

There is not a common API to program context aware mobile applications. 

Access to external sensors is traditionally managed with very different APIs and this heterogeneity 

leads to interoperability problems among sensors [53]. One solution is a common API for external 

sensors and internal sensors in the phone [54], or the implementation of a complex mechanism that 

allows interoperation among external and phone’s sensors [55]. 

Android and iCore Windows 8 App developers can build applications on top of the sensor fusion 

software [56], developed by Kionix Inc., that combines inputs from an AS, magnetometer and GS into 

synthetic sensors, that is to say, a fusion of different physical sensors’ values in order to provide high 

level semantic information such as orientation, rotation vector, linear acceleration, and gravity. 

The API designed in [57] was able to manage several sensors to program context-aware mobile 

applications. It was based on a tuple space model (LinuxTuples) that used a blackboard to process the 

inputs of the sensors. 

The Open Data Kit [58] provided a high level framework and driver construction tools to facilitate 

the connection between internal and external sensors. The user must build the sensor driver to manage 

the communication between the external sensors and the phone. 

There are some proposals limited to Nokia S60 devices using Qt. An initial work in which a  

cross- platform environment is used to program mobile devices with different sensors is described  

in [59]. In [60], the authors presented a pre-alpha platform and an API [61] for accessing a phone’s 

sensors as well as external sensors that can be accessed using Bluetooth or other compatible wireless 

technology. It allows defining synthetic sensors. 

An early initiative to standardize the access to mobile sensors is the Mobile sensor API [62] for 

J2ME standardized by the Java Specification Report (JSR) 256 [63]. It uses MIDlets to fetch and 

monitor sensed data from internal and external sensors uniformly. There are several examples of 

healthcare applications that use JSR256: (a) Remote monitoring of the activity characteristics of elderly 

patients in home or community sensing using the AS [64]; (b) determine when the activity of elderly 

people is being undertaken by a subject carrying the handset and to quantify the activity level [65] and  

(c) Accessing external healthcare sensors in the body of patients and reporting the sensed values to  

a remote telemedicine server [66]. Cecilio et al. [67] argued that JSR 256 was not appropriate for 

considering heterogeneous external sensors and did not address the reconfiguration of external 

interconnected sensor/actuators. 

StreamImput [68] by the Khronos Group Industry Consortium is expected to be an API that enables 

applications to discover and use new generation sensors in order to create sophisticated user 

interactions. To the best of our knowledge this library has not been released for mobile phones. 

Mobile tasking applications that process continuous data from multiple sensors can use in the future 

the Code In The Air (CITA) system [69]. Users can easily compose their own tasks by mixing  

and matching available activity primitives or tasks (e.g., isWalking, isBiking, isRunning, isDriving, 

isOutdoors, enterPlace, and leavePlace) and the conditions and actions to perform. 



Sensors 2013, 13 17299 

 

 

PhoneGap [70] has been used to create mobile applications for iOS, Android, Blackberry, Windows 

Phone, Palm WebOS, Bada and Symbian using HyperText Markup Language (HTML), Cascading 

Style Sheet (CSS) and Javascript. Regarding sensor programming, PhoneGap provides an API to 

capture mobile phone motion in the X, Y, and Z directions, access the audio, image, video and 

compass, and the latitude and longitude without guaranteeing that the API returns the device’s current 

location. The programming of low level actions in PhoneGap is currently very limited. 

3. Design Issues of Mobile Sensing Systems 

Continuous sensing using GPS can lead to privacy and phone energy consumption problems. If a 

security mechanism is computationally intensive, the battery will drain rapidly. In this section we 

review some works which study fusion and learning, security and privacy and energy saving inside a 

phone or with external sensors that do not belong to a WSN. These works are not reviewed in previous 

published surveys. 

3.1. Fusion and Learning 

Fusion can be used to design context aware applications. The context of an object is any 

information that characterizes its state and allows for dynamic changes in applications and/or the 

automatic invocation of new applications [71]. Context information is derived from these sources: 

physical internal and external sensors, devices in the environment, and data sources on the user’s device 

or accessible via the telecoms or Internet infrastructure. Two fusion examples are: (a) an earbud to read a 

person’s blood oxygen level, body temperature, heat flux and heart rate, and a heart-rate monitor that can 

be embedded into a device like an iPhone to identify a user or determine the user’s mood [72];  

(b) InvenSense’s MPU-9150 is the world’s first 9-axis MotionTracking [73] that fuses data from the 

three-axis of AS, CS and GS. Indoor Navigation Systems (INS) can be enriched with the fusion of 

built-in sensors and external inputs such as a map of the floor, a GPS/cell based positioning, or a WiFi 

fingerprinting [74–76]. Indoor Android phone localization can be achieved fusing several sources [77] 

such as AS, magnetometer, GS and RSSI of several WiFi AP. 

Learning can be used for inferring the current activities of mobile users [78]. The authors inferred 

actions like walking, cooking, reading, driving and eating, using the data sensed by the mobile phone 

and a hidden Markov model. The user’s intervention was needed to label the beginning and the end of 

each activity. Chen et al. [79] showed preliminary ideas about a framework to analysis and infer 

human behavior patterns fusing raw WiFi RSSI readings and AS to extract fine grained significant 

locations in user’s daily life. Two learning examples are: (a) Koukoumidis et al. [80] who used IS  

to collaboratively detect and predict the schedule of traffic signals using an iPhone in cars instead  

of the traditionally used sources such as GPS, AS or single axis GS; (b) Imsec [81] is an Android  

proof-of-concept application which can securely capture, store, and transfer phone camera-generated 

images in a war zone. 

We briefly summarize in Table 2 the characteristics of the above reviewed systems and applications 

according to the following items: it is a realistic implementation (application) or it is a start point for 

app developers, mobile operating systems supported, used sensors, details about how the fusion is 

made (used method, applied technique, etc.), and some application domains.  
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Table 2. Brief summary of the analyzed works that use fusion. 

Reference 
Application (a)/App 

Developers (d) 
Mobile OS Sensors 

Detailed Fusion 

Algorithm 

Application 

Domain 

[35] a Android WiFi No 
Place-centric 

sensing 

[10] a Android Microphone Yes (1) Crowd sensing 

[36] d Android  Yes 
Place-centric 

sensing 

[26] a Android IS and AS Yes Urban sensing 

[74] a Maemo 5 Motion sensors Yes (2) 
Indoor Navigation 

System 

[78] a Symbian 
Microphone  

and AS 
Yes (3) 

Activities of  

daily living 

[75] Work in progress Maemo 5 

At least one 

position sensor 

(GPS, AS) 

Yes 
Indoor Navigation 

System 

[24] a/d 
Windows Mobile 

6.5 (emulator) 
Microphone Yes Healthy sleep 

[31] d - GPS, IS and AS Yes (4) 

Classification (for 

example user 

location  

and activity) 

[76] a Android and iOS Digital CS and IS Yes 

Orientation  

in indoor 

environments 

[28] a/d Windows Mobile 

Speaker, 

microphone and 

communication 

sensor 

Yes 

High-accuracy 

ranging and 

localization 

[29] a Android GPS Yes (5) Localization 

[25] a/d iOS Microphone Yes 
Sound 

classification 

[30] a Symbian AS Yes 
Mobile data 

segmentation 

[79] General Framework Not specified AS and WiFi Yes (6) 
Human behavior 

pattern analysis 

[39] a iOS Outer CO sensor 
Uses commercial 

services 
Urban sensing 

(1) Machine learning algorithms; (2) Dead reckoning technique; (3) Hidden Markov model; (4) Commonsense 

contextual reasoning; (5) Semantic location; (6) Classifier fusion model. 

3.2. Security and Privacy 

System security must avoid denial of service, eavesdropping and illegal physical accesses at the 

sensing server. Information privacy must be assured implementing data encryption, data integrality, 

authentication and freshness protection. The use of the phone’s GPS is normally authorized by the 
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phone user. But GS and AS can be used by third party applications in order to infer the location of 

touch-screen taps without the permission of the phone user. The work presented in [82] provides a 

simple example where privacy is a barrier to the acceptance of mobile sensing. It uses a framework 

which includes motion sensor readings, accelerometer and gyroscope sensor data combined with 

machine learning analysis. 

Trustworthy uploading of sensed data to the sensing server is a challenge. Sensors are well 

calibrated, but humans are less reliable. That is, people must be well educated in the correct use of 

sensors. Algorithm design for obtaining the optimal solution to the discovery of the truth information 

reported by different participants is important. This happens when near participants in a social sensing 

campaign report different data about the same experiment. A theoretical algorithm presented in [83] 

could be put into practice due to its potential relevant applications. 

Security and privacy have also a social aspect:  intellectual property laws and other important social 

legislation are another barrier [84]. In that work three foundational design principles are discussed: 

primacy of participants, data legibility, and engagement of participants throughout the data life cycle. 

The expansion of the codes of fair information practice to protect privacy in MSS is proposed. This  

is a very important topic in MSS because in several countries, laws impose a lot of restrictions on 

social sensing. 

Security is a technical barrier and privacy is a personal barrier in telemedicine [85]. In participatory 

MSS, privacy is the guarantee that participants maintain control over the release of their sensitive 

information, including the protection of information that can be inferred from both the sensor readings 

as well as the interaction of the users with the participatory MSS [86]. Each component of the 

participatory MSS has its own responsibilities for assuring privacy: (a) Sensors: participants that report 

daily their GPS and AS movement tracking could easily be identified. To avoid this, the frequency  

of reporting could be varied for example, to report the position only when the street changes;  

(b) Administrator of sensing campaigns: A malicious administer can identify a lot of critical 

information about participants; (c) Reporting: If a participant does not use an anonymous proxy  

for example, his reported data will be easily identified knowing its Internet Protocol (IP) Address;  

(d) Data processing on the server: The best practice is to aggregate participants’ sensed data to avoid 

participant identification; (e) Social networks: Normally pictures and audios easily identify a participant. 

In [87] a good introductory review of data mining and data aggregation is presented. The authors  

also categorized solutions using some parameters like perturbation, k-anonymity, secure multi-party 

computation and homomorphism encryption. 

There are technical solutions for MSS security and privacy. Some solutions are theoretical 

proposals or obtained via simulation [87–89]. An experimental approach is presented in [87], and 

others have proposed Android applications [90–92]. The sensing domain is a general one in [87,88] 

and specific for urban sensing in [89]. Healthcare is the sensing domain of [90–92]. 

The hiding of which phone matches a query and which data is sensed is a way of implementing 

privacy [89]. A large-scale system resembling a mesh network of sensors is assumed. An inconvenience 

for mobile phones is that they only could be connected to this mesh infrastructure using WiFi. There is 

a tradeoff between sensing accuracy and privacy. This tradeoff is related to the number of dimensions, 

categories, and participants [87]. The server reconstructs the probability density functions of the 

original distributions using the sensed values, but without knowing the participants’ actual data. These 
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theoretical ideas must be put in practice to observe results respecting real world scenarios. In [90–92] 

the authors focused on the safe processing of the phone sensed data in that mitigating attacks by 

malware and other attacking software is an important challenge. In [90,91] GPS, IS and microphone 

were used and in [92] external sensors connected to the phone via Bluetooth and ZigBee were used. 

The problem analyzed in [90,91] is trustworthiness: how to verify that authenticity and fidelity are 

achieved. Confidentiality and integrity properties are analyzed between the outer sensors and the  

phone [92]. All the reviewed works need to verify that the running Android application is safe and differ 

in the way they test privacy: the first two works used TaintDroid [93] to trash the dependencies among 

data and applications in order to register possible alterations of data. This is a very cheap solution  

which does not include additional hardware; perhaps they should consider including the modern  

Trust Computing Platforms incorporated in recent commercial phones. On the contrary, [92] requires 

additional, expensive and sophisticated mechanisms that can limit its applicability. That is, each sensor 

had a cryptographic key which is known to the Secure Data (SD) card which has a key also known to 

the outer sensors. The key distribution is done directly between the SD, without the intervention of the 

phone and the outer sensors. In this way, the malware will not be aware of the keys. Among the seven 

limitations they exposed, one curious limitation was that data cannot be displayed to the patient 

because it would be vulnerable to malware. They suppose the outer sensors communicate with the 

phone using Zigbee, Bluetooth or its secure protocol, so in practice they can only directly use 

Bluetooth technology, and support its secure protocol over it, because Zigbee is not directly supported 

in present phones. Trusted computing platform is used in recently released phones. 

3.3. Energy Saving 

Energy saving is a very important issue in mobile App design and implementation. A kernel  

module of the modern smart phone’s operating system manages it using energy profilers. For example,  

Eprof [94] considered that optimizing energy consumption is of critical importance and it was the first 

fine-grained energy profiler for phone Apps. It was implemented on Android and Windows Mobile. The 

aim of Eprof was guessing where the energy was spent inside any App, for example in storage [95]. 

Energy saving is a key issue for continuous sensing because the phone battery drains rapidly [96]. 

For this reason, the main objective of energy saving in continuous sensing is to control the actions  

of sensors and suspend them when necessary. To do this, three different kind of sensors were identified 

in [97]: (a) Basic: sensors that work continuously, for example cell identification sensors; (b) Light-Duty: 

software-based sensors that do not consume too much energy; (c) Heavy-Duty: sensors that are not 

necessarily always on, for example GPS and microphone. 

Energy saving has mainly been studied in theoretically the past, but in [98] a report in the healthcare 

domain was presented which explained the lessons learnt after their system was tested with several 

people for a long time. 

There are several approaches to control energy saving. Among them we review Green Technology 

and specific middlewares for energy saving. In this context energy saving in mobile devices follows 

three directions [99]: (a) Energy profiling which satisfies quality of service and quality of experience; 

(b) Utilization of multiple radio switching to save energy still remains challenging; (c) Effective 
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transmissions: mobile applications and services can include inherent power-saving designs, 

predication- based adaptation by learning the historical pattern, and proxy-based caching. 

The optimization of the sensor duty cycles was studied in [97,100] using different mathematical 

models. A Markov chains model was formulated [100] for minimizing the expected user state 

estimation error, while maintaining an energy consumption budget. The results were numerically 

compared against uniform periodic sampling and they found that the performance gains depend upon 

the user state transition probabilities. Machine learning algorithms performing offline training of the 

inference models were used to observe the value stability provided by the sensors in order to 

disconnect them for some time. During that time interval, last read values were used. The calculation 

of the intervals of time in which to use the last read values of the sensors in order to optimize the 

energy saving is challenging. These theoretical models must be verified with real scenario experiments 

because there are several issues that influence energy consumption. Those issues can be taken  

into account theoretically, for example, the sporadic variation of the wireless channel in the presence 

of obstacles. 

AS sampling frequency versus sensed data accuracy impacts energy savings. This affects human 

activity recognition. For example, [101] showed a sequence of moderately-long lasting activities,  

and many of these commonplace activities can be classified quite accurately, without requiring 

sophisticated features or high sampling rates. 

The main objective of energy saving middleware is to accommodate the energy consumption taking 

into account real world problems and minimizing its energy consumption overhead. In [102], 

Acquisitional Context Engine (ACE) middleware observes the behavior of the participant in different 

physical contexts (home, driving a car, in office...) and correlates sensor values that could define the 

location (context attributes) in which the user could be. It dynamically learned relationships among 

various context attributes and basically used inference caching for opportunistically inferring one 

context attribute and try to do speculative sensing. In [103], Lee et al. designed an energy saving 

middleware applied to close participants avoiding them the necessity to repeat the sensing process over 

a shared geographical area. Group formation, the distribution of sensing planning, and the mobility of 

participants were identified as challenges. An identified barrier was that although the participants were 

closely located (less than 10 m apart) sometimes they did not easily share their resources with other 

unknown people. In our opinion they identified typical problems of Mobile Ad hoc NETworks 

(MANET) that still are not efficiently solved in our days. They also have to treat the problem of service 

disruptions due to Bluetooth channel issues. 

A cloud can be used to balance opportunistic sensing by observing the proximity of participants and 

their trajectory [104]. The authors simulated fair scheduling algorithms of sensing operations among 

the participants. Their objective was to eliminate redundant sensed data and improve energy savings. 

More work must be done to take into account more complex phone user movements and energy wasted 

in the communications with the cloud and close phones. 

Machine learning algorithms can be used to dynamically predict device energy-efficient 

consumption [105]. In this case, authors showed that the best results were obtained using neural 

networks and k-nearest neighbor algorithms. 
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4. Design Aspects of Mobile Sensing Systems 

Fusion, learning, security, privacy and energy saving are normally implemented in the phone and 

they are sometimes coordinated by a sensing server. In this section we will present a holistic view of 

the design of a MSS that can include a WSN, a cloud and a social network. There are theoretical 

research works that consider the optimization of the above issues when a WSN is considered for 

extending the sensing capacity of phones. Other works consider cloud and social network technology. 

We review these works that have not been included in other surveys and present some new ideas of the 

design of practical MSS. 

In Figure 1 we show our MSS schema. The sensor-rich phone executes a sensing mobile App. This 

App is downloaded from an App store, uses the phone’s sensors and can access a WSN using a 

middleware. Moreover, several geographically near phones can communicate locally their sensing 

tasks to improve sensing. The WSN is not part of the MSS. The phone can receive data from  

the coordinator of the WSN, extending the sensing capability. Moreover, the phone can upload sensing 

instructions to the WSN coordinator. The phone reports data to the server application using Web 

services. The server always makes the presentation of the sensing results to the consumer. In case the 

sensing process is organized by an agency, this server will be in charge of distributing sensing tasks 

among the participants (the same applies for crowd MSS). This server can be executed in a machine or 

it can be executed in several geographically distributed machines in order to distribute the computing 

load (configured as a cloud service). In case the consumers were part of a social network they can use 

it to share sensed data, processing and visualization. 

Figure 1. System architecture of a generic MSS. 

 

We propose the following ideas for efficiently implementing sensing, fusion, learning, security, 

privacy and energy saving: 

 Sensing, fusion and learning. They can be implemented in the WSN, the phone App or the 

sensing server. In the first case, the manager node of the WSN is in charge of sending the fused 

data processed by a simple fusion algorithm to the phone App. The App could implement low 

computation fusion and learning algorithms in order to save energy. The server can implement 

complex fusion algorithms. Fusion and learning processes can be distributed efficiently among 

the WSN, the phone App and the server in order to balance communications and computations. 

Web services can be used to report data to an Internet sensing server because it is the most used 

standard in Internet communications in our days. 

Participant

WSN

Consumer

Server
App Store
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 Security and privacy. Current WSNs allow encrypting sensed data. This mitigates the adverse 

effects of the security attacks to the WSN. We have reviewed several methods to implement 

security and privacy in the mobile phone, but some privacy methods are implemented in the 

server. We propose that the WSN implements encryption, and security and privacy processes be 

distributed among the App and the server. This distribution can be done depending on the power 

of the phone and the complexity of security and privacy algorithms. 

 Energy saving. The WSN can reduce the energy consumption of the phone. The server can 

efficiently distribute the sensing tasks among phones to reduce the work to be done by the phone. 

 Local communication among phones. Normally, in opportunistic and participatory sensing the 

phones do not communicate locally. We argue that local communications among phones 

improves the energy saving and privacy by allowing the efficient distribution of sensing tasks. A 

mobile cloud technology can be used where relevant. 

Next we present some research works that justify our proposals and our identified research challenges. 

4.1. Web Services, Cloud and Social Network 

A server can implement fusion and learning based on the sensed data coming from a phone. For 

example, Cui et al. show in [106] how a server can fuse inputs from different phones with the aim of 

guiding the design of energy consumption awareness Apps to preserve the battery of the phone. The 

energy consumption awareness App makes corrective actions to control the rate, and the sampling 

duration of phones’ sensors. The design of accurate activity and context detection algorithms can be 

achieved with several Android phones [107] collecting sensing data sets, in several parts of the World, 

tagged with appropriate ground truth information about the user activity. Context-aware applications 

can be built using cloud services for visualization and reasoning [108]. They provide a set of tips for 

optimizing the communication among the application and the Internet cloud. A context oriented 

programming model proposed that each component, referred to as a Widget, maintain updated 

information about a specific context [109]. Widgets were allocated in a cloud server or in a mobile 

device and communicate with each other using standardized ontology for filtering, fusing and/or 

aggregation of context information. A directory-based service to update information about the overall 

collection of Widgets was used and applications could read the last updated context accessing that 

directory. The main barrier to implementation of that proposal is users’ mistrust, since the privacy is 

not guaranteed if the mobile devices would not be under the owner’s control. 

Web services must coordinate the data gathering (reporting) process from sensors (integrated by a 

middleware) and communication among consumers using social network software. Normally a MSS 

uses particular mechanisms for data gathering. 

Next we present some recent initiatives to guide the implementation of middleware and Web 

services appropriate for efficiently reporting sensed data to a server. 

A Web service named Orienteer which provides client Apps with the orientation of proximate 

Android devices (~1.5 m) was presented in [110]. A client App has to register the mobile device with the 

Web service (a Java application) using the Client’s Google account (cloud service). That cloud service 

must determine which client devices were close to the client that requested the Orienteer service. 
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SensOrchestra [111] relied on a server allocated in Internet to infer location by fusing built in 

sensor data such as audio recordings and images, and a list of nearby phones, coming from mobile 

phones forming a Bluetooth ad hoc network. The server combined the correlated sensor data using a 

classifier fusion model and sent the recognition results back to the phones. 

Web services are often used to report and share sensed data using very simple mechanisms.  

Some ideas about the implementation of MSS using Web services were presented in [112]. They 

reviewed requisites, challenges and applications of Web services. We state that a MSS must adapt its 

communication to the new service architecture of the future Internet [113]. In particular the reporting 

service (description, discovery, access and composition) is the key aspect when designing a MSS.  

The sensed data must be well described using an ontology or simply an eXtensible Markup Language 

(XML) description. Several Web services have been designed with this purpose in mind. For example 

REpresentational State Transfer (REST) Web service addresses only basic distributed interaction/ 

coordination by using the standard Web mechanism: any entity on the Web is a resource that has a 

Uniform Resource Identification (URI) and can be accessed using the standard HiperText Transfer 

Protocol (HTTP) operations. Because REST' interface is universal, it can be used by any Web 

application. It is very simple to program and it could be used by MSS. 

Heterogeneity is a challenging topic in sensed data discovery and access. The coordination of  

the transparent access to heterogeneous data from different sensors using a middleware is presented  

in [114]. That middleware runs on the WSN and the phone (Android 2.3) implementing answers  

to application requests and monitoring complex data requests of different applications. The sensor 

manager finds the minimal set of sensors to provide the answer to application requests. The resource 

coordinator mediates among sensors when concurrent requests are issued to them. The application 

broker receives the requests from the applications. 

Web services must also facilitate the composition of the sensed data. This composition ranges from the 

simple data integration to the complex computation of the semantic associated to users and sensors [115]. 

When the Web service allows complex consumer’s queries to receive sensed data, the best access 

service to sensed data will be provided. These Web services must facilitate an orchestration of 

different sensing applications. The best form to do this is using ontology to decouple the complex 

queries from the low level details of the underlying sensors [116]. A step beyond this research 

direction for a people-centric participatory MSS (healthcare) is [117]. It considered a middleware to 

manage a Wireless Body Area sensor Network (WBAN). This MSS reported sensed data using RESTful 

which provided interoperability of WBANs with virtual world environments, social networks and other 

Web 2.0 applications. That middleware used proxies supporting mobility and localization of Bluetooth 

devices in the WBAN. 

Web services must allow interoperation and sensed data reuse among different applications in 

crowd MSS when a lot of heterogeneous and independent sensing Apps that re-use sensed data are 

considered [6]. An additional objective is to implement an intelligent composition system to allow 

energy saving avoiding rapid phone battery drain. Interoperation, data reuse and energy saving can be 

implemented in a middleware [118]. Those authors do not specify the technology to be used  

to build that middleware. We think that REST is an appropriate Web service to program this 

middleware. Moreover, mashups can also be used. In a crowd MSS a requester can recruit phone users 

(or participants) to provide sensor data to be used towards a specific goal or as part of a social or 
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technical experiment [7]. Any non expert requester can start (from his/her phone) a sensing campaign 

recruiting participants using a simple App in which they only must fill an XML file. The authors focus 

their work on the design of a platform for managing this kind of Crowd MSS. Once some participants 

have been registered (using for example www.mturk.com/mturk/welcome), this XML file is sent to a 

cloud server which processes it. The cloud server executes batch processes for sensing campaign 

instructions to the participants. Finally, the cloud server communicates the results to the requester. 

Misco [119] was a mobile cloud composed by peer mobile devices that run mobile sensing  

and context aware applications and used REST. A mobile cloud computing architecture, like  

mCloud [120], can run resource-intensive applications. The sensing fusion computations were done in 

a single mobile device or distributed among collections of cooperating phones, tablets and other high 

computing mobile devices. Some reasons to do the computations locally were communications energy 

saving using WiFi instead of 3G, and the reduction of the complexity of Internet clouds. 

Privacy can be improved if participants will upload sensed data sending them to their friends in a 

social network instead of sending sensed data directly to the sensing server [88]. These friends could 

randomly choose another friend. Hopping goes on until some threshold defined by the participant is 

reached, and then the last user uploads the data to the server. 

4.2. Local Phones’ Communications and Outer WSN 

As shown in Section 2, mobile operating systems or other frameworks allow accessing the phone 

sensors. However, managing an external WSN is difficult, but this allows energy savings if an efficient 

distribution of sensing tasks among phones and WSN is done [121]. An introduction to the design of 

software platforms to access external WSNs is provided in [122]. Next, we present some research 

issues classified by sensing domains. 

In the healthcare domain, a J2ME platform to manage a service that was aware of users’ conditions 

such as heartbeat, posture, and movement through monitors of physiological signals (for example, 

electrocardiograph, thermometer, and 3-axis AS) and environmental conditions (for example room 

temperatures), by communicating with environmental sensors was presented in [122]. Its authors also 

presented several research issues: (a) communicating to WSN via a mobile sensor router attached to a 

user’s phone; (b) analyzing the sensed data derived from networks by cooperating with sensor middleware 

on a remote server to capture someone’s contexts and (c) providing context-aware services for mobile 

users. Amulet [123] collected users’ health information and forwarded it to a health record system in a 

secure way. It enabled continuous sensing and actuation, requiring a wireless gateway (phone or AP) only 

for occasional connectivity from the WSN to back-end servers and other off-body network resources. 

Another research issue is how to obtain the best partitioning of the sensing geographical field to 

allocate the WSN nodes and let MSS participants use a Publish/Subscribe architecture to manage 

sensor events. In [115], whenever a subscribed event is detected by the WSN, notifications with 

relevant data were disseminated to the corresponding mobile participants. They simulated three kinds 

of nodes: brokers (that had a wired connection), sensors and phones. Any wireless sensor or phone can 

join the network if they can communicate with any of the brokers. The role of the brokers was to 

maintain the information and process the subscribers’ requests to route event notifications and handle 

the subscribers’ handover. This is an initial work proposal, but more complex scenarios of coverage 
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loss must be included. Additional research issues of the partitioning problem are access to the WSN of 

several mobile users simultaneously and publish the events in a social network [124]. The authors 

considered that each mobile participant accesses a concrete sensor and this sensor must receive the 

information of its vicinity. The approach presented in this paper relies on a simple simulated algorithm 

to let a sensor network self-organize a virtual partitioning in correspondence to spatial regions 

characterized by similar sensing patterns, and to let distributed aggregation of sensed data take place 

on a per-region basis. This work discusses a set of problems in the connection between phones and the 

WSN in order to build a large scale geographical field of sensing. Additional complications of the 

above scenarios were presented in [125]: mobile participants accessed the WSN disseminated in 

remote areas where only opportunistic communications can be used. For this reason, it is necessary to 

implement algorithms that maximize parameters like information utility locality, time-to-live, mobility 

and user interests. These authors presented theoretical (and simulated) results for optimizing those 

parameters including the novelty that they allowed the phones to upload data into the sensors in  

order to let other participants download them. The challenge of data dissemination also appears in 

opportunistic IoT: That is, the interchange of data between things connected to Internet and phones or 

vice versa [126]. Opportunistic MSS and communication appear due to the coordination among phones 

and things are dynamic and participants and consumers of information are never being connected at the 

same time to the same part of the network. For this reason, data stored in things should be moved and 

replicated in the network. This work relies on the consideration of the most realistic scenarios. 

Mobile phones can locally communicate information to infer their localization by fusing position 

information received from the neighbors with their own position in order to obtain new localization 

estimation without relying on GPS [127]. The overall consumption decreases with this collaborative 

GPS localization scheme. 

Table 3 summarizes the characteristics of the reviewed systems attending to a set of parameters. We 

name the system, and we write in the corresponding column whether it uses middleware, social 

network publication, fusion, cloud, security or energy saving techniques or not. We also name the 

types of web service and middleware in case we name it. 

Table 3. Brief summary of the reviewed MSS characteristics. 

System Middleware Web Service Social Network Fusion  Cloud Security Energy Saving 

[42] Yes No No Yes No No No 

[123] (4) Yes Yes No Yes No Yes No 

[32] No Yes (1) No Yes No Yes Yes  

[41] Yes (2) Yes No Yes No Yes No 

[26] No No No Yes No No No (4) 

[40] Yes (3) No No Yes No No No 

[110]  Yes (5) No Yes Yes No (4) No (4) 

[34] No No No Yes Yes (6) No Yes 

[121] Yes No No Yes No No Yes 

[38] No No No Yes No No No 
(1) The services of the proxy layer are required to provide a REST interface and assume XML creation and 

parsing responsibilities; (2) Object oriented middleware for distributed systems; (3) Web server between the 

client and two databases: 3D Map and Information Database; (4) In progress; (5) Orienteer web-service;  
(6) The bus arrival time prediction service can be implemented in a computing cloud. 
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4.3. Social Aspects 

We consider two basic stakeholders: the participants and the consumer of the sensed data. 

Participant and consumer can be the same person (prosumer). The participant sometimes acts 

philanthropically (opportunistic MSS) or belongs to an agency that organizes the sensing campaign  

(a kind of participatory MSS), or is organized by a simple requester (a kind of crowd MSS). In the last 

two cases there is another kind of stakeholder that is the responsible to organize the sensing campaign. 

Nowadays, a lot of organizations are dedicated to sense data for scientific projects. The idea of [128] 

was to allow a lot of people to register data in a sever eliminating the inconveniences of complex 

mobile user interfaces. This is a case of crowd sourcing applications with the help of the user that 

manually registers data in a server eliminating the need to install complex mobile sensing Apps to read 

sensed values and publish them in the server. The relation among the above stakeholders is 

anonymous, but in some cases there can be other kind of relations, for example a social relation among 

the participants and the responsible of the agency. Whatever the relationship between stakeholders is, 

the really important issue is that the participatory MSS must achieve a good acceptance among 

participants and consumers. 

A current important social research challenge in participatory MSS is to study the barriers bound by 

mobile users when using those systems. Several barriers are [129]: trust, privacy, popularity, difficulty, 

embarrassment, overload, usefulness, personalization and danger. There are reasons for the adoption of 

participatory MSS, e.g., when participants find value in comparing their behavior with others [130], 

typically not from within their close social circle. The behavior of the users can be discovered using a 

quantitative questionnaire [129], analyzing mobile data to extract phone usage categories [131] and 

letting the participants to compare their behavior with others [130]. In general the above works state 

that privacy is the most important social barrier to MSS, and [47] stated that it therefore remains 

perhaps the most critical obstacle. 

4.4. Research Challenges 

We have presented ideas for designing a MSS. But some of the reviewed works are theoretical or 

are in their first stage. For that reason, we now present some research challenges: 

 More works in the line of [129–131] are needed to better understand other barriers to mobile 

sensing aside from privacy. 

 Simulation of different scenarios was used in [115,124,125]. Experimenting with real scenarios 

will reveal new unexpected problems with the wireless channel. 

 The theoretical work in [115] was a work that was applied to a concrete scenario. Works like this 

could be put into practice to show real solutions. 

 According to [116]: (a) the vast majority of MSS deals with non audio/visual data and do not 

provide capabilities for searching and processing multimedia data. More effort must be done in 

order to support audio/visual information; (b) search engines should support ambient intelligent 

synthesis in real time for environment-centric MSS; (c) these engines could support the 

dynamism of sensed data and must consider the sensed data stored in social networks. 
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 A recently proposed protocol for device to device communication is the Constrained Application 

Protocol (CoAP) [132,133]. The evolution of this draft should be taken into account for the 

implementation of future MSS when communicating with a WSN. 

 Security and privacy are challenging research issues in MSS. A practical implementation of [88] 

should consider the problems of hopping communications among the phones due to the 

interruption of wireless channels in multi-hopping networks. Moreover, in our days hopping 

direct communications among commercial phones are only allowed in a few phone brands  

(and models). 

5. Conclusions 

The aim of this paper is to present a holistic vision of mobile sensing systems. We have reviewed a 

large amount of research works and sensing applications and analyzed design issues and key aspects  

to design mobile sensing systems. Moreover, we have summarized the observed trends in those 

research works. 

Two initial conclusions are: the majority of sensing applications are designed for Android and  

very few research works used social networks to exploit the relationship of friendship among the 

participants of a sensing campaign. 

We have reviewed the variety of sensors and phone software for managing sensors. External 

sensors usually accessed by phones are even more varied. We showed that one inconvenient for MSS 

is that the sensors and software are specific to each phone, but the software to manage sensors must be 

interoperable and allow multitasking to produce efficient interoperable mobile sensing systems. 

Despite several initiatives such as JSR, Khronos and PhoneGap, this is not currently a reality. 

Perhaps privacy is the most important social barrier that limits the acceptation of mobile sensing. 

Mathematical fusion models have been formulated to consider sensing data that are not correlated, but 

these methods must be implemented in practical mobile sensing systems. For example, currently some 

phones include a trusted computing platform that must be taken into account for security implementation. 

Energy saving is a critical technical barrier. Theoretical works must be implemented in practical 

mobile sensing systems. Middleware also must be developed to show its power in practical mobile 

sensing systems. Utilization of multiple radios switching could help phones to save energy. For 

participatory and opportunistic mobile sensing systems an economic incentive must be considered to 

stimulate the participants. 

The efficient implementation of mobile sensing systems is hard. We finally present some learnings: 

 Sensor fusion (producing software sensors) is still in its infancy. Learning must be used to 

empower mobile sensing systems. 

 Healthcare external sensors may be included in the long term in phones. 

 Communications between phones and wireless sensor networks (or single external sensors or 

other phones) must overcome the present limitations of Bluetooth, WiFi Direct or WiFi 

Tethering technologies to form efficient multihop WiFi (or other technology) communication 

networks. Research trends on machine to machine communications could improve the current ad 

hoc communication among phones. 
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 The middleware to access sensors in the wireless sensor network may fuse different physical 

sensors values in order to provide high level semantic information for context awareness 

applications. It must be also be cross-platform and manage multitasking applications in the phone. 

 Consumers should be enabled to subscribe to sensing event campaigns in order to receive alarms 

when appropriate. 
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