
A Rewriting-based, Parameterized
Exploration Scheme for the

Dynamic Analysis of
Complex Software Systems

Ph.D. Thesis

Presented by:

Francisco Frechina

Supervisors:

Maŕıa Alpuente
Demis Ballis

Valencia, October 2014

INFORMÁTICOS Y COMPUTACIÓN
DEPARTAMENTO DE SISTEMAS

A Rewriting-based, Parameterized
Exploration Scheme for the

Dynamic Analysis of
Complex Software Systems

Ph.D. Thesis

A dissertation submitted by Francisco Frechina in fulfillment of the re-
quirements for the degree of Doctor of Philosophy in Computer Science
with International Mention at the Universitat Politècnica de València.

Valencia, October 2014

Presented by

Francisco Frechina Navarro

Supervisors

Maŕıa Alpuente Frasnedo Demis Ballis
Universitat Politècnica de València Università di Udine

External evaluators

Marco Comini Università di Udine
Francisco Durán Universidad de Málaga
Luigi Liquori INRIA Sophia Antipolis Méditerranée

Jury

Isidro Ramos Universitat Politècnica de València (President)
Rafael Caballero Universidad Complutense de Madrid (Secretary)
Luigi Liquori INRIA Sophia Antipolis Méditerranée (Vocal)

This work has been partially supported by the Spanish MEC project ref. TIN2010-21062-C02-02,
by Generalitat Valenciana ref. PROMETEO2011/052, and by FPU-ME grant AP2010-5681.

If you live each day as if it was your last, someday you’ll most certainly be right.
Si vives cada d́ıa como si fuera el último, algún d́ıa estarás en lo cierto.

Steve Jobs

Acknowledgements

Many years ago an old high school teacher asked me a question that
made me think: Why do what someone else has done before? Since
then, before doing something, I always first search on Google to see if I
can take advantage, even partially, of what someone else has done before
in order to avoid redoing it. To do otherwise would be a waste of time.

This led me (as could not be otherwise) to google ‘thesis acknowl-
edgments ’. I read several paragraphs about giving thanks, and I soon
realized that each one of them had a great personal touch. I kept look-
ing for inspiration and did not give up until I had found a tutorial that
said —writing thesis acknowledgments is as easy as remembering all of
the sacrifices that you have made during your thesis time—. This is the
point where I stopped looking. Sacrifices? Hardly! I am so privileged for
having been surrounded by exciting people who have made my time as a
Ph.D. student one of the best times of my life.

The entrepreneurial side of my personality prevents me from doing
what the majority of people do, which is why this section of my thesis
is really complicated for me. Some people decide to write a long list of
names, while others either declare their love to someone or thank God.
The truth is that if I had to make a list of all of the people I should
thank for their influence on my life throughout my scientific career, I am
sure I would forget more than one (not because the list is very extensive,
but rather because sometimes I am absent-minded about these things).
But in all honesty, I am sure that none of those people will need to see
their names here to know that they have been very important to me and
that I will always be deeply grateful for sharing all the great moments
we have had in recent years. They all catapulted my enthusiasm during
my career, and even though my timidity does not allow me to make a
declaration of love, I must admit that the appearance of the love of my
life, the support of my family and my great friends have all helped me
to maintain the enthusiasm to complete my doctoral thesis.

Though common as it may be, I feel impelled to dedicate some very
special words to Maŕıa Alpuente and Demis Ballis. As my thesis ad-

x

visors, they have oriented, inspired, and supported me in my scientific
endeavors with an attention and devotion that have far exceeded any
of my expectations. Being able to attend scientific conferences during
my Ph.D. period allowed me to meet researchers from around the world,
many of whom complained about lack of attention from their advisors. In
this regard, I have been very lucky. I can never thank Maŕıa and Demis
enough for their continued and dedicated corrections and revisions of my
work all of these years. Furthermore, I must not forget to mention my
deep appreciation for the other co-authors of my latest works, Daniel
Romero and Julia Sapiña, without whose collaboration we would never
have achieved the level of quality that we have definitely reached. I must
also give honorable mention to all of my colleagues from ELP, especially
each of my (former) lab partners. Even though we still have not gotten
a whiteboard, we do have a great sense of humor that has given us so
many unforgettable moments.

I cannot conclude this part of my thesis without paraphrasing one of
the people who has most inspired me throughout my life.

— Do you want to sell smoke for the rest of your life? Or do you
want to change the world?

Fran
Valencia, October 2014

Abstract

Today’s software systems are complex artifacts whose behavior is often
extremely difficult to understand. This fact has led to the development of
sophisticated formal methodologies for program analysis, comprehension,
and debugging.

Trace analysis is concerned with techniques that allow execution traces
to be dynamically searched for specific contents. The search can be car-
ried out forward or backward. While forward analysis results in a form
of impact analysis that identifies the scope and potential consequences of
changing the program input, backward analysis allows provenance anal-
ysis to be performed; i.e., it shows how (parts of) a program output
depends on (parts of) its input and helps estimate which input data
need to be modified to accomplish a change in the outcome.

In this thesis, we investigate a number of trace analysis methodologies
that are suitable for analyzing complex, textually-large execution traces
in rewriting logic (RWL), which is a logical and semantic framework
particularly suitable for formalizing highly concurrent, complex systems.

The first part of the thesis is devoted to develop an incremental,
slicing-based backward trace analysis technique that achieves huge re-
ductions in the size of the trace. This methodology favors better analy-
sis and debugging since most tedious and irrelevant inspections that are
routinely performed during diagnosis and bug localization can be elim-
inated automatically. This technique is illustrated by means of several
examples that we execute by using the iJulienne system, an interac-
tive trace slicer that we developed which implements the backward trace
analysis technique.

The second part of the thesis formalizes a rich and highly dynamic,
parameterized scheme for exploring rewriting logic computations. The
scheme implements a generic animation algorithm that allows the nonde-
terministic execution of a given conditional rewrite theory to be followed
up by using different modalities, including incremental stepping and au-
tomated forward/backward slicing, which drastically reduce the size and
complexity of the traces under examination and allow users to evaluate

xiv

the effects of a given statement or instruction in isolation, track input
change impact, and gain insight into program behavior (or misbehavior).
Moreover, cutting down the execution trace can expose opportunities for
program optimizations. With this methodology, an analyst can browse,
slice, filter, or search the traces as they come to life during the program
execution. The generic trace analysis framework has been implemented
into the Anima system and we report a thorough experimental evalu-
ation that we conducted which assesses the usefulness of the proposed
approach.

Resumen

Los sistemas software actuales son artefactos complejos cuyo compor-
tamiento es a menudo extremadamente dif́ıcil de entender. Este hecho
ha llevado al desarrollo de metodoloǵıas formales muy sofisticadas para
el análisis, comprensión y depuración de programas.

El análisis de trazas de ejecución consiste en la búsqueda dinámica
de contenidos espećıficos dentro de las trazas de ejecución de un cierto
programa. La búsqueda puede llevarse a cabo hacia adelante o hacia
atrás. Si bien el análisis hacia adelante se traduce en una forma de
análisis de impacto que identifica el alcance y las posibles consecuencias
de los cambios en la entrada del programa, el análisis hacia atrás permite
llevar a cabo un rastreo de la procedencia; es decir, muestra cómo (partes
de) la salida del programa depende de (partes de) su entrada y ayuda a
estimar qué dato de la entrada es necesario modificar para llevar a cabo
un cambio en el resultado.

En esta tesis se investiga una serie de metodoloǵıas de análisis de
trazas que son especialmente adecuadas para el análisis de trazas de eje-
cución largas y complejas en la lógica de reescritura, que es un marco
lógico y semántico especialmente adecuado para la formalización de sis-
temas altamente concurrentes.

La primera parte de la tesis se centra en desarrollar una técnica
de análisis de trazas hacia atrás que alcanza enormes reducciones en
el tamaño de la traza. Esta metodoloǵıa se basa en la fragmentación
(slicing) incremental y favorece un mejor análisis y depuración ya que
la mayoŕıa de las inspecciones, tediosas e irrelevantes, que se realizan
rutinariamente en el diagnóstico y la localización de errores se pueden
eliminar de forma automática. Esta técnica se ilustra por medio de varios
ejemplos que ejecutamos mediante el sistema iJulienne, una herramienta
interactiva de fragmentación que hemos desarrollado y que implementa
la técnica de análisis de trazas hacia atrás.

En la segunda parte de la tesis se formaliza un sistema paramétrico,
flexible y dinámico, para la exploración de computaciones en la lógica de
reescritura. El esquema implementa un algoritmo de animación genérico

xvi

que permite la ejecución indeterminista de una teoŕıa de reescritura
condicional dada y que puede ser objeto de seguimiento mediante el uso
de diferentes modalidades, incluyendo una ejecución gradual paso a paso
y una fragmentación automática hacia adelante (y/o hacia atrás), lo que
reduce drásticamente el tamaño y la complejidad de las trazas bajo in-
spección y permite a los usuarios evaluar de forma aislada los efectos
de una declaración o instrucción dada, el seguimiento de los efectos del
cambio de la entrada, y obtener información sobre el comportamiento del
programa (o mala conducta del mismo). Por otra parte, la fragmentación
de la traza de ejecución puede identificar nuevas oportunidades de opti-
mización del programa. Con esta metodoloǵıa, un analista puede nave-
gar, fragmentar, filtrar o buscar en la traza durante la ejecución del
programa. El marco de análisis de trazas genérico se ha implementado
en el sistema Anima y describimos una profunda evaluación experimental
del marco que demuestra la utilidad del enfoque propuesto.

Resum

Els sistemes programari de hui en dia són artefactes complexos el com-
portament dels quals és sovint extremadament dif́ıcil d’entendre. Este
fet ha portat al desenrotllament de sofisticades metodologies formals per
a l’anàlisi, comprensió i depuració de programes.

L’anàlisi de traces d’execució consistix en tècniques que permeten bus-
car dinàmicament contingut espećıfic en les traces d’execució d’un cert
programa. La busca pot dur-se a terme cap avant o cap arrere. Si bé
l’anàlisi cap avant es tradüıx en una forma d’anàlisi sobre l’impacte que
identifica l’abast i les possibles conseqüències dels canvis en l’entrada
del programa, l’anàlisi cap arrere permet dur a terme l’anàlisi de la
procedència; és a dir, mostra com (parts de) una eixida del programa
depén de (parts de) la seua entrada i ajuda a estimar quines dades
d’entrada són necessaris modificar per a dur a terme un canvi en el re-
sultat.

En esta tesi, s’investiga una sèrie de metodologies d’anàlisi de traces
que són especialment adequats per a l’anàlisi de traces d’execució llargues
i complexes en la lògica de reescriptura (RWL) , que és un marc lògic
i semàntic especialment adequat per a la formalització de sistemes alta-
ment concurrents i complexos.

La primera part de la tesi se centra a desenrotllar una tècnica (basada
en la fragmentació incremental) d’anàlisi de traces cap arrere que acon-
seguix enormes reduccions en la grandària de la traça. Esta metodologia
afavorix una millor anàlisi i depuració ja que la majoria de les inspeccions
tedioses i irrellevants que es realitzen rutinàriament en el diagnòstic i la
localització d’errors es poden eliminar de forma automàtica. Esta tècnica
s’il·lustra per mitjà de diversos exemples que executem per mitjà del
sistema iJulienne, una ferramenta interactiva de fragmentació que hem
desenrotllat i que implementa la tècnica d’anàlisi de traces cap arrere.

En la segona part de la tesi es formalitza un sistema paramètric,
ric i molt dinàmic, per a l’exploració de computacions en lògica de ree-
scriptura. L’esquema implementa un algoritme d’animació genèric que
permet l’execució indeterminista d’una donada teoria de reescriptura

xviii

condicional que serà objecte de seguiment per mitjà de l’ús de diferents
modalitats, incloent una execució gradual pas a pas i una fragmentació
automàtic cap avant i cap arrere, la qual cosa redüıx dràsticament la
grandària i la complexitat de les traces baix inspecció i permeten als
usuaris avaluar els efectes d’una donada declaració o instrucció de forma
äıllada, el seguiment dels efectes del canvi de l’entrada, i obtindre infor-
mació sobre el comportament del programa (o mala conducta). D’altra
banda, la fragmentació de la traça d’execució pot exposar les oportu-
nitats d’optimització del programa. Amb esta metodologia, un analista
pot navegar, fragmentar, filtrar o buscar en la traça durant l’execució del
programa. El marc d’anàlisi de traces genèrica s’ha implementat en el
sistema Anima i una profunda avaluació experimental reporta la utilitat
de l’enfocament proposat.

Contents

Introduction 1
Contributions of the Thesis 3

Part I – Backward Trace Analysis 3

Part II – Forward Trace Analysis 5

Related Work . 7

0 Preliminaries 11

0.1 The Term-language of Maude 11

0.2 Program Equations and Rules 13

0.3 Conditional Rewrite Theories 14

0.4 Rewriting in Conditional Rewrite Theories 18

0.5 Instrumented Execution Traces 21

0.6 Term Slices and their Concretizations 25

0.7 (Instrumented) Trace Slices and their Concretizations . . 27

0.8 Meaningful Descendants and Ascendants 28

I Backward Trace Analysis 31

1 Backward Trace Slicing for Conditional Rewrite Theories 33

1.1 Backward Slicing for Execution Traces 34

1.2 The Function slice-step 39

1.3 Correctness of Backward Trace Slicing 45

2 The iJulienne System 51

2.1 iJulienne at Work . 53

2.1.1 Debugging Maude Programs with iJulienne . . 53

2.1.2 Trace Querying with iJulienne 61

2.1.3 Dynamic Program Slicing 68

2.2 Experimental Evaluation 70

xxii Contents

II Forward Trace Analysis 73

3 Exploring Conditional Rewriting Logic Computations 75
3.1 The Generic Exploration Scheme 76

3.1.1 Inspecting the Instrumented Traces 77
3.1.2 Exploring the Instrumented Computation Tree

Slices . 79

4 Exploration Modalities 83
4.1 Interactive Stepper . 83
4.2 Partial Stepper . 84
4.3 Stepper and Partial Stepper Correctness 87
4.4 Forward Trace Slicer . 90
4.5 Forward Trace Slicer Correctness 98
4.6 Backward Trace Slicing as an Instance of the

Generic Scheme . 101

5 The Anima system 105
5.1 The Anima Exploration Tool 105
5.2 Implementation of the Tool 111

Conclusions 117

Bibliography 121

A Maude Specification of the Experimental Evaluation
Examples 133

List of Figures

1 Maude specification of the maze game 16

2 The 5× 5 grid encoded in MAZE 17

3 Meaningful descendants of a rewrite step s
r,σ,w→K t 28

1.1 The mod operator . 34

1.2 Maude specification of a distributed banking system . . . 38

1.3 Backward step slicing function 39

1.4 Condition processing function 41

2.1 iJulienne architecture 52

2.2 Faulty Maude specification of a distributed banking
system . 54

2.3 iJulienne output for the trace T bank w.r.t. the slicing
criterion ac(• ,-11) . 55

2.4 BLOCKS-WORLD faulty Maude specification 57

2.5 Program slice computed w.r.t. the slicing criterion empty

& empty . 58

2.6 Navigation through the trace slice of the Blocks World
example . 60

2.7 Navigation though the refined trace slice of the Blocks
World example . 60

2.8 Program slice computed w.r.t. the slicing criterion
hold(•) . 61

2.9 Maude specification of the minmax function 63

2.10 iJulienne output for the trace T •minmax w.r.t. the slicing
criterion automatically inferred in the query PAIR(?,) . 64

2.11 Loading the webmail execution trace 65

2.12 Querying the webmail trace w.r.t. the query
B(idA, ,?, , , , , ,) 66

2.13 Webmail trace slice after querying the trace 67

2.14 MINMAX program slice computed w.r.t. the query
PAIR(?,) . 69

xxiv List of Figures

3.1 Computation tree . 76
3.2 The inference rule of the transition system (Conf ,=⇒) . 78
3.3 The one-step expand function 80
3.4 The interactive explore function 81

4.1 Inspection of the state s0 w.r.t. Istep 84
4.2 Computation tree slice fragment for s•0 w.r.t. Ipstep . . . 86
4.3 Inspection function that models the forward slicing of a

conditional rewrite step 91
4.4 The condition processing function 92
4.5 Computation tree slice fragment for s•0 w.r.t. Islice 97

5.1 Anima architecture . 106
5.2 Anima at work . 107
5.3 Anima search mechanism 108
5.4 Anima trace information 109
5.5 Inspection of a condition with Anima 111
5.6 Benchmark problem for the metaReducePath command . 116

Introduction

The analysis of execution traces plays an important role in many pro-
gram analysis techniques. Software systems commonly generate large
and complex execution traces, whose analysis (or even their simple in-
spection) is extremely time-consuming and, in some cases, unfeasible
to perform without adequate tool support. Existing tools for analyzing
large execution traces usually rely on a set of visualization techniques
that facilitate the exploration of the trace content. Common capabil-
ities of these tools include the option to simplify the traces by hiding
some specific contents and to step the program execution while search-
ing for particular components. Nearly all modern IDEs, debuggers, and
testing tools currently support this mode of execution optionally, where
animation or stepping is typically achieved either by forcing execution
breakpoints, instruction simulation, or code instrumentation.

Rewriting Logic is a very general logical and semantic framework
that is particularly suitable for formalizing highly concurrent, complex
systems (e.g., biological systems [BBF09] and Web systems [ABFR06,
ABR09, ABER10, ABF+13, ABR14]). Rewriting Logic is efficiently im-
plemented in the high-performance system Maude [CDE+11]. Roughly
speaking, a rewriting logic theory seamlessly combines a term rewrit-
ing system (TRS) with an equational theory that may include equations
and axioms (i.e., algebraic laws such as commutativity, associativity, and
unity) so that rewrite steps are performed modulo the equations and ax-
ioms. Rewriting logic-based tools, like the Maude-NPA protocol analyzer
[EMM06], the Maude LTLR model checker [BM12], the Java PathEx-
plorer runtime verification tool [HR01], and the WifiX tool for repairing
XML repositories [ABF+13] (just to mention a few [MOPV12]), are used
in the analysis and verification of programs, systems, documents and ap-
plications wherein the system states are represented as algebraic entities
(elements of an algebraic data type that is specified by the equational
theory), while the system computations are modeled via rewrite rules,
which describe transitions between states and are performed modulo the
equations and axioms. The execution traces produced by these tools are

2 Introduction

usually very complex and are therefore not amenable to manual inspec-
tion. However, not all the information that is in the trace is needed to
analyze a given piece of information in a target state and the trace can be
simplified by focusing on some particular contents, which favors better
analysis and monitoring [CR09]. Trace slicing is an automated trans-
formation technique that simplifies the computation trace by removing
some irrelevant components that we do not want to observe. Trace slic-
ing is helpful for program debugging, improvement, and understanding
[ABE+11, FR01]. For instance, consider the following rules that define in
Maude (a part of) the natural semantics of a simple imperative language:

1) crl <while B do I, St> => <skip, St>

if <B, St> => false /\ isCommand(I)

2) rl <skip, St> => St

3) rl <false, St> => false

Then, in the two-step execution trace <while false do X := X + 1,

{}> → <skip, {}>→ {}, we can observe that the statement X := X +

1 is not relevant to compute the output {}. Therefore, the trace could
be simplified by hiding or removing X := X + 1.

Debugging and optimization techniques based on RWL have received
growing attention [ABBF10, ABE+11, MOM02, RVCMO09, RVMO10b],
but to the best of our knowledge, no trace analysis tool for conditional
RWL theories has been formally developed to date. To debug Maude
programs, Maude has a basic tracing facility that allows the user to
advance through the program execution stepwisely with the possibility
to set break points, and lets him/her select the statements to be traced,
except for the application of algebraic axioms that are not under user
control and are never recorded explicitly in the trace. All rewrite steps
that are obtained by applying the equations or rules for the selected
function symbols are shown in the output trace so that the only way to
simplify the displayed view of the trace is by manually fixing the traceable
equations or rules. Thus, the trace is typically huge and incomplete, and
when the user detects an erroneous intermediate result, it is difficult to
determine where the incorrect inference started. Moreover, this trace
is either directly displayed or written to a file (in both cases, in plain
text format) thus only being amenable for manual inspection by the

Introduction 3

user. This is in contrast with the enriched traces described in this work,
which are complete (all execution steps are recorded by default) and
can be automatically simplified in order to facilitate a specific analysis.
Also, the trace can be directly displayed or delivered in its meta-level
representation, which is very useful for further automated manipulation.

Contributions of the Thesis

This thesis is organized in two parts. Part I presents the first slicing-
based, backward trace analysis methodology for conditional RWL com-
putations [ABFR12a, ABFR12b], together with an incremental version of
the technique and a practical tool that implements the method [ABFS13b].
Our proposal for trace slicing is aimed at endowing the RWL framework
with a new instrument that can be used to analyze Maude execution
traces and improve Maude programs. Part II defines a semantics-driven,
parameterized trace exploration technique for conditional RWL compu-
tations [ABFS13a, ABFS15, ABFS14] that supports both, backward and
forward analysis of the computation trace.

The proposed methodologies are fully general and can be applied for
debugging as well as for optimizing any RWL-based tool that produces
or manipulates RWL computations (i.e., Maude execution traces).

In the following, we briefly summarize the main contributions of the
two parts of this thesis.

Part I – Backward Trace Analysis

This part offers an up-to-date, comprehensive, and uniform presenta-
tion with examples of the backward trace analysis methodology based on
the trace slicing technique developed in [ABE+11, ABER11, ABFR12a,
ABFR12b] and a totally redesigned implementation of the conditional
trace slicer iJulienne [ABFS13b].

The contributions of Part I can be summarized as follows:

1. We describe a novel slicing technique for Maude programs that can
be used to drastically reduce complex, textually-large system com-
putations w.r.t. a user-defined slicing criterion that selects those

4 Introduction

data that we want to track back from a given point. The distin-
guishing features of our technique are as follows:

(a) The technique copes with the most prominent RWL features,
including algebraic axioms such as associativity, commutativ-
ity, and unity.

(b) The technique also copes with the rich variety of conditions
that can occur in Maude theories (i.e., equational conditions
s = t, matching conditions p := t, and rewrite expressions
t⇒ p) by taking into account the precise way in which Maude
mechanizes the conditional rewriting process so that all such
rewrite steps are revisited backwards in an instrumented, fine-
grained way.

(c) Unlike previous backward tracing approaches, which are based
on a costly, dynamic labeling procedure [ABER11, TeR03],
here a less expensive, incremental technique of matching re-
finement based on unification is used that allows the relevant
data to be traced back.

2. We have developed the iJulienne system, which is the first slicing-
based, incremental trace analysis tool that can be used to analyze
execution traces of RWL-based programs and tools. iJulienne
supersedes and greatly improves the preliminary system presented
in [ABFR12b]. The original algorithm was developed under the
assumption that the user examines and slices the entire trace w.r.t.
a static slicing criterion, in a non-incremental way. In contrast, the
slicing criterion in iJulienne can be dynamically revised, in order
to achieve further simplifications. The main features provided by
the iJulienne trace analyzer are listed below.

(a) iJulienne is equipped with an incremental backward trace
slicing algorithm that supports incremental refinements of the
trace slice and achieves huge reductions in the size of the trace.
Starting from a Maude execution trace T , a slicing criterion
S can be attached to any state of the trace and the computed
trace slice T • can be repeatedly refined by applying backward
trace slicing w.r.t. increasingly restrictive versions of S.

Introduction 5

(b) The system supports a cogent form of dynamic program slic-
ing [KL88]. More specifically, a Maude program M and a
trace slice T • for M, iJulienne is able to infer a fragment
ofM (i.e., the program slice) that is needed to reproduce T •.
This is done by uncovering statement dependence among com-
putationally related parts of the program via backward trace
slicing. This feature greatly facilitates the debugging of faulty
Maude programs, since the user can generate a sequence of
increasingly smaller program slices that gradually shrinks the
area that contains the buggy piece of code.

(c) iJulienne is endowed with a powerful and intuitive Web user
interface that allows the slicing criteria to be easily defined by
either highlighting the chosen target symbols or by applying a
user-defined filtering pattern. A browsing facility is also pro-
vided that enables forward and backward navigation through
the trace (and the trace slice) and allows the user to examine
all the information that is involved within each state transi-
tion (and its corresponding sliced counterpart) for debugging
and comprehension purposes. The user interface can be tuned
to provide distinct abstract views of the trace that aim at sup-
porting different program comprehension levels. For instance,
this includes hiding or displaying the auxiliary transformations
that are used by Maude to handle associativity, commutativ-
ity, and unity attributes.

3. To give the reader a better feeling of the generality and wide appli-
cation range of our conditional slicing approach, we describe some
applications of iJulienne to debugging, analysis and improvement
of complex systems (e.g., biological systems, web systems, and pro-
tocol specifications).

Part II – Forward Trace Analysis

This part presents the first forward trace analysis methodology for RWL
theories. This methodology is formalized as an instance of a parame-
terized scheme for exploring RWL computations in conditional rewrite
theories that involve rewriting modulo associativity (A), commutativity

6 Introduction

(C), and unity (U) axioms. A program animator and a partial stepper
are also formulated as instances of the generic scheme.

The contributions of Part II can be summarized as follows:

1. We formulate a generic animation algorithm that can be tuned
to work with different modalities, including incremental stepping,
partial stepping and automated forward/backward slicing.

2. The forward slicing technique allow us to inspect the execution
trace with regard to a set of symbols of interest (input symbols),
so that, all data that are not descendants of the observed symbols
are filtered out.

3. The partial stepper supports a form of abstract computation that
allows computations with partial inputs to be stepped.

4. The generic scheme is implemented and tested in a graphical tool
called Anima, which provides a mighty and versatile environment
for the dynamic analysis of RWL computations. The main features
of Anima are listed below:

(a) Anima is equipped with three inspection modalities including
interactive stepping, partial stepping and forward slicing.

(b) The user can freely display either a simplified view of a rewrite
step or the complete and detailed sequence of steps in a cor-
responding instrumented trace that we construct. The instru-
mentation allows the relevant information of the rewrite steps
to be traced explicitly despite the fact that terms are rewrit-
ten modulo a set of axioms that may cause their components
to be implicitly reordered.

(c) A search facility is implemented where a pattern language al-
lows the selected information of interest to be searched in huge
states of complex computation trees. The user provides a fil-
tering pattern (the query) that specifies the set of symbols that
he/she wants to search for, and then all the states matching
the query are automatically highlighted in the computation
tree.

Introduction 7

(d) Anima facilitates the inspection of the conditions satisfied dur-
ing the application of a conditional rule or equation, which
allows the user to export the traces deployed by evaluating
the conditions to iJulienne for further analysis.

(e) The system integrates the backward trace analyzer iJulienne
[ABFR14] into Anima, thus enabling the possibility to explore
computations both back and forth in order to validate input
data or to locate programming mistakes. Anima is endowed
with the very same powerful and intuitive Web user interface
of iJulienne.

Related Work

Dependency analysis techniques provide a formal foundation for forms
of provenance and impact analysis that are intended to highlight parts
of the program input (resp. output) on which a part of its output (resp.
input) depends [CAA11]. This is essentially achieved by computing the
symbol dependencies across computations and has proved to be useful
in many contexts such as efficient memorization and caching [ALL96],
aiding program debugging via unconditional slicing [ABER11, FT94],
information-flow security [SM03] and several other forms of program
analysis techniques, just to mention a few. A great deal of work has
been done on each of these topics, and we refer to [CAA11] for further
references that we cannot survey here.

The notion of descendants [Klo90] or residuals1 [HL79, O’D77] with its
inverse notion of ancestors or origins is classical in the theory of rewriting,
both in first-order term rewriting and in higher-order rewriting, such as
lambda calculus. While dependency provenance provides information
about the origins of (or influences upon) a given result, the notion of
descendants is the key for impact evaluation, that is, to assess the changes
that can be attributed to a particular input or intervention [BKV00]. For
orthogonal term rewriting systems (i.e., left–linear and overlap–free), a
refined version of the descendant/ancestor relation, based on the notion
of symbol tracking, was first introduced in [Klo90]. Several variants

1In the literature, the term ‘residual’ is usually reserved for a descendant of a redex
[BKV00].

8 Introduction

of this notion have been studied, sometimes with applications that are
similar to the ones described in this thesis (see [BKV00] for references).
Nonetheless, non-left linear and collapsing rules are not considered or
are dealt with using ad-hoc strategies in these works, while our approach
requires no special treatment of such rules. An extension of [Klo90] for
all TRSs is described in [TeR03] and a method for implementing origin
tracking in conditional term rewriting systems is given in [DKT93].

This thesis describes forward and backward trace slicing techniques
that are suitable for provenance and impact analysis in conditional rewrite
theories. Furthermore, the proposed techniques simplify and extend the
formal development in [ABER11] by getting rid of the complex dynamic
labeling algorithm that was needed to trace back the origins of the sym-
bols of interest, replacing it with a simple unification mechanism that
allows control and data dependencies to be propagated back and forth
between consecutive rewrite steps. Our techniques also avoid manipu-
lating the ascendants and descendants by recording their addressing po-
sitions; we simply and explicitly record the meaningful positions within
the computed term slices themselves, without resorting to any other arti-
fact. Moreover, our slicing techniques can take advantage of the filtered
information for the purpose of dynamic program slicing, that is, the com-
putation of the set of program statements, that may affect the values at
some point of interest.

A generic, static technique to infer (forward) program slices is defined
in [RAA13]. This technique relies on the formal executable semantics of
the language of interest, which is given as a RWL theory. Informally, this
kind of slices represent program fragments that are affected by a particu-
lar program statement with respect to a set of variables of interest. Differ-
ent from our methodologies, this technique is static and defines program
slices (rather than trace ones) by using (meta-level) over-approximation.

On the practical side, we are not aware of any trace slicer that is
comparable to iJulienne for either imperative or declarative languages.
To the best of our knowledge, there are just a couple of slicers that only
slightly relate to ours.

HaSlicer [RB05] is a prototype of a slicer for functional programs writ-
ten in Haskell that is used for the identification of possible coherent com-
ponents from (functional) monolithic legacy code. Both backward and
forward dependency slicing are covered by HaSlicer, which is proposed as

Introduction 9

a support tool for the software architect to manually improve program
understanding, and automatically discover software components. The
latter is particularly useful as an architecture understanding technique
in earlier phases of a re-engineering process.

Spyder [ADS93] is a prototype debugger for C that, thanks to the
combination of dynamic program slicing and execution backtracking tech-
niques, is able to automatically step-back, statement by statement, from
any desired location in order to determine which statements in the pro-
gram affect the value of an output variable for a given test case, and to
determine the value of a given variable when the control last reached a
given program location.

In contrast to Spyder and HaSlicer, our technique is based on trace
slicing rather than program slicing, and needs much less storage to per-
form flow-back analysis, as it requires neither the construction of data
and control dependency graphs nor the creation of an execution history.

The Haskell interactive debugger Hat [CRW00] also allows execution
traces to be explored backwards, starting from the program output or
an error message (computation abort). Similarly to Spyder, this task is
carried out by navigating a graph-like, supplementary data structure (re-
dex trail) that records dependencies among function calls. Even if Hat
is able to highlight the top-level “parent” function of any expression in
the final trace state, it cannot be used to compose a full trace slice. Ac-
tually, at every point of the recreated trail, the function arguments are
shown in fully evaluated form (the way they would appear at the end
of the computation) even though, at the point at which they are shown,
they would not yet have necessarily reached that form. A totally differ-
ent, bytecode trace compression was proposed in [jsl08] to help perform
Java program analysis (e.g., dynamic program slicing [Tip95]) over the
compact representation.

Finally, an algebraic stepper for Scheme is defined and formally proved
in [CFF01], which is included in the DrScheme programming environ-
ment. In order to discover all of the steps that occur during the program
evaluation, the stepper rewrites (or “instruments”) the code. This is in
contrast to our stepper Anima, which does not rely on program instru-
mentation.

10 Introduction

Chapter 0

Preliminaries

In this chapter, we recall some basic notions that will be used in the
rest of the thesis. We assume some basic knowledge of term rewrit-
ing [TeR03] and Rewriting Logic [Mes92]. Some familiarity with the
Maude language [CDE+11, CDE+07] is also required.

Maude is a rewriting logic [Mes92] specification and verification sys-
tem whose operational engine is mainly based on a very efficient im-
plementation of rewriting. Maude’s basic programming statements are
equations and rules. Equations are used to express deterministic com-
putations, which lead to a unique final result, while rules naturally ex-
press concurrent, nondeterministic, and possibly nonterminating compu-
tations. A Maude program that contains only equations (together with
the syntax declaration for sorts, operators, and variables) is called a func-
tional module and essentially defines one or more functions by means of
equations. A Maude program that contains rules and possibly equations
is called a system module, where the rules define transitions in a likely
concurrent system. Maude notation will be introduced “on the fly” as
required.

0.1 The Term-language of Maude

We consider an order-sorted signature Σ, with a finite poset of sorts
(S,<) that models the usual subsort relation [CDE+11]. The connected
components of (S,<) are the equivalence classes [s] corresponding to
the least equivalence relation ≡< containing <. We assume an S-sorted
family V = {Vs}s∈S of disjoint variable sets. τ(Σ,V)s and τ(Σ)s are
the sets of terms and ground terms of sort s, respectively. We write
τ(Σ,V) and τ(Σ) for the corresponding term algebras. A simple syntactic
condition on Σ and (S,<), called preregularity [CDE+11], ensures that
each (well-formed) term t always has a least-sort possible among all sorts

12 Chapter 0. Preliminaries

in S, which is denoted ls(t). The set of variables that occur in a term
t is denoted by Var(t). In order to simplify the presentation, we often
disregard sorts when no confusion can arise.

A position w in a term t is represented by a sequence of natural
numbers that addresses a subterm of t (Λ denotes the empty sequence,
i.e., the root position). Given a term t, we let Pos(t) denote the set
of positions of t. By notation w1.w2, we denote the concatenation of
positions (sequences) w1 and w2. Positions are ordered by the prefix
ordering, that is, given the positions w1 and w2, w1 ≤ w2 if there exists a
position u such that w1.u = w2. Given two positions w1 and w2, we say
that w1 and w2 are not comparable iff w1 6≤ w2 and w2 6≤ w1. Given a
set of positions P , and a position p ∈ P , we say that p is minimal w.r.t.
P , iff there does not exist a position p′ ∈ P such that p′ ≤ p and p′ 6= p
(i.e., p′ is strictly smaller than p). By t|w, we denote the subterm of t at
position w, and by t[s]w, we denote the result of replacing the subterm
t|w by the term s in t.

A substitution σ ≡ {x1/t1, x2/t2, . . . , xn/tn} is a mapping from the
set of variables V to the set of terms τ(Σ,V), which is equal to the
identity almost everywhere except over a set of variables {x1, . . . , xn}.
The domain of σ is the set Dom(σ) = {x ∈ V | xσ 6= x}. By ε, we
denote the identity substitution. The application of a substitution σ to
a term t, denoted tσ, is defined by induction on the structure of terms:

tσ =

{
xσ if t = x, x ∈ V
f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn), n ≥ 0

Given two terms s and t, a substitution σ is the matcher of t in
s, if sσ = t. The term t is an instance of the term s (in symbols,
s ≤ t), iff there exists a matcher σ of t in s. By matchs(t), we denote
the function that returns a matcher of t in s if such a matcher exists.
Given two substitutions θ and θ′, their composition θθ′ is defined as
t(θθ′) = (tθ)θ′ for every term t. We recall that composition is associative.
A substitution σ is more general than θ, denoted by σ ≤ θ, if θ = σγ
for some substitution γ. We say that a substitution σ is a unifier of two
terms t and t′ if tσ = t′σ. We let mgu(t, t′) denote a most general unifier
σ of t and t′ (i.e., σ ≤ θ for any other unifier θ of t and t′). Let the parallel
composition ψ1 ⇑ ψ2 of substitutions be defined as in [Pal90, Hof11]. We

0.2. Program Equations and Rules 13

compute the parallel composition ψ1 ⇑ ψ2 of two substitutions ψ1 and ψ2

as follows:

ψ1 ⇑ ψ2 = mgu(f(x1, . . . , xn, y1, . . . , ym),
f(x1ψ1, . . . , xnψ1, y1ψ2, . . . , ymψ2))

where xi, i ∈ {1, . . . , n}, and yj, j ∈ {1, . . . ,m}, are the domain variables
of ψ1 and ψ2, respectively, and f is a function symbol of n+m-arity.

For any substitution σ and set of variables V , σ |̀V denotes the substi-
tution obtained from σ by restricting its domain to V , (i.e., σ |̀V (x) = xσ
if x ∈ V , otherwise σ |̀V (x) = x). Given a binary relation �, we define
the usual transitive (resp., transitive and reflexive) closure of� by�+

(resp., �∗).

0.2 Program Equations and Rules

Our techniques in this thesis deal with conditional RWL theories. We
consider three different kinds of conditions that may appear in a condi-
tional Maude theory: an equational condition1 e is any (ordinary) equa-
tion t = t′, with t, t′ ∈ τ(Σ,V); a matching condition is a pair p := t with
p, t ∈ τ(Σ,V); a rewrite expression is a pair t⇒ p, with p, t ∈ τ(Σ,V).

A labelled conditional equation (Maude keyword ceq), or simply (con-
ditional) equation, is an expression of the form [l] : λ = ρ if C, where l
is a label (i.e., a name that identifies the equation), λ, ρ ∈ τ(Σ,V) (with
ls(λ) ≡< ls(ρ)), and C is a (possibly empty) sequence c1∧ . . .∧cn, where
each ci is either an equational condition, or a matching condition. When
the condition C is empty, we simply write [l] : λ = ρ and use the keyword
eq to declare it in Maude. A conditional equation [l] : λ = ρ if c1∧. . .∧cn
is admissible, iff (i) Var(ρ) ⊆ Var(λ)∪

⋃n
i=1 Var(ci), and (ii) for each ci,

Var(ci) ⊆ Var(λ) ∪
⋃i−1
j=1 Var(cj) if ci is an equational condition, and

Var(e) ⊆ Var(λ) ∪
⋃i−1
j=1 Var(cj) if ci is a matching condition p := e.

A labelled conditional rewrite rule (Maude keyword crl), or simply
(conditional) rule, is an expression of the form [l] : λ⇒ ρ if C, where l is
a label, λ, ρ ∈ τ(Σ,V) (with ls(λ) ≡< ls(ρ)), and C is a (possibly empty)

1A Boolean equational condition b = true, with b ∈ τ(Σ,V) of sort Bool is sim-
ply abbreviated as b. A Boolean condition is a conjunction of abbreviated Boolean
equational conditions.

14 Chapter 0. Preliminaries

sequence c1∧. . .∧cn, where each ci is an equational condition, a matching
condition, or a rewrite expression. Unlike matching conditions, which can
only use equations to evaluate the input term t, rewrite expressions can
apply both equations and rewrite rules for the evaluation. When the
condition C is empty, we simply write [l] : λ ⇒ ρ and use the keyword
rl to declare it in Maude. A conditional rule [l] : λ⇒ ρ if c1∧ . . .∧ cn is
admissible iff it fulfills the exact analogy of the admissibility constraints
(i) and (ii) for the equational conditions and the matching conditions,
plus the following additional constraint: for each rewrite expression ci in
C of the form e⇒ p, Var(e) ⊆ Var(λ) ∪

⋃i−1
j=1 Var(cj).

When no confusion can arise, rule and equation labels [l] are often
omitted. The term λ (resp., ρ) is called left-hand side (resp. right-hand
side) of the rule λ⇒ ρ if C (resp. equation λ = ρ if C).

Note that admissible equations and rules can contain extra-variables
(i.e., variables that appear in the right-hand side or in the condition of
a rule/equation but do not occur in the corresponding left-hand side).
The admissibility requirements ensure that all the extra-variables of an
admissible rule/equation will become instantiated whenever the rule is
applied.

Matching conditions and rewrite expressions are useful for performing
a search through a structure without having to explicitly define a search
function. This is because substitutions for matching p against tσ need
not be unique since some operators may be matched modulo equational
attributes. For instance, considering that list concatenation obeys asso-
ciativity with unity element nil, we can define two Maude equations to
determine whether an element E occurs in a list L as follows:

ceq E in L = true if L1 E L2 := L .

eq E in L = false [owise] .

where the owise attribute allows the second rule to be applied whenever
the first rule is not applicable.

0.3 Conditional Rewrite Theories

Roughly speaking, a (conditional) rewrite theory [Mes92] seamlessly com-
bines a set of conditional rewrite rules (or conditional term rewriting sys-
tem, CTRS), with an equational theory (also possibly conditional) that

0.3. Conditional Rewrite Theories 15

may include equations and axioms (i.e., algebraic laws such as commuta-
tivity, associativity, and unity) so that rewrite steps are applied modulo
the equations and axioms. Within this framework, the system states
are typically represented as elements of an algebraic data type that is
specified by the equational theory, while the system computations are
modeled via the rewrite rules, which describe transitions between states.

More formally, an order-sorted equational theory is a pair E = (Σ,∆∪
B), where Σ is an order-sorted signature, ∆ is a collection of (oriented)
admissible, conditional equations, and B is a collection of unconditional
equational axioms (e.g., associativity, commutativity, and unity) that
can be associated with any binary operator of Σ. The equational theory
E induces a congruence relation on the term algebra τ(Σ,V), which is
denoted by =E.

A conditional rewrite theory (or simply, rewrite theory) is a triple
R = (Σ,∆ ∪ B,R), where (Σ,∆ ∪ B) is an order-sorted2 equational
theory and R is a set of admissible conditional rules.

Example 0.3.1
Consider the Maude system module MAZE of Figure 1, which is inspired
by the maze example in [RVMOC12]. The module is delimited by the
Maude keywords mod and endm, and it encodes a conditional rewrite
theory that specifies a maze game in which multiple players (modeled
as terms of sort Player) must reach a given exit point. Players may
enter the maze at distinct entry points, and can move through the maze
by walking or jumping. Furthermore, any collision between two players
eliminates them from the game.

MAZE imports and makes use of the predefined Maude module NAT,
which provides the equational definition for natural numbers together
with some common built-in operators for their manipulation such as ad-
dition (+) and subtraction3 (sd). The operators in the module signature

2Equational specifications in Maude can be theories in membership equational
logic, which may include conditional membership axioms that are not addressed in
this thesis. Actually, membership axioms can interact with operator attributes such
as assoc and iter in undesirable ways [CDE+11], which can be a major difficulty for
a tracing-based tool like ours to work correctly.

3In order to avoid producing negative numbers, natural subtraction is implemented
by using the symmetric difference operator (sd) that subtracts the smaller of its
arguments from the larger.

16 Chapter 0. Preliminaries

mod MAZE is

pr NAT .

sorts Pos List State Player .

subsort Pos < List .

op p1 : -> Player [ctor] .

op p2 : -> Player [ctor] .

op nil : -> List [ctor] .

op size : -> Nat .

op wall : -> List .

op exit : -> List .

op empty : -> State [ctor] .

op next : List Nat -> Pos .

op isOk : List -> Bool .

op _in_ : Pos List -> Bool .

op ‘{_,_,_‘} : Player List Nat -> State [ctor] .

op __ : List List -> List [ctor assoc id: nil] .

op <_,_> : Nat Nat -> Pos [ctor] .

op _||_ : State State -> State [ctor assoc comm id: empty] .

vars X Y N M M1 M2 : Nat .

vars P Q : Pos .

vars L L1 L2 : List .

vars PY PY1 PY2 : Player .

eq [s] : size = 5 . --- Assumption: 5x5 maze

eq [wl] : wall = < 1,3 > < 1,5 > < 2,1 > < 2,4 > < 2,5 > < 3,3 > < 3,4 >

< 4,2 > < 4,3 > < 5,4 > .

eq [ok] : isOk(L < X,Y >) = X >= 1 and Y >= 1 and X <= size and Y <= size

and not(< X,Y > in L) and not(< X,Y > in wall) .

ceq [c1] : P in L = true if L1 P L2 := L .

eq [c2] : P in L = false [owise] .

rl [downN] : next(L < X,Y >, N) => < X,Y + N > .

rl [leftN] : next(L < X,Y >, N) => < sd(X,N),Y > .

rl [upN] : next(L < X,Y >, N) => < X,sd(Y,N) > .

rl [rightN] : next(L < X,Y >, N) => < X + N,Y > .

rl [eject] : {PY1, L1 < X,Y > , M1 } || {PY2, L2 < X,Y >, M2 } => empty .

crl [walk] : {PY, L, M } => {PY, L P, M + 1 } if next(L,1) => P /\ isOk(L P) .

crl [jump] : {PY, L, M } => {PY, L P, M + 2 } if next(L,2) => P /\ isOk(L P) .

crl [exit] : {PY, L < X,X >, M} => {PY, exit, M} if X == size .

endm

Figure 1: Maude specification of the maze game.

are declared using the keyword op, while their types structure is spec-
ified using the keywords sorts and subsorts. Module variables are
declared by means of the keyword vars. Roughly speaking, a maze is a
size × size grid in which each maze position is specified by a pair of
natural numbers < X,Y > of sort Pos.

The internal maze structure is defined through the equation wall,

0.3. Conditional Rewrite Theories 17

Figure 2: The 5× 5 grid encoded in MAZE.

which explicitly defines those cells that represent the maze walls (see
Figure 2). Each player’s path4 in the maze is described by a term of
sort List that specifies a list of (pairwise distinct) positions by means
of the usual constructor operator nil (empty list) and the associative,
juxtaposition operator __ whose unity element is nil.

System states describe a game scenario by recording the paths taken
by the different players from the moment they entered the game (at
their respective entry points). We use the associative and commutative
operator || (whose unity element is the constant empty) to model states
as multisets of triples of the form {p1, L1, m1}|| . . . || {pn, Ln, mn}, pi 6= pj
for i 6= j, where pi uniquely identifies the ith player, Li is the path the
ith player has hitherto followed since he entered the maze, and mi is
the length of the path Li (which is different from the length of the list
because players are allowed to jump two boxes in a single move), with

4In our specification, only simple paths are considered (i.e., paths that do not
contain loops), which amounts to saying that no position can be revisited by the
same player twice.

18 Chapter 0. Preliminaries

i = 1, . . . , n.
Given a player’s path L, the next possible player’s moves are non-

deterministically computed by the rules walk and jump, which respec-
tively augment L with the position P delivered by the rewrite expressions
next(L,N) => P, with N = 1 (walk) or N = 2 (jump), occurring in the
condition of these two rules. The function next(L, N) models all the
possible N-cell movements that are available from the current player’s lo-
cation (given by the last position in L). In both rules, the correctness of
the computed subsequent position P is verified by means of the function
isOK(L P). Specifically, position P is valid iff it is within the limits of
the maze, not repeated in L, and not a part of the maze wall. Note that
the jump rule allows a player to leap over either a wall or another player
provided the position reached is valid.

Collisions between two players are implemented by means of the
eject rule, which checks whether two players bump on the same po-
sition and eliminates them from the maze by replacing their associated
triples with the empty state value.

The exit rule checks whether a given player has reached the lower
right corner position < size,size > that we assume to be the maze exit.

Finally, note that the exit and eject operations should be modeled
by using equations rather than rewrite rules in order to provide appropri-
ate, deterministic exit and eject behavior. Nonetheless, we deliberately
specified them by using rules in order to illustrate the debugging capa-
bilities of our forward exploration technique in Chapter 4.

The slicing techniques formalized in this thesis are formulated by con-
sidering the precise way in which Maude proves the conditional rewriting
steps modulo an equational theory E = ∆∪B, which we describe in the
following section (see Section 5.2 in [CDE+11] for more details).

0.4 Rewriting in Conditional Rewrite

Theories

Given a conditional rewrite theory (Σ, E,R), with E = ∆ ∪ B, the con-
ditional rewriting modulo E relation (in symbols, →R/E) can be defined

0.4. Rewriting in Conditional Rewrite Theories 19

by lifting the usual conditional rewrite relation on terms [Klo92] to the
E-congruence classes [t]E on the term algebra τ(Σ,V) that are induced
by =E [BM06]. In other words, [t]E is the class of all terms that are equal
to t modulo E. Unfortunately, →R/E is, in general, undecidable since a
rewrite step t →R/E t′ involves searching through the possibly infinite
equivalence classes [t]E and [t′]E.

The Maude interpreter implements conditional rewriting modulo E
by means of two much simpler relations, namely→∆,B and→R,B. These
allow rules and equations to be intermixed in the rewriting process by
simply using an algorithm of matching modulo B. We define →R∪∆,B as
→R,B ∪ →∆,B. Roughly speaking, the relation →∆,B uses the equations
of ∆ (oriented from left to right) as simplification rules. Thus, for any
term t, by repeatedly applying the equations as simplification rules, we
eventually reach a term t ↓∆,B to which no further equations can be
applied. The term t↓∆,B is called a canonical form of t w.r.t. ∆ modulo
B. On the other hand, the relation →R,B implements rewriting with the
rules of R, which might be non-terminating and non-confluent, whereas
∆ is required to be terminating and Church-Rosser modulo B in order
to guarantee the existence and unicity (modulo B) of a canonical form
w.r.t. ∆ for any term [CDE+11].

Formally, →R,B and →∆,B are defined as follows. Given a rewrite
rule [r] : (λ ⇒ ρ if C) ∈ R (resp., an equation [e] : (λ = ρ if C) ∈ ∆),

a substitution σ, a term t, and a position w of t, t
r,σ,w→R,B t′ (resp.,

t
e,σ,w→∆,B t′) iff λσ =B t|w, t′ = t[ρσ]w, and C evaluates to true w.r.t σ.

When no confusion arises, we simply write t →R,B t′ (resp. t→∆,Bt
′)

instead of t
r,σ,w→R,B t

′ (resp. t
e,σ,w→∆,B t

′).
Since equations and axioms are both interpreted as rewrite rules in

our formulation for specific purposes, notation λ⇒ ρ if C is often abused
throughout this thesis to denote rewrite rules as well as (oriented) equa-
tions and axioms.

Roughly speaking, a conditional rewrite step on the term t applies a
rewrite rule/equation to t by replacing a reducible (sub-)expression of t
(namely t|w), called the redex, by its contracted version ρσ, called the con-
tractum, whenever the condition C is fulfilled. Note that the evaluation
of a condition C is typically a recursive process since it may involve fur-
ther (conditional) rewrites in order to normalize C to true. Specifically,
an equational condition e evaluates to true w.r.t. σ if eσ↓∆,B=B true;

20 Chapter 0. Preliminaries

a matching equation p := t evaluates to true w.r.t. σ if pσ =B tσ↓∆,B;
a rewrite expression t ⇒ p evaluates to true w.r.t. σ if there exists a
rewrite sequence tσ →∗R∪∆,B u, such that u =B pσ.5 Although rewrite
expressions and matching/equational conditions can be intermixed in any
order, we assume that their satisfaction is attempted sequentially from
left to right, as in Maude.

Under appropriate conditions on the rewrite theory, a rewrite step
s →R/E t modulo E on a term s can be implemented without loss of
completeness by applying the following rewrite strategy [DM10]:

1. Equational simplification of s in ∆ modulo B, that is, reduce
s using →∆,B until the canonical form w.r.t. ∆ modulo B (s ↓∆,B)
is reached;

2. Rewrite (s ↓∆,B) in R modulo B to t′ using →R,B, where t′ ∈
[t]E.

An execution trace (or computation) C for s0 in the conditional rewrite
theory (Σ,∆ ∪ B,R) is then deployed as the (possibly infinite) rewrite
sequence

s0 →∗∆,B s0↓∆,B→R,B s1 →∗∆,B s1↓∆,B→R,B · · ·

that interleaves→∆,B rewrite steps and→R,B rewrite steps following the
strategy mentioned above. Note that, following this strategy, after each
conditional rewriting step using →R,B, generally the resulting term si,
i = 1, . . . , n, is not in canonical normal form and is thus normalized
before the subsequent rewrite step using→R,B is performed. Also, in the
precise strategy adopted by Maude, the last term of a finite computation
is finally normalized before the result is delivered.

Therefore, any execution trace consists of a sequence of juxtaposed
→R,B and→∗∆,B transitions, with an additional equational simplification
→∗∆,B (if needed) at the beginning of the computation as depicted below.

︷ ︸︸ ︷
s0 →∗∆,B s0↓∆,B →R,B s1 →∗∆,B s1↓∆,B →R,B s2 →∗∆,B s2↓∆,B . . .︸ ︷︷ ︸

5Technically, to properly evaluate a rewrite expression t⇒ p or a matching condi-
tion p := t, the term p is required to be a ∆-pattern modulo B —i.e., a term p such
that, for every substitution σ, if xσ is a canonical form w.r.t. ∆ modulo B for every
x ∈ Dom(σ), then pσ is also a canonical form w.r.t. ∆ modulo B.

0.5. Instrumented Execution Traces 21

We define a Maude step from a given term s as any of the sequences
s→∗∆,B s↓∆,B→R,B t→∗∆,B t↓∆,B that head the nondeterministic Maude
computations for s. Note that, for a canonical form s, a Maude step for
s boils down to s →R,B t →∗∆,B t↓∆,B t. We define mS(s) as the set of
all the nondeterministic Maude steps stemming from s.

Example 0.4.1
Consider the rewrite theory of Example 0.3.1. A Maude step for the
initial term next(< 1,1+1 >,1) is as follows:

mS(next(< 1,1+1 >,1)) = next(< 1,1+1 >,1)
builtIn(+)−→∆,B

next(< 1,2 >,1)
downN−→R,B

< 1,2+1 >
builtIn(+)−→∆,B

< 1,3 >

Note that since built-in operators are not provided in Maude with an
explicit rule-based specification, we handle them in a special way. Given
a built-in operator op and an execution trace C, the idea is to handle
every reduction a op b→ c that occurs in C as an ordinary rewrite step,
which is done by adding the extra equation a op b = c to the considered
equational theory. This way, every application of op that occurs in C is
mimicked by applying its corresponding built-in equation.

0.5 Instrumented Execution Traces

In this section, we introduce an auxiliary technique for instrumenting
execution traces. The instrumentation allows the relevant information
of the rewrite steps, such as the selected redex and the contractum pro-
duced by the step, to be traced explicitly despite the fact that terms
are rewritten modulo a set B of equational axioms that may cause their
components to be implicitly reordered. Given an execution trace C, let
us show how C can be expanded into an instrumented execution trace T
in which each application of the matching modulo B algorithm that is
used in→R,B-steps and→∆,B-steps is explicitly mimicked by the specific

22 Chapter 0. Preliminaries

application of a bogus equational axiom, which is oriented from left to
right and then applied as a rewrite rule in the standard way.

Typically hidden inside the B-matching algorithms, some pertinent
term transformations allow terms that contain operators obeying equa-
tional axioms to be rewritten into supportive B-normal forms that facil-
itate the matching modulo B. In the case of AC-theories, these trans-
formations allow terms to be reordered and correctly parenthesized to
enable subsequent rewrite steps. Basically, this is achieved by produc-
ing a single, auxiliary representative of their AC congruence class (i.e.,
the AC-normal form). An AC-normal form is typically generated by
replacing nested occurrences of the same AC operator by a flattened
argument list under a variadic symbol, sorting these arguments under
some linear ordering and combining equal arguments using multiplic-
ity superscripts [Eke03]. For example, the congruence class containing
f(f(α, f(β, α)), f(f(γ, β), β)) where f is an AC symbol and subterms α,
β, and γ belong to alien theories might be represented by f ∗(α2, β3, γ),
where f ∗ is a variadic symbol that replaces nested occurrences of f . A
more formal account of this transformation is given in [Eke95].

As for purely associative theories, we can get an A-normal form by
just flattening nested function symbol occurrences without sorting the
arguments. This case has practical importance because it corresponds to
lists. C-normal forms are just obtained by properly ordering the argu-
ments of a commutative binary operator. Finally, for function symbols
that satisfy the unit axiom U, the unity element of U is not included
in the U-normal form, and variables under a U symbol can always be
assigned the unity element through U-matching [Eke95].

Then, rewriting modulo B in Maude proceeds by using the special
form of matching called B-matching on the internal representation of
terms as B-normal forms, where B may contain, among others, any com-
bination of associativity, commutativity, and unity axioms for different
binary operators. Moreover, at each Maude step, the resulting term is
shown in B-normal form (without multiplicity superscripts).

In the following, we discuss how we can simulate B-matching in
our framework by means of specific “fake” axioms that mimick the B-
matching transformation of terms that occur internally in Maude. This
allows these transformations to be unhidden and explicitly revealed in
the output instrumented trace. This artifice is only a means to reveal

0.5. Instrumented Execution Traces 23

the term transformations of subterms that are forced by the step so that
any position can be properly traced across rewriting steps.

Example 0.5.1
Consider a binary AC operator f together with a simple, standard lexico-
graphic ordering over constant symbols. Given the term f(b, f(f(b, a), c)),
let us reveal how this term matches modulo AC the left-hand side of
the rule [r] : f(f(x, y), f(z, x)) ⇒ x with AC-matching substitutions
{x/b, y/a, z/c} and {x/b, y/c, z/a}. For the first solution, this is mim-

icked by the transformation sequence f(b, f(f(b, a), c))
toACnf−→ f ∗(a, b2, c)

fromACnf−→ f(f(b, a), f(c, b)), where 1) the first step corresponds to a term
transformation that obtains the AC-normal form f ∗(a, b2, c), and 2) the
second step corresponds to the inverse, an unflattening transformation
that delivers the AC-equivalent term f(f(b, a), f(c, b)) that syntactically
matches the left-hand side of rule r with substitution {x/b, y/a, z/c}.
Note that an alternative unflattening transformation is possible f ∗(a, b2,

c)
fromACnf−→ f(f(b, c), f(a, b)), which actually delivers the second AC-

matcher {x/b, y/c, z/a}. When several B-matchers exist, we only con-
sider those that are effectively computed by means of the Maude internal
rewriting strategy.

In our implementation, rewriting modulo B proceeds by using the
standard form of B-matching on B-normal forms supported by Maude,
where the left-hand sides of the rules are always normalized and the
right-hand sides are (partially or totally) normalized when convenient
(typically, when the unity element needs to be removed).

Example 0.5.2
Consider two binary AC operators f and g and the rules [r1] : f(c, b, a)⇒
g(c, b, a) and [r2] : f(c, f(b, a)) ⇒ g(c, g(b, a)), whose left-hand (resp.
right-hand) sides are pairwise equivalent modulo B. When the specifica-
tion that contains them is loaded, the two rules are respectively normal-
ized by Maude into the B-equivalent rules [r′1] : f(a, b, c)⇒ g(a, b, c) and
[r′2] : f(a, b, c)⇒ g(c, g(a, b)). Note that the left-hand side f(c, b, a) of r1

is reordered as f(a, b, c) in r′1, whereas the left-hand side f(c, f(b, a)) of
r2 is not only reordered but also flattened as f(a, b, c) in r′2.

24 Chapter 0. Preliminaries

As for the right-hand sides of the rules, the right-hand side g(c, b, a)
of r1 is reordered as g(a, b, c) in r′1 whereas the right-hand side of r2 is
not flattened in r′2 and only the subterm at position 2 (i.e., g(b, a)) is
reordered; hence, the whole term in the right-hand side of r2 is neither
ordered nor flattened in r′2.

In the sequel, when no confusion can arise, we refer to a given pro-
gram’s rule and its corresponding, internally normalized version by using
the same label.

Therefore, any given instrumented execution trace consists of a se-
quence of conditional rewrite steps using the conditional equations (→∆),
conditional rewrite rules (→R), equational axioms, and (internal) B-
matching transformations (→B). More precisely, each rewrite step

s
r,σ,w→R,B t (resp., s

e,σ,w→∆,B t) is broken down into a rewrite sequence

s →∗B s′
r,σ,w→R,∅ t

′ →∗B t (resp., s →∗B s′
e,σ,w→∆,∅ t

′ →∗B t), where s′ =B s
and s′ syntactically matches the (normalized) left-hand side of the equa-
tion e or rule r that is applied in the considered rewrite step. We define
the rewrite relation →K as →R ∪ →∆ ∪ →B. By instrument(C), we
denote a function that takes an execution trace C and delivers its instru-
mented counterpart T .

Example 0.5.3
Consider the rewrite theory of Example 0.3.1 together with the following
execution trace that consists of a single Maude step, which makes a down-
ward movement from the current position modeled by the one-element
list < 1,1 >:

C = next(< 1,1 >,1)
downN−→R,B < 1,1+1 >

builtIn(+)−→∆,B < 1,2 >

The corresponding instrumented execution trace T , which is produced
by instrument(C), is as follows:

T = next(< 1,1 >,1)
fromAUnf−→B next(nil < 1,1 >,1)

downN−→R

< 1,1+1 >
builtIn(+)−→∆ < 1,2 >

where the first, extra step

next(< 1,1 >,1)
fromAUnf−→B next(nil < 1,1 >,1)

0.6. Term Slices and their Concretizations 25

has been added to describe the internal transformation that affixes the
identity element nil of the AU list operator __ to the one-element list
< 1,1 >. This is simply formalized as a rewrite step by using the bo-
gus axiom rl [fromAUnf] : < 1,1 > => nil < 1,1 >. This transfor-
mation enables the subsequent application of the rewrite rule downN.

Note that the instrumented version of the Maude step reveals that the
rewrite rule downN is not actually applied into the initial term next(< 1,1

>,1), but rather into the AU -equivalent term next(nil < 1,1 >,1),
which is chosen to syntactically match the left-hand side of the (already
normalized) applied rule.

In order to improve readability, we often omit B-matching transfor-
mations and the evaluation of built-in operators6 when displaying Maude
steps (unless explicitly stated otherwise). This is consistent with the
strategy adopted by Maude for the case of B-matching transformations,
and it is the default option in our slicing tool.

0.6 Term Slices and their Concretizations

A term slice of a term s is a term abstraction s• that shields part of the
information in s; that is, the irrelevant data in s that we are not interested
in are simply replaced by special •-variables of appropriate sort, denoted
by •i, with i = 0, 1, 2, More precisely, in our framework, the term
slice s• can be seen as the term s plus a mask that hides the irrelevant
symbols of s via •-variables. In this way, the irrelevant part of s• can
be conveniently recovered from s• at any time by simply unhiding the
masked symbols, which we formalize using the function unhide(s•) = s
for every term slice s• of s. More formally, let V• be the extension of
the S-sorted family V that augments V with •-variables in the obvious
way. A term s• is a term slice of the term s iff s is an instance of s• and
s• ∈ τ(Σ,V•).

6Maude provides efficient (C-like) built-in operators such as the addition (+) of
natural numbers. This is thanks to a built-in mechanism called iter (short for iterated
operator), which permits the efficient manipulation of very large stacks of unary oper-
ators, and an efficient binary representation of unbounded natural number arithmetic
[CDE+11].

26 Chapter 0. Preliminaries

Given a term slice s•, a meaningful position p of s• is a position
p ∈ Pos(s•) such that s•|p 6= •i, for all i = 0, 1, By MPos(s•), we
denote the set that contains all the meaningful positions of s•. Symbols
that occur at meaningful positions of a term slice are called meaningful
symbols.

The next auxiliary definition formalizes the function Tslice(t, P),
which allows a term slice of t to be constructed w.r.t. a set of positions P
of t. The function Tslice relies on the function fresh• whose invocation
returns a (fresh) variable •i of appropriate sort that is distinct from any
previously generated variable •j.

Definition 0.6.1 (Term Slice) Let t ∈ τ(Σ,V) be a term and let P be
a set of positions s.t. P ⊆ Pos(t). Then, the term slice Tslice(t, P) of t
w.r.t. P is computed as follows.

Tslice(t, P) = recslice(t, P,Λ), where

recslice(t, P, p) =


f(recslice(t1, P, p.1), . . . , recslice(tn, P, p.n))

if t=f(t1, . . . , tn), n ≥ 0, and p ∈ P̄
t if t ∈ V and p ∈ P̄
fresh• otherwise

and P̄ = {u | u ≤ p ∧ p ∈ P} is the prefix closure of P .

Roughly speaking, the function Tslice(t, P) yields a term slice of t
w.r.t. a set of positions P that includes all symbols of t that occur within
the paths from the root of t to any position in P , while each subterm t|p,
whose position p is minimal w.r.t. Pos(t) \ P̄ , is replaced by a freshly
generated •-variable.

Example 0.6.2
Consider the specification of Example 0.3.1 and initial state:

t = {p1,< 4,4 >,1} || {p2,< 3,5 >,1}

Consider the set P = {1.1, 1.2.1, 1.2.2, 2.1} of positions in t. Then,
Tslice(t, P) = {p1,< 4,4 >, •1 } || {p2, •2, •3} and the set of mean-
ingful positions MPos(t•) = {Λ, 1, 1.1, 1.2, 1.2.1, 1.2.2, 2, 2.1}.

0.7. (Instrumented) Trace Slices and their Concretizations 27

Term slices can be concretized by replacing all the •-variables that
appear in the slices with suitable •-free terms. More formally,

Definition 0.6.3 (Term Slice Concretization) Let t, t′ ∈ τ(Σ,V) be
two terms. Let t• be a term slice of t. We say that t′ is a concretization
of t•, if there exists a substitution σ such that t•σ = t′.

Example 0.6.4

Let t• = •1 + •2 + •2. Then, 10 + 2 + 2 is a concretization of t•, while
10 + 2 + 3 is not.

In the following section, the concretization of an (instrumented) trace
slice is defined.

0.7 (Instrumented) Trace Slices and their

Concretizations

An (instrumented) trace slice T • of an (instrumented) trace T is a kind
of trace abstraction that shields part of the information in T . Roughly
speaking, given an instrumented execution trace T = s0 →K s1 →K

· · · →K sn, the instrumented trace slice has the form T • = s•0 •→ s•1 •→
· · · •→ s•n where each s•i ∈ τ(Σ,V•) is a term slice of si.

Instrumented trace slices can be concretized by replacing all the •-
variables that appear in the slices with suitable •-free terms. More for-
mally:

Definition 0.7.1 (Instrumented Trace Slice Concretization) Let

R = (Σ,∆ ∪ B,R) be a conditional rewrite theory, and T = (s0
r1,σ1,w1→K

s1
r2,σ2,w2→K · · · rn,σn,wn→K sn) be an instrumented execution trace in R. Given

the instrumented trace slice T • = (s•0 •→ s•1 •→ · · · •→ s•n) of T , an
instrumented trace slice concretization T ′ of T • w.r.t. T is any instru-

mented execution trace s′0
r1,σ′1,w1→K s′1

r2,σ′2,w2→K · · · rn,σ
′
n,wn→K s′n such that each

s•i is a term slice of s′i ∈ τ(Σ,V), for all i = 0, . . . , n.

28 Chapter 0. Preliminaries

� �

� �

� �

� �

�������

��	��
������
������������

������
�����������������
���������

� �

Figure 3: Meaningful descendants of a rewrite step s
r,σ,w→K t.

0.8 Meaningful Descendants and

Ascendants

The trace slicing algorithms presented in this thesis enforce the notion
of meaningful descendants and ascendants that we define as follows.

Given a conditional rewrite step µ = (s
r,σ,w→K t) and a term slice s• of

s, the computed term slice t• that contains the meaningful descendants
of s• by Islice w.r.t. the rewrite step µ and s• is given by the following
relations, which are illustrated in Figure 3.

1. (Context) Each meaningful symbol sym in t• that occurs at a po-
sition w′ such that w′ < w, or w and w′ are not comparable is a
meaningful descendant of the very same symbol sym in s•.

2. (Redex-contractum) Each meaningful symbol in t•|w that is intro-
duced by the non-variable part of the right-hand side of the rule
r is a meaningful descendant of all the meaningful symbols in s•|w
that match the non-variable part of the left-hand side of r;

3. (Common-variables) Each meaningful symbol sym in t•|w that is

introduced by a binding x/t′ of σ, for any variable x in the left-
hand side of the rule r, is a meaningful descendant of the very same
symbol sym in s•|w;

0.8. Meaningful Descendants and Ascendants 29

4. (Extra-variables) Each meaningful symbol in t•|w that is introduced

by a binding z/t′ of σ, where z is an extra-variable of the rule r, is
a meaningful descendant of all those symbols in s•|w from which t′

descends (to compute this dependency, the recursive inspection of
the condition of r is required);

The dual notion of meaningful ascendants can be defined in the obvi-
ous way by just inverting s• and t• in the meaningful descendant defini-
tion; that is, a symbol sym in s• is a meaningful ascendant of a symbol
sym′ in t• iff sym′ is a meaningful descendant of sym. The following
example illustrates the notion of meaningful descendant.

Example 0.8.1
Consider the conditional rewrite rule

crl [r] : f(X,Y) => h(Z,X) if Z := g(X,Y)

that contains an extra-variable Z in its right-hand side, together with the
equational definition eq [sum] : g(X,Y) = X + Y. Let us consider the
one-step trace T = c(f(2,3),a) → c(h(5,2),a) that uses the rule r

and equation sum, the term slice c(f(2, •1), •2) of c(f(2,3),a), the
term slice c(h(5,2), •2) of c(h(5,2),a), and the internal execution
trace Tint = g(2,3) → 2 + 3 → 5 for the evaluation of the matching
condition Z := g(X, Y), which instantiates the extra-variable Z to the value
5.

Intuitively, the computed value 5 in Tint descends from the input val-
ues 2 and 3 given to the variable arguments X and Y of the functions g and
f (a more formal account of such a dependency computation is presented
in Section 4.5). Thus, we conclude that the value 5 is a descendant (by
the extra-variables relation) of the observed value 2 of the initial term
slice c(f(2, •1), •2) of c(f(2,3),a).

Also note that symbol h is a descendant of the symbol f (by the redex-
contractum relation), and the value 2 in the term slice c(h(5,2), •2)

descends from the input value 2 in c(f(2, •1), •2) (by the common-
variables relation). Finally, the root symbol c in c(h(5,2),•2) descends
from the same symbol c in c(f(2, •1), •2) (by the context relation).

30 Chapter 0. Preliminaries

Part I

Backward Trace Analysis

Chapter 1

Backward Trace Slicing for
Conditional Rewrite Theories

The backward tracing approach developed in this first part of the the-
sis aims to improve program analysis, comprehension and debugging of
Maude programs by helping the user to think backwards —i.e., to deduce
the conditions under which a program produces some observed output.
In more conventional programming environments, for such an analysis,
the programmer must repeatedly identify which statements in the code
impact on the value of a given parameter at a given call, which is usu-
ally done manually without any assistance from the debugger. Our trace
slicing technique tracks back reverse dependency and causality along exe-
cution traces and then cuts off irrelevant information that does not influ-
ence the data observed from the trace. In other words, when execution is
stopped at a given computation point (typically, from the location where
a fault is manifested), we are able to undo the effect of the last statement
executed on the selected data by issuing the step-back facility provided
by our slicer (for a given slicing criterion). Thus, by stepwisely reducing
the amount of information to be inspected, it is easier for the user to
locate errors because many computation steps (and the corresponding
program statements involved in the step) can be ignored in the process
of locating the program fault area. Moreover, during the trace slice com-
putation, different types of information are computed that are related to
the program execution, for example, contributing actions and data and
noncontributing ones. After computation of a trace slice, all the noncon-
tributing information is discarded from the trace, and we can even take
advantage of the filtered information for the purpose of dynamic program
slicing.
A backward trace slicing methodology for RWL was first proposed in
[ABER11] that is only applicable to unconditional RWL theories, and,
hence, it cannot be employed when the source program includes con-
ditional equations and/or rules. The following example illustrates why

34 Chapter 1. Backward Trace Slicing for Conditional Rewrite Theories

mod M is inc NAT .

var X : Nat .

var Y : NzNat .

op _mod_ : Nat NzNat -> Nat .

ceq X mod Y = X if Y > X .

ceq X mod Y = (X - Y) mod Y

if Y <= X .

endm

Figure 1.1: The mod operator.

conditions cannot be disregarded by the slicing process.

Example 1.0.2
Consider the Maude specification in Figure 1.1, which computes the re-
mainder of the division of two natural numbers, and the associated in-
strumented execution trace T = 4 mod 5 →K 4. Assume that we are
interested in observing the origins of the target symbol 4 that appears
in the final state. If we disregard the condition Y > X of the first con-
ditional equation, the slicing technique of [ABER11] computes the trace
slice T • : 4 mod • •→ 4, where there exist concrete instances of 4 mod •
that cannot be rewritten to 4 using the considered specification —e.g.,
4 mod 3 6→K 4. By contrast, our novel conditional approach not only
produces a trace slice, but also delivers a Boolean condition that estab-
lishes the valid instantiations of the input term that generate the observed
data. In this specific case, our conditional slicing technique would deliver
the pair [4 mod • •→ 4, • > 4].

In this chapter, a slicing algorithm for conditional RWL computa-
tions is formulated. The algorithm is formalized by means of a transition
system that traverses the execution traces from back to front. The tran-
sition system is given by a single inference rule that relies on a backward
rewrite step slicing procedure.

1.1 Backward Slicing for Execution Traces

In this section, we formulate a backward trace slicing algorithm that,
given an instrumented execution trace T = s0 →∗K sn and a term slice s•n

1.1. Backward Slicing for Execution Traces 35

of sn, generates the sliced counterpart T • = s•0 •→∗ s•n of T that only en-
codes the information required to reproduce (the meaningful symbols of)
the term slice s•n. Additionally, the algorithm returns a companion com-
patibility condition B• that guarantees the correctness of the generated
instrumented trace slice.

Roughly speaking, given an instrumented execution trace T = s0 →∗K
sn, the instrumented trace slice T • of T is computed w.r.t. a slicing
criterion —i.e., a user-defined term slice s•n of sn that is generated by
applying the Tslice function to sn and a set of positions P in sn the
user wants to observe (in symbols, s•n = Tslice(sn, P)). Our technique
inductively computes the association between the meaningful information
of si and the meaningful information of si−1. For each such rewrite
step, the conditions of the applied rule are recursively processed in order
to ascertain the meaningful information of si−1 from si, together with
the accumulated compatibility condition B•i . The technique proceeds
backwards, from the final term sn to the initial term s0. A simplified,
sliced instrumented trace is obtained where each si is replaced by the
corresponding term slice s•i .

Let us first introduce the notion of backward trail, which is a pair
composed of a trace slice T • and a companion compatibility condition
B•.

Definition 1.1.1 (Backward Trail) Let R = (Σ,∆ ∪ B,R) be a con-

ditional rewrite theory, and let T = s0
r1,σ1,w1→K s1

r2,σ2,w2→K · · · rn,σn,wn→K sn be
an instrumented execution trace for s0 in R. Let s•n be a slicing criterion
for T . A backward trail is a pair [T •, B•] where the first component is
an instrumented trace slice T • = s•0 •→ s•1 •→ · · · •→ s•n of T w.r.t. s•n ,
and B• is a Boolean condition.

Let us formalize now a calculus that allows the generation of backward
trails w.r.t. a slicing criterion by means of a transition system (Conf ,#)
[Plo04] where Conf is a set of configurations and # is the transition
relation that implements the backward trace slicing algorithm. Configu-
rations are formally defined as follows.

Definition 1.1.2 A configuration, written as 〈T , S•, B•〉, consists of
three components:

– the instrumented execution trace T = s0 →∗K si−1 →K si to be sliced;

36 Chapter 1. Backward Trace Slicing for Conditional Rewrite Theories

– the term slice S•, that records the computed term slice s•i of si
– a Boolean condition B•.

The transition system (Conf ,#) is defined as follows.

Definition 1.1.3 Let R = (Σ,∆∪B,R) be a conditional rewrite theory,
let T = U →+

K W be an instrumented execution trace in R, and let
V →K W be the last rewrite step of T . Let B•W be a Boolean condition,
and let W • be a term slice of W . Given a set Conf of configurations,
the transition relation # ⊆ Conf × Conf is the smallest relation that
satisfies the following rule:

(V •, B•V) = slice-step(V →K W,W •, B•W)

〈U →∗K V →K W,W •, B•W 〉#〈U →∗K V, V •, B•V 〉

Roughly speaking, the relation # transforms a configuration 〈U →∗K
V →K W,W •, B•W 〉 into a configuration 〈U →∗K V, V •, B•V 〉 by calling
the function slice-step(V →K W,W •, B•W) of Section 1.2, which returns
a pair composed of a suitable term slice V • of V and a Boolean condition
B•V that updates the compatibility condition specified by B•W . In other
words, slice-step computes the rewrite step slice V • •→ W • of V →K W
updating the accumulated compatibility condition.

By using the transition system of Definition 1.1.3, the initial config-
uration 〈s0 →∗K sn, s

•
n, true〉 is transformed until a terminal configura-

tion 〈s0, s
•
0, B

•
0〉 is reached. Then, the computed instrumented trace slice

T • w.r.t. s•n is obtained by replacing each term si by the correspond-
ing term slice s•i , i = 0, . . . , n, in the original instrumented execution
trace s0 →∗K sn. The algorithm additionally returns, within the back-
ward trail, the accumulated compatibility condition B•0 contained in the
terminal configuration.

More formally, the backward trail w.r.t. a slicing criterion is computed
by the function backward-slicing as follows.

Definition 1.1.4 (Backward Trail) Let R = (Σ,∆ ∪ B,R) be a con-
ditional rewrite theory, and let T = s0 →∗K sn be an instrumented execu-
tion trace in R. Let s•n be a slicing criterion for T . Then, the backward
trail that contains the instrumented trace slice T • of T w.r.t. s•n and the
compatibility condition B•0 , is computed as follows:

backward-slicing(s0 →∗K sn, s
•
n) = [s•0 •→∗ s•n, B•0]

1.1. Backward Slicing for Execution Traces 37

iff there exists a transition sequence in (Conf ,#)

〈s0 →∗K sn, s
•
n, true〉#∗〈s0, s

•
0, B

•
0〉

The following definitions provide a notion of correctness for a back-
ward trail that will be used to prove the correction of the backward trace
slicing algorithm described in this chapter.

First, let us show how we particularize a term slice by instantiating
•-variables with data that satisfy a given compatibility condition. A
B•-compatible term slice concretization is formally defined as follows.

Definition 1.1.5 (B•-compatible Term Slice Concretization) Let
t, t′ ∈ τ(Σ,V) be two terms. Let t• be a term slice of t and let B• be
a Boolean condition. We say that t′ is a concretization of t• that is com-
patible with B• (in symbols t• ∝B• t′), if (i) there exists a substitution σ
such that t•σ = t′, and (ii) B•σ evaluates to true.

Example 1.1.6
Let t• = •1 + •2 + •2 and B• = (•1 > 6 ∧ •2 ≤ 7). Then, 10 + 2 + 2 is a
concretization of t• that is compatible with B•, while 4 + 2 + 2 is not.

Now, our notion of correctness is as follows.

Definition 1.1.7 (Correct Backward Trail) Let R = (Σ,∆ ∪ B,R)

be a conditional rewrite theory, and let T = s0
r1,σ1,w1→K s1

r2,σ2,w2→K · · · rn,σn,wn→K

sn be an instrumented execution trace for s0 in R. Let s•n be a slicing
criterion for T . A backward trail [T •, B•], with T • = s•0 •→ s•1 •→
· · · •→ s•n, of T w.r.t. s•n is correct iff there exists an instrumented trace
concretization T ′ = s′0→Ks

′
1→K · · ·→Ks

′
n of T • with s•0 ∝B

•
s′0.

Definition 1.1.7 provides an existential condition on backward trails.
Roughly speaking, it ensures that, for some concrete instrumented trace
T ′, whose first state s′0 is a concretization of s•0 compatible with B•, the
very same rules involved in the sliced steps of T • can be applied again,
at the same positions, in T ′ and each s•i is a term slice of s′i.

38 Chapter 1. Backward Trace Slicing for Conditional Rewrite Theories

mod BANK is

pr INT .

sorts Account Msg State Id .

subsorts Account Msg < State .

ops A B C D : -> Id [ctor] .

op ac : Id Int -> Account [ctor] .

ops credit debit : Id Int -> Msg [ctor] .

op transfer : Id Id Int -> Msg [ctor] .

op empty-state : -> State [ctor] .

op _;_ : State State -> State [assoc comm id: empty-state] .

vars Id Id1 Id2 : Id .

vars b b1 b2 nb nb1 nb2 M : Int .

crl [credit] : ac(Id,b) ; credit(Id,M) => ac(Id,nb) if nb := b + M .

crl [debit] : ac(Id,b) ; debit(Id,M) => ac(Id,nb) if b >= M /\ nb := b - M .

crl [transfer] : ac(Id1,b1) ; ac(Id2,b2) ; transfer(Id1, Id2,M)

=> ac(Id1,nb1) ; ac(Id2,nb2)

if debit(Id1,M) ; ac(Id1,b1) => ac(Id1,nb1)

/\ credit(Id2,M) ; ac(Id2,b2) => ac(Id2,nb2) .

endm

Figure 1.2: Maude specification of a distributed banking system.

Example 1.1.8

Consider the Maude system module of Figure 1.2 that encodes a condi-
tional rewrite theory modeling a simple, distributed banking system.

Each state of the system is modeled as a multiset (i.e., an associative
and commutative list) of elements of the form e1; e2; . . . ; en. Each element
ei is either (i) a bank account ac(Id,b), where ac is a constructor symbol
(denoted by the Maude ctor attribute), Id is the owner of the account
and b is the account balance; or (ii) a message modeling a debit, credit,
or transfer operation. These account operations are implemented via
three rewrite rules: namely, the debit, credit, and transfer rules.
Consider the following instrumented execution trace:

T = ac(A,30) ; debit(A,5) ; credit(A,3)
debit→K

ac(A,25) ; credit(B,3)
credit→K

ac(A,28)

1.2. The Function slice-step 39

function slice-step(s
r,σ,w→K t, t•, B•prev) /* Assuming : [r] : λ⇒ ρ if C

1. if w /∈MPos(t•) then and C = c1 ∧ . . . ∧ cn */
2. B• = B•prev
3. s• = t•[fresh•]w′ with w′ ≤ w ∧ t•|w′ = •i, for some i

4. else
5. θ = {x/fresh• | x ∈ Dom(σ)}
6. ψn+1 = (θmgu(ρθ, (t•|w)))|̀Dom(σ)

7. for i = n downto 1 do
8. (ψi, B

•
i) = process-condition(ci, σ, ψi+1)

9. od
10. B• = B•prev ∧ (B•1 ∧ . . . ∧B•n)ψ1

11. s• = t•[λψ1]w
12. fi
13. return (s•, B•)
endf

Figure 1.3: Backward step slicing function.

Let ac(A,•1) be a slicing criterion for T . Let T • be as follows:

ac(A,•8) ; debit(A, •9) ; credit(A, •4)
debit•→

ac(A, •3) ; credit(A, •4)
credit•→

ac(A, •1)

Then, [T •, •8 ≥ •9] is a correct backward trail stating that the balance
value (abstracted by •8) should exceed or be equal to the withdrawal
value abstracted by •9.

In the following, we formulate the auxiliary procedure for the slicing
of conditional rewrite steps.

1.2 The Function slice-step

The function slice-step, which is outlined in Figure 1.3, takes three pa-
rameters as input: a rewrite step µ : s

r,σ,w→K t with [r] : λ⇒ ρ if C, a term

40 Chapter 1. Backward Trace Slicing for Conditional Rewrite Theories

slice t• of t, and a compatibility condition B•prev. It delivers as outcome
the term slice s• of s and an updated compatibility condition B•.

Roughly speaking, the function slice-step works as follows. When the
rewrite step µ occurs at a position w that is not a meaningful position
of t• (in symbols, w 6∈ MPos(t•)), trivially µ does not contribute to
producing the meaningful symbols of t•. Actually, the rewriting position
w might not even occur in t•, hence we consider the prefix w′ of w that
points to a •-variable in t•, i.e., t•|w′ is a •-variable. This position exists
and is unique. Now, since no new relevant information descends from
the term slice t•, slice-step returns a variant t•[fresh•]w′ of t• where t•|w′
has been replaced by a new fresh •-variable that completely abstracts
the redex computed by µ.

Example 1.2.1
Consider the Maude specification of Example 1.1.8 and the following

rewrite step µ: ac(A,30) ; debit(A,5) ; credit(A,3)
debit→K ac(A,25)

; credit(A,3). Let •1 ; credit(A,3) be a term slice of ac(A,25) ;

credit(A,3). Since the rewrite step µ occurs at position 1 6∈ MPos(•1

; credit(A,3)), the term ac(A,25) introduced by µ in ac(A,25) ;

credit(A,3) is completely ignored in •1 ; credit(A,3). Hence, the
computed term slice for ac(A,30) ; debit(A,5) ; credit(A,3) is
•2 ; credit(A,3), where •2 is a fresh variable generated by the function
fresh•.

On the other hand, when w ∈ MPos(t•), the computation of s•

and B• involves a more in-depth analysis of the conditional rewrite step,
which is based on an inductive process that is obtained by recursively
processing the conditions of the applied rule. More specifically, we ini-
tially define the substitution θ = {x/fresh• | x ∈ Dom(σ)} that binds
each variable in the domain of σ to a fresh •-variable. This corresponds
to assuming that all the information in µ, which is introduced by the
substitution σ, can be marked as irrelevant. Then, the algorithm com-
putes a sequence of substitutions that incrementally refine θ by using the
following two-step procedure.

In the first phase, the relevant information contained in the term slice
t•|w of the contractum t|w is retrieved, while in the second phase, relevant
symbols that come from evaluating the rule condition are recognized.

1.2. The Function slice-step 41

function process-condition(c, σ, ψ)
1. case c of
2. (p := m) ∨ (m⇒ p) : /* matching conditions
3. if (mσ = pσ) and rewrite expressions */
4. δ = mgu(m, pψ)
5. else
6. [(mσ)• →+ (pσ)•, B•] = backward-slicing(mσ →+

K pσ, pψ)
7. δ = mgu(m, (mσ)•)
8. fi
9. return ((δ ⇑ ψ)|̀Dom(ψ), B

•)
10. e : /* equational conditions */
11. return (ψ, e)
12. end case
endf

Figure 1.4: Condition processing function.

Phase 1. We compute the substitution composition ψn+1 (restricted to
Dom(σ)’s variables) of θ and the most general unifier between the
sliced contractum t•|w and the right-hand side ρ of the applied rule

[r] : λ ⇒ ρ if C instantiated by θ. This allows us to catch (and
store in ψn+1 the meaningful information of the sliced contractum
t•|w while those data that do not appear at meaningful positions are
ignored.

Note that the use of unification within our slicing methodology
somehow resembles the unification-based, parameter-passing mech-
anism that is used in narrowing [Fay79, Sla74].

Example 1.2.2

Consider the rewrite theory in Example 1.1.8 together with the fol-

lowing rewrite step µdebit : ac(A,30) ; debit(A,5)
debit→K ac(A,25)

that involves the application (at position w = Λ) of the debit rule
whose right-hand side is ρdebit = ac(Id,nb). Let t• = ac(A,•1)

be a term slice of ac(A,25) and B•prev = true. Then, the initially
ascertained substitution for µdebit is

θ = {Id/•2, b/•3, M/•4, nb/•5}

42 Chapter 1. Backward Trace Slicing for Conditional Rewrite Theories

and we compute the substitution ψn+1 as follows.

ψn+1 = (θmgu(ac(•2, •5), ac(A, •1)))|̀{Id,b,M,nb}
= (θ{•2/A, •5/•1})|̀{Id,b,M,nb}
= ({Id/•2, b/•3, M/•4, nb/•5}{•2/A, •5/•1})|̀{Id,b,M,nb}
= {Id/A, b/•3, M/•4, nb/•1}

Note that by replacing the uninformed binding Id/•2, with Id/A
in ψn+1 we catch the meaningful value A for the variable Id of the
right-hand side of the rule debit.

Phase 2. Let Cσ = c1σ ∧ . . . ∧ cnσ be the instance of the condition
in the rule r that enables the rewrite step µ. We process each
(sub)condition ciσ, i = 1, . . . , n, in reversed evaluation order, i.e.,
from cnσ to c1σ, by using the auxiliary function process-condition
given in Figure 1.4 that generates a pair (ψi, B

•
i) such that ψi is used

to further refine the partially ascertained substitution ψi+1 that
is computed by incrementally analyzing conditions cnσ, . . . , ci+1σ,
and B•i is a Boolean condition that is derived from the analysis of
the condition ci.

The processing of the whole Cσ yields a substitution ψ1, which in-
cludes the relevant instantiations of the considered conditional rewrite
step µ w.r.t. t•|w.

Now, the term slice t• is obtained from s• by replacing its subterm
at position w with the instance (λψ1) of the left-hand side of the applied
rule r. This way, all the relevant/irrelevant information identified is
transferred into the resulting sliced term s•. Furthermore, B• is built
by collecting all the Boolean compatibility conditions B•i delivered by
process-condition and instantiating them with ψ1.

It is worth noting that process-condition handles matching conditions,
rewrite expressions and equational conditions differently. More specifi-
cally, the pair (ψi, Bi) that is returned after processing each condition ci
is computed as follows.

– Matching conditions. Let c be a matching condition with the form
p := m in the condition of rule r. During the execution of the

1.2. The Function slice-step 43

instrumented step µ : s
r,σ,w→K t, recall that c is evaluated as follows:

first, mσ is reduced to its canonical form mσ ↓∆,B, and then the
condition mσ ↓∆=B pσ is checked. In our framework, this corre-
sponds to producing an internal instrumented execution trace that
transforms mσ into pσ.

The analysis of the matching condition p := m during the slicing
process of µ is implemented in process-condition by distinguishing
the following two cases.

Case i. If pσ = mσ, there is no need to generate the canonical
form of mσ, since pσ and mσ are the same term. Hence, we
discover new (possibly) relevant bindings for variables in m
by computing the mgu δ between m and pψ. Then, the algo-
rithm returns the parallel composition of δ and ψ (restricted
to Dom(ψ)’s variables) that updates the input substitution ψ
with the new bindings encoded in δ.

Since the co-domains of ψ and δ contain no variables apart
from •-symbols, the parallel composition is harmless for any
other bindings different from x/•.

Example 1.2.3

Consider the following substitutions δ = {X/h(2), Y/4} and
ψ = {X/h(•), Z/5}. Then, the parallel composition of δ and
ψ is as follows:

δ ⇑ ψ = mgu(f(X, Y,X, Z), f(h(2), 4, h(•), 5))
= {X/h(2), Y/4, Z/5, •/2}

Case ii. When pσ 6= mσ, the analysis of the matching condition
p := m during the slicing process of µ implies slicing the (in-
ternal) instrumented execution trace Tint = mσ →+

K pσ, which
is done by recursively invoking the function backward-slicing
for execution trace slicing with respect to the slicing criterion
given by the instantiation of p with ψ, where ψ is the substitu-
tion that records the meaningful information computed so far.
That is, [(mσ)• •→+ (pσ)•, B•] = backward-slicing(mσ →+

K

44 Chapter 1. Backward Trace Slicing for Conditional Rewrite Theories

pσ, pψ). The result delivered by the function backward-slicing
is a backward trail with the instrumented trace slice (mσ)• •→+

(pσ)• and compatibility condition B•, from which new rele-
vant bindings for m’s variables can be derived. This is done
by computing the mgu δ between m and (mσ)•; then, the par-
allel composition of δ and ψ (restricted to Dom(ψ)’s variables)
is computed in order to reconciliate ψ with the new bindings
in δ, and the composed substitution is delivered together with
the compatibility condition B•.

Example 1.2.4

Consider the rewrite step µdebit of Example 1.2.2 together with the
refined substitution ψn+1 = {Id/A, b/•3, M/•4, nb/•5}. We process
the condition nb := b - M of debit rule by considering an inter-
nal instrumented execution trace Tint = 30 - 5→K 25. By invok-
ing the backward-slicing function with the slicing criterion given
by nbψn+1 = •5, the resulting backward trail is [•5 •→ •5, true].
Then, we compute δ = mgu(b - M, •5) = {•5/b - M} and the
final outcome is (δ ⇑ ψn+1)|̀{Id,b,M,nb} = {Id/A, b/•3, M/•4, nb/ •3
- •4, •5/ •3 - •4}|̀{Id,b,M,nb} = {Id/A, b/•3, M/•4, nb/ •3 - •4}.

– Rewrite expressions. The case when c is a rewrite expressionm⇒ p
is handled similarly to the case of a matching equation p := m,
with the difference that m can be reduced by using the rules of R
in addition to equations and axioms.

– Equational conditions. During the execution of the rewrite step
µ : s

r,σ,w→K t, the instance eσ of an equational condition e in the
condition of the rule r is just fulfilled or falsified, but it does not
bring any instantiation into the output term t. Therefore, when
processing eσ, no new relevant instantiations can be identified for
variables that appear in e. However, the equational condition e
must be recorded within the compatibility condition B• for the
considered conditional rewrite step. In other words, after process-
ing an equational condition e, we deliver the tuple (ψ, e), with ψ
the unaltered, input substitution

1.3. Correctness of Backward Trace Slicing 45

Example 1.2.5

Consider the refined substitution given in Example 1.2.4

ψn+1 = {Id/A, b/•3, M/•4, nb/•5}

together with the rewrite step µdebit of Example 1.2.2 that involves
the application of the debit rule. After processing the condition
b >= M of debit, we deliver B• = b >= M

In the following section, we provide a notion of correctness that holds
for each backward trail computed by the backward trace slicing technique
described in this chapter.

1.3 Correctness of Backward Trace Slicing

The correctness of backward trace slicing is formally defined as follows.

Proposition 1.3.1 Let R be a conditional rewrite theory. Let T =
s0

r1,σ1,w1→K · · · rn,σn,wn→K sn be an instrumented execution trace for s0 in
R, with n ≥ 0, and let s•n be a slicing criterion for T . Then, the pair
[s•0 •→ · · · •→ s•n, B

•
0] computed by backward-slicing(T , s•n) is a backward

trail.

Proof. Let T = s0
r1,σ1,w1→K · · · rn,σn,wn→K sn be an instrumented execution

trace in the conditional rewrite theory R, with n ≥ 0, and let s•n be a
slicing criterion for T . Then,

backward-slicing(s0 →∗K sn, s
•
n) = [s•0 •→∗ s•n, B•0]

iff there exists a transition sequence S in (Conf ,#)

〈s0 →∗K sn, s
•
n, true〉#〈s0 →∗K sn−1, s

•
n−1, B

•
n−1〉#∗〈s0, s

•
0, B

•
0〉 (1.1)

First, by the definition of the functions slice-step and process-condition,
observe that

B•i = true ∧
n−1∧
j=0

bjΦj for all i = 0, . . . , n− 1 (1.2)

46 Chapter 1. Backward Trace Slicing for Conditional Rewrite Theories

where, for each j = 0, . . . , n− 1, bj is a conjunction of equational condi-
tions that occur in the conditional rewrite theory R and Φj is a substi-
tution.

Now, to prove the proposition, simply observe that

1. each s•i , i = 0, . . . , n− 1, is built in the transition

〈s0 →∗K si+1, s
•
i+1, B

•
i+1〉#〈s0 →∗K si, s

•
i , B

•
i 〉

by calling the function slice-step on the rewrite step si
ri+1,σi+1,wi+1→K

si+1, the term slice s•i+1, and the Boolean condition B•i+1. Specif-
ically, the call to slice-step generates a term s•i ∈ τ(Σ,V•) that
is derived from s•i+1 by either replacing an appropriate subterm of
s•i+1 with a fresh •-variable generated by invoking fresh• (line 3
of the function slice-step) or replacing an appropriate subterm of
s•i+1 with an instance of the left-hand side of the rule ri+1 (line 11
of the function slice-step). In both cases, s•i ∈ τ(Σ,V•).

2. By 1.2, B•0 is the conjunction of Boolean conditions true ∧ bn−1Φn−1

∧ . . . ∧ b0Φ0. Hence, B•0 is a Boolean condition.

Therefore, [s•0 •→∗ s•n, B•0] is a backward trail by Definition 1.1.1.

Theorem 1.3.2 (Correctness of Backward Trace Slicing) Let R
be a conditional rewrite theory. Let T = s0

r1,σ1,w1→K · · ·
rn,σn,wn→K sn be an

instrumented execution trace for s0 in R, with n ≥ 0, and let s•n be a
slicing criterion for T . Then, the pair [s•0 •→ · · · •→ s•n, B

•
0] computed

by backward-slicing(T , s•n) is a correct backward trail of T w.r.t s•n.

Proof. Let T = s0
r1,σ1,w1→K · · · rn,σn,wn→K sn be an instrumented execution

trace in the conditional rewrite theory R, with n ≥ 0, and let s•n be a
slicing criterion for T . Then,

backward-slicing(s0 →∗K sn, s
•
n) = [s•0 •→∗ s•n, B•0]

iff there exists a transition sequence S in (Conf ,#)

〈s0 →∗K sn, s
•
n, true〉#〈s0 →∗K sn−1, s

•
n−1, B

•
n−1〉#∗〈s0, s

•
0, B

•
0〉 (1.3)

1.3. Correctness of Backward Trace Slicing 47

By Proposition 1.3.1, the outcome [s•0 •→∗ s•n, B
•
0] is a backward

trail. Therefore, we just need to prove that [s•0 •→∗ s•n, B•0] is correct,
that is, there exists a term s′0 with s•0 ∝B

•
0 s′0, and an instrumented trace

concretization s′0 →K s′1 →K · · · →K s′n of [s•0 •→∗ s•n, B•0] such that

s′i →K s′i+1 is the rewrite step s′i
ri+1,σ

′
i+1,wi+1→K s′i+1. , i = 0, . . . , n− 1.

The proof proceeds by induction on the total number of rewrite steps
included in the instrumented execution trace T = s0

r1,σ1,w1→K · · · rn,σn,wn→K

sn that we denote by N (T). Observe that N (T) also includes all the
internal rewrites that are needed to prove the validity of the conditions
involved in the conditional rewrite steps that occur in T .

N (T) = 0. The instrumented execution trace T is empty, and hence the
theorem vacuously holds.

N (T) > 0. We have a nonempty instrumented execution trace T =

s0
r1,σ1,w1→K · · · rn−1,σn−1,wn−1→K sn−1

rn,σn,wn→K sn and a slicing criterion
s•n to which backward trace slicing is applied. Specifically, by ap-
plying backward-slicing(T , s•n), the transition sequence S in 1.3 is
produced.

We consider the instrumented execution trace T n−1 = s0
r1,σ1,w1→K

· · · rn−1,σn−1,wn−1→K sn−1. Since N (T n−1) < N (T), the inductive
hypothesis holds for T n−1 and the slicing criterion s•n−1. Thus,
backward-slicing(s0 →∗K sn−1, s

•
n−1) = [s•0 •→∗ s•n−1, B

•′
0] and [s•0 •→∗

s•n−1, B
•′
0] is a correct backward trail.

Then, we consider the rewrite step sn−1
rn,σn,wn→K sn. By Defini-

tion 1.1.3, the sliced counterpart, s•n−1 •→ s•n, of the rewrite step, is
computed in the first transition of S (that is, 〈s0 →∗K sn, s

•
n, true〉

#〈s0 →∗K sn−1, s
•
n−1, B

•
n−1〉) by executing slice-step(sn−1

rn,σn,wn→K

sn, s
•
n, true) which returns the pair (s•n−1, B

•
n−1). We distinguish

the two following cases.

Case wn 6∈ MPos(s•n). In this case, slice-step(sn−1
rn,σn,wn→K sn, s

•
n,

true) yields the pair (s•n−1, B
•
n−1) such that s•n−1 = s•n[•f]w′

where w′ ≤ w, s•n|w′ is a •-variable and •f is a fresh •-variable
that has been generated by invoking fresh•, and B•n−1 = true.
Thus, the backward trail must be of the form [s•0 •→∗ s•n[•f]w′
•→ s•n, B

•′
0 ∧ true], where s•n[•f]w′ is just a renaming of s•n.

48 Chapter 1. Backward Trace Slicing for Conditional Rewrite Theories

Since [s•0 •→∗ s•n[•f]w′ , B•
′

0] is a correct backward trail, there

exists a term s′0 with s•0 ∝B
•′
0 s′0, and an instrumented trace

concretization s′0→Ks
′
1→K · · ·→Ks

′
n−1 of s•0 •→∗ s•n[•f]w′ such

that s′i →K s′i+1 is the rewrite step s′i
ri+1,σ

′
i+1,wi+1→K s′i+1 , i =

0, . . . , n− 2.

Then, it also holds that s•0 ∝B
•′
0 ∧ true s′0. Furthermore, for the

instrumented execution trace T ′ = (s′0
r1,σ′1,w1→K · · · rn−1,σn−1,wn−1→K

s′n−1

rn,σ′n,wn→K s′n−1[ρnσ
′
n]wn = s′n) in R, where ρn is the right-

hand side of rn, we have:

i) s′i →K s′i+1 is the rewrite step s′i
ri+1,σ

′
i+1,wi+1→K s′i+1 , i =

0, . . . , n− 1;

ii) s•i is a term slice of s′i, for all i = 0, . . . , n (that is, T ′ is an
instrumented trace concretization of s•0 •→∗ s•n−1[•f]w′•→
s•n), with s•n−1 = s•n[•f]w′ .

Therefore, [s•0 •→∗ s•n−1•→ s•n, B
•′
0 ∧ true] is a correct back-

ward trail.

Case wn ∈MPos(s•n). Let rn be the rewrite rule [rn] : λn ⇒
ρn if Cn. In this case, slice-step(sn−1

rn,σn,wn→K sn, s
•
n, true)

yields the pair (s•n−1, B
•
n−1) such that s•n−1 = s•n[λnψ]wn , for

some substitution ψ, and B•n−1 is the conjunction of some
equational conditions needed to evaluate the condition Cnσn
in the rewrite step sn−1

rn,σn,wn→K sn. Thus, the backward trail
must be of the form [s•0 •→∗ s•n[λψ]wn •→ s•n, B

•′
0 ∧ B•n−1],

where B•
′

0 is the compatibility condition computed by slicing
the instrumented execution trace T n−1.

Now, we consider the backward trail [s•0 •→∗ s•n−1, B
•′
0], which

is correct by inductive hypothesis. By Definition 1.1.7, we

know that there exists a term s′0 with s•0 ∝B
•′
0 s′0, and an instru-

mented trace concretization s′0→s′1→K · · ·→Ks
′
n−1 of s•0 •→∗

s•n−1 such that s′i →K s′i+1 is the rewrite step s′i
ri+1,σ

′
i+1,wi+1→K

s′i+1 , i = 0, . . . , n− 2.

In particular, we can choose s′0 = s0. This way, all the descen-
dants of s0 will be kept in the instrumented execution trace

1.3. Correctness of Backward Trace Slicing 49

s0 = s′0→Ks
′
1→K · · ·→Ks

′
n−1. Hence, s′n−1|wn

= sn−1|wn =

λnσn. Furthermore, s•0 ∝B
•′
0 ∧ B•n−1 s0 = s′0. Thus, by defini-

tion of rewriting, s′n−1

rn,σ′n,wn→K s′n with s′n|wn
= ρnσ

′
n = ρnσn =

sn|wn . Also, s•n is a term slice of s′n, since s•n is a slicing criterion
for T .

Therefore, [s•0 •→∗ s•n[λψ]wn•→ s•n, B
•′
0 ∧ B•n−1] is a backward

trail correct.

50 Chapter 1. Backward Trace Slicing for Conditional Rewrite Theories

Chapter 2

The iJulienne System

The backward trace slicing methodology for conditional RWL computa-
tions described in Chapter 1 has been implemented in the slicing-based
trace analysis tool iJulienne, which is available at [iJu12]. The core
engine of iJulienne is written in Maude and consists of about 250
Maude function definitions (approximately 1.5K lines of source code).
The iJulienne tool is a stand-alone application that can be invoked
as a Maude command or used online through a Java web service. It
allows the analysis of general rewrite theories that may contain (con-
ditional) rules and equations, built-in operators, and algebraic axioms.
The implementation uses meta-level capabilities and relies on the very
efficient Maude system [CDE+07]. Actually, the current version of the
Maude interpreter can do more than 3 million rewrites per second on
state-of-the-art processors, and the Maude compiler can reach up to 15
million rewrites per second. The iJulienne user interface is based on the
AJAX technology, which allows the Maude back-end to be used through
the WWW.

iJulienne generalizes and supersedes previous trace slicing tools
such as the trace slicer for unconditional RWL theories described in
[ABER11], and the conditional slicer Julienne presented in [ABFR12b].

The architecture of iJulienne, which is depicted in Figure 2.1, con-
sists of four main modules named IT-Builder, Maude Slicer, Query
Handler, and Pretty-Printer.

The IT-Builder is a pre-processor that obtains a suitable, instru-
mented trace meta-representation where all internal algebraic axiom ap-
plications are made explicit.

The Maude Slicer module provides incremental trace slicing and dy-
namic program slicing facilities. Both of these techniques are developed
by using Maude reflection and meta-level functionality. On one hand, the
Trace Slicer implements a greatly enhanced, incremental extension of the
conditional backward trace slicing algorithm of [ABER11, ABFR12a] in

52 Chapter 2. The iJulienne System

Pr
et

ty
-P

ri
nt

er

Qu
er

y
H

an
dl

er

IT-Builder

Maude Slicer

Trace Analyzer

Trace Slicer

Program Slicer

(Trace Slice, S. Criterion)

Inst. Trace

Trace

Qu
er

y
/

S.
 C

ri
te

ri
on

(T
ra

ce
 S

lic
e,

 P
ro

gr
am

 S
lic

e)

Figure 2.1: iJulienne architecture.

which the slicing criteria can be repeatedly refined and the corresponding
trace slices are automatically obtained by simply discarding the pieces
of information affected by the updates. Thanks to incrementality, trace
slicing, analysis and debugging times are significantly reduced. On the
other hand, the companion Program Slicer can be used to discard the
program equations and rules that are not responsible for producing the
set of target symbols in the observed trace state. Rather than simply
glueing together the program equations and rules that are used in the
simplified trace, it just delivers a program fragment that is proved to
influence the observed result. In other words, not only are the unused
program data and rules removed but the data and rules that are used in
subcomputations that are irrelevant to the criterion of interest are also
removed.

The way in which the slicing criteria are defined has been greatly
improved in iJulienne. Besides supporting mouse click events that can

2.1. iJulienne at Work 53

select any information piece in the state, a Query handling facility
is included that allows huge execution traces to be queried by simply
providing a filtering pattern (the query) that specifies a set of symbols to
monitor and also selects those states that match the pattern. A pattern
language with wild cards ? and is used to identify (resp. discard) the
relevant (resp. irrelevant) data inside the states.

Finally, the Pretty-Printer delivers a more readable representation
of the trace (transformed back to sort String) that aims to favor better
inspection and debugging within the Maude formal environment. More-
over, this facility provides the user with an advanced view where the
irrelevant information can be displayed or hidden, depending on the in-
terest of the user. This can also be done by automatically downgrading
the color of those parts of the trace that contain subterms that are rooted
by relevant symbols but that only have irrelevant children.

2.1 iJulienne at Work

In general, conventional debugging is an inefficient and time-consuming
approach for understanding program behavior, especially when a pro-
grammer is interested in observing only those parts of the program ex-
ecution that relate to the incorrect output. In order to make program
debugging and comprehension more efficient, it is important to focus
the programmer’s attention on the essential components (actions, states,
equations and rules) of the program and their execution. Backward trace
slicing provides a means to achieve this by pruning away the unrelated
pieces of the computation [Wei81].

2.1.1 Debugging Maude Programs with iJulienne

In debugging, one is often interested in analyzing a particular execution
of a program that exhibits anomalous behavior. However, the execution
of Maude programs typically generates large and clumsy traces that are
hard to browse and understand even when the programmer is assisted by
tracing tools such as the Maude built-in tracing facility. This is because
the tracer does not provide any means for identifying the contributing
program parts of the program being debugged, and does not allow the

54 Chapter 2. The iJulienne System

mod BANK_ERR is

pr INT .

sorts Account Msg State Id .

subsorts Account Msg < State .

ops A B C D : -> Id [ctor] .

op ac : Id Int -> Account [ctor] .

ops credit debit : Id Int -> Msg [ctor] .

op transfer : Id Id Int -> Msg [ctor] .

op empty-state : -> State [ctor] .

op _;_ : State State -> State [assoc comm id: empty-state] .

vars Id Id1 Id2 : Id .

vars b b1 b2 nb nb1 nb2 M : Int .

crl [credit] : ac(Id,b) ; credit(Id,M) => ac(Id,nb) if nb := b + M .

crl [debitERR] : ac(Id,b) ; debit(Id,M) => ac(Id,nb) if nb := b - M .

crl [transfer] : ac(Id1,b1) ; ac(Id2,b2) ; transfer(Id1, Id2,M)

=> ac(Id1,nb1) ; ac(Id2,nb2)

if debit(Id1,M) ; ac(Id1,b1) => ac(Id1,nb1)

/\ credit(Id2,M) ; ac(Id2,b2) => ac(Id2,nb2) .

endm

Figure 2.2: Faulty Maude specification of a distributed banking system.

programmer to distinguish related computations from unrelated compu-
tations. The inspection of these traces for debugging purposes is thus a
cumbersome task that very often leads to no conclusion. In this scenario,
backward trace slicing can play a meaningful role, since it can automat-
ically reduce the size of the analyzed execution trace keeping track of all
and only those symbols that impact on an error or anomaly in the trace.

Basically, the idea is to feed iJulienne with an execution trace T
that represents a wrong behavior of a given Maude program, together
with a slicing criterion that observes an erroneous outcome. The resulting
trace slice is typically much smaller than the original one, since it only
includes the information that is responsible for the production of the
erroneous outcome. Thus, the programmer can easily navigate through
the trace slice and repeatedly refine the slicing criteria for program bugs
to hunt, as shown in the following examples.

Example 2.1.1
Consider the Maude program BANK_ERR of Figure 2.2, which is a faulty
mutation of the distributed banking system specified in Figure 1.2. More
precisely, the rule debit has been replaced by the rule debitERR in which

2.1. iJulienne at Work 55

6/22/2014 iJulienne Online Trace Analyzer

http://safe-tools.dsic.upv.es/iJulienneV2/ 1/1

×Trace information
State Label Trace Trace Slice

1 'Start
ac(A,50) ;; ac(B,20) ;; ac(C,20) ;; ac(D,20) ;; credit(A,10
) ;; credit(D,40) ;; debit(C,50) ;; debit(D,5) ;; transfer(A,
C,15) ;; transfer(A,D,20) ;; transfer(B,C,4)

ac(•,•) ;; ac(•,•) ;; ac(•,20) ;; ac(•,•) ;; credit(•,•) ;; credi
t(•,•) ;; debit(•,50) ;; debit(•,•) ;; transfer(•,•,15) ;; tran
sfer(•,•,•) ;; transfer(•,•,4)

2 fromBnf
ac(B,20) ;; ac(C,20) ;; ac(D,20) ;; credit(D,40) ;; debit(C,
50) ;; debit(D,5) ;; transfer(A,C,15) ;; transfer(A,D,20) ;;
transfer(B,C,4) ;; ac(A,50) ;; credit(A,10)

ac(•,•) ;; ac(•,20) ;; ac(•,•) ;; credit(•,•) ;; debit(•,50) ;;
 debit(•,•) ;; transfer(•,•,15) ;; transfer(•,•,•) ;; transf
er(•,•,4) ;; ac(•,•) ;; credit(•,•)

3 credit
ac(B,20) ;; ac(C,20) ;; ac(D,20) ;; credit(D,40) ;; debit(C,
50) ;; debit(D,5) ;; transfer(A,C,15) ;; transfer(A,D,20) ;;
transfer(B,C,4) ;; ac(A,60)

ac(•,•) ;; ac(•,20) ;; ac(•,•) ;; credit(•,•) ;; debit(•,50) ;;
 debit(•,•) ;; transfer(•,•,15) ;; transfer(•,•,•) ;; transf
er(•,•,4) ;; ac(•,•)

4-­5 toBnf-­fromBnf
ac(A,60) ;; ac(B,20) ;; ac(C,20) ;; debit(C,50) ;; debit(D,5
) ;; transfer(A,C,15) ;; transfer(A,D,20) ;; transfer(B,C,4
) ;; ac(D,20) ;; credit(D,40)

ac(•,•) ;; ac(•,•) ;; ac(•,20) ;; debit(•,50) ;; debit(•,•) ;;
transfer(•,•,15) ;; transfer(•,•,•) ;; transfer(•,•,4) ;; a
c(•,•) ;; credit(•,•)

6 credit
ac(A,60) ;; ac(B,20) ;; ac(C,20) ;; debit(C,50) ;; debit(D,5
) ;; transfer(A,C,15) ;; transfer(A,D,20) ;; transfer(B,C,4
) ;; ac(D,60)

ac(•,•) ;; ac(•,•) ;; ac(•,20) ;; debit(•,50) ;; debit(•,•) ;; tr
ansfer(•,•,15) ;; transfer(•,•,•) ;; transfer(•,•,4) ;; ac(•,
•)

7-­8 toBnf-­fromBnf
ac(A,60) ;; ac(B,20) ;; ac(D,60) ;; debit(D,5) ;; transfer(A
,C,15) ;; transfer(A,D,20) ;; transfer(B,C,4) ;; ac(C,20) ;;
debit(C,50)

ac(•,•) ;; ac(•,•) ;; ac(•,•) ;; debit(•,•) ;; transfer(•,•,15
) ;; transfer(•,•,•) ;; transfer(•,•,4) ;; ac(•,20) ;; debit(
•,50)

9 debitERR ac(A,60) ;; ac(B,20) ;; ac(D,60) ;; debit(D,5) ;; transfer(A
,C,15) ;; transfer(A,D,20) ;; transfer(B,C,4) ;; ac(C,-­ 30)

ac(•,•) ;; ac(•,•) ;; ac(•,•) ;; debit(•,•) ;; transfer(•,•,15)
 ;; transfer(•,•,•) ;; transfer(•,•,4) ;; ac(•,-­ 30)

10-­11 toBnf-­fromBnf ac(A,60) ;; ac(B,20) ;; ac(C,-­ 30) ;; transfer(A,C,15) ;; tr
ansfer(A,D,20) ;; transfer(B,C,4) ;; ac(D,60) ;; debit(D,5)

ac(•,•) ;; ac(•,•) ;; ac(•,-­ 30) ;; transfer(•,•,15) ;; tran
sfer(•,•,•) ;; transfer(•,•,4) ;; ac(•,•) ;; debit(•,•)

12 debitERR ac(A,60) ;; ac(B,20) ;; ac(C,-­ 30) ;; transfer(A,C,15) ;; tr
ansfer(A,D,20) ;; transfer(B,C,4) ;; ac(D,55)

ac(•,•) ;; ac(•,•) ;; ac(•,-­ 30) ;; transfer(•,•,15) ;; transf
er(•,•,•) ;; transfer(•,•,4) ;; ac(•,•)

13-­14 toBnf-­fromBnf ac(B,20) ;; ac(D,55) ;; transfer(A,D,20) ;; transfer(B,C,4
) ;; ac(A,60) ;; ac(C,-­ 30) ;; transfer(A,C,15)

ac(•,•) ;; ac(•,•) ;; transfer(•,•,•) ;; transfer(•,•,4) ;; ac(
•,•) ;; ac(•,-­ 30) ;; transfer(•,•,15)

15 transfer ac(B,20) ;; ac(D,55) ;; transfer(A,D,20) ;; transfer(B,C,4
) ;; ac(A,45) ;; ac(C,-­ 15)

ac(•,•) ;; ac(•,•) ;; transfer(•,•,•) ;; transfer(•,•,4) ;; ac(
•,•) ;; ac(•,-­ 15)

16-­17 toBnf-­fromBnf ac(B,20) ;; ac(C,-­ 15) ;; transfer(B,C,4) ;; ac(A,45) ;; ac
(D,55) ;; transfer(A,D,20)

ac(•,•) ;; ac(•,-­ 15) ;; transfer(•,•,4) ;; ac(•,•) ;; ac(•,•
) ;; transfer(•,•,•)

18 transfer ac(B,20) ;; ac(C,-­ 15) ;; transfer(B,C,4) ;; ac(A,25) ;; ac
(D,75)

ac(•,•) ;; ac(•,-­ 15) ;; transfer(•,•,4) ;; • ;; •

19-­20 toBnf-­fromBnf ac(A,25) ;; ac(D,75) ;; ac(B,20) ;; ac(C,-­ 15) ;; transfer(
B,C,4)

• ;; • ;; ac(•,•) ;; ac(•,-­ 15) ;; transfer(•,•,4)

21 transfer ac(A,25) ;; ac(D,75) ;; ac(B,16) ;; ac(C,-­ 11) • ;; • ;; • ;; ac(•,-­ 11)

22 toBnf ac(A,25) ;; ac(B,16) ;; ac(C,-­ 11) ;; ac(D,75) • ;; • ;; ac(•,-­ 11) ;; •

Total size: 1689 295

Reduction Rate: 83%

Figure 2.3: iJulienne output for the trace Tbank w.r.t. the slicing crite-
rion ac(• ,-11).

we have intentionally omitted the equational condition b >= M. Roughly
speaking, the considered specification always authorizes withdrawals even
in the erroneous case when the amount of money to be withdrawn is
greater than the account balance.

Consider an execution trace Tbank in program BANK_ERR that starts in
the initial state

ac(A,50) ; ac(B,20) ; ac(D,20) ; ac(C,20) ;

56 Chapter 2. The iJulienne System

transfer(B,C,4) ; transfer(A,C,15) ;

debit(D,5) ; credit(A,10) ; transfer(A,D,20) ;

debit(C,50) ; credit(D,40)

and ends in the final state

ac(A,25) ; ac(B,16) ; ac(D,75) ; ac(C,-11)

We observe that the final state contains a negative balance for client
C, which is a clear symptom of malfunction of the BANK_ERR specifica-
tion, if we assume that balances must be non-negative numbers accord-
ing to the semantics intended by the programmer. Therefore, we execute
iJulienne on the trace Tbank w.r.t. the slicing criterion ac(•,-11) that
observes the negative balance of the term ac(C,-11) in order to deter-
mine the cause of such a negative balance. The output delivered by
iJulienne is given in Figure 2.3 and shows the (instrumented) input
trace Tbank in the Trace column, the simplified trace T •bank in the Trace
Slice column, and some other auxiliary data such as the size of the trace
and the corresponding trace slice, the reduction rate achieved, and the
labels of the rules/equations that have been applied in Tbank and T •bank .

It is worth noting that the trace slice T •bank greatly simplifies the
trace Tbank by deleting all the bank accounts and account operations
that are not related to the client C as well as all the internal flat/unflat
rewrite steps, which are needed to implement rewriting modulo associa-
tivity and commutativity. In fact, the computed reduction rate is 83%,
which clearly shows the drastic simplification that we have obtained.

Now, a quick inspection of T •bank allows the existence of a misbehaving
account operation to be recognized. Specifically, state 9 in the trace slice
T •bank has been obtained by reducing the term debit(C, 50) by means of
the rule debitERR even though the current balance of C was only 20.
This suggests to us that debit_ERR might be faulty since it does not
conform to its intended semantics, which forbids any withdrawal greater
than the current funds available.

The following example illustrates how debugging activities can be
greatly improved by using the incremental trace slicing facility provided
by iJulienne.

2.1. iJulienne at Work 57

mod BLOCKS-WORLD is

inc INT .

sorts Block Prop State .

subsort Prop < State .

ops a b c : -> Block .

op table : Block -> Prop . --- block is on the table

op on : Block Block -> Prop . --- first block is on the second block

op clear : Block -> Prop . --- block is clear

op hold : Block -> Prop . --- robot arm holds the block

op empty : -> Prop . --- robot arm is empty

op _&_ : State State -> State [assoc comm] .

op size : Block -> Nat .

vars X Y : Block .

eq [sizeA] : size(a) = 1 .

eq [sizeB] : size(b) = 2 .

eq [sizeC] : size(c) = 3 .

rl [pickup] : clear(X) & table(X) => hold(X) .

rl [putdown] : hold(X) => empty & clear(X) & table(X) .

rl [unstack] : empty & clear(X) & on(X,Y) => hold(X) & clear(Y) .

crl [stack] : hold(X) & clear(Y) => empty & clear(X) & on(X,Y)

if size(X) < size(Y) .

endm

Figure 2.4: BLOCKS-WORLD faulty Maude specification.

Example 2.1.2

Consider the Maude program BLOCKS-WORLD of Figure 2.4, which is a
faulty mutation of one of the most popular planning problems in artificial
intelligence. We assume that there are some blocks, placed on a table,
that can be moved by means of a robot arm; the goal of the robot arm
is to produce one or more vertical stacks of blocks. In our specification,
we define a Blocks World system with three different kinds of blocks that
are defined by means of the operators a, b, and c of sort Block. Different
blocks have different sizes that are described by using the unary operator
size. We also consider some operators that formalize block and robot
arm properties whose intuitive meanings are given in the accompanying
program comments.

The states of the system are modeled by means of associative and
commutative lists of properties of the form prop1 & prop2 & . . . &

propn, which describe any possible configuration of the blocks on the
table as well as the status of the robot arm.

58 Chapter 2. The iJulienne System
6/23/2014 iJulienne Online Trace Analyzer

http://safe-tools.dsic.upv.es/iJulienneV2/ 1/1

×Program slice

mod BLOCKS-WORLD is

 inc INT .

 sorts Block Prop State .

 subsort Prop < State .

 ops a b c : -> Block .

 op table : Block -> Prop . --- block is on the table

 op on : Block Block -> Prop . --- first block is on the second block

 op clear : Block -> Prop . --- block is clear

 op hold : Block -> Prop . --- robot arm holds the block

 op empty : -> Prop . --- robot arm is empty

 op _&_ : State State -> State [assoc comm] .

 op size : Block -> Nat .

 vars X Y : Block .

 eq [sizeA] : size(a) = 1 .

 eq [sizeB] : size(b) = 2 .

 eq [sizeC] : size(c) = 3 .

 rl [pickup] : clear(X) & table(X) => hold(X) .

 rl [putdown] : hold(X) => empty & clear(X) & table(X) .

 rl [unstack] : empty & clear(X) & on(X,Y) => hold(X) & clear(Y) .

 crl [stack] : hold(X) & clear(Y) => empty & clear(X) & on(X,Y)

 if size(X) < size(Y) .

endm

Figure 2.5: Program slice computed w.r.t. the slicing criterion empty &

empty.

The system behavior is formalized by four, simple rewrite rules that
control the robot arm. Specifically, the pickup rule describes how the
robot arm grabs a block from the table, while the putdown rule corre-
sponds to the inverse move. The stack and unstack rules respectively
allow the robot arm to drop one block on top of another block and to
remove a block from the top of a stack. Note that the conditional stack
rule forbids a given block B1 from being piled on a block B2 if the size of
B1 is greater than the size of B2.

Barely perceptible, the Maude specification of Figure 2.4 fails to pro-

2.1. iJulienne at Work 59

vide a correct Blocks World implementation. By using the BLOCKS-WORLD
module, it is indeed possible to derive system states that represent erro-
neous configurations. For instance, the initial state

si = empty & clear(a) & table(a) & clear(b) &

table(b) & clear(c) & table(c)

describes a simple configuration where the robot arm is empty and there
are three blocks a, b, and c on the table. It can be rewritten in 7 steps
to the state

sf = empty & empty & table(b) & table(c) &

clear(a) & clear(c) & on(a,b)

which clearly indicates a system anomaly since it shows the existence of
two empty robot arms!

To find the cause of this wrong behavior, we feed iJulienne with
the faulty rewrite sequence T = si →∗ sf, and we initially slice T
w.r.t. the slicing criterion that observes the two anomalous occurrences
of the empty property in State sf. This task can be easily performed
in iJulienne by first highlighting the terms that we want to observe
in State sf with the mouse pointer and then starting the slicing process.
iJulienne yields a trace slice that simplifies the original trace by record-
ing only those data that are strictly needed to produce the considered
slicing criterion. Also, it automatically computes the corresponding pro-
gram slice, which consists of the equations defining the size operator
together with the pickup and stack rules (see Figure 2.5). This allows
us to deduce that the malfunction is located in one or more rules and
equations that are included in the program slice.

The generated trace slice is then browsed backwards using the
iJulienne’s navigation facility in the search for a possible explanation
for the wrong behavior. During this phase, we focus our attention on
State 5 (Figure 2.6), which is inconsistent since it models a robot arm
that is holding a block and is empty at the same time. Therefore, we de-
cide to further refine the trace slice by incrementally applying backward
trace slicing to State 5 w.r.t. the slicing criterion hold(•) & empty.
This way, we achieve a supplementary reduction of the previous trace
slice in which we can easily observe in states 2 and 3 that the hold prop-
erty only depends on the clear and table properties (see Figure 2.7).

60 Chapter 2. The iJulienne System

6/23/2014 iJulienne Online Trace Analyzer

http://safe-tools.dsic.upv.es/iJulienneV2/ 1/1

i JULIENNE[+

s4 fromBnf

empty & clear(b) & clear(c) & hold(a) & table(b) & table(c)

s5 rl: stack

empty & clear(c) & table(b) & table(c) & clear(b) & hold(a)

s•4s•4
empty & clear(•) & • & hold(•) & • & •

s•5s•5
empty & • & • & • & clear(•) & hold(•)

Z Y Slice a `

Zoom: -­ 100% + States 4-­5 of 7

 Enter your query here and press enter.

Figure 2.6: Navigation through the trace slice of the Blocks World ex-
ample.

6/23/2014 iJulienne Online Trace Analyzer

http://safe-tools.dsic.upv.es/iJulienneV2/ 1/1

i JULIENNE[+

s2 rl: pickup

empty & clear(b) & clear(c) & table(b) & table(c) & clear(a) &
 table(a)

s3 toBnf

empty & clear(b) & clear(c) & table(b) & table(c) & hold(a)

s•2s•2
empty & • & • & • & • & clear(•) & table(•)

s•3s•3
empty & • & • & • & • & hold(•)

Z Y Slice a `

Zoom: -­ 100% + States 2-­3 of 1-­5 (7)

 Enter your query here and press enter.

Figure 2.7: Navigation though the refined trace slice of the Blocks World
example.

Furthermore, the computed program slice includes the single pickup rule
(see Figure 2.8). Thus, we can conclude that:

1. the malfunction is certainly located in the pickup rule (since the
computed program slice only contains that rule);

2. the pickup rule does not depend on the status of the robot arm
(this is witnessed by the fact that the hold property only relies on
the clear and table properties);

3. by 1 and 2, we can deduce that the pickup rule is incorrect, as
it never checks the emptiness of the robot arm before grasping a
block.

A possible fix of the detected error consists in including the empty

property in the left-hand side of the pickup rule, which enforces the

2.1. iJulienne at Work 61
6/23/2014 iJulienne Online Trace Analyzer

http://safe-tools.dsic.upv.es/iJulienneV2/ 1/1

×Program slice

mod BLOCKS-WORLD is

 inc INT .

 sorts Block Prop State .

 subsort Prop < State .

 ops a b c : -> Block .

 op table : Block -> Prop . --- block is on the table

 op on : Block Block -> Prop . --- first block is on the second block

 op clear : Block -> Prop . --- block is clear

 op hold : Block -> Prop . --- robot arm holds the block

 op empty : -> Prop . --- robot arm is empty

 op _&_ : State State -> State [assoc comm] .

 op size : Block -> Nat .

 vars X Y : Block .

 eq [sizeA] : size(a) = 1 .

 eq [sizeB] : size(b) = 2 .

 eq [sizeC] : size(c) = 3 .

 rl [pickup] : clear(X) & table(X) => hold(X) .

 rl [putdown] : hold(X) => empty & clear(X) & table(X) .

 rl [unstack] : empty & clear(X) & on(X,Y) => hold(X) & clear(Y) .

 crl [stack] : hold(X) & clear(Y) => empty & clear(X) & on(X,Y)

 if size(X) < size(Y) .

endm

Figure 2.8: Program slice computed w.r.t. the slicing criterion hold(•).

robot arm to always be idle before picking up a block. The corrected
version of the rule is hence as follows:

rl [pickup] : empty & clear(X) & table(X) => hold(X) .

2.1.2 Trace Querying with iJulienne

Execution traces of programs are a helpful source of information for pro-
gram comprehension. However, they provide such a low-level picture of

62 Chapter 2. The iJulienne System

program execution that users may experience several difficulties in in-
terpreting and analyzing them. Trace querying [Duc99] allows a given
execution trace to be analyzed at a higher level of abstraction by selecting
only the subtrace that the user considers relevant.

Trace querying of Maude execution traces is naturally supported and
completely automated by iJulienne. Indeed, execution traces can be
simply queried by providing a slicing criterion (in the form of a filtering
pattern) that specifies the target symbols the user decides to monitor.
Hence, backward trace slicing is performed w.r.t. the considered criterion
to compute an abstract view (i.e., the trace slice) of the original execution
trace that only includes the information that is strictly required to yield
the target symbols under observation. This way, users can focus their
attention on the monitored data, which might otherwise be overlooked
in the concrete trace.

Moreover, backward trace slicing correctness provides, for free, a
means to understand the program behavior w.r.t. partially-defined inputs
since the computed compatibility condition constrains the possible val-
ues that non-relevant inputs (modeled by •-variables) might assume. In
other words, a trace slice T • can be thought of as an intensional represen-
tation of possible concrete traces, which are compatible concretizations
of T •, that lead to the production of the monitored target symbols.

Example 2.1.3

The Maude specification of Figure 2.9, inspired by a similar one in [LS03],
specifies the operator minmax that takes as input a list of natural numbers
L and computes a pair (m,M) where m (resp., M) is the minimum (resp.,
maximum) of L.

Let Tminmax be the execution trace that reduces the input term
minmax(4 ; 7 ; 0) to the normal form PAIR(0,7). Now, assume that
we are only interested in analyzing the subtrace that generates 0 in
PAIR(0,7) —i.e., the minimum of the list 4 ; 7 ; 0.

Thus, we can query Tminmax by specifying the pattern PAIR(?,) that
allows us to trace back only the first argument of PAIR, while the second
one is discarded. iJulienne generates the trace slice T •minmax, given in
Figure 2.10, whose compatibility condition is B• = •1 > 0 ∧ •3 > 0.
The slice T •minmax isolates all and only those function calls in the trace T
that must be reduced to yield the minimum of the list 4 ; 7 ; 0. Now,

2.1. iJulienne at Work 63

mod MINMAX is

inc INT .

sorts List Pair .

subsorts Nat < List .

op PAIR : Nat Nat -> Pair .

op 1st : Pair -> Nat .

op 2nd : Pair -> Nat .

op Max : Nat Nat -> Nat .

op Min : Nat Nat -> Nat .

op minmax : List -> Pair .

op _;_ : List List -> List [ctor assoc] .

var N X Y : Nat .

var L : List .

rl [1st] : 1st(PAIR(X,Y)) => X .

rl [2nd] : 2nd(PAIR(X,Y)) => Y .

rl [minmax1] : minmax(N) => PAIR(N,N) .

rl [minmax2] : minmax(N ; L) => PAIR(Min(N,1st(minmax(L))),Max(N,2nd(minmax(L)))) .

crl [Max1] : Max(X,Y) => X if X >= Y .

crl [Max2] : Max(X,Y) => Y if X < Y .

crl [Min1] : Min(X,Y) => Y if X > Y .

crl [Min2] : Min(X,Y) => X if X <= Y .

endm

Figure 2.9: Maude specification of the minmax function.

by analyzing the trace slice, it is immediate to see that the operators
2nd and Max do not affect the observed result since they are not used in
the trace slice. Also, by the correctness of our slicing technique, we can
state that there are concrete instances Lc of the partially-defined input
•1 ; •3 ; 0 that meet the compatibility condition B• such that the
minimum computed by the call minmax(Lc) will be 0.

The MINMAX program is paradigmatic of a strategy known as intro-
duction of mutual recursion, which separates a single function yielding
pairs into the pair of its component functions (slices) [VO01]. Thus in a
sense, the same effect (trace slicing) could be obtained for this example
by slicing the source code in Maude before trace inspection.

In the following example, the trace querying capabilities of iJulienne
are used to simplify the counter-examples traces provided by Web-TLR
[ABER10], a RWL-based tool that allows real-size web applications to
be formally specified and verified by using the built-in Maude model-
checker, thus facilitating their analysis. In Web-TLR, a web applica-

64 Chapter 2. The iJulienne System

6/23/2014 iJulienne Online Trace Analyzer

http://safe-tools.dsic.upv.es/iJulienneV2/ 1/1

×Trace information
State Label Trace Trace Slice

1 'Start minmax(4 ;; 7 ;; 0) minmax(•1 ;; •3 ;; 0)

2 fromBnf minmax(4 ;; 7 ;; 0) minmax(•1 ;; •3 ;; 0)

3 minmax2 PAIR(Min(4,1st(minmax(7 ;; 0))),Max(4,2nd(minmax(7
;; 0))))

PAIR(Min(•1,1st(minmax(•3 ;; 0))),•0)

4 minmax2 PAIR(Min(4,1st(PAIR(Min(7,1st(minmax(0))),Max(7,2n
d(minmax(0)))))),Max(4,2nd(minmax(7 ;; 0))))

PAIR(Min(•1,1st(PAIR(Min(•3,1st(minmax(0))),•
10))),•0)

5 1st PAIR(Min(4,Min(7,1st(minmax(0)))),Max(4,2nd(minma
x(7 ;; 0))))

PAIR(Min(•1,Min(•3,1st(minmax(0)))),•0)

6 minmax2 PAIR(Min(4,Min(7,1st(minmax(0)))),Max(4,2nd(PAIR(M
in(7,1st(minmax(0))),Max(7,2nd(minmax(0)))))))

PAIR(Min(•1,Min(•3,1st(minmax(0)))),•0)

7 2nd PAIR(Min(4,Min(7,1st(minmax(0)))),Max(4,Max(7,2nd(
minmax(0)))))

PAIR(Min(•1,Min(•3,1st(minmax(0)))),•0)

8 minmax1 PAIR(Min(4,Min(7,1st(PAIR(0,0)))),Max(4,Max(7,2nd(m
inmax(0)))))

PAIR(Min(•1,Min(•3,1st(PAIR(0,•6)))),•0)

9 1st PAIR(Min(4,Min(7,0)),Max(4,Max(7,2nd(minmax(0))))) PAIR(Min(•1,Min(•3,0)),•0)

10 Min1 PAIR(Min(4,0),Max(4,Max(7,2nd(minmax(0))))) PAIR(Min(•1,0),•0)

11 Min1 PAIR(0,Max(4,Max(7,2nd(minmax(0))))) PAIR(0,•0)

12 minmax1 PAIR(0,Max(4,Max(7,2nd(PAIR(0,0))))) PAIR(0,•0)

13 2nd PAIR(0,Max(4,Max(7,0))) PAIR(0,•0)

14 Max1 PAIR(0,Max(4,7)) PAIR(0,•0)

15 Max2 PAIR(0,7) PAIR(0,•0)

Compatibility
condition:

•1 > 0 and •3 > 0

Total size: 679 219

Reduction Rate: 67%

Figure 2.10: iJulienne output for the trace T •minmax w.r.t. the slicing
criterion automatically inferred in the query PAIR(?,).

tion is formalized by means of a Maude specification and then checked
against a property specified in the Linear Temporal Logic of Rewriting
(LTLR [Mes08]), which is a temporal logic specifically designed to model-
check rewrite theories. A property is refuted by the LTLR model-checker
by issuing a counter-example in the form of a rewrite sequence that re-
veals some undesired, erroneous behavior. Our example reproduces a
typical trace analysis session that operates on the Maude specification of
a complex webmail application checked with Web-TLR.

Example 2.1.4
Consider the webmail application written in Maude given in [ABER10]
that models both server-side aspects (e.g., web script evaluations,
database interactions) and browser-side features (e.g., forward/backward
navigation, web page refreshing, window/tab openings). The web appli-
cation behavior is formalized by using rewrite rules of the form [label] :

2.1. iJulienne at Work 65
6/23/2014 iJulienne Online Trace Analyzer

http://safe-tools.dsic.upv.es/iJulienneV2/ 1/1

PROVIDE THE MAUDE INPUT PROGRAM AND EXECUTION TRACE

 vars ba : BrowserActions .

 vars ln tab f5 : Qid .

 op T : Int Qid -> Tab [ctor] .

 op tab-empty : -> Tab .

 op _;_ : Tab Tab -> Tab [ctor assoc comm id: tab-empty] .

 op f5-empty : -> Qid .

 op _;_ : Qid Qid -> Qid [ctor assoc comm id: f5-empty] .

 op bra-empty : -> BrowserActions .

{'`[_`]_`[_`]`[_`]['B['idA.Id,'idw1.Id,''noPage.Qid,'_?_[''Welcome.Qid,'query-empty

.Query],

 'session-empty.Session,'_:_['_/_[''idEmail.Qid,'"email2".String],'_/_[''pass.Qi

d,'"secretAlice".String],

 '_/_[''user.Qid,'"alice".String]],'mes-empty.Message,'history-empty.History,'s_

['0.Zero]],

?
 Webmail application Upload

 Maude term of sort Trace Generate

[_

Figure 2.11: Loading the webmail execution trace.

webState ⇒ webState, where webState is a triple that we represent with
the following operator || || : (Browsers×Message× Server)→ webState
that can be interpreted as a system shot that captures the current config-
uration of the active browsers (i.e., the browsers currently using the web-
mail application) together with the channel through which the browsers
and the server communicate via message-passing. An execution trace
specifies a sequence of web state transitions that represents a possible
execution of the webmail application.

The trace slicing session starts by loading the Maude webmail spec-
ification, together with the execution trace to be analyzed, into the
iJulienne trace analyzer. The trace can be directly pasted in the input
form or uploaded from a trace file that was written off-line. It can also be

66 Chapter 2. The iJulienne System

6/23/2014 iJulienne Online Trace Analyzer

http://safe-tools.dsic.upv.es/iJulienneV2/ 1/1

×Query information

States where the query B(idA,_,?,_,_,_,_,_,_) was satisfied:

The relevant data have been automatically inferred according to the provided query.
You can add/change the inferred data in the selected state:

[B(idA,idw1,'Welcome, 'Home ? 'pass '= "" : 'user '= "" ,session-empty, 'idEmail / "em

ail2" : 'pass / "secretAlice" : 'user / "alice" ,m(idA,idw1, 'Welcome ? query-empty ,1)

,history-empty,1)] bra-empty [mes-empty][S(('Admin-Logout , updateDB(s("adminPage"),

s("free")) ,{ (TRUE => 'Home) },{ nav-empty }) : ('Administration , 'adminPage := sel

ectDB(s("adminPage")) ; if 'adminPage = s("free") then updateDB(s("adminPage"),get

Session(s("user"))) ; setSession(s("adminPage"),s("free")) else setSession(s("adminP

age"),s("busy")) fi ,{ (s("adminPage") '== s("busy") => 'Home) },{ (TRUE -> 'A

dmin-Logout ? query-empty) }) : ('Change-account , skip ,{ cont-empty },{ (TRUE -> 'Ho

me ? 'newPass '= "" : 'newUser '= "") }) : ('Email-list , 'u := getSession(s("user

")) ; 'es := selectDB('u '. s("-email")) ; setSession(s("idEmails-found"),'es) ,{

 cont-empty },{ (TRUE -> 'Home ? query-empty) : (TRUE -> 'View-email ? 'idEmail '= "

") }) : ('Home , 'login := getSession(s("login")) ; if 'login = null then 'u :=

getQuery('user) ; 'p := getQuery('pass) ; 'p1 := selectDB('u) ; if 'p = 'p1 then 'r

 := selectDB('u '. s("-role")) ; setSession(s("user"),'u) ; setSession(s("role"),'

r) ; setSession(s("login"),s("ok")) else setSession(s("login"),s("no")) fi fi ,{ (

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

Figure 2.12: Querying the webmail trace w.r.t. B(idA, ,?, , , , , ,).

dynamically computed by the system (using Maude meta-search capa-
bilities) by introducing the initial and final states of the trace. In Figure
2.11, we directly fed iJulienne with an execution trace that represents a
counter-example that was automatically generated by the Maude LTLR
model-checker. The considered trace consists of 97 states, each of which
has about 5.000 characters.

The aim of our analysis is to extract the navigation path of a possible
malicious user idA within the web application from the execution trace.
This is particularly hard to perform by hand since the trace is extremely
large and system states contain a huge amount of data.

Therefore, we decide to slice the trace with iJulienne in order to
isolate only the web interactions related to user idA, getting rid of all
the remaining unrelated information. To this end, we define the query

2.1. iJulienne at Work 67

6/23/2014 iJulienne Online Trace Analyzer

http://safe-tools.dsic.upv.es/iJulienneV2/ 1/1

i JULIENNE[+
s
19

toBnf

[br-empty : B(idA,idw1,'Welcome, 'Home ? 'pass '= "" : 'us

er '= "" ,session-empty, 'idEmail / "email2" : 'pass / "sec

retAlice" : 'user / "alice" ,m(idA,idw1, 'Welcome ? query-em

pty ,1),history-empty,1)] bra-empty [mes-empty][S(('Admin

-Logout , updateDB(s("adminPage"),s("free")) ,{ (TRUE =>

'Home) },{ nav-empty }) : ('Administration , 'adminPage :=

selectDB(s("adminPage")) ; if 'adminPage = s("free") th

en updateDB(s("adminPage"),getSession(s("user"))) ; setSes

sion(s("adminPage"),s("free")) else setSession(s("adminPa

ge"),s("busy")) fi ,{ (s("adminPage") '== s("busy")

=> 'Home) },{ (TRUE -> 'Admin-Logout ? query-empty) }) :

('Change-account , skip ,{ cont-empty },{ (TRUE -> 'Home ?

 'newPass '= "" : 'newUser '= "") }) : ('Email-list , '

u := getSession(s("user")) ; 'es := selectDB('u '. s("-e

mail")) ; setSession(s("idEmails-found"),'es) ,{ cont-emp

ty },{ (TRUE -> 'Home ? query-empty) : (TRUE -> 'View-em

ail ? 'idEmail '= "") }) : ('Home , 'login := getSession

(s("login")) ; if 'login = null then 'u := getQuery('use

r) ; 'p := getQuery('pass) ; 'p1 := selectDB('u) ; if 'p

 = 'p1 then 'r := selectDB('u '. s("-role")) ; setSessi

s
20

[B(idA,idw1,'Welcome, 'Home ? 'pass '= "" : 'user '= "" ,

session-empty, 'idEmail / "email2" : 'pass / "secretAlice"

: 'user / "alice" ,m(idA,idw1, 'Welcome ? query-empty ,1),his

tory-empty,1)] bra-empty [mes-empty][S(('Admin-Logout , u

pdateDB(s("adminPage"),s("free")) ,{ (TRUE => 'Home) },{

 nav-empty }) : ('Administration , 'adminPage := selectDB(s(

 "adminPage")) ; if 'adminPage = s("free") then updateDB

(s("adminPage"),getSession(s("user"))) ; setSession(s("ad

minPage"),s("free")) else setSession(s("adminPage"),s("b

usy")) fi ,{ (s("adminPage") '== s("busy") => 'Home)

},{ (TRUE -> 'Admin-Logout ? query-empty) }) : ('Change-a

ccount , skip ,{ cont-empty },{ (TRUE -> 'Home ? 'newPass '

= "" : 'newUser '= "") }) : ('Email-list , 'u := getSes

sion(s("user")) ; 'es := selectDB('u '. s("-email"))

; setSession(s("idEmails-found"),'es) ,{ cont-empty },{ (TR

UE -> 'Home ? query-empty) : (TRUE -> 'View-email ? 'idE

mail '= "") }) : ('Home , 'login := getSession(s("login"

)) ; if 'login = null then 'u := getQuery('user) ; 'p :

= getQuery('pass) ; 'p1 := selectDB('u) ; if 'p = 'p1 the

n 'r := selectDB('u '. s("-role")) ; setSession(s("user

s•
19

[br-empty : B(idA,•,'Welcome,•,•,•,•,•,•)] • [•][•]

s•
20

[B(idA,•,'Welcome,•,•,•,•,•,•)] • [•][•]

Z Y Slice a `

Zoom: -­ 100% + States 19-­20 of 1-­20 (97)

 B(idA,_,?,_,_,_,_,_,_)

Figure 2.13: Webmail trace slice after querying the trace.

B(idA, ,?, , , , , ,), which allows us to select all states in the trace
that contain a browser data structure that is associated with user idA.
Note that only the third argument of the browser data structure, which
corresponds to the web page displayed on the browser, is declared relevant
in the query (i.e., it is marked by the card ?). Indeed, we are interested
in tracking only the web pages visited by the user idA. The remaining
information (such as script evaluation, and web interactions with other
users) is not pinpointed and, hence, will be systematically removed by
the slicing tool which facilitates comprehension. By running the query,
iJulienne computes the outcome shown in Figure 2.12, which delivers
the states that satisfy the query. More concretely, the first 20 states
of the trace do match the query, while the remaining 77 states do not
include any web interaction with the user idA and thus do not need to
be inspected.

Now, since we are interested in observing the whole navigation history
of user idA, we select the last state in the trace that matches the query,
namely State 20, and we apply backward trace slicing on that state in
order to generate a simplified view of the first 20 states of the trace.
Note that the slicing criterion is automatically computed by iJulienne
by extracting the data matching the query from State 20 (specifically,

68 Chapter 2. The iJulienne System

the target symbols B, idA, and the current browser web page Welcome).
After pressing the Slice button, we get a browsable trace slice (see

Figure 2.13) where each state of the trace slice is purged of the irrelevant
data w.r.t. the slicing criterion, and all the rewrite steps that do not affect
the observed data are marked as irrelevant and are simply removed from
the slice, which further reduces its size. The reduction rate achieved
w.r.t. the original trace reaches an impressive 91%; Specially, 88 of the
97 states were found to be redundant with regard to the selected slicing
criterion. This makes the trace slice easy to analyze by hand. Actually,
by navigating through the trace slice, it can be immediately observed
that the malicious user idA visits the Login page, succeeds to log onto
the webmail system and enters the webmail Welcome page.

2.1.3 Dynamic Program Slicing

As we illustrated in Figures 2.5 and 2.8, for the BLOCKS-WORLD example,
by running iJulienne one is able to obtain not only a more compact and
focused trace that corresponds to the execution of the program, but also
to uncover statement dependencies that connect computationally related
parts of the program. Hence a single walk over such dependencies is
sufficient to implement a form of dynamic program slicing.

Program slicing [Wei81] is the computation of the set of program
statements, the program slice, that may affect the values at some point
of interest. A program slice consists of a subset of the statements of
the original program, sometimes with the additional constraint that a
slice must be a syntactically valid, executable program. Relevant appli-
cations of slicing include software maintenance, optimization, program
analysis, and information flow control. An important distinction holds
between static and dynamic slicing: whereas static slicing is performed
with no other information than the source code itself, dynamic program
slicing works on a particular execution of the program (i.e., a given ex-
ecution trace) [KL88], hence it only reflects the actual dependencies of
that execution, resulting in smaller program slices than static ones. Dy-
namic slicing is usually achieved by dynamic data-flow analysis along the
program execution path. Although dynamic program slicing was first in-
troduced to aid in user level debugging to locate sources of errors more
easily, applications aimed at improving software quality, reliability, se-

2.1. iJulienne at Work 69

×Program slice

mod MINMAX is
 inc INT .

 sorts List Pair .
 subsorts Nat < List .

 op PAIR : Nat Nat -> Pair .
 op 1st : Pair -> Nat .
 op 2nd : Pair -> Nat .
 op Max : Nat Nat -> Nat .
 op Min : Nat Nat -> Nat .
 op minmax : List -> Pair .
 op _;_ : List List -> List [ctor assoc] .

 var N X Y : Nat .
 var L : List .

 rl [1st] : 1st(PAIR(X,Y)) => X .
 rl [2nd] : 2nd(PAIR(X,Y)) => Y .
 rl [minmax1] : minmax(N) => PAIR(N,N) .
 rl [minmax2] : minmax(N ; L) => PAIR(Min(N,1st(minmax(L))),Max(N,2nd(minmax(L)))) .
 crl [Max1] : Max(X,Y) => X if X >= Y .
 crl [Max2] : Max(X,Y) => Y if X < Y .
 crl [Min1] : Min(X,Y) => Y if X > Y .
 crl [Min2] : Min(X,Y) => X if X <= Y .
endm

Figure 2.14: MINMAX program slice computed w.r.t. the query PAIR(?,).

curity and performance have also been identified as candidates for using
dynamic program slicing.

Let us show how backward trace slicing can support the generation
of dynamic program slices by detecting unused program fragments in a
given trace slice.

Example 2.1.5
Consider the trace slice T •minmax of Example 2.1.3 for the execution trace

minmax(4 ; 7 ; 0)→∗ PAIR(0,7)

w.r.t. the query PAIR(?,). Since operations 2nd and Max are never used
in T •minmax, iJulienne generates a dynamic program slice of the MINMAX

Maude module by hiding

• the unneeded operator declarations in the program signature;

70 Chapter 2. The iJulienne System

• the rule definitions of the functions 2nd and Max;

• the function calls to 2nd and Max in the right-hand side of the
minmax2 rule.

Figure 2.14 shows the resulting dynamic program slice.

2.2 Experimental Evaluation

iJulienne is the first slicing-based, incremental trace analysis tool for
Rewriting Logic that greatly reduces the size of the computation traces
and can make their analysis feasible even for complex, real-size appli-
cations. iJulienne conveys an incremental slicing approach where the
user can refine the slicing criteria and then the extra redundancies (i.e.,
the difference of the slices) are automatically done away with. It is im-
portant to note that our trace analyzer does not remove any information
that is relevant, independently of the skills of the user. We have ex-
perimentally evaluated our tool in several case studies that are available
at the iJulienne web site [iJu12] and within the distribution package,
which also contains a user guide, the source files of the slicer, and related
literature.

To properly assess the performance and scalability, we have tested
iJulienne on several execution traces of increasing complexity. More
precisely, we have considered

• two execution traces that model two runs of a fault-tolerant client-
server communication protocol (FTCP) specified in Maude. Trace
slicing has been performed according to two chosen criteria that aim
at extracting information related to a specific server and client in
a scenario that involves multiple servers and clients, and tracking
the response generated by the server according to a given client
request.

• two execution traces that model two instances of a well-known man-
in-the-middle attack to the Needham-Schroeder network authenti-
cation protocol [Low96]. Specifically, they consist of a sequence of
rewrite steps that represents the messages exchanged among three
entities: an initiator A, a receiver B, and an intruder I that imitates

2.2. Experimental Evaluation 71

Example Original Slicing Sliced % % reduction by
trace trace size criterion trace size reduction changing criterion

FTCP.T1 2054
O1(51.42%) 294 85.69% 97.89%
O2(40.01%) 316 84.62% 97.30%

FTCP.T2 1286
O1(42.59%) 135 89.40% 98.11%
O2(20.37%) 97 92.46% 99.01%

NS-P.T1 21265
O1(43.19%) 2249 89.42% 98.12%
O2(41.92%) 2261 89.36% 98.03%

NS-P.T2 34681
O1(50.02%) 3015 91.30% 99.08%
O2(47.64%) 3192 90.79% 98.84%

web-TLR.T1 38983
O1(2.93%) 2045 94.75% 99.28%
O2(8.09%) 2778 92.87% 99.14%

web-TLR.T2 69491
O1(18.57%) 8493 87.78% 97.99%
O2(14.11%) 5034 92.76% 99.05%

SmallKb.T1 4149
O1(44.25%) 459 88.94% 98.08%
O2(39.28%) 389 90.62% 98.26%

SmallKb.T2 5718
O1(29.83%) 419 92.67% 98.89%
O2(31.53%) 618 89.19% 98.15%

% reduction average 90.16% 98.45%

Table 2.1: Incremental slicing benchmarks.

A to establish a network session with B. The chosen slicing criteria
selects the intruder’s actions as well as the intruder’s knowledge at
each rewrite step discarding all the remaining session information.

• two counter-examples produced by model-checking a real-size web-
mail application specified in Web-TLR. The chosen slicing criteria
allow several critical data to be isolated and inspected —e.g., the
navigation of a malicious user, the messages exchanged by a specific
web browser with the webmail server, and session data of interest
(e.g., browser cookies).

• two execution traces generated by the Pathway Logic Maude im-
plementation. Pathway Logic [Tal08] is a RWL-based approach to
modeling biological entities and processes that formalizes the or-
dinary models that biologists commonly use to explain biological
processes. Roughly speaking, Pathway logic models are Maude ex-
ecutable specifications whose execution traces provide a rewriting-
based description of metabolic pathways. The traces that we con-
sider in our experiments model responses to signal stimulation in
epithelial-like cells. The chosen criteria allow one to detect cause
and effect relations (e.g., the signal responsible for the production

72 Chapter 2. The iJulienne System

of an observed chemical) and select only those chemical reactions
that are involved in actions of interest (e.g., protein complexing,
phosphorylation).

The results of our experiments are shown in Table 2.1 and the source
code of the benchmark examples is given in Appendix A. The execution
traces for the considered cases consist of sequences of 10–1000 states,
each of which contains from 60 to 5000 characters. In column Slicing
criterion we indicate the size of each criterion as a percentage of the
last state of the trace, which ranges between ∼3% and ∼51%. In all the
experiments, not only the trace slices that we obtained show impressive
reduction rates (ranging from ∼85% to ∼95%), but we were also even
able to strikingly improve these rates by an average of 8.5% (ranging
from ∼97% to ∼99%) by using incremental slicing. In most cases, the
delivered trace slices were cleaned enough to be easily analyzed, and we
noted an increase in the effectiveness of the analysis processes. Other
benchmark programs we have considered are available at the iJulienne
web site [iJu12].

With regard to the time required to perform the analyses, our imple-
mentation is rather time efficient; the elapsed times are small even for
very complex traces and scale linearly. For example, running the slicer
for a 20Kb trace in a Maude specification with about 150 rules and equa-
tions –with AC rewrites– took less than 1 second (480.000 rewrites per
second on standard hardware, 2.26GHz Intel Core 2 Duo with 4Gb of
RAM memory).

Part II

Forward Trace Analysis

Chapter 3

Exploring Conditional
Rewriting Logic

Computations

In this chapter, we present a rich and highly dynamic, parameterized
technique for the inspection of RWL computations that allows the nonde-
terministic execution of a given conditional rewrite theory to be followed
up in different ways. With this technique, an analyst can browse, slice,
filter, or search the execution traces as they come to life during the pro-
gram execution. The navigation of the execution trace is driven by a
user-defined, inspection function that specifies the required exploration
mode. By selecting different inspection functions, one can automatically
derive a family of practical algorithms such as program steppers and
more sophisticated dynamic trace slicers that compute summaries of the
computation tree, thereby facilitating the dynamic detection of control
and data dependencies across the tree. Our methodology allows users
to evaluate the effects of a given statement or instruction in isolation,
track input change impact, and gain insight into program behavior (or
misbehavior).

Our generic scheme basically consists of:

1) a generic inspection technique that allows instrumented traces to
be inspected according to a given modality, and

2) a generic, slicing-based exploration technique for (instrumented)
computation trees that allows the user to incrementally generate
and inspect a fragment of the computation tree.

76 Chapter 3. Exploring Conditional Rewriting Logic Computations

3.1 The Generic Exploration Scheme

Given a conditional rewrite theory R, the transition space of all compu-
tations in R from the initial term s can be represented as a computation
tree,1 TR(s). RWL computation trees are typically large and complex
objects to deal with because of the highly-concurrent, nondeterministic
nature of rewrite theories. Also, their complete generation and inspection
are generally not feasible since some of their branches may be infinite as
they encode nonterminating execution traces.

{ p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 > , 1 }

S0

{ p1 , < 4 , 4 > < 4 , 5 > ,
2 } || { p2 , < 3 , 5 > , 1 }

S4 rl: walk

{ p1 , < 4 , 4 > , 1 } || { p2 ,
< 3 , 5 > < 4 , 5 > , 2 }

S6 rl: walk
{ p1 , < 4 , 4 > , 1 } || { p2 ,
< 3 , 5 > < 5 , 5 > , 3 }

S8 rl: jump

{ p1 , < 4 , 4 > < 4 ,
5 > , 2 } || { p2 , <
3 , 5 > < 4 , 5 > , 2 }

S12 rl: walk

{ p1 , < 4 , 4 > , 1 }
|| { p2 , < 3 , 5 > <
4 , 5 > < 4 , 4 > , 3 }

S15 rl: walk
{ p1 , < 4 , 4 > , 1 }
|| { p2 , < 3 , 5 > <
4 , 5 > < 5 , 5 > , 3 }

S18 rl: walk

empty

S20 rl: eject

empty

S22 rl: eject
{ p1 , < 4 , 4 >
< 4 , 5 > , 2 } ||
{ p2 , < 3 , 5 >
< 4 , 5 > < 4 , 4
> , 3 }

S26 rl: walk

{ p1 , < 4 , 4 > < 4 , 5 > <
5 , 5 > , 3 } || { p2 , < 3 , 5
> < 4 , 5 > < 4 , 4 > , 3 }

S32 rl: walk

{ p1 , < 4 , 4 > < 4 , 5 > <
3 , 5 > , 3 } || { p2 , < 3 , 5
> < 4 , 5 > < 4 , 4 > , 3 }

S38 rl: walk

{ p1 , < 4 , 4 > < 4 , 5 >
< 5 , 5 > < 5 , 3 > , 5 } ||
{ p2 , < 3 , 5 > < 4 , 5 >
< 4 , 4 > , 3 }

S44 rl: jump
{ p1 , < 4 , 4 > < 4 , 5 >
< 5 , 5 > < 3 , 5 > , 5 } ||
{ p2 , < 3 , 5 > < 4 , 5 >
< 4 , 4 > , 3 }

S50 rl: jump

{ p1 , exit , 3 } ||
{ p2 , < 3 , 5 > < 4 ,
5 > < 4 , 4 > , 3 }

S53 rl: exit

･･
･

･･
･

･･
･

･･
･

･･
･

･･
･

･･
･ ･･
･

Figure 3.1: Computation tree.

1In order to facilitate trace inspection, computations are visualized as trees, al-
though they are internally represented by means of more efficient graph-like data
structures that allow common subexpressions to be shared.

3.1. The Generic Exploration Scheme 77

Example 3.1.1
Consider the rewrite theory of Example 0.3.1 together with the system
state

{p1,< 4,4 >,1} || {p2,< 3,5 >,1}

that specifies two initial configurations for two players p1 and p2 in the
maze. In this case, the computation tree describes all of the possible
trajectories that the two players p1 and p2 (respectively starting at po-
sitions < 4,4 > and < 3,5 >) can take when they move simultaneously
in the same maze. The paths are built by repeated (and independent)
applications of the walk and jump rules, while the eject and exit rules
respectively implement the expulsion of colliding players and the output
of game players who reach the exit. A fragment of the computation tree
is shown in Figure 3.1. For simplicity, we have chosen to decorate tree
edges only with the labels of the rules that have been applied at each
rewrite step, while other information such as the computed substitution
and the rewrite position are omitted in the depicted tree.

The instrumented version of a computation tree TR(s) can be con-
structed from TR(s) by expanding each execution trace in TR(s) into
its corresponding instrumented counterpart as explained in Section 0.5.
Also, it is possible to switch from the instrumented computation tree to
the non-instrumented one by simply hiding the intermediate B-matching
transformations and built-in evaluations that occur in the instrumented
tree. In the sequel, we let T +

R (s) denote the instrumented computation
tree that originates from the state s.

In the following section we formalize the generic inspection technique.

3.1.1 Inspecting the Instrumented Traces

Let us first introduce the notion of inspection function.

Definition 3.1.2 (Inspection Function) An inspection function is a
function I(s•, s→K t) that, given a rewrite step s→K t and a term slice
s• of s, computes a term slice t• of t.

Roughly speaking, inspection functions allow us to control the infor-
mation content conveyed by term slices resulting from the execution of

78 Chapter 3. Exploring Conditional Rewriting Logic Computations

(trans)
V • = I(U•, U → V) ∧ V • 6= fail

〈U → V →∗ W,S• •→∗ U•〉 =⇒ 〈V →∗ W,S• •→∗ U• •→ V •〉

Figure 3.2: The inference rule trans of the transition system (Conf ,=⇒).

→K-rewrite steps. It is worth noting that distinct implementations of
the inspection functions may produce distinct slices of the considered
rewrite step. Several examples of inspection functions are discussed in
Chapter 4. We assume that the special value fail is returned by the
inspection function whenever no slice t• can be computed by I.

Given the instrumented execution trace T = (s0 →K s1 · · · →K sn),
with n ≥ 1, an instrumented trace slice of T w.r.t. the inspection function
I is either the empty computation nil or the sequence T •I = (s•0 •→ s•1 •→
· · · •→ s•n), which is generated by sequentially applying I to the steps
that compose T . We often write T • for an instrumented trace slice T •I
when the inspection function I is clear from the context.

Let us formalize a calculus that allows the generation of instrumented
trace slices w.r.t. I by means of a transition system (Conf ,=⇒) where:

- Conf is a set of configurations of the form 〈T ,F•〉, where T is
an instrumented execution trace and F• is an instrumented trace
slice;

- the transition relation =⇒ implements the calculus of instru-
mented trace slice generation and is the smallest relation that sat-
isfies the inference rule trans given in Figure 3.2.

Roughly speaking, the rule trans transforms the configuration 〈U →K

V →∗K W,S• •→∗ U•〉 into the configuration 〈V →∗K W,S• •→∗ U• •→
V •〉 where the first step U →K V has been consumed and its correspond-
ing slice U• •→ V • w.r.t. I has been added to S• •→∗ U•. The rule trans
only applies when the inspection function I generates a term slice V •

that is not the fail value.

The sequential application of the considered inference rule allows the
instrumented execution trace T to be traversed in order to produce the
sliced counterpart T • of T w.r.t. I. More formally,

3.1. The Generic Exploration Scheme 79

Definition 3.1.3 (Instrumented Trace Slice w.r.t. I) Given the in-
strumented execution trace T = (s0 →K s1 →K · · · →K sn), with n ≥ 1,
the instrumented trace slice T • of T w.r.t. the inspection function I and
term slice s•0 of s0 is defined by the function Cslice(s•0, T , I), which is
defined as follows.

Cslice(s•0, T , I) = if 〈T , s•0〉 =⇒∗ 〈nil, T •〉 then T • else nil

where nil denotes the empty computation. Note that the second compo-
nent s•0 of the initial configuration 〈T , s•0〉 matches the sequence S• •→∗
U• in rule trans by taking s•0 for U• and considering a sequence S• •→∗ U•
consisting of zero steps.

In the following section we formulate our generic, slicing-based ex-
ploration technique that allows the user to incrementally generate and
inspect a fragment of the instrumented computation tree T +

R (s) by ex-
panding (slices of) its computation states into their descendants starting
from the root node. The exploration is an interactive procedure that can
be completely controlled by the user, who is free to choose the computa-
tion states to be expanded.

3.1.2 Exploring the Instrumented Computation
Tree Slices

Instrumented computation tree slices are formally defined as follows.

Definition 3.1.4 (Instrumented Computation Tree Slice) Let
T +
R (s0) be an instrumented computation tree for the term s0 in the con-

ditional rewrite theory R = (Σ,∆ ∪ B,R); let s•0 be a term slice of s0;
and let I be an inspection function. An instrumented computation tree
slice for s•0 in R w.r.t. I is a tree T +

R,I(s
•
0) (simply denoted by T +

R (s•0)
when no confusion can arise) such that:

1. the root of T +
R (s•0) is s•0;

2. each branch of T +
R (s•0) is an instrumented trace slice T • w.r.t. I

and s•0 of an instrumented execution trace T in T +
R (s0).

3. for each instrumented execution trace T in T +
R (s0), there is one,

and only one, instrumented trace slice T • of T in T +
R (s•0).

80 Chapter 3. Exploring Conditional Rewriting Logic Computations

function expand(s, s•,R, I)
1. A = ∅
2. for eachM∈ mS(s)
3. M• = Cslice(s•, instrument(M), I)
4. if M• 6= nil then A = A ∪ {M•}
5. end
6. return A
endf

Figure 3.3: The one-step expand function.

Now, we show how tree slices of a given instrumented computation
tree in R = (Σ,∆ ∪B,R) can be generated by repeatedly unfolding the
nodes of the original tree.

In our methodology, instrumented computation tree slices are incre-
mentally constructed by expanding tree nodes (i.e., term slices), starting
from the root node —i.e, the initial term slice s• which can be generated
by invoking the Tslice function on the input term s and a set of user-
defined, relevant positions P of s (in symbols, s• = Tslice(s, P)). For-
mally, given the term s and the term slice s• of s, the expansion of s in the
rewrite theory R = (Σ,∆ ∪ B,R) w.r.t. the inspection function I is de-
fined by the function expand(s, s•,R, I) of Figure 3.3, which unfolds the
term slice s• by deploying and then slicing all the possible instrumented
Maude computation steps stemming from s that are given by mS(s). In
other words, for each Maude stepM = s→∗∆,B s↓∆,B→R,B t→∗∆,B t↓∆,B,
we first compute its instrumented version and then the corresponding in-
strumented Maude step slice M• is generated, which is finally added to
the set A.

The overall construction methodology for instrumented computation
tree slices is specified by the function explore, defined in Figure 3.4.
Given a rewrite theory R, a term slice s•0 of the initial term s0, and
an inspection function I, the function explore essentially formalizes an
interactive procedure that is driven by the user starting from an ele-
mental tree slice fragment, which only consists of the sliced root node
s•0. The instrumented computation tree slice T +

R (s•0) is built by choos-
ing, at each loop iteration of the algorithm, the tree leaf that repre-

3.1. The Generic Exploration Scheme 81

function explore(s•0,R, I)
1. T +

R (s•0) = s•0
2. while((s• = pickLeaf (T +

R (s•0))) 6= EoE) do
3. T +

R (s•0) = addPaths(T +
R (s•0), s•, expand(unhide(s•), s•,R, I))

4. od
5. return T +

R (s•0)
endf

Figure 3.4: The interactive explore function.

sents the term slice to be expanded by means of the auxiliary function
pickLeaf (T +

R (s•0)), which allows the user to freely select a leaf node from
the frontier of the current tree T +

R (s•0). Then, T +
R (s•0) is augmented by

calling addPaths(T +
R (s•0), s•, expand(unhide(s•), s•,R, I)), where unhide(

s•) recovers the original term s from s•. This function call adds all the
instrumented trace slices w.r.t. I and s• that correspond to the Maude
steps that originate from the term s.

The special value EoE (End of Exploration) is used to terminate
the inspection process: when the function pickLeaf (T +

R (s•0)) is equal to
EoE, no term to be expanded is selected and the exploration terminates
delivering (a fragment of) the computation tree slice T +

R (s•0).

82 Chapter 3. Exploring Conditional Rewriting Logic Computations

Chapter 4

Exploration Modalities

The methodology given in Section 3.1 provides a generic scheme for the
exploration of (instrumented) computation trees w.r.t. a given inspection
function I that must be selected or provided by the user. In this chapter,
we show four implementations of the inspection function I that produce
three distinct exploration strategies. In the first case, the considered
inspection modality allows an interactive program stepper to be derived
in which conditional rewriting logic theories can be step-wisely animated.
In the second case, we implement a partial stepper that allows execution
traces with partial input to be stepped. The third inspection modality
formalizes an automated, forward trace slicing technique that simplifies
the execution traces and allows relevant control and data information to
be easily identified within the computation trees. Finally, by reusing the
third inspection function, we show how we can also formalize backward
trace slicing as an instance of the scheme. This is very interesting because
it enables reusing large parts of the code that implements our exploration
tool.

4.1 Interactive Stepper

Program animators have existed since the early years of programming.
Although several steppers have been implemented in the functional pro-
gramming community (see [CFF01] for references), none of these systems
applies to the animation and dynamic forward slicing of Maude compu-
tations.

Given an instrumented computation tree T +
R (s0) for an initial state s0

and a conditional rewrite theoryR, the stepwise inspection of the compu-
tation tree can be directly implemented by instantiating the exploration
scheme of Section 3.1 with the basic inspection function Istep(s, s

r,σ,w→K

t) = t, which simply returns the reduced term t of the rewrite step s
r,σ,w→K

t. This way, by starting the exploration from a term slice that corre-
sponds to the whole initial term s0 (i.e., s•0 = s0), the call explore(s0, s

•
0,R,

84 Chapter 4. Exploration Modalities

{ p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 > , 1 }

S0

{ p2 , < 3 , 5 > , 1 } || { p1 ,
< 4 , 4 > , 1 }

S1 fromACnf
{ p1 , < 4 , 4 > , 1 } || { p2 ,
< 3 , 5 > < 4 , 5 > , 1 + 1 }

S5 rl: walk
{ p1 , < 4 , 4 > , 1 } || { p2 ,
< 3 , 5 > < 5 , 5 > , 1 + 2 }

S7 rl: jump

{ p2 , < 3 , 5 > , 1 } || { p1 ,
< 4 , 4 > < 4 , 5 > , 1 + 1 }

S2 rl: walk

{ p2 , < 3 , 5 > , 1 } || { p1 ,
< 4 , 4 > < 4 , 5 > , 2 }

S3 eq: builIn(+)

{ p1 , < 4 , 4 > < 4 , 5 > ,
2 } || { p2 , < 3 , 5 > , 1 }

S4 toACnf

{ p1 , < 4 , 4 > , 1 } || { p2 ,
< 3 , 5 > < 4 , 5 > , 2 }

S6 eq: builtIn(+)
{ p1 , < 4 , 4 > , 1 } || { p2 ,
< 3 , 5 > < 5 , 5 > , 3 }

S8 eq: builtIn(+)

Figure 4.1: Inspection of the state s0 w.r.t. Istep .

Istep) generates (a fragment of) the instrumented computation tree
T +
R (s0) whose topology depends on the program states that the user

decides to expand during the exploration process.

Example 4.1.1
Consider the rewrite theory R in Example 0.3.1 and the computation
tree in Example 3.1.1. Assume the user starts the exploration by calling
explore(s0, s

•
0,R, Istep), with s0 = s•0, which allows all the Maude steps

that stem from the initial term s0 to be expanded w.r.t. the inspection
function Istep . This generates the instrumented computation tree frag-
ment T +

R (s0) in Figure 4.1, where the instrumentation is made explicit.
Now, the user can either quit or carry on with the exploration of nodes
s4, s6, and s8, which would result in the instrumented version of the tree
fragment that is shown in Figure 3.1.

4.2 Partial Stepper

The computation states produced by the program stepper defined above
do not include •-variables. However, sometimes it may be useful to work
with partial information and hence with term slices that “abstract some
data” by using •-variables. This may help the user focus on those parts
of the program state that he/she wants to observe, while disregarding
pointless information or unwanted rewrite steps.

4.2. Partial Stepper 85

We define the following inspection function:

Ipstep(s•, s
r,σ,w→K t) = if s•

r,σ•,w→K t• then t• else fail

Roughly speaking, given a conditional rewrite step s
r,σ,w→K t, the in-

spection modality Ipstep returns a term slice t• of the reduced term t,
whenever s• can be conditionally rewritten to t• using the very same rule
r at the same position w with the corresponding matching substitution
σ•. The particularization of the exploration scheme given by the inspec-
tion modality Ipstep allows an interactive, partial stepper to be derived, in
which the user can observe a distinguished part of the state, thereby pro-
ducing more compact and focused representations of the visited fragment
of the (instrumented) computation tree.

The following example describes a simple partial stepper session. To
improve its readability, here we omit the B-matching transformation
steps and the calls to the + built-in operator.

Example 4.2.1
Consider the computation tree of Example 3.1.1 and the initial state:

s0 = {p1,< 4,4 >,1} || {p2,< 3,5 >,1}

Let s•0 = {p1,< 4,4 >,1} || •1 be a term slice of s0 where only the triple
of player p1 is observed. Assume that the inspection function Ipstep is
used to generate computation tree slice fragments. The computation tree
slice fragment shown in Figure 4.2 is obtained by first expanding the node
s•0 into s•3, then the node s•3 into s•6 and s•9, then the node s•9 into s•12,
and then the node s•12 into s•15 and s•17. Note that the adopted partial
stepping strategy allows a simplified view of (a part of) the considered
computation tree to be constructed. More precisely, given the input
encoded into the initial term slice s•0, the computation can evolve by
simply applying the rule walk to p1’s triple. By isolating p1 movements
in the tree slice fragment computed by partial stepping, the user can
immediately observe and analyze why the player does not leave the game
after reaching the exit but continues wandering for a while, which is
an unnoticed side effect of declaring exit as a rule. To prevent exit

from being nondeterministically applied in competition with other rules
such as walk or jump, exit must be programmed as an equation to be

86 Chapter 4. Exploration Modalities

{ p1 , < 4 , 4 > , 1 } || ･1

S0

･1 || { p1 , < 4 , 4 > < 4 , 5 > ,
2 }

S3 rl: walk

･1 || { p1 , < 4 , 4 > < 4 , 5 >
< 5 , 5 > , 3 }

S6 rl: walk

･1 || { p1 , < 4 , 4 > < 4 , 5 >
< 3 , 5 > , 3 }

S9 rl: walk

･1 || { p1 , < 4 , 4 > < 4 , 5 >
< 3 , 5 > < 5 , 5 > , 5 }

S12 rl: jump

･1 || { p1 , < 4 , 4 > < 4 , 5 > < 3 , 5 >
< 5 , 5 > < 5 , 3 > , 7 }

S15 rl: jump

･1 || { p1 , exit , 5 }
S17 rl: exit

Figure 4.2: Computation tree slice fragment for s•0 w.r.t. Ipstep .

deterministically used for normalizing the system state after the player
has reached the maze exit. Note also that the eject rule does not appear
in the tree slice fragment since player p2 has been filtered out from the
initial term slice s•0 and therefore eject cannot be applied. Indeed, two
players are required to match the left-hand side of the eject rule.

It is worth noting that partial stepping can be very useful to approxi-
mate needed redexes [HL79] in orthogonal theories [HL91], they are those
that make the computation flounder when replaced by • as illustrated in
the following example.

Example 4.2.2
Consider the orthogonal theory composed of the two equations [e1] :
f(X, 0) = X and [e2] : h(Z) = Z. We can reduce to 0 the input expres-
sion f(h(0), h(0)) as follows:

f(h(0), h(0))
e2→ f(h(0), 0)

e1→ h(0)
e2→ 0

However, if we abstract any of the outermost redexes h(0) by •, then the
corresponding partial computation flounders.

4.3. Stepper and Partial Stepper Correctness 87

1. f(h(0), •) e2→ f(h(0), •), and it flounders.

2. f(•, h(0))
e2→ f(•, h(0))

e1→ •, and then flounders.

Hence, we safely conclude that both outermost redexes h(0) are needed
[DM97, Mid99].

4.3 Stepper and Partial Stepper

Correctness

In this section, we provide a notion of correctness, which we call universal
correctness, that holds for each instrumented trace slice computed by
the stepper and the partial stepper described in Section 4.1 and Section
4.2, respectively. Universal correctness of an instrumented trace slice is
formally defined as follows.

Definition 4.3.1 Let R be a conditional rewrite theory. Let T =
(s0

r1,σ1,w1→K · · ·
rn,σn,wn→K sn) be an instrumented execution trace in the rewrite

theory R, with n > 0, and let s•0 be a term slice of s0. Let I be an inspec-
tion function. Then, an instrumented trace slice s•0 •→ · · · •→ s•n of T
w.r.t. I and s•0 is universally correct iff, for every instance s′0 of s•0, there

exists an instrumented trace slice concretization s′0
r1,σ′1,w1→K · · ·

rn,σ′n,wn→K s′n.

Roughly speaking, Definition 4.3.1 ensures that, given an instru-
mented trace slice T • = (s•0 •→ · · · •→ s•n), for every instance s′0 of s•0,
there exists an instrumented trace slice concretization T ′ of T • in which
the very same rules involved in T • can be applied again, at the same
positions. This amounts to saying that we can reproduce all the relevant
information of T • in any rewrite sequence that instantiates T •.

The following proposition states that non-empty instrumented trace
slices that are generated using the inspection function Ipstep are always
universally correct.

Proposition 4.3.2 Let R be a conditional rewrite theory. Let T =
(s0

r1,σ1,w1→K · · ·
rn,σn,wn→K sn) be an instrumented execution trace in the rewrite

theory R, with n > 0, and let s•0 be a term slice of s0. Let Ipstep be the
partial stepper inspection function. Then, every instrumented trace slice
s•0 •→ · · · •→ s•n of T w.r.t. Ipstep and s•0 is universally correct.

88 Chapter 4. Exploration Modalities

Proof. The proof proceeds by induction on the length n of T •.

Base case: n = 1. Let us consider the one-step, instrumented trace slice
s•0 •→ s•1. By Definition 3.1.3, s•0 •→ s•1 has been obtained

by calling the function Cslice(s•0, s0
r1,σ1,w1→K s1, Ipstep). Hence, T •1 =

(s•0 •→ s•1) = Cslice(s•0, s0
r1,σ1,w1→K s1, Ipstep). This implies that

the following transition 〈s0
r1,σ1,w1→K s1, s

•
0〉 =⇒∗ 〈nil, s•0 •→ s•1〉 has

been performed in the transition system (Conf ,=⇒) by means of
one application of the trans rule. By definition of the trans rule
(see Figure 3.2), s•1 = Ipstep(s•0, s0

r1,σ1,w1→K s1). Now, by definition of

Ipstep , s•1 = Ipstep(s•0, s0
r1,σ1,w1→K s1) iff s•0

r1,σ•,w1→K s•1. To complete the
proof, it suffices to observe that the rewriting relation→K is stable
(i.e., it is closed under substitution applications). This amounts to

saying that s•0σ
′ r1,σ

•σ′,w1→K s•1σ
′, for every substitution σ′.

Hence, for every instance s′0 = s•0σ
′ of s•0, s′0

r1,σ•σ′,w1→K s•1σ
′ = s′1 is an

instrumented trace slice concretization, which implies that s•0 •→ s•1
is a universally correct instrumented trace slice.

Inductive case: n > 1. Let us consider the instrumented trace slice
T • = (s•0 •→ s•1 •→ · · · •→ s•n), with n > 1, w.r.t. Ipstep and s•0.
By the induction hypothesis, the instrumented trace slice s•0 •→
s•1 •→ · · · •→ s•n−1 w.r.t. Ipstep and s•0 is universally correct, that is,
for every instance s′0 of s•0, there exists a instrumented trace slice
concretization:

s′0
r1,σ′1,w1→K · · ·

rn−1,σ′n,wn−1→K s′n−1 (4.1)

Now, let us consider the last sliced step s•n−1 •→ s•n of T •. By
applying an argument similar to the one in the base case, we can
show that s•n−1 •→ s•n is a universally correct instrumented trace
slice. In other words, for every instance s′′n−1 of s•n−1, there exists a
instrumented trace slice concretization:

s′′n−1

rn,σ′′n,wn→K s′′n (4.2)

By choosing s′′n−1 = s′n−1, we can glue together the rewrite se-
quences 4.1 and 4.2 thereby obtaining that, for every instance s′0 of

4.3. Stepper and Partial Stepper Correctness 89

s•0, there exists a instrumented trace slice concretization:

s′0
r1,σ′1,w1→K · · ·

rn−1,σ′n−1,wn−1→K s′n−1

rn,σ′n,wn→K s′n (4.3)

Hence, T • is a universally correct instrumented trace slice w.r.t.
Ipstep and s•0.

Observe that a correctness result can be automatically obtained for
the stepper inspection function Istep for free since Ipstep is a conservative
generalization of Istep , which allows •-variables to appear in instrumented
trace slices. In other words, Ipstep boils down to Istep when instrumented
trace slices do not contain •-variables. Therefore, since the stepper only
works with •-free instrumented trace slices (i.e., instrumented execution
traces), the following result holds.

Corollary 4.3.3 Let R be a conditional rewrite theory. Let T =
(s0

r1,σ1,w1→K · · ·
rn,σn,wn→K sn) be an instrumented execution trace in the rewrite

theory R, with n > 0. Let Istep be the stepper inspection function. Then,
T coincides with the instrumented trace slice T • of T w.r.t. Istep and
s•0 = s0.

Proof. Immediate by the fact that s0 is a term that does not contain
•-variables, so Istep behaves as Ipstep and generates a universally correct
instrumented trace slice s0 •→ · · · •→ sn by Proposition 4.3.2. The slice
is unique as Istep cannot introduce •-variables in the instrumented trace
slice that can be bound to arbitrary terms. Therefore, T • is the very
same T .

For I ∈ {Istep , Ipstep}, the universal correctness of instrumented trace
slice can be easily lifted to universal correctness of instrumented compu-
tation tree slices as follows.

Theorem 4.3.4 (Universal Correctness) Let R be a conditional
rewrite theory. Let I ∈ {Istep , Ipstep}. Let s•0 be a term slice of term
s0. Let T +

R (s•0) be (a fragment of) the instrumented computation tree
slice in R w.r.t. I and s•0 computed by the function explore(s0, s

•
0,R, I).

Then, each branch s•0 •→ · · · •→ s•n in T +
R (s•0) is a universally correct

instrumented trace slice w.r.t. I and s•0.

90 Chapter 4. Exploration Modalities

Proof. Immediate. It suffices to apply Proposition 4.3.2 to each Maude
step of each branch of T +

R (s•0) when I = Ipstep and to apply Corollary
4.3.3 when I = Istep .

Note that universal correctness of an instrumented computation tree
slice T +

R (s•0) directly implies the universal correctness of the associated
computation tree slice TR(s•0). This is because TR(s•0) is obtained from
T +
R (s•0) by simply removing those sliced steps that correspond to instru-

mentation transformations.

4.4 Forward Trace Slicer

Forward trace slicing is a program analysis technique that allows execu-
tion trace to be simplified w.r.t. a selected slice of their initial term. More
precisely, given an instrumented execution trace T with initial term s0

and a term slice s•0 of s0, forward slicing yields a simplified view T • of
T in which each term s of the original instrumented execution trace is
replaced by the corresponding term slice s• that only records the infor-
mation that depends on the meaningful symbols of s•0, while irrelevant
data are simply pruned away.

In the following, we define an inspection function Islice that imple-
ments the forward trace slicing for a single conditional rewrite step.
Given a conditional rewrite step µ = (s

r,σ,w→K t) and a term slice s• of
the term s, it delivers the term slice t• that results from a dependency
analysis of the meaningful information in s• and the term transformation
modeled by the rewrite rule r. During this analysis, the condition of the
applied rule is recursively processed in order to ascertain the meaningful
information that may depend on the conditional part of r.

A precise formalization of the inspection function Islice is provided
by the function given in Figure 4.3. By adopting the inspection func-
tion Islice , the exploration scheme of Section 3.1 automatically turns into
an interactive, forward trace slicer that expands computation states us-
ing the slicing methodology encoded into the inspection function Islice .
In other words, given an instrumented computation tree T +

R (s0) and a
user-defined term slice s•0 of the initial term s0, any instrumented trace
slice s•0 •→ s•1 · · · •→ s•n in the tree T +

R (s•0), which is computed by the
explore function, is the sliced counterpart of an instrumented execution

4.4. Forward Trace Slicer 91

function Islice(s•, s
r,σ,w→K t) /* Assuming : [r] : λ⇒ ρ if C

1. if w ∈MPos(s•) then and C = c1 ∧ . . . ∧ cn */
2. θ = {x/fresh• | x ∈ Dom(σ)}
3. ψ0 = (θmgu(λθ, (s•|w)))|̀Dom(σ)

4. for i = 1 to n do
5. ψi = process-condition(ci, σ, ψi−1)
6. od
7. t• = s•[ρψn]w
8. else
9. t• = s•[fresh•]w′ with w′ ≤ w ∧ s•|w′ = •i, for some i

10. fi
11. return t•

endf

Figure 4.3: Inspection function that models the forward slicing of a con-
ditional rewrite step.

trace s0 →K s1 · · · →K sn (w.r.t. the term slice s•0) in the instrumented
computation tree T +

R (s0).
Roughly speaking, the inspection function Islice works as follows.

When the rewrite step µ : (s
r,σ,w→K t) occurs at a position w that is

not a meaningful position of s• (in symbols, w 6∈ MPos(s•)), trivially µ
does not contribute to producing the term slice t•. Actually, the rewrit-
ing position w might not even occur in s•, hence we consider the prefix
w′ of w that points to a •-variable in s•, i.e., s•|w′ is a •-variable. This
position exists and is unique. Now, since no new relevant information
descends from the term slice s•, Islice returns a variant s•[fresh•]w′ of s•

where the subterm of s• at the position w′ has been replaced by a new
fresh •-variable that completely abstracts the contractum computed by
µ.

Example 4.4.1
Consider the Maude specification of Example 0.3.1 and the following

rewrite step µ : {p1,< 4,4 >,1} || {p2,< 3,5 >,1} walk→K {p1,< 4,4 >,1} ||
{p2,< 3,5 > < 4,5 >,1+1}. Let s• = {p1,< 4,4 >,1} || •1 be a term
slice of {p1,< 4,4 >,1} || {p2,< 3,5 >,1}. Since the rewrite step µ
occurs at position 2 6∈ MPos({p1,< 4,4 >,1} || •1), which is not a

92 Chapter 4. Exploration Modalities

function process-condition(c, σ, ψ)
1. case c of
2. (p := m) ∨ (m⇒ p) : /* matching conditions
3. if (mσ = pσ) and rewrite expressions */
4. δ = mgu(p,mψ)
5. else
6. ((mσ)• •→+ (pσ)•) = Cslice(mψ,mσ →+

K pσ, Islice)
7. δ = mgu(p, (pσ)•)
8. fi
9. return (δ ⇑ ψ)|̀Dom(ψ)

10. e : /* equational conditions */
11. return ψ
12. end case

endf

Figure 4.4: The condition processing function.

meaningful position of s•, the inspection function Islice returns the vari-
ant of {p1,< 4,4 >,1} || •2 of s•, where •2 is a fresh variable generated
by the function fresh•.

On the other hand, when w ∈ MPos(s•), the computation of t•

requires a more in-depth analysis of the conditional rewrite step that
is based on a recursive slicing process that involves the analysis of the
conditions of the applied rule. This process is necessary for all descen-
dants of s•|w in t• to be properly tracked while any other information is
disregarded.

More specifically, given the rewrite step µ : s
r,σ,w→K t, with [r] : λ ⇒

ρ if C, and the term slice s•, we initially assume that all the information
introduced by the substitution σ in µ is irrelevant, so that we define the
substitution θ = {x/fresh• | x ∈ Dom(σ)} that binds each variable in the
domain of σ to a fresh •-variable. Then, the algorithm follows a two-step
procedure that computes a sequence of substitutions and incrementally
refines θ. In both phases, the •-symbols in s• are handled as existentially
quantified variables, in contrast to the partial stepper of Section 4.2,
where •-symbols were interpreted to be universally quantified. The first
phase retrieves the relevant information contained in the term slice s•|w

4.4. Forward Trace Slicer 93

of the redex s|w, while the second phase recognizes relevant symbols that
result from evaluating the rule condition (remind that Maude admits
extra-variables that appear in the condition of an equation or rule while
they do not appear in the corresponding left-hand side).

Phase 1. This phase first computes the most general unifier between
the sliced redex s•|w and the left-hand side λ of the applied rule

[r] : λ ⇒ ρ if C, instantiated with θ, and we compose such unifier
with θ and restrict it to the Dom(σ)’s variables in order to compute
ψ0. This allows the meaningful information of the sliced redex s•|w
to be caught while those data that do not appear at meaningful
positions are disregarded and not carried on by the rewrite step.

Example 4.4.2

Consider the rewrite rule

rl [downN] : next(L < X,Y >, N) => < X,Y + N > .

in Example 0.3.1 together with the following rewrite step C =

next(< 1,1 >,1)
downN−→K < 1,1+1 > and the term slice next(•1,1).

Let θ = {L/•2, X/•3, Y/•4, N/•5}. In Phase 1, we compute the sub-
stitution ψ0 such that:

ψ0 = (θmgu(next(•2 < •3 , •4 >, •5), next(•1, 1)))|̀{L,X,Y,N}
= ({L/•2, X/•3, Y/•4, N/•5}{•1/ •2 < •3 , •4 >, •5/1})|̀{L,X,Y,N}
= {L/•2, X/•3, Y/•4, N/1}

Note that ψ0 catches the meaningful value 1 for the variable N of
the left-hand side of the rule downN.

Phase 2. This phase detects relevant information that originates from
the rule condition. Let Cσ = c1σ ∧ . . .∧ cnσ be the instance of the
condition in the rule r that enables the rewrite step µ. We process
each (sub)condition ciσ, i = 1, . . . , n by using the auxiliary function
process-condition given in Figure 4.4 that generates a substitution
ψi, such that ψi is used to further refine the partially ascertained
substitution ψi−1 that has been computed by incrementally analyz-
ing the (sub)conditions c1σ, . . . , ci−1σ.

94 Chapter 4. Exploration Modalities

When the whole condition Cσ has been processed, we get the substitution
ψn, which basically encodes all the relevant instantiations discovered by
analyzing the conditional rewrite step µ w.r.t. s•|w.

Now, the term slice t• is computed from s• by replacing its subterm
at position w with the instance (ρψn) of the right-hand side of the ap-
plied rule r. This way, all the relevant/irrelevant information detected is
transferred into the resulting sliced term t•.

Similarly to the case of the backward trace slicing algorithm given in
Chapter 1, the process-condition function handles matching conditions,
rewrite expressions, and equational conditions differently. Specifically,
the substitution ψi that is returned after processing each condition ci is
computed as follows.

– Matching conditions. The analysis of the matching condition
p := m during the slicing process of µ is implemented in process-
condition, as in the backward slicing algorithm, by distinguishing
the following two cases.

Case i. If pσ = mσ, then there is no need to generate the canoni-
cal form of mσ, since pσ and mσ are the same term. Hence,
we discover new (possibly) relevant bindings for variables in p
by computing the mgu δ between p and mψ. Then, the algo-
rithm returns the parallel composition of δ and ψ (restricted
to Dom(ψ)’s variables) that updates the input substitution ψ
with the new bindings encoded in δ.

Case ii. When pσ 6= mσ, the slicing of the (internal) instrumented
execution trace Tint = mσ →+

K pσ is required. The slicing pro-
cess is done by recursively invoking the function Cslice(mψ,
mσ →+

K pσ, Islice) whose outcome is the instrumented trace
slice (mσ)• •→+ (pσ)• from which new relevant bindings for
p’s variables can be derived. This is done by computing the
mgu δ between p and (pσ)•; the parallel composition of δ and
ψ (restricted to Dom(ψ)’s variables) is computed in order to
reconciliate ψ with the new bindings in δ.

Note that the analysis above differs from the one of the back-
ward slicing algorithm in which the relevant data come from p
instead of m. This is because we slice the internal execution trace

4.4. Forward Trace Slicer 95

Tint = mσ →+
K pσ when we proceed forward since we want to

transfer the relevant data in mσ into pσ. Also, differently from
the backward slicing algorithm, the forward methodology does not
deliver a compatibility condition in this phase because it already
provides, for free, a means to understand the program behavior
w.r.t. user-defined relevant input. Actually, in a forward scenario,
the relevant input is known a priori and there is no need to infer
input restrictions as it happens with backward slicing.

– Rewrite expressions. The case when c is a rewrite expressionm⇒ p
is handled similarly to the case of a matching equation p := m,
with the difference that m can be reduced by using the rules of R
in addition to equations and axioms.

– Equational conditions. Unlike the evaluation of matching condi-
tions and rewrite expressions, the equational conditions do not
generate new bindings for extra-variables during the application
of a rewrite step. This means that no new relevant instantiations
can be identified for variables that appear in equational conditions.
Therefore, in this case, process-condition returns the very input
substitution ψ.

Example 4.4.3
Consider the Maude specification of Example 0.3.1 and the following

rewrite step µ : {p1,< 4,4 >,1} || {p2,< 3,5 >,1} walk,σwalk,2→K {p1,< 4,

4 >,1} || {p2,< 3,5 > < 4,5 >,1+1}. Let •1 || {•2, < 3,5 >, •3} be
a term slice of {p1,< 4,4 >,1} || {p2,< 3,5 >,1}. Since the rewrite
step µ occurs at position 2, which is a meaningful position of the term
slice •1 || {•2, < 3,5 >, •3}, the two-phase procedure described above is
applied.

Phase 1. The substitution ψ0 is computed as follows.

ψ0 = (θmgu({•4, •5, •6}, {•2, < 3,5 >, •3})|̀{PY,L,M,P}
= ({PY/•4, L/•5, M/•6, P/•7}{•4/•2, •5/< 3,5 >, •6/•3})|̀{PY,L,M,P}
= {PY/•2, L/< 3,5 >, M/•3, P/•7}

where {PY, L, M} is the left-hand side of the walk rule of Exam-
ple 0.3.1. Note that the variable L in ψ0 is bound to meaningful
information, while PY and M are not considered to be relevant.

96 Chapter 4. Exploration Modalities

Phase 2. We first analyze the rewrite expression next(L,1) => P by
calling the function process-condition(next(L, 1) => P, σwalk,
ψ0). In this specific case, we have to consider the internal execution
trace

Tint = next(< 3,5 >,1)
rightN→K < 3+1,5 >

builtIn(+)→K < 4,5 >

whose instrumented trace slice w.r.t. Islice and next(L, 1)ψ0 coin-
cides with Tint, since next(L,1)ψ0 = next(< 3,5 >,1).

Hence, δ = mgu(P, < 4, 5 >) = {P/< 4,5 >}. Observe that, by
computing δ, we discover that the value bound to the variable P

is meaningful. The evaluation of the condition next(L,1) => P

terminates by returning the parallel composition (restricted to the
variables in {PY, L, M, P}):

ψ1 = (δ ⇑ ψ0)|̀{PY,L,M,P}
= ({P/< 4,5 >} ⇑ {PY/•2, L/< 3,5 >, M/•3, P/•7})|̀{PY,L,M,P}
= {PY/•2, L/< 3,5 >, M/•3, P/< 4,5 >}

that updates the information of ψ0 with the discovered binding
{P/< 4,5 >} in δ.

Subsequently, the condition isOk(LP) is processed. Since it is an
equational condition, the function call process-condition(isOk(LP),
σwalk, ψ1) returns a substitution ψ2 such that ψ2 = ψ1, which implies
that no new relevant information has been detected.

Finally, the term slice of {p1,< 4,4 >,1} || {p2,< 3,5 > < 4,5 >,

1+1} is computed by replacing the subterm at position 2 of the term slice
•1 || {•2, < 3,5 >, •3} with the instance {PY,L P,M+1}ψ2 of the right-
hand side of the walk rule, where

ψ2 = ψ1 = {PY/•2, L/< 3,5 >, M/•3, P/< 4,5 >}

In symbols,

•1 || {•2, < 3,5 >, 1}[{PY, L P, M+1}ψ2]2 =
•1 || {•2, < 3,5 > < 4,5 >, •3+1}

4.4. Forward Trace Slicer 97

{ p1 , < 4 , 4 > , ･1 } || ･2

S0

{ p1 , < 4 , 4 > < 4 , 5 > , 2 } || ･2

S4 rl: walk

{ p1 , < 4 , 4 > < 4 , 5 >
< 5 , 5 > , 3 } || ･2

S10 rl: walk

{ p1 , < 4 , 4 > < 4 , 5 >
< 3 , 5 > , 3 } || ･2

S16 rl: walk

empty

S24 rl: eject
{ p1 , < 4 , 4 > < 4 , 5 > < 3 , 5 >
< 5 , 5 > , 5 } || ･2

S22 rl: jump

empty

S26 rl: eject

Figure 4.5: Computation tree slice fragment for s•0 w.r.t. Islice .

The following example describes the interactive construction of a frag-
ment of an instrumented computation tree slice based on the Islice inspec-
tion modality. The example also demonstrates how forward trace slicing
can be fruitfully employed to debug RWL specifications. For the sake of
readability, in the resulting computation tree slice fragment we omit all
instrumentation steps, as in Example 4.2.1.

Example 4.4.4
Consider the computation tree of Figure 3.1 whose initial term is s0 =
{p1,< 4,4 >,1} || {p2,< 3,5 >,1}. Let s•0 = {p1,< 4,4 >,•1} || •2

be a term slice of s0 where only player p1 and its corresponding positions
are observed. We get the computation tree slice fragment shown in Fig-
ure 4.5 by first expanding (w.r.t. the inspection function Islice) the node
s•0 into s•4, then the node s•4 into s•10 and s•16, and then the node s•16 into
s•22, s•24 and s•26.

The slicing process automatically computes a computation tree slice
fragment that represents a partial view of the maze game interactions
from player p1’s perspective. Actually, irrelevant information is hidden
and rules applied on irrelevant positions are directly ignored, which al-
lows a simplified slice to be obtained thus favoring its inspection for
debugging and analysis purposes. In fact, by isolating p1 movements in
the tree slice fragment computed by slicing, the user can immediately

98 Chapter 4. Exploration Modalities

observe and debug the program. Specifically, by expanding the term
slice s•16 = {p1,< 4,4 > < 4,5 > < 3,5 >,3} || •2 into s•22 by an ap-
plication of the jump rule, and expanding s•16 also into s•24 and s•26 by
an application of the eject rule, the user can immediately realize that
the player continues wandering for a while despite being ejected from the
game, which clearly reveals the bug in the applied eject rule. To prevent
eject from being nondeterministically applied in competition with other
rules such as walk or jump, eject must be programmed as an equation to
be deterministically used for normalizing the system state after a player
is ejected. Note that the computation tree slice fragment shown in Fig-
ure 4.5 cannot be deployed by means of partial stepping since the chosen
term slice is overly restrictive to perform a partial rewrite step.

4.5 Forward Trace Slicer Correctness

Forward trace slicing produces instrumented trace slices that are gener-
ally not correct in the sense of Definition 4.3.1. This is because • symbols
in the Islice inspection function are interpreted as existential variables,
while the partial stepper inspection modality Ipstep handles them as uni-
versally quantified variables. Let us see an example.

Example 4.5.1
Consider the rewrite theory that consists of the following rewrite rule
[r] : f(a, x) ⇒ x, where a is a constant operator and x is a variable

together with the rewrite step µ : f(a, b)
r,{x/b},Λ→K b and the term slice

f(•1, b) of f(a, b). Then, we can compute the instrumented trace slice µ•

of µ w.r.t. Islice and f(•1, b) by applying the function Cslice:

µ• = Cslice(f(•1, b), µ, Istep) = f(•1, b) •→ b

Observe that µ• is not universally correct according to Definition
4.3.1. Indeed, for every instance of f(•1, b) that replaces •1 with a term
that is different from the constant a, there exists no instrumented trace
slice concretization of µ•.

Nonetheless, every execution trace T can be always reconstructed
from a non-empty instrumented trace slice T • of T by suitably instanti-

4.5. Forward Trace Slicer Correctness 99

ating all the •-variables that appear in T •. This allows us to formalize
the following notion of existential correctness.

Definition 4.5.2 Let R be a conditional rewrite theory. Let T =
(s0

r1,σ1,w1→K · · ·
rn,σn,wn→K sn) be an instrumented execution trace in the rewrite

theory R, with n > 0, and let s•0 be a term slice of s0. Let I be an in-
spection function. Then, an instrumented trace slice s•0 •→ · · · •→ s•n of
T w.r.t. I and s•0 is existentially correct iff every si is an instance of s•i ,
with i = 0, . . . , n.

Example 4.5.3
Consider the instrumented trace slice µ• = (f(•1, b) •→ b) of f(a, b)
r,{x/b},Λ→K b w.r.t. Islice and f(•1, b) in Example 4.5.1. Then, µ• is existen-
tially correct.

The following proposition states that any non-empty instrumented
trace slice, which is generated by means of the inspection function Islice ,
is existentially correct.

Proposition 4.5.4 Let R be a conditional rewrite theory. Let T =
(s0

r1,σ1,w1→K · · · rn,σn,wn→K sn) be an instrumented execution trace in the
rewrite theory R, with n > 0, and let s•0 be a term slice of s0. Let Islice be
the forward slicing inspection function. Then, every instrumented trace
slice s•0 •→ · · · •→ s•n of T w.r.t. Islice and s•0 is existentially correct.

Proof. Let R be a conditional rewrite theory. Let T = (s0
r1,σ1,w1→K

· · · rn,σn,wn→K sn) be an instrumented execution trace in the rewrite the-
ory R, with n > 0, and let s•0 be a term slice of s0. Let Islice be the
forward slicing inspection function. Let us consider an arbitrary instru-
mented trace slice T • = (s•0 •→ · · · •→ s•n) of T w.r.t. Islice and s•0. The
proof proceeds by induction on the length n of T •.

Base case: n = 1. Let us consider the one-step, instrumented trace slice
s•0 •→ s•1 of s0

r1,σ1,w1→K s1. We distinguish two cases.

Case w1 ∈MPos(s•0). By hypothesis, s•0 is a term slice of s0,
thus s0 is an instance of s•0 (in symbols, s•0 ≤ s0). Now,

100 Chapter 4. Exploration Modalities

observe that s•0 •→ s•1 has been obtained by calling the func-

tion Cslice(s•0, s0
r1,σ1,w1→K s1, Islice). Hence, T •1 = (s•0 •→ s•1) =

Cslice(s•0, s0
r1,σ1,w1→K s1, Islice). This implies that the following

transition 〈s0
r1,σ1,w1→K s1, s

•
0〉 =⇒∗ 〈nil, s•0 •→ s•1〉 has been per-

formed in the transition system (Conf ,=⇒) by means of one
application of the trans rule. By definition of the trans rule
(see Figure 3.2), s•1 = Islice(s•0, s0

r1,σ1,w1→K s1). Now, by Defini-

tion of Islice , s•1 = Islice(s•0, s0
r1,σ1,w1→K s1) = s•0[ρψm]w1 , where

ψm is the substitution obtained by applying the inspection
function Islice w.r.t. the rule [r1] : λ1 ⇒ ρ1 if c1 ∧ . . . ∧ cm.

Now, it is immediate to prove (by a simple induction on m)
that ψm ≤ σ1. Indeed, each binding in ψm either belongs to
σ1 or is of the form x/•j, for some natural number j. Hence,

s•1 = s•0[ρψm]w1 ≤ s•0[ρσ1]w1 (by ψm ≤ σ1)

≤ s0[ρσ1]w1 = s1 (by s•0 ≤ s0).

This proves that s•1 ≤ s1. Finally, since s•0 ≤ s0 and s•1 ≤ s1,
s•0 •→ s•1 is existentially correct.

Case w1 6∈ MPos(s•0). In this case, s•0 •→ s•1 = s•0[•f]w′ where
w′ ≤ w1, s•0|w′ is a •-variable, and •f is a fresh •-variable that
has been generated by invoking fresh•. Again, by hypothesis,
s•0 ≤ s0. Hence, there exists σ•0 such that s0 = s•0σ

•
0. Now, con-

sider the substitution composition σ•1 = σ•0{•f/s1|w′}. Since
w′ ≤ w1, we have that s1|w′ includes the contractum com-

puted in the rewrite step s0
r1,σ1,w1→K s1. We immediately get

s•1 = s•0[•f]w′ ≤ s•0σ
•
0[•f{•f/s1|w′}]w′ = s•0[•f]w′σ•1 = s1. There-

fore, s•i ≤ si for i = 0, 1, and we can conclude that s•0 •→ s•1 is
existentially correct.

Inductive case: n > 1. Let us consider the instrumented trace slice
T • = (s•0 •→ s•1 •→ · · · •→ s•n), with n > 1, of T = (s0

r1,σ1,w1→K

· · · rn,σn,wn→K sn) w.r.t. Islice and s•0. By the induction hypothesis,
the instrumented trace slice s•0 •→ s•1 •→ · · · •→ s•n−1 w.r.t. Islice

and s•0 is existentially correct; that is, for every instance s•i , with
i = 0, . . . , n− 1, s•i ≤ si. Now, let us consider the last sliced step
s•n−1 •→ s•n of T •. By proceeding similarly to the base case, we

4.6. Backward Trace Slicing as an Instance of the Generic Scheme 101

can show that s•n−1 •→ s•n is an existentially correct instrumented

trace slice of sn−1
rn,σn,wn→K sn w.r.t. Islice and s•n−1. Therefore, we

also have s•n ≤ sn, which completes the proof.

The results in Proposition 4.5.4 can be directly lifted to (fragments
of) instrumented computation tree slices that are generated by means
of the forward slicing inspection modality Islice , thereby providing an
existential correctness result for the overall forward slicing exploration
technique.

Theorem 4.5.5 (existential correctness) Let R be a conditional
rewrite theory. Let Islice be the forward slicing inspection function. Let
s•0 be a term slice of term s0. Let T +

R (s•0) be (a fragment of) the in-
strumented computation tree slice in R w.r.t. Islice and s•0 computed by
the function explore(s0, s

•
0,R, Islice). Then, each branch in T +

R (s•0) is an
existentially correct instrumented trace slice w.r.t. Islice and s•0 of some
instrumented execution trace in R that originates from s0.

Proof. Immediate. It suffices to apply Proposition 4.5.4 to each instru-
mented Maude step slice in each branch of T +

R (s•0).

The existential correctness of the computation tree slice TR(s•0) nat-
urally derives from the existential correctness of its instrumented coun-
terpart T +

R (s•0). In fact, TR(s•0) is obtained from T +
R (s•0) by hiding all the

B-matching transformations and built-in evaluations that occur in the
considered instrumentation.

4.6 Backward Trace Slicing as an Instance

of the Generic Scheme

Finally, in this section we show how the backward trace slicing technique
described in Chapter 1 can be defined as an instance of the generic in-
spection technique described in Section 3.1.1. This is very convenient as
it allows us to reuse large parts of the code that implements Anima.

In the following, we define an inspection function Ibslice that imple-
ments the backward trace slicing of a single rewrite step µ = (s

r,σ,w→K t)

102 Chapter 4. Exploration Modalities

and a term slice t• of t, and delivers the term slice s• resulting from the
back-propagation towards s of the meaningful information in t•.

Let us give a precise formulation of the inspection function Ibslice .
Given the rule [r] : λ⇒ ρ if c1∧ . . .∧ cn and the rewrite step µ = (s

r,σ,w→K

t), let [r−] : ρ ⇒ λ if c−n ∧ . . . ∧ c−1 be the reverse rule of r where each c−i
is obtained by reversing the corresponding condition ci as follows:

c−i =


m := p if ci = (p := m)

p⇒ m if ci = (m⇒ p)

ci otherwise

Let µ− = (t
r−,σ,w

K s) be the reverse step of µ = (s

r,σ,w→K t). Then, we

define the inspection function Ibslice(t•, s
r,σ,w→K t) = Islice(t•, t

r−,σ,w

K s).

Let us see an example.

Example 4.6.1

Consider the conditional rewrite rule

crl [r] : f(X,Y) => h(Z,Y) if Z := p(X) /\ Y > 0

together with the equation eq [e] : p(X) = X, and consider the rewrite
step µ : f(2,5) →K h(2,5) that uses the rule r. Let h(2, •1) be
a term slice of h(2,5). Let crl [r−] : h(Z,Y) => f(X,Y) if Y > 0

/\ p(X) := Z be the reverse rule of r. Then, we can backward slice the

step µ by computing Ibslice(h(2,•1), f(2,5)
r,σ,w→K h(2,5)) = Islice(h(2,

•1), h(2,5)
r−,σ,w

K f(2,5)) = f(2,•1).

The reverse version T− of an instrumented trace T can be constructed
by reversing each rewrite step in T as follows.

Given the instrumented trace T = (s0
r1,σ1,w1→K · · ·

rn,σn,wn→K sn), its reversed

counterpart is T− = (sn
r−n,σn,wn

K · · ·
r−1 ,σ1,w1

K s0).

Now, the backward slicing process of an instrumented trace can be
simply achieved by invoking the function Cslice of Definition 3.1.3 with
Cslice(s•n, T−, Ibslice).

4.6. Backward Trace Slicing as an Instance of the Generic Scheme 103

Example 4.6.2

Consider the rewrite rule and the equation of Example 4.6.1. Given
the instrumented trace T = f(2,5)

r,σ,w→K h(2,5) and its reversed coun-

terpart T− = h(2,5)
r−,σ,w

K f(2,5), we compute the trace slice T • =

Cslice(h(2,•1), h(2,5)
r−,σ,w

K f(2,5), Ibslice) of T w.r.t. h(2,•1) using

Ibslice as follows.

The transition 〈h(2,5)
r−,σ,w

K f(2,5), h(2,•1)〉 =⇒ 〈nil, T •〉 is per-

formed in the transition system (Conf ,=⇒) by means of one application
of the trans rule of Figure 3.2 that involves a call to the Islice func-
tion given in Figure 4.3, that is, Ibslice(h(2,•1), f(2,5)

r,σ,w→K h(2,5)) =

Islice(h(2,•1), h(2,5)
r−,σ,w

K f(2,5))

Since the reverse rewrite step h(2,5)
r−,σ,w

K f(2,5) occurs at position

Λ, which is a meaningful position of the term slice h(2,•1), then θ =
{X/•2, Y/•3, Z/•4} and the two-phase procedure described in Section 4.4
is applied.

Phase 1. The substitution ψ0 is computed as follows.

ψ0 = (θmgu(h(•4, •3), h(2, •1))|̀{X,Y,Z}
= ({X/•2, Y/•3, Z/•4}{•4/2, •3/•1})|̀{X,Y,Z}
= {X/•2, Y/•1, Z/2}

Phase 2. First the condition Y > 0 is processed. Since it is an equational
condition, the call to the process-condition function will return
the substitution ψ1 such that ψ1 = ψ0, which implies that no new
relevant information has been identified.

Subsequently, the inverted condition p(X) := Z is processed by call-
ing the function process-condition(p(X) := Z, σ, {X/•2, Y/•1,
Z/2}). In this specific case, we have to consider the internal ex-
ecution trace

Tint = 2
e→K p(2)

whose instrumented trace slice w.r.t. Islice and Zψ1 coincides with
Tint, that is:

T •int = 2 •→ p(2)

104 Chapter 4. Exploration Modalities

Hence, δ = mgu(p(X), p(2)) = {X/2}. The evaluation of the con-
dition p(X) := Z terminates by returning the substitution ψ2 =
{X/2, Y/•1, Z/2}.

Finally, the term slice of f(2,5) is computed by replacing the subterm
at position Λ of the term slice h(2,•1) with the instance f(X,Y)ψ2, which
is f(2,•1).

Thus, the computed trace slice is T • = f(2,•1) •→ h(2,•1).
Note that, if we would apply the computed substitution ψ2 to each

equational condition of r, that is (Y > 0)ψ2 = •1 > 0, we also get the
backward trail [f(2,•1) •→ h(2,•1), •1 > 0], which is correct w.r.t. the
notion of correctness given in Section 1.3.

Chapter 5

The Anima system

The exploration methodology developed in Part II of the thesis has been
implemented in the Anima tool, which is publicly available at [Ani14] is
written in Maude and C++ and consists of about 270 Maude function
definitions (approximately 2500 lines of source code) together with the
implementation in C++ of metaReducePath, a new Maude command
provided by our implementation that is described in Section 5.2. Anima
also comes with an intuitive Web user interface based on AJAX tech-
nology, which allows users to graphically animate their programs and
display fragments of computation trees. The core exploration engine is
specified as a RESTful Web service by means of the Jersey JAX-RS API.
The architecture of Anima is depicted in Figure 5.1 and consists of five
main components: Anima Client, JAX-RS API, Anima Web Service,
Database, and Anima Core. The Anima Client is purely implemented
in HTML5 Canvas1 and JavaScript. It represents the front-end layer of
our tool and provides an intuitive, versatile Web user interface, which
interacts with the Anima Web Service to invoke the capabilities of the
Anima Core and save partial results in the MongoDB Database compo-
nent, which is a scalable, high-performance, open source NoSQL database
that perfectly fits our needs.

5.1 The Anima Exploration Tool

The main features of Anima include the following:

1. File uploading. Maude specifications can be uploaded in Anima
either as a simple .maude file or as a compressed .zip file, which

1For the sake of efficiency, browsers limit the maximum dimensions of a canvas
object (e.g., Chrome limits a canvas to a maximum width or height of 8192 pix-
els). Exceeding these limits may cause the inability to properly display the current
exploration.

106 Chapter 5. The Anima system

Initial State

Anima CoreMongoDB

Anima Web Service

JAX-RS API

Animation

Rewriting Logic
Speci�ication

Anima

Figure 5.1: Anima architecture.

must contain all the required files for the specification to work
properly.

2. Inspection strategies. The tool implements the three inspection
strategies described in Section 4. As shown in Figure 5.2, the user
can select the desired strategy by using the selector provided in the
option pane.

3. Selection of meaningful symbols for slicing. State slices can be spec-
ified by highlighting with the mouse the state symbols of interest
directly on the nodes of the tree.

4. Expansion/Folding of program states. The user can expand or fold
states of the tree by left-clicking with the mouse on their state label,
or by right-clicking with the mouse on the node and then selecting
either the Expand Node option, the Expand Subtree option, or the
Fold Node option that are offered in the contextual menu. The

5.1. The Anima Exploration Tool 107

ANIMA 

{ p1 , < 4 , 4 > , 1 } || •

s•0

+
rl: walk

{ p1 , < 4 , 4 > < 4 , 5 > , 2 } || •

s•4
+
rl: walk

•{ p1 , < 4 , 4 > , 1 } || •

s•6
+
rl: jump

•{ p1 , < 4 , 4 > , 1 } || •

s•8

{ p1 , < 4 , 4 > < 4 , 5 > < 5 , 5 > , 3

+
rl: walk

•
{ p1 , < 4 , 4 > < 4 , 5 > < 3 , 5 > , 3

 } || •

s•20
+
rl: walk

•{ p1 , < 4 , 4 > < 4 , 5 > , 2 } || •

s•22
+
rl: jump

•{ p1 , < 4 , 4 > < 4 , 5 > , 2 } || •

s•24

+
rl: walk

•
{ p1 , < 4 , 4 > < 4 , 5 > < 3 , 5 > , 3

 } || •

+
rl: jump

•
{ p1 , < 4 , 4 > < 4 , 5 > < 3 , 5 > <

5 , 5 > , 5 } || •

s•36
+
rl: jump

•
{ p1 , < 4 , 4 > < 4 , 5 > < 3 , 5 > , 3

 } || •

s•38

Zoom: - 100% +

Enter your query here and press enter.

Expand node

Expand subtree (3-depth):

Fold node

Show state information

Show transition information

Show trace information

Inspect condition

Send trace to iJULIENNE

Draw meta-term

Statistics

✔

✔

✔

✔

Interactive stepper

Partial stepper

Forward slicer

Instrumentation steps

Meta-level view

State labels

Rule labels

Redex

Show Maude program

Restore original tree

Clear all criteria

Draw computation graph

Draw sliced graph

Help

×Transition information from state s to s0 4

Normalized Rule

crl [walk] : { PY , L , M } => { PY , L P , M + 1 } if next(L,1) => P and isOk(L P) .

Substitution

L / < 4 , 4 >

M / 1

P / < 4 , 5 >

PY / p1

Figure 5.2: Anima at work.

Expand Subtree option allows the user to automatically expand, up
to a given depth k, for k ≤ 5 (with default depth k = 3 , which
can be tuned by means of a slider), the subtree hanging from the
considered node by following a breadth-first strategy.

When a state slice that is situated at the frontier of the computed
tree slice fragment is selected for Expansion/Folding, the whole
branch leading from the root of the tree to the selected node is
highlighted, as illustrated in Figure 5.2. Common actions like drag-
ging, zooming, and navigating the tree are allowed. Also, when a
tree node is selected, the position of the tree on the screen is auto-
matically rearranged to keep the chosen node at the center of the
scene.

5. Display of instrumented steps. The user can freely choose to dis-
play either a default, simplified view of a rewrite step (where only
the applied rewrite rule is displayed), or the complete and detailed

108 Chapter 5. The Anima system

ANIMA 
+
rl: ResIni

[B(idA,idw1,'PageNameEmpty,url-empty,session-empty, 'idEmail / "email2" :

'pass / "secretAlice" : 'user / "alice" ,m(idA,idw1, 'Welcome ? query-empty

 ,1),history-empty,1)] bra-empty [m(idA,idw1,'Welcome, 'Home ? 'pass '= ""

 : 'user '= "" ,session-empty,1)][S(('Admin-Logout , updateDB(s("admin

Page"),s("free")) ,{ (TRUE => 'Home) },{ nav-empty }) : ('Administratio

n , 'adminPage := selectDB(s("adminPage")) ; if 'adminPage = s("free")

 then updateDB(s("adminPage"),getSession(s("user"))) ; setSession(s("ad

minPage"),s("free")) else setSession(s("adminPage"),s("busy")) fi ,{ (

 s("adminPage") '== s("busy") => 'Home) },{ (TRUE -> 'Admin-Logout ?

 query-empty) }) : ('Change-account , skip ,{ cont-empty },{ (TRUE -> 'H

ome ? 'newPass '= "" : 'newUser '= "") }) : ('Email-list , 'u := getS

ession(s("user")) ; 'es := selectDB('u '. s("-email")) ; setSession(

s("idEmails-found"),'es) ,{ cont-empty },{ (TRUE -> 'Home ? query-empty

) : (TRUE -> 'View-email ? 'idEmail '= "") }) : ('Home , 'login := ge

tSession(s("login")) ; if 'login = null then 'u := getQuery('user) ;

'p := getQuery('pass) ; 'p1 := selectDB('u) ; if 'p = 'p1 then 'r := se

lectDB('u '. s("-role")) ; setSession(s("user"),'u) ; setSession(s("r

ole"),'r) ; setSession(s("login"),s("ok")) else setSession(s("login"),

s("no")) fi fi ,{ (s("changeLogin") '== s("no") => 'Change-account)

 : (s("login") '== s("no") => 'Welcome) : (s("login") '== s("ok"

) => 'Home) },{ (TRUE -> 'Change-account ? query-empty) : (TRUE -> '

Email-list ? query-empty) : (TRUE -> 'Logout ? query-empty) : (s("ro

le") '== s("admin") -> 'Administration ? query-empty) }) : ('Logout ,

 clearSession ,{ (TRUE => 'Welcome) },{ nav-empty }) : ('View-email , 'u

:= getSession(s("user")) ; 'id := getQuery('idEmail) ; 'e := selectDB('

s20

+
rl: ResFin

[B(idA,idw1,'Welcome, 'Home ? 'pass '= "" : 'user '= "" ,session-empty,

'idEmail / "email2" : 'pass / "secretAlice" : 'user / "alice" ,m(idA,idw1

, 'Welcome ? query-empty ,1),history-empty,1)] bra-empty [mes-empty][S((

'Admin-Logout , updateDB(s("adminPage"),s("free")) ,{ (TRUE => 'Home) }

,{ nav-empty }) : ('Administration , 'adminPage := selectDB(s("adminPage"

)) ; if 'adminPage = s("free") then updateDB(s("adminPage"),getSession

(s("user"))) ; setSession(s("adminPage"),s("free")) else setSession(s(

"adminPage"),s("busy")) fi ,{ (s("adminPage") '== s("busy") => 'Hom

e) },{ (TRUE -> 'Admin-Logout ? query-empty) }) : ('Change-account , sk

ip ,{ cont-empty },{ (TRUE -> 'Home ? 'newPass '= "" : 'newUser '= ""

) }) : ('Email-list , 'u := getSession(s("user")) ; 'es := selectDB('u

 '. s("-email")) ; setSession(s("idEmails-found"),'es) ,{ cont-empty },

{ (TRUE -> 'Home ? query-empty) : (TRUE -> 'View-email ? 'idEmail '= "

") }) : ('Home , 'login := getSession(s("login")) ; if 'login = null

 then 'u := getQuery('user) ; 'p := getQuery('pass) ; 'p1 := selectDB('

u) ; if 'p = 'p1 then 'r := selectDB('u '. s("-role")) ; setSession(

s("user"),'u) ; setSession(s("role"),'r) ; setSession(s("login"),s("ok

")) else setSession(s("login"),s("no")) fi fi ,{ (s("changeLogin") '

== s("no") => 'Change-account) : (s("login") '== s("no") => 'Welco

me) : (s("login") '== s("ok") => 'Home) },{ (TRUE -> 'Change-accou

s23
+
rl: ResFinNo

[B(idA,idw1,'PageNameEmpty,url-empty,session-empty, 'idEmail / "email2" :

'pass / "secretAlice" : 'user / "alice" ,m(idA,idw1, 'Welcome ? query-empty

 ,1),history-empty,1)] bra-empty [mes-empty][S(('Admin-Logout , updateDB

(s("adminPage"),s("free")) ,{ (TRUE => 'Home) },{ nav-empty }) : ('Adm

inistration , 'adminPage := selectDB(s("adminPage")) ; if 'adminPage = s

("free") then updateDB(s("adminPage"),getSession(s("user"))) ; setSess

ion(s("adminPage"),s("free")) else setSession(s("adminPage"),s("busy"

)) fi ,{ (s("adminPage") '== s("busy") => 'Home) },{ (TRUE -> 'Admi

n-Logout ? query-empty) }) : ('Change-account , skip ,{ cont-empty },{ (T

RUE -> 'Home ? 'newPass '= "" : 'newUser '= "") }) : ('Email-list ,

'u := getSession(s("user")) ; 'es := selectDB('u '. s("-email")) ; s

etSession(s("idEmails-found"),'es) ,{ cont-empty },{ (TRUE -> 'Home ? que

ry-empty) : (TRUE -> 'View-email ? 'idEmail '= "") }) : ('Home , 'l

ogin := getSession(s("login")) ; if 'login = null then 'u := getQuery('

user) ; 'p := getQuery('pass) ; 'p1 := selectDB('u) ; if 'p = 'p1 then

 'r := selectDB('u '. s("-role")) ; setSession(s("user"),'u) ; setSes

sion(s("role"),'r) ; setSession(s("login"),s("ok")) else setSession(s(

"login"),s("no")) fi fi ,{ (s("changeLogin") '== s("no") => 'Change

-account) : (s("login") '== s("no") => 'Welcome) : (s("login") '

== s("ok") => 'Home) },{ (TRUE -> 'Change-account ? query-empty) : (

s26

Zoom: - 100% +

idA

✔

✔

✔

Interactive stepper

Partial stepper

Forward slicer

Instrumentation steps

Meta-level view

State labels

Rule labels

Redex

Show Maude program

Restore original tree

Clear all criteria

Draw computation graph

Help

Figure 5.3: Anima search mechanism.

sequence of steps in the corresponding instrumented trace that sim-
ulates the step. This facility can be locally accessed by clicking
on the +/− symbols that respectively adorn the standard/instru-
mented view of the rewrite step, or by checking/unchecking the
Instrumented steps option in the Anima option pane for the entire
computation tree.

6. Tree Query mechanism. The search facility illustrated in Figure 5.3
implements a pattern language that allows the selected information
of interest to be searched in huge states of complex computation
trees. The user only has to provide a filtering pattern (the query)
that specifies the set of symbols that he/she wants to search for, and
then all the states matching the query are automatically highlighted
in the computation tree.

7. Showing rewrite step information. Anima facilitates the inspection
of any rewrite step s → t of the computation tree by underlining

5.1. The Anima Exploration Tool 109

Trace information

Step RuleName Execution trace

1 'Start { p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 > , 1 }

2 walk { p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 > < 4 , 5 > , 1 + 1 }

3 builtIn { p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 > < 4 , 5 > , 2 }

4 walk { p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 > < 4 , 5 > < 5 , 5 > , 2 + 1 }

5 flattening { p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 > < 4 , 5 > < 5 , 5 > , 1 + 2 }

6 builtIn { p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 > < 4 , 5 > < 5 , 5 > , 3 }

7 unflattening { p2 , < 3 , 5 > < 4 , 5 > < 5 , 5 > , 3 } || { p1 , < 4 , 4 > , 1 }

8 walk { p2 , < 3 , 5 > < 4 , 5 > < 5 , 5 > , 3 } || { p1 , < 4 , 4 > < 4 , 5 > , 1 + 1 }

9 builtIn { p2 , < 3 , 5 > < 4 , 5 > < 5 , 5 > , 3 } || { p1 , < 4 , 4 > < 4 , 5 > , 2 }

10 flattening { p1 , < 4 , 4 > < 4 , 5 > , 2 } || { p2 , < 3 , 5 > < 4 , 5 > < 5 , 5 > , 3 }

11 unflattening { p1 , < 4 , 4 > < 4 , 5 > , 2 } || { p2 , < 3 , 5 > < 4 , 5 > < 5 , 5 > , 3 }

12 exit { p1 , < 4 , 4 > < 4 , 5 > , 2 } || { p2 , exit , 3 }

Tota l s ize: 840

Figure 5.4: Anima trace information.

the differences between the two states (typically the selected redex
of s and its contractum in t). In the case of a non-instrumented
step s →∆,B t (resp. s →R,B t), we generally cannot highlight the
redex and contractum of the step as they might not exist in s and
t because of the matching modulo B that precedes the rewrite step
and the normalization that occurs after the rewrite step. Actually,
recall that s and t are eventually reordered, augmented with unity
elements, and parenthesised, yielding the B-equivalent terms s′ and
t′ that star in an intermediate rewrite step s′ →∆ t′ (resp., s′ →R t

′).
In this case, we underline the antecedents in s of the reduced redex
in s′ (and the descendants in t of the contractum that appears in
t′).

Furthermore, by clicking on the corresponding edge label of the
tree, additional transition information is also displayed in the tran-
sition information window that shows up at the top, including the
computed substitution and the normalized rule/equation applied.

8. Showing trace information. By right-clicking a tree node and by
selecting the Show trace information option, the user can obtain the
complete information of the execution trace from the root to the
selected node. This information is presented in a table that includes
the labels of the rules and equations applied, the terms that result
from the application of each rule or equation and the computed

110 Chapter 5. The Anima system

trace slice (if applicable) as shown in Figure 5.4. Moreover, Anima
offers the possibility to export the displayed trace into meta-level
representation, so the user can easily transfer the selected trace to
any other Maude trace analyzer tool like the online backward trace
analysis tool iJulienne [ABFS13b], for example.

9. Computation graph. Even if the computation space for a given in-
put term is hierarchically organized as a tree in order to systematize
its exploration, Anima additionally supports the interactive inspec-
tion of a graph representation for the different space exploration
modalities, namely (i) computation graph, which is available in all
exploration modalities, (ii) partial graph, which is only available in
the partial stepping modality, and (iii) sliced graph, which is only
available in the forward slicing modality.

10. Graphic representation of meta-terms. Anima facilitates the ex-
haustive inspection of any state of the computation tree by graph-
ically representing the syntactic tree structure of its corresponding
meta-term, including the exact position of each of its subterms.

11. Forward-Backward slicing integration. In order to facilitate the
exhaustive and incremental inspection of a given trace, Anima offers
the possibility to export the trace to iJulienne [ABFS13b], which
allows the origins or antecedents of a given expression (that is, those
symbols in the initial state from which the observed expression
descends) to be identified. This is done by tracing back all control
and data dependencies.

Backward trace slicing can be achieved by right-clicking on a given
state of the trace and then selecting the Send trace to iJulienne
option. Reciprocally, iJulienne permits to export any state of the
trace being inspected back to Anima, which accomplishes the full
integration of both tools and greatly improves the trace inspection
capabilities of our inspection frame.

12. Inspection of conditions. As shown in Figure 5.5, Anima facilitates
the inspection of the conditions satisfied during the application of a
conditional rule or equation by right-clicking on the generated state
and then selecting the Inspect condition option, which allows the

5.2. Implementation of the Tool 111

ANIMA 

{ p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 >

 , 1 }

s0

+
rl: walk

{ p1 , < 4 , 4 > < 4 , 5 > , 2 } || { p2

, < 3 , 5 > , 1 }

s4
+
rl: walk

{ p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 >

 < 4 , 5 > , 2 }

s6
{ p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 >

 < 5 , 5 > , 3 }

s8

rl: walk

{ p1 , < 4 , 4 > < 4 , 5 > < 5 , 5 > , 3

 } || { p2 , < 3 , 5 > , 1 }

+
rl: walk

{ p1 , < 4 , 4 > < 4 , 5 > < 3 , 5 > , 3

 } || { p2 , < 3 , 5 > , 1 }

s20
+
rl: walk

{ p1 , < 4 , 4 > < 4 , 5 > , 2 } || { p2

, < 3 , 5 > < 4 , 5 > , 2 }

s22
+
rl: jump

{ p1 , < 4 , 4 > < 4 , 5 > , 2 } || { p2

, < 3 , 5 > < 5 , 5 > , 3 }

s24

+
rl: walk

{ p1 , < 4 , 4 > < 4 , 5 > < 5 , 5 > , 3

 } || { p2 , < 3 , 5 > < 5 , 5 > , 3 }

s30
+
rl: walk

{ p1 , < 4 , 4 > < 4 , 5 > < 3 , 5 > , 3

 } || { p2 , < 3 , 5 > < 5 , 5 > , 3 }

s36
+
rl: walk

{ p1 , < 4 , 4 > < 4 , 5 > , 2 } || { p2

, < 3 , 5 > < 5 , 5 > < 4 , 5 > , 4 }

s39

Zoom: - 100% +

Enter your query here and press enter.

Expand node

Expand subtree (3-depth):

Fold node

Show state information

Show transition information

Show trace information

Inspect condition

Send trace to iJULIENNE

Draw meta-term

Statistics

×Condition information from transition s to s0 4

Inspect

Inspect

Condition 1

next(< 4 , 4 >,1) => < 4 , 5 >

Condition 2

isOk(< 4 , 4 > < 4 , 5 >) = true

Figure 5.5: Inspection of a condition with Anima.

user to export the traces deployed by evaluating the rule conditions
to iJulienne for further analysis.

13. Showing statistics. Finally, detailed statistics of the current com-
putation tree can be accessed by selecting the Statistics option
that appears in the contextual menu for any node in the tree. This
shows, among others, the number of terms (normalized or not) that
are reachable from this node, its number of children and depth in
the tree, and the global size of the computation tree.

5.2 Implementation of the Tool

One of the main challenges in the implementation of a trace-based Maude
tool such as Anima is to make explicit the concrete sequence of internal
term transformations occurring in a particular Maude execution trace,
which is generally hidden and inaccessible within Maude’s rewriting ma-

112 Chapter 5. The Anima system

chinery. For the case of rule applications, this sequence can be eas-
ily retrieved by means of the Maude metaSearchPath command, but
a similar command does not exist to ascertain the sequence of built-in
operators and equations applied. These are only recorded in a raw text
output trace, which cannot be manipulated as a meta-level expression by
Maude. In order to overcome this drawback, we have implemented our
own Maude command, named metaReducePath, which returns the de-
tailed sequence of transformations (using equations, built-in operators,
and any internal normalizations) applied to a term until its canonical
form is reached.

The operator metaReducePath takes as arguments the metarepresen-
tation R̄ of a system module R and the metarepresentation t̄ of a term
t. Its formal declaration is as follows.

sort ITrace ITraceStep .

subsort ITraceStep < ITrace .

op nil : -> ITrace [ctor] .

op __ : ITrace ITrace -> ITrace [ctor assoc id: nil] .

op {_,_,_} : Equation Substitution Context

-> ITraceStep [ctor] .

op metaReducePath : Module Term ~> ITrace [special (...)] .

For a term t in R, metaReducePath(R̄,t̄) returns a term of sort
ITrace that consists of a list of terms of sort ITraceStep, one term for
each reduction step of the execution trace leading to the canonical form
of t. The information recorded in ITraceStep terms can be accessed by
means of the following observer functions:

op getEquation : ITraceStep -> Equation .

op getSubstitution : ITraceStep -> Substitution .

op getContext : ITraceStep -> Context .

More specifically, given a reduction step s
e,σ,w→ ∆,B t, these selectors

respectively return: (i) the equation e, (ii) the substitution σ, and (iii)

5.2. Implementation of the Tool 113

the context2 surrounding the redex and in which the replacement takes
place.

Maude is implemented thinking primarily of efficiency. However, this
comes at the expense of subtle peculiarities of Maude’s implementation
that only became apparent during the development of Anima and that
we addressed carefully. One of them shows up when the same equation is
applied more than once in a single Maude step because a common redex
appears more than once in the term, as illustrated in the following ex-
ample that shows how Maude groups three applications of equation EQ1

in a single “multi-reduction” step.

Example 5.2.1
Observe the reduction of the input term g(f(a, b), f(a, b), f(a, b)) in the
following functional module:

fmod EXAMPLE is

sort Elem .

ops a b c : -> Elem [ctor].

op f : Elem Elem -> Elem .

op g : Elem Elem -> Elem [ctor assoc comm] .

vars X Y : Elem .

eq [EQ1] : f(X,Y) = c .

endfm

Maude> reduce in EXAMPLE : g(f(a, b), f(a, b), f(a, b)) .

*********** equation

eq f(X, Y) = c [label EQ1] .

X --> a

Y --> b

f(a, b)

--->

c

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Elem: g(c, c, c)

2A context is a term C[2], with a hole 2 at a distinguished position, that can be
filled with a term.

114 Chapter 5. The Anima system

These unorthodox multi-steps are the side effect of two efficient imple-
mentation optimizations, namely the alliance of identical subterms using
multiplicity superscripts (as in f(α2, β3, γ)) [Eke03] and in-place rewrit-
ing [Eke14], which means that equational rewriting destroys the DAG
structure representing the term that is rewritten at each rewrite step.
This is great for efficiency, but it is a major obstacle for exploring the
computations. The new command metaReducePath provided by Anima
detects and standardizes the multi-steps at the meta-level by spreading
them out into the necessary number of single reduction steps, one for
each single equation application, while explicitly recording the associ-
ated context information.

Example 5.2.2
For the specification and input term of Example 5.2.1, the standardized
reduction trace that is obtained by invoking the command
metaReducePath is as follows.3

Maude> reduce in META-LEVEL :

metaReducePath(upModule(’EXAMPLE, false),

’g[’f[’a.Elem,’b.Elem],’f[’a.Elem,’b.Elem],

’f[’a.Elem,’b.Elem]]) .

rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)

result ITrace:

{eq ’f[’X:Elem,’Y:Elem] = ’c.Elem [label(’EQ1)] .,

’X:Elem <- ’a.Elem ; ’Y:Elem <- ’b.Elem,

’g[[],’f[’a.Elem,’b.Elem],’f[’a.Elem,’b.Elem]]}

{eq ’f[’X:Elem,’Y:Elem] = ’c.Elem [label(’EQ1)] .,

’X:Elem <- ’a.Elem ; ’Y:Elem <- ’b.Elem,

’g[’c.Elem,[],’f[’a.Elem,’b.Elem]]}

3At the meta-level, constants are quoted identifiers that contain the constant’s
name and its type separated by a ‘.’, (e.g., ’0.Nat). Similarly, variables contain their
name and type separated by a ‘:’, (e.g., ’N:Nat). Composed terms are constructed in
the usual way, by applying an operator symbol to a nonempty list of terms [CDE+11].

5.2. Implementation of the Tool 115

{eq ’f[’X:Elem,’Y:Elem] = ’c.Elem [label(’EQ1)] .,

’X:Elem <- ’a.Elem ; ’Y:Elem <- ’b.Elem,

’g[’c.Elem,’c.Elem,[]]}

Technically, the execution of metaReducePath can be split into two
phases: equational simplification and lifting to the meta-level. In the
simplification phase, the input term is reduced to canonical form by us-
ing Maude’s equational simplification. For each applied equation and in-
ternal normalization transformation, our command additionally collects
all the relevant information that we need to subsequently reconstruct
the performed steps. This includes not only built-in evaluation but also
memoization and other internal transformations such as the aforemen-
tioned iter, which replaces chains of iterations of a unary operator by
a single instance of the iterated function, raised to the number of itera-
tions, e.g., s(s(s(0))) as s3(0). Once the term has reached its canonical
form, the lifting phase consists of raising to the meta-level all the col-
lected information and assembling the resulting instrumented execution
traces.

equational simplification meta-level lifting
n rewrites time (s.) \ size |T | time (s.)
5 22 0 78 26 0
10 265 0 957 319 0
15 2,959 0.02 10,704 3,568 0.04
20 32,836 0.24 118,800 39,600 0.73
25 364,177 3.41 1,317,603 439,201 10.18

Table 5.1: Execution results of the metaReducePath command for
fibo(n).

Table 5.1 provides some figures regarding the execution of the
metaReducePath command. We tested our command on a 3.3GHz Intel
Xeon E5-1660 with 64GB of RAM by reducing different calls to the fibo

116 Chapter 5. The Anima system

fmod FIBONACCI is pr NAT .

op fibo : Nat -> Nat .

var N : Nat .

eq fibo(0) = 0 .

eq fibo(1) = 1 .

eq fibo(s s N) = fibo(N) + fibo(s N) .

endfm

Figure 5.6: Benchmark problem for the metaReducePath command.

function given in Figure 5.6. In Table 5.1, we distinguish the two phases
mentioned above, namely equational simplification and lifting. For the
equational simplification phase, the number of rewrites and the reduc-
tion times are given. For the lifting phase, we show the problem size, the
length of the resulting instrumented execution traces, and the processing
times. The problem size (column \ size) is measured as the number of
expressions (applied equation, substitution, and context for each step)
that are manipulated. The length of the resulting instrumented execu-
tion traces (column |T |) is measured as the number of rewrite steps. Note
that for extremely huge execution traces such as the trace of fibo(25),
which consists of 439,201 rewrite steps, the number of manipulated terms
can be very high (more than 1,300,000) yet the execution time is reason-
able (a few seconds) and comparable to existing Maude meta-commands
that process millions of terms [Eke03].

Finally, it is worth mentioning that metaReducePath takes into ac-
count the Church-Rosser and termination properties of functional mod-
ules assumed by Maude. Therefore, it returns just one possible simplifi-
cation sequence that perfectly reproduces the normalization carried out
by Maude following its internal strategy while ignoring the rest of the
alternative normalizations.

Conclusions

Several methodologies for program comprehension and debugging that
rely on the dynamic analysis of execution traces have been developed ever
since the pioneers of software development first realized that it is much
more difficult to avoid programming errors than desired. However, most
of these techniques have to deal with a huge amount of information that
is much greater than the one strictly needed to identify and reproduce
the source of error. One may think that the more information we manage
about a problem, the better; however, when the amount of information
exceeds a certain limit, it becomes a major drawback since it may obscure
the concrete information that causes the error. The consequences of this
excess of information may vary from simple annoyance to the far more
troubling inability to perform the required code revision and correction.

In this thesis, we have developed a general scheme that hopefully
contributes a step forward in the analysis, comprehension and debugging
of concurrent programs.

In Part I, we have presented an incremental, slicing-based backward
trace analysis technique for rewriting logic programs that are written and
executed in the Maude system. This methodology can drastically reduce
the size and complexity of the traces under examination and is useful
for the analysis of execution traces of sophisticated rewrite theories that
may include rules, equations and equational axioms such as commuta-
tivity, associativity, and unity. The technique has been implemented in
the iJulienne system and our experiments reveal that our methodology
does not come at the expense of performance with respect to existing
Maude tools. This makes iJulienne attractive for Maude users, espe-
cially taking into account that program debugging and trace analysis in
Maude is not easy with current state-of-the-art tools. The implementa-
tion comprises a front-end that consists of a web graphical user interface
and a back-end written in Maude that exploits its meta-level capabilities.
The tool can be tuned to reveal all relevant information (including applied
equation/rule, redex position, and matching substitution) for each single
rewrite step that is obtained by (recursively) applying a rule, equation,
or algebraic axiom, which greatly improves the standard view of execu-

118 Chapter 5. The Anima system

tion traces and their meta-representations in Maude. In particular, it
can provide both, a textual representation of the trace and its meta-level
representation to be used for further automated analyses, including the
incremental trace slicing algorithm that supports stepwise refinements of
the trace slice.

In Part II, we have formalized a rich and highly dynamic, param-
eterized scheme for the trace inspection of conditional rewrite theories
based on a generic animation algorithm that can be tuned to work with
different modalities, including incremental stepping, partial stepping and
automated forward/backward slicing, which drastically reduces the size
and complexity of the computations under examination. The algorithm
is fully general and can be applied for debugging as well as for optimizing
any RWL-based tool that manipulates conditional RWL theories that in-
volve rewriting modulo associativity, commutativity, and unity axioms.
The proposed methodology is implemented and tested in the graphical
tool Anima, which provides a skillful and highly dynamic interface for the
dynamic analysis of RWL computations. The tool is useful for Maude
programmers in two ways. First, it graphically exemplifies the semantics
of the language, allowing the evaluation rules to be observed in action.
Secondly, it can be used as a debugging tool, allowing the users to step
forward and backward while slicing the trace in order to validate input
data or locate programming mistakes.

As already mentioned, the present version of Anima supports the
instrumentation of matching modulo associativity, commutativity, and
(left-, right- or two-sided) unity. In addition, Anima has an extensi-
ble design so that instrumentation for other equational axioms such as
idempotency can be easily added in the future. As future work, we
are interested to extend our exploration technique to more sophisticated
rewrite theories that may include membership axioms. We also plan to
exploit the dynamic dependencies exposed by our conditional trace slic-
ing methodology to endow Anima with a program slicing capability that
can identify those parts of a Maude theory that can (potentially) affect
the values computed at some point of interest [Tip95, FT94].

As another line for future work, we also intend to explore the ap-
plication of our trace slicing methodology to universal debugging and
runtime verification [BFF+10], which are concerned with the monitor-
ing, debugging and analysis of system executions. More specifically, we

5.2. Implementation of the Tool 119

can consider a programming language defined in K [RS10] (e.g., C, Java,
JavaScript, etc.) which is a rewriting-based executable semantic frame-
work in which programming languages syntax and semantics can be de-
fined. K semantics definitions are mechanized using a rewriting engine
such as K-Maude [SR10] or SMT solvers [SCM+14]. Hence trace slicing
can be used to analyze such semantics-driven executions w.r.t. a refer-
ence specification that monitors critical data. This way, debugging and
runtime verification might be semantically grounded in our setting, while
it is commonly off-hacked in more traditional approaches by using dedi-
cated techniques such as program instrumentation.

Finally, the Maude system currently supports a declarative debugging
technique [RVMO10a] à la Shapiro [Sha82]. We think that our trace
slicing methodology can provide a complementary source of information
to shorten and simplify the declarative debugging process. Indeed, by
not considering some computations that were proven by the trace slicer
to have no influence on a criterion of interest, we might avoid many
unnecessary debugging questions to the user.

120 Chapter 5. The Anima system

Bibliography

[ABBF10] M. Alpuente, D. Ballis, M. Baggi, and M. Falaschi. A
Fold/Unfold Transformation Framework for Rewrite The-
ories extended to CCT. In Proceedings of the 19th ACM
SIGPLAN Workshop on Partial Evaluation and Program
Manipulation (PEPM 2010), pages 43–52. Association for
Computing Machinery, 2010.

[ABE+11] M. Alpuente, D. Ballis, J. Espert, F. Frechina, and
D. Romero. Debugging of Web Applications with WEB-
TLR. In Proceedings of the 7th International Workshop on
Automated Specification and Verification of Web Systems
(WWV 2011), volume 61 of Electronic Proceedings in The-
oretical Computer Science (EPTCS), pages 66–80. Open
Publishing Association, 2011.

[ABER10] M. Alpuente, D. Ballis, J. Espert, and D. Romero. Model-
checking Web Applications with Web-TLR. In Proceedings
of the 8th International Symposium on Automated Tech-
nology for Verification and Analysis (ATVA 2010), volume
6252 of Lecture Notes in Computer Science (LNCS), pages
341–346. Springer-Verlag, 2010.

[ABER11] M. Alpuente, D. Ballis, J. Espert, and D. Romero. Back-
ward Trace Slicing for Rewriting Logic Theories. In Pro-
ceedings of the 23rd International Conference on Automated
Deduction (CADE 2011), volume 6803 of Lecture Notes in
Computer Science (LNCS), pages 34–48. Springer-Verlag,
2011.

[ABF+13] M. Alpuente, D. Ballis, M. Falaschi, F. Frechina, and
D. Romero. Rewriting-based Repairing Strategies for XML
Repositories. The Journal of Logic and Algebraic Program-
ming, 82(8):326–352, 2013.

122 Bibliography

[ABFR06] M. Alpuente, D. Ballis, M. Falaschi, and D. Romero. A
Semi-Automatic Methodology for Repairing Faulty Web
Sites. In Proceedings of the 4th IEEE International Confer-
ence on Software Engineering and Formal Methods (SEFM
2006), pages 31–40. IEEE Computer Society Press, 2006.

[ABFR12a] M. Alpuente, D. Ballis, F. Frechina, and D. Romero.
Backward Trace Slicing for Conditional Rewrite Theories.
In Proceedings of the 18th International Conference on
Logic for Programming, Artificial Intelligence and Reason-
ing (LPAR 2012), volume 7180 of Lecture Notes in Com-
puter Science (LNCS), pages 62–76. Springer-Verlag, 2012.

[ABFR12b] M. Alpuente, D. Ballis, F. Frechina, and D. Romero. Juli-
enne: A Trace Slicer for Conditional Rewrite Theories. In
Proceedings of the 18th International Symposium on For-
mal Methods (FM 2012), volume 7436 of Lecture Notes in
Computer Science (LNCS), pages 28–32. Springer-Verlag,
2012.

[ABFR14] M. Alpuente, D. Ballis, F. Frechina, and D. Romero. Using
Conditional Trace Slicing for improving Maude Programs.
Science of Computer Programming, 80, Part B:385 – 415,
2014.

[ABFS13a] M. Alpuente, D. Ballis, F. Frechina, and J. Sapiña. Para-
metric Exploration of Rewriting Logic Computations. In
Proceedings of the 5th International Symposium on Sym-
bolic Computation in Software Science (SCSS 2013), vol-
ume 15 of EasyChair Proceedings in Computing (EPiC),
pages 4–18. EasyChair, 2013.

[ABFS13b] M. Alpuente, D. Ballis, F. Frechina, and J. Sapiña. Slicing-
Based Trace Analysis of Rewriting Logic Specifications with
iJulienne. In Proceedings of the 22nd European Sympo-
sium on Programming (ESOP 2013), volume 7792 of Lec-
ture Notes in Computer Science (LNCS), pages 121–124.
Springer-Verlag, 2013.

Bibliography 123

[ABFS14] M. Alpuente, D. Ballis, F. Frechina, and J. Sapiña. In-
specting Rewriting Logic Computations (in a Parametric
and Stepwise Way). In Specification, Algebra, and Software
- Essays Dedicated to Kokichi Futatsugi (SAS 2014), vol-
ume 8373 of Lecture Notes in Computer Science (LNCS),
pages 229–255. Springer-Verlag, 2014.

[ABFS15] M. Alpuente, D. Ballis, F. Frechina, and J. Sapiña. Explor-
ing Conditional Rewriting Logic Computations. Journal
of Symbolic Computation, 2015. http://dx.doi.org/10.

1016/j.jsc.2014.09.028.

[ABR09] M. Alpuente, D. Ballis, and D. Romero. Specification and
Verification of Web Applications in Rewriting Logic. In
Proceedings of the 16th International Symposium on For-
mal Methods (FM 2009), volume 5850 of Lecture Notes
in Computer Science (LNCS), pages 790–805. Springer-
Verlag, 2009.

[ABR14] M. Alpuente, D. Ballis, and D. Romero. A Rewriting
Logic Approach to the Formal Specification and Verification
of Web Applications. Science of Computer Programming,
81:79–107, 2014.

[ADS93] H. Agrawal, R. A. DeMillo, and E. H. Spafford. Debugging
with Dynamic Slicing and Backtracking. Software: Practice
and Experience, 23(6):589–616, 1993.

[ALL96] M. Abadi, B. Lampson, and J.-J. Lévy. Analysis and
Caching of Dependencies. ACM SIGPLAN Notices,
31(6):83–91, 1996.

[Ani14] The Anima Web site, 2014. Available at: http://

safe-tools.dsic.upv.es/anima.

[BBF09] M. Baggi, D. Ballis, and M. Falaschi. Quantitative Path-
way Logic for Computational Biology. In Proceedings of the
7th International Conference on Computational Methods
in Systems Biology (CMSB 2009), volume 5688 of Lecture

http://dx.doi.org/10.1016/j.jsc.2014.09.028
http://dx.doi.org/10.1016/j.jsc.2014.09.028
http://safe-tools.dsic.upv.es/anima
http://safe-tools.dsic.upv.es/anima

124 Bibliography

Notes in Computer Science (LNCS), pages 68–82. Springer-
Verlag, 2009.

[BFF+10] H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund,
I. Lee, G. J. Pace, G. Roşu, O. Sokolsky, and N. Tillmann,
editors. Proceedings of the 1st International Conference on
Runtime Verification (RV 2010), volume 6418 of Lecture
Notes in Computer Science (LNCS). Springer-Verlag, 2010.

[BKV00] I. Bethke, J. W. Klop, and R. de Vrijer. Descendants and
Origins in Term Rewriting. Information and Computation,
159(1–2):59–124, 2000.

[BM06] R. Bruni and J. Meseguer. Semantic Foundations for Gen-
eralized Rewrite Theories. Theoretical Computer Science
(TCS), 360(1–3):386–414, 2006.

[BM12] K. Bae and J. Meseguer. A Rewriting-Based Model Checker
for the Linear Temporal Logic of Rewriting. In Proceedings
of the 9th International Workshop on Rule-Based Program-
ming (RULE 2008), volume 290 of Electronic Notes in The-
oretical Computer Science (ENTCS), pages 19–36. Elsevier
Science, 2012.

[CAA11] J. Cheney, A. Ahmed, and U. A. Acar. Provenance as De-
pendency Analysis. Mathematical Structures in Computer
Science, 21(6):1301–1337, 2011.

[CDE+07] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet,
J. Meseguer, and C. Talcott. All About Maude: A High-
Performance Logical Framework. Springer-Verlag, 2007.

[CDE+11] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet,
J. Meseguer, and C. Talcott. Maude Manual (Version 2.6).
Technical report, SRI International Computer Science Lab-
oratory, 2011. Available at: http://maude.cs.uiuc.edu/

maude2-manual/.

http://maude.cs.uiuc.edu/maude2-manual/
http://maude.cs.uiuc.edu/maude2-manual/

Bibliography 125

[CFF01] J. Clements, M. Flatt, and M. Felleisen. Modeling an Alge-
braic Stepper. In Proceedings of the 10th European Sympo-
sium on Programming (ESOP 2001), volume 2028 of Lec-
ture Notes in Computer Science (LNCS), pages 320–334.
Springer-Verlag, 2001.

[CR09] F. Chen and G. Roşu. Parametric Trace Slicing and Mon-
itoring. In Proceedings of the 15th International Confer-
ence on Tools and Algorithms for Construction and Analy-
sis of Systems (TACAS 2009), volume 5505 of Lecture Notes
in Computer Science (LNCS), pages 246–261. Springer-
Verlag, 2009.

[CRW00] O. Chitil, C. Runciman, and M. Wallace. Freja, Hat and
Hood - A Comparative Evaluation of Three Systems for
Tracing and Debugging Lazy Functional Programs. In Pro-
ceedings of the 12th International Workshop on Implemen-
tation of Functional Languages (IFL 2000), volume 2011
of Lecture Notes in Computer Science (LNCS), pages 176–
193. Springer-Verlag, 2000.

[DKT93] A. Van Deursen, P. Klint, and F. Tip. Origin Tracking.
Journal of Symbolic Computation, 15(5–6):523–545, 1993.

[DM97] I. Durand and A. Middeldorp. Decidable Call by Need
Computations in Term Rewriting (Extended Abstract). In
Proceedings of the 14th International Conference on Au-
tomated Deduction (CADE 1997), volume 1249 of Lecture
Notes in Computer Science (LNCS), pages 4–18. Springer-
Verlag, 1997.

[DM10] F. Durán and J. Meseguer. A Maude Coherence Checker
Tool for Conditional Order-Sorted Rewrite Theories. In
Proceedings of the 8th International Workshop on Rewriting
Logic and Its Applications (WRLA 2010), volume 6381 of
Lecture Notes in Computer Science (LNCS), pages 86–103.
Springer-Verlag, 2010.

126 Bibliography

[Duc99] M. Ducassé. OPIUM: An Extendable Trace Analyzer
for PROLOG. The Journal of Logic Programming, 39(1–
3):177–223, 1999.

[Eke95] S. Eker. Associative-Commutative Matching via Bipartite
Graph Matching. The Computer Journal, 38(5):381–399,
1995.

[Eke03] S. Eker. Associative-Commutative Rewriting on Large
Terms. In Proceedings of the 14th International Conference
on Rewriting Techniques and Applications (RTA 2003), vol-
ume 2706 of Lecture Notes in Computer Science (LNCS),
pages 14–29. Springer-Verlag, 2003.

[Eke14] S. Eker, 2014. Personal Communication.

[EMM06] S. Escobar, C. Meadows, and J. Meseguer. A Rewriting-
Based Inference System for the NRL Protocol Analyzer and
its Meta-Logical Properties. Theoretical Computer Science
(TCS), 367(1):162–202, 2006.

[EMMS14] S. Escobar, C. Meadows, J. Meseguer, and S. Santiago.
A rewriting-based forwards semantics for Maude-NPA. In
proc. HotSoS, 2014. To appear.

[Fay79] M. Fay. First Order Unification in an Equational Theory.
In Proceedings of the 4th International Conference on Auto-
mated Deduction (CADE 1979), pages 161–167. Academic
Press, Inc., 1979.

[FR01] M. A. Francel and S. Rugaber. The Value of Slicing While
Debugging. Science of Computer Programming, 40(2–
3):151–169, 2001.

[FT94] J. Field and F. Tip. Dynamic Dependence in Term rewrit-
ing Systems and its Application to Program Slicing. In Pro-
ceedings of the 6th International Symposium on Program-
ming Language Implementation and Logic Programming
(PLILP 1994), volume 844 of Lecture Notes in Computer
Science (LNCS), pages 415–431. Springer-Verlag, 1994.

Bibliography 127

[HL79] G. Huet and J.-J. Lévy. Call by need Computations in
Nonambiguous Linear Term Rewriting Systems. Technical
Report 359, INRIA, 1979.

[HL91] G. P. Huet and J.-J. Lévy. Computations in Orthogonal
Rewriting Systems, I. In Computational Logic: Essays in
Honor of Alan Robinson, pages 395–414. The MIT Press,
1991.

[Hof11] P. Hofstedt. Multiparadigm Constraint Programming Lan-
guages. Springer-Verlag, 2011.

[HR01] K. Havelund and G. Roşu. Java PathExplorer - A Run-
time Verification Tool. In Proceedings of the 6th Interna-
tional Symposium on Artificial Intelligence, Robotics and
Automation in Space (i-SAIRAS 2001): A New Space
Odyssey. Canadian Space Agency, 2001.

[iJu12] The iJulienne Web site, 2012. Available at: http://

safe-tools.dsic.upv.es/iJulienne.

[jsl08] Jslice: a Dynamic Slicing Tool for Java Programs, 2008.
Available at: http://jslice.sourceforge.net.

[KL88] B. Korel and J. Laski. Dynamic Program Slicing. Informa-
tion Processing Letters, 29(3):155–163, 1988.

[Klo90] J.W. Klop. Term Rewriting Systems. Technical Report
CS-R9073, Centre for Mathematics and Computer Science,
1990.

[Klo92] J.W. Klop. Term Rewriting Systems. In S. Abramsky,
D. Gabbay, and T. Maibaum, editors, Handbook of Logic in
Computer Science, volume I, pages 1–112. Oxford Univer-
sity Press, 1992.

[Low96] G. Lowe. Breaking and Fixing the Needham-Schroeder
Public-Key Protocol Using FDR. In Proceedings of the 2nd
International Workshop on Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS 1996), volume

http://safe-tools.dsic.upv.es/iJulienne
http://safe-tools.dsic.upv.es/iJulienne
http://jslice.sourceforge.net

128 Bibliography

1055 of Lecture Notes in Computer Science (LNCS), pages
147–166. Springer-Verlag, 1996.

[LS03] Y. A. Liu and S. D. Stoller. Eliminating Dead Code on
Recursive Data. Science of Computer Programming, 47(2–
3):221–242, 2003.

[Mes92] J. Meseguer. Conditional Rewriting Logic as a Uni-
fied Model of Concurrency. Theoretical Computer Science
(TCS), 96(1):73–155, 1992.

[Mes08] J. Meseguer. The Temporal Logic of Rewriting: A Gentle
Introduction. In Concurrency, Graphs and Models: Essays
Dedicated to Ugo Montanari on the Occasion of his 65th
Birthday, volume 5065 of Lecture Notes in Computer Sci-
ence (LNCS), pages 354–382. Springer-Verlag, 2008.

[Mid99] A. Middeldorp. Strategies for Rewrite Systems : Normal-
ization and Optimality. Kôkyûroku Bessatsu - Languages,
Algebra and Computer Systems, 1106:149–160, 1999.

[MOM02] N. Mart́ı-Oliet and J. Meseguer. Rewriting Logic: Roadmap
and Bibliography. Theoretical Computer Science (TCS),
285(2):121–154, 2002.

[MOPV12] N. Mart́ı-Oliet, M. Palomino, and A. Verdejo. Rewriting
Logic Bibliography by Topic: 1990̈ı¿½2011. The Journal of
Logic and Algebraic Programming, 81(7–8):782–815, 2012.

[O’D77] M. J. O’Donnell. Computing in Systems Described by Equa-
tions, volume 58 of Lecture Notes in Computer Science
(LNCS). Springer-Verlag, 1977.

[Pal90] C. Palamidessi. Algebraic Properties of Idempotent Substi-
tutions. In Proceedings of the 17th International Colloquium
on Automata, Languages and Programming (ICALP 1990),
volume 443 of Lecture Notes in Computer Science (LNCS),
pages 386–399. Springer-Verlag, 1990.

Bibliography 129

[Plo04] G. D. Plotkin. The Origins of Structural Operational Se-
mantics. The Journal of Logic and Algebraic Programming,
60–61(1):3–15, 2004.

[RAA13] A. Riesco, I. Mariuca Asavoae, and M. Asavoae. A generic
program slicing technique based on language definitions. In
Proceedings of the 21st International Workshop on Alge-
braic Development Techniques (WADT 2012), volume 7841
of Lecture Notes in Computer Science (LNCS), pages 248–
264. Springer-Verlag, 2013.

[RB05] N. F. Rodrigues and L. S. Barbosa. Component Identi-
fication Through Program Slicing. In Proceedings of the
2nd International Workshop on Formal Aspects of Compo-
nent Software (FACS 2005), volume 160 of Electronic Notes
in Theoretical Computer Science (ENTCS), pages 291–304.
Elsevier Science, 2005.

[RS10] G. Roşu and T. F. Serbănuţă. An overview of the K seman-
tic framework. The Journal of Logic and Algebraic Pro-
gramming, 79(6):397–434, 2010.

[RVCMO09] A. Riesco, A. Verdejo, R. Caballero, and N. Mart́ı-Oliet.
Declarative Debugging of Rewriting Logic Specifications.
In Proceedings of the 19th International Workshop on Alge-
braic Development Techniques (WADT 2008), volume 5486
of Lecture Notes in Computer Science (LNCS), pages 308–
325. Springer-Verlag, 2009.

[RVMO10a] A. Riesco, A. Verdejo, and N. Mart́ı-Oliet. A Complete
Declarative Debugger for Maude. In Proceedings of the
13th International Conference on Algebraic Methodology
and Software Technology (AMAST 2010), volume 6486 of
Lecture Notes in Computer Science (LNCS), pages 216–225.
Springer-Verlag, 2010.

[RVMO10b] A. Riesco, A. Verdejo, and N. Mart́ı-Oliet. Declarative De-
bugging of Missing Answers for Maude. In Proceedings

130 Bibliography

of the 21st International Conference on Rewriting Tech-
niques and Applications (RTA 2010), volume 6 of LIPIcs,
pages 277–294. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2010.

[RVMOC12] A. Riesco, A. Verdejo, N. Mart́ı-Oliet, and R. Caballero.
Declarative debugging of rewriting logic specifications. The
Journal of Logic and Algebraic Programming, 81(7–8):851–
897, 2012.

[SCM+14] A. Stefănescu, S. Ciobâcă, R. Mereuta, B. Moore, T. F.
Serbănută, and G. Roşu. All-path reachability logic. In
Rewriting and Typed Lambda Calculi, volume 8560 of Lec-
ture Notes in Computer Science, pages 425–440. Springer
International Publishing, 2014.

[Sha82] E. Y. Shapiro. Algorithmic Program Diagnosis. In Proceed-
ings of the 9th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 1982), pages
299–308. Association for Computing Machinery, 1982.

[Sla74] J.R Slagle. Automated Theorem-Proving for Theories with
Simplifiers, Commutativity, and Associativity. Journal of
the ACM (JACM), 21(4):622–642, 1974.

[SM03] A. Sabelfeld and A.C. Myers. Language-Based Information-
Flow Security. IEEE Journal on Selected Areas in Commu-
nications, 21(1):5–19, 2003.

[SR10] T. F. Serbănuţă and G. Roşu. K-maude: A rewriting based
tool for semantics of programming languages. In Rewriting
Logic and Its Applications, volume 6381 of Lecture Notes in
Computer Science, pages 104–122. Springer Berlin Heidel-
berg, 2010.

[Tal08] C. Talcott. Pathway Logic. In Proceedings of the 8th Inter-
national School on Formal Methods for the Design of Com-
puter, Communication and Software Systems (SFM 2008),
volume 5016 of Lecture Notes in Computer Science (LNCS),
pages 21–53. Springer-Verlag, 2008.

Bibliography 131

[TeR03] TeReSe. Term Rewriting Systems. Cambridge University
Press, 2003.

[Tip95] F. Tip. A Survey of Program Slicing Techniques. Journal
of Programming Languages, 3(3):121–189, 1995.

[VO01] G. Villavicencio and J. N. Oliveira. Reverse Program Cal-
culation Supported by Code Slicing. In Proceedings of the
8th Working Conference on Reverse Engineering (WCRE
2001), pages 35–46. IEEE Computer Society Press, 2001.

[Wei81] M. Weiser. Program slicing. In Proceedings of the 5th Inter-
national Conference on Software Engineering (ICSE 1981),
pages 439–449. IEEE Computer Society Press, 1981.

132 Bibliography

Appendix A

Maude Specification of the
Experimental Evaluation

Examples

This appendix contains the Maude specification of the experimental eval-
uation examples discussed in Chapter 2.

Fault-Tolerant Client-Server Communication

Protocol

The formal specification of the fault-tolerant client-server communication
protocol example is as follows:

mod CLIENT-SERVER-TRANSF is

inc NAT .

sorts Content State Msg Cli

Serv Host Data CliName

ServName Question Answer .

subsorts Msg Cli Serv < State .

subsorts CliName ServName < Host .

subsorts Nat < Question Answer < Data .

ops Srv-A Srv-B : -> ServName .

ops Cli-A Cli-B : -> CliName .

op null : -> State .

op _&_ : State State -> State [assoc comm id: null] .

134 Appendix A. Maude Specification of the Experimental Evaluation Examples

op _<-_ : Host Content -> Msg .

op {_,_} : Host Data -> Content .

op [_,_,_,_] : CliName ServName Question Answer -> Cli .

op na : -> Answer .

op [_] : ServName -> Serv .

op f : ServName CliName Question -> Answer .

var C S H : Host .

var Q : Question .

var A : Answer .

var D : Data .

var CNT : Content .

eq [inc] : f(S, C, Q) = Q + 1 .

rl [req] : [C, S, Q, na]

=> [C, S, Q, na] & S <- {C, Q} .

rl [reply] : (S <- {C, Q}) & [S]

=> [S] & (C <- {S, f(S, C, Q)}) .

rl [rec] : (C <- {S, D}) & [C, S, Q, A]

=> [C, S, Q, D] .

rl [dupl] : (H <- CNT) => (H <- CNT) & (H <- CNT) .

rl [loss] : (H <- CNT) => null .

endm

Needham-Schroeder Network Authentication

Protocol

Regarding the Needham-Schroeder network authentication protocol ex-
ample, its formal specification (based on [EMMS14]) is as follows:

mod NS is

sort Universal . --- Special sort used for unsorted actions

sort Msg . --- Generic sort for messages

135

sort Fresh . --- Sort for private information.

sort Public . --- Handy sort to say what is public

subsort Public < Msg .

op emptyPublic : -> Public .

op nullFresh : -> Fresh .

sort MsgSet .

subsort Msg < MsgSet .

op emptyMsgSet : -> MsgSet [ctor] .

op _‘,_ : MsgSet MsgSet -> MsgSet [ctor assoc comm

id: emptyMsgSet] .

op noMsg : -> Msg . --- Auxiliar useless message

used as a marker

sort SMsg .

sort SignedSMsg .

subsort SignedSMsg < SMsg .

op +‘(_‘) : Msg -> SignedSMsg [format (nir d d d o)] .

op -‘(_‘) : Msg -> SignedSMsg [format (nib d d d o)] .

sort EmptyList .

op nil : -> EmptyList [ctor format (ni d)] .

op _‘,_ : EmptyList EmptyList -> EmptyList

[ctor assoc id: nil format (d d s d)] .

sort SMsgList .

subsort SMsg < SMsgList .

subsort EmptyList < SMsgList .

136 Appendix A. Maude Specification of the Experimental Evaluation Examples

op _‘,_ : SMsgList SMsgList -> SMsgList

[ctor assoc id: nil format (d d s d)] .

sort SMsgList-L SMsgList-R .

op nil : -> SMsgList-R [ctor] .

op _‘,_ : SMsg SMsgList-R -> SMsgList-R

[ctor format (d d s d) gather (e E)] .

op nil : -> SMsgList-L [ctor] .

op _‘,_ : SMsgList-L SMsg -> SMsgList-L

[ctor format (d d s d) gather (E e)] .

sort FreshSet .

subsort Fresh < FreshSet .

op nil : -> FreshSet [ctor] .

op _‘,_ : FreshSet FreshSet -> FreshSet [ctor comm assoc

id: nil] .

sort Strand .

op ::_::‘[_|_‘] : FreshSet SMsgList-L SMsgList-R -> Strand

[format (ni d d ni s+++ s--- s+++ d s---)] .

sort StrandSet .

subsort Strand < StrandSet .

op empty : -> StrandSet [ctor] .

op _&_ : StrandSet StrandSet -> StrandSet [ctor assoc comm

id: empty format (d d d d)] .

sort Knowledge-!inI Knowledge-inI

IntruderKnowledge-empty Knowledge .

137

subsort Knowledge-!inI Knowledge-inI

IntruderKnowledge-empty < Knowledge .

op _!inI : Msg -> Knowledge-!inI [format (ni d o)] .

op _inI : Msg -> Knowledge-inI [format (niu d o)] .

sort IntruderKnowledge-!inI IntruderKnowledge-inI

IntruderKnowledgeElem IntruderKnowledge .

subsort IntruderKnowledge-empty < IntruderKnowledge-!inI .

subsort IntruderKnowledge-empty < IntruderKnowledge-inI .

subsort IntruderKnowledge-!inI IntruderKnowledge-inI

< IntruderKnowledge .

subsort Knowledge-!inI < IntruderKnowledge-!inI .

subsort Knowledge-inI < IntruderKnowledge-inI .

subsort Knowledge < IntruderKnowledgeElem

< IntruderKnowledge .

op empty : -> IntruderKnowledge-empty [ctor] .

op _‘,_ : IntruderKnowledge IntruderKnowledge

-> IntruderKnowledge

[ctor assoc comm id: empty format (d d d d)] .

op _‘,_ : IntruderKnowledge-!inI IntruderKnowledge-!inI

-> IntruderKnowledge-!inI [ditto] .

op _‘,_ : IntruderKnowledge-inI IntruderKnowledge-inI

-> IntruderKnowledge-inI [ditto] .

op _‘,_ : IntruderKnowledge-empty IntruderKnowledge-empty

-> IntruderKnowledge-empty [ditto] .

sort System .

op _||_ : StrandSet IntruderKnowledge -> System

[format (d n d n)] .

sorts Name Nonce Key .

subsort Name Nonce Key < Msg .

138 Appendix A. Maude Specification of the Experimental Evaluation Examples

subsort Name < Key .

subsort Name < Public .

--- Nonce operator

op n : Name Fresh -> Nonce [frozen] .

--- Encoding operators for public/private encryption

op pk : Name Msg -> Msg .

op sk : Name Msg -> Msg .

--- Associativity operator

op _;_ : Msg Msg -> Msg [gather (e E) frozen] .

--- constant that denotes the intruder’s name (you could

also have the same for Alice and Bob)

op i : -> Name .

op a : -> Name .

op b : -> Name .

op c0 : -> Fresh .

op c1 : -> Fresh .

var SS : StrandSet .

var K : IntruderKnowledge .

var ML : SMsgList .

var L1 : SMsgList-L .

var L2 : SMsgList-R .

var M : Msg .

var rrL : FreshSet .

var A B : Name .

vars X Y Z : Msg .

var Sys Sys’ : System .

var r r’ : Fresh .

var Str : Strand .

var N NA NB : Nonce .

var IK : IntruderKnowledge .

var Ke : Key .

139

--- this rule accepts an output message, without

modifiying the intruder knowledge

rl [acceptOutput] : (SS:StrandSet &

:: rrL:FreshSet ::

[L1:SMsgList-L | +(M:Msg), L2:SMsgList-R])

|| K:IntruderKnowledge

=> (SS:StrandSet &

:: rrL:FreshSet ::

[L1:SMsgList-L, +(M:Msg) | L2:SMsgList-R])

|| K:IntruderKnowledge .

--- this rule accepts an output message that already

appears in the negative intruder knowledge

--- thus, the term M !inI is modified to M inI to denote

that the intruder has learnt that message.

rl [acceptOutput2] : (SS:StrandSet &

:: rrL:FreshSet ::

[L1:SMsgList-L | +(M:Msg), L2:SMsgList-R])

|| K:IntruderKnowledge, M:Msg !inI

=> (SS:StrandSet &

:: rrL:FreshSet ::

[L1:SMsgList-L, +(M:Msg) | L2:SMsgList-R])

|| K:IntruderKnowledge, M:Msg inI .

--- this rule accepts an input message and does not

modify the intruder knowledge

rl [acceptInput] : (SS:StrandSet &

:: rrL:FreshSet ::

[L1:SMsgList-L | -(M:Msg), L2:SMsgList-R])

|| K:IntruderKnowledge

=> (SS:StrandSet &

:: rrL:FreshSet ::

[L1:SMsgList-L, -(M:Msg) | L2:SMsgList-R])

|| K:IntruderKnowledge .

140 Appendix A. Maude Specification of the Experimental Evaluation Examples

--- Encryption/Decryption Cancellation

eq [eqPK-SK] : pk(Ke,sk(Ke,Z)) = Z .

eq [eqSK-PK] : sk(Ke,pk(Ke,Z)) = Z .

endm

Webmail Application Specified in Web-TLR

The webmail application that we analyze in the Web-TLR example is as
follows:

mod INITIAL is

inc STRING + INT + QID .

op NHISTORY : -> Int .

op IS-HISTORY : -> Bool .

eq [NHISTORY] : NHISTORY = 10 .

eq [IS-HISTORY] : IS-HISTORY = true .

endm

mod TYPES is

inc INITIAL .

sorts Value Id .

subsorts Int < Value .

vars v1 v2 : Value .

vars s1 s2 : String .

vars n i1 i2 : Int .

141

vars b1 b2 : Bool .

vars id id1 id2 : Id .

op _._ : Id Int -> Id [ctor] .

op newid : Id Int -> Id [ctor] .

eq [newid] : newid (id1 , n) = id1 . n .

op null : -> Value [ctor] .

op i_ : Int -> Value [ctor] .

op s‘(_‘) : String -> Value [ctor] .

op b_ : Bool -> Value [ctor] .

op _v+_ : Value Value -> Value .

eq [a1] : (s(s1) v+ s(s2)) = s(s1 + s2) .

eq [a2] : (i(i1) v+ i(i2)) = i(i1 + i2) .

eq [a3] : v1 v+ v2 = v1 + v2 [owise] .

op string : Id -> String .

eq [st] : string (id) = "id" .

endm

mod DATABASE is

inc TYPES .

sorts DB SqlDB ValueDB .

subsorts Value < SqlDB .

subsorts Value < ValueDB .

op sql-empty : -> SqlDB [ctor] .

op valueDB-empty : -> ValueDB [ctor] .

142 Appendix A. Maude Specification of the Experimental Evaluation Examples

op _:_ : ValueDB ValueDB -> ValueDB [ctor assoc

id: null] .

op ‘(_;_‘) : SqlDB Value -> DB [ctor] .

op db-empty : -> DB [ctor] .

op __ : DB DB -> DB [ctor assoc comm id: db-empty] .

vars sql : SqlDB .

vars v v1 v2 : Value .

vars db dbs : DB .

op select : DB SqlDB -> ValueDB .

eq [select1] : select ((sql ; v) dbs , sql)

= v : (select (dbs , sql)) .

eq [select2] : select (dbs , sql) = null [owise] .

op update : DB SqlDB ValueDB -> DB .

eq [update1] : update ((sql ; v1) dbs, sql, v2)

= (sql ; v2) dbs .

eq [update2] : update (db, sql, v)

= (sql ; v) db [owise] .

op insert : DB SqlDB ValueDB -> DB .

eq [insert1] : insert (db, sql, v) = (sql ; v) db .

endm

mod SESSION is

inc TYPES .

sorts Session UserSession .

143

vars n : Value .

vars s ss : Session .

vars v v1 v2 : Value .

op ‘(_‘,_‘) : Value Value -> Session [ctor] .

op session-empty : -> Session [ctor] .

op _:_ : Session Session -> Session

[ctor assoc comm id: session-empty] .

op _in_ : Value Session -> Bool .

eq [aux1] : n in ((n , v) : ss) = true .

eq [aux2] : n in s = false [owise] .

op getSessionValue : Session Value -> Value .

eq [getSessionValue1] : getSessionValue(((n , v) : ss), n)

= v .

eq [getSessionValue2] : getSessionValue(s, n)

= null [owise] .

op setSessionValue : Session Value Value -> Session .

eq [getSessionValue3] : setSessionValue(((n, v1) : ss),

n, v2) = ((n, v2) : ss) .

eq [getSessionValue4] : setSessionValue(s, n, v)

= ((n, v) : s) [owise] .

op us‘(_‘,_‘) : Id Session -> UserSession [ctor] .

op usersession-empty : -> UserSession [ctor] .

op _:_ : UserSession UserSession -> UserSession

[ctor assoc comm id: usersession-empty] .

endm

144 Appendix A. Maude Specification of the Experimental Evaluation Examples

mod QUERY is

inc TYPES .

sorts Query Sigma Name .

vars n : Qid .

vars v w : String .

vars q qs : Query .

vars z zs : Sigma .

op _’=_ : Qid String -> Query [ctor] .

op query-empty : -> Query [ctor] .

op _:_ : Query Query -> Query [ctor assoc comm

id: query-empty] .

op _in_ : Qid Query -> Bool .

eq [aux5] : n in ((n ’= v) : qs) = true .

eq [aux6] : n in q = false [owise] .

op _/_ : Qid String -> Sigma [ctor] .

op sigma-empty : -> Sigma [ctor] .

op _:_ : Sigma Sigma -> Sigma [ctor assoc comm

id: sigma-empty] .

op sigma : Sigma Query -> Query .

eq [sigma1] : sigma (((n / v) : zs) , ((n ’= w) : qs))

= ((n ’= v) : (sigma(((n / v) : zs), qs))) .

eq [sigma2] : sigma (zs, qs) = qs [owise] .

endm

145

mod MEMORY is

inc TYPES .

sorts Memory .

op none : -> Memory [ctor] .

op _:_ : Memory Memory -> Memory [ctor assoc comm

id: none] .

op ‘[_‘,_‘] : Qid Value -> Memory [ctor] .

op _in_ : Qid Memory -> Bool .

var q : Qid .

var m : Memory .

var v : Value .

eq [axx3] : q in [q,v] : m = true .

eq [axx5] : q in m = false [owise] .

endm

mod EXPRESSION is

inc MEMORY + QUERY + SESSION + DATABASE .

sorts Expression Test .

subsorts Test Value Qid < Expression .

vars ex ex1 ex2 ex3 ex4 : Expression .

vars b66 : Bool .

vars m ms : Memory .

vars db dbs : DB .

vars s ss : Session .

vars q qs : Query .

vars x y : Int .

146 Appendix A. Maude Specification of the Experimental Evaluation Examples

vars qid : Qid .

vars v : Value .

vars str : String .

vars sql : SqlDB .

vars t : Test .

op TRUE : -> Test .

op FALSE : -> Test .

op _=_ : Expression Expression -> Test .

op _!=_ : Expression Expression -> Test .

op _’+_ : Expression Expression -> Expression .

op _’*_ : Expression Expression -> Expression .

op _’._ : Expression Expression -> Expression .

--- The expression, memory, session, query, bada base

op eval : Expression Memory Session Query DB

-> Expression .

eq [eval1] : eval (v , m , s , q , db) = v .

eq [eval2] : eval (ex , m , s , q , db) = null [owise] .

ceq [eval3] : eval (ex1 = ex2 , m , s, q, db) = TRUE

if ex3 := eval(ex1, m, s, q, db)

/\ ex4 := eval(ex2, m, s, q, db)

/\ ex3 == ex4 .

ceq [eval4] : eval (ex1 = ex2 , m , s, q, db) = FALSE

if ex3 := eval(ex1, m, s, q, db)

/\ ex4 := eval(ex2, m, s, q, db)

/\ ex3 =/= ex4 .

ceq [eval5] : eval (ex1 != ex2 , m , s, q, db) = FALSE

if ex3 := eval(ex1, m, s, q, db)

/\ ex4 := eval(ex2, m, s, q, db)

/\ ex3 == ex4 .

ceq [eval6] : eval (ex1 != ex2 , m , s, q, db) = TRUE

if ex3 := eval(ex1, m, s, q, db)

/\ ex4 := eval(ex2, m, s, q, db)

/\ ex3 =/= ex4 .

eq [eval7] : eval (qid, ([qid, v] : ms), s, q , db) = v .

147

ceq [eval8] : eval (qid , m, s, q, db) = null

if b66 := qid in m

/\ b66 =/= true .

eq [eval9] : eval(ex1 ’+ ex2 , m , s, q, db)

= eval(ex1, m, s, q, db)

+ eval(ex2, m, s, q, db) .

eq [eval10] : eval (ex1 ’* ex2 , m , s, q, db)

= eval(ex1, m, s, q, db)

* eval(ex2, m, s, q, db) .

eq [eval11] : eval (ex1 ’. ex2 , m , s, q, db)

= eval(ex1, m, s, q, db)

+ eval(ex2, m, s, q, db) .

----- extended for the web -----

op getSession : Expression -> Expression .

op getQuery : Qid -> Expression .

eq [eval12] : eval(getSession(ex), m, s, q, db)

= getSessionValue(s, eval(ex, m,

s, q, db)) .

eq [eval13] : eval(getQuery(qid), m, s,

(qid ’= str) : qs, db) = s(str) .

ceq [eval14] : eval(getQuery(qid), m, s, q, db) = null

if b66 := qid in q

/\ b66 =/= true .

----- extended for persistente information

op selectDB : Expression -> Expression .

eq [eval15] : eval (selectDB(ex), m, s, q, db)

= select(db, eval(ex, m, s, q, db)) .

endm

148 Appendix A. Maude Specification of the Experimental Evaluation Examples

mod SCRIPT is

inc EXPRESSION .

sorts Script ScriptState .

op skip : -> Script .

op _;_ : Script Script -> Script [prec 61 assoc id: skip] .

op _:=_ : Qid Expression -> Script .

op if_then_else_fi : Test Script Script -> Script .

op if_then_fi : Test Script -> Script .

op while_do_od : Test Script -> Script .

op repeat_until_od : Script Test -> Script .

op ‘[_‘,_‘,_‘,_‘,_‘] : Script Memory Session Query DB

-> ScriptState .

vars ex ex1 ex2 : Expression .

vars m ms : Memory .

vars b66 : Bool .

vars db dbs : DB .

vars s ss : Session .

vars q qs : Query .

vars x y : Int .

vars qid : Qid .

vars v : Value .

vars str : String .

vars p p1 p2 ps : Script .

vars t : Test .

vars sql : SqlDB .

op eval : ScriptState -> ScriptState .

--- skip - stop the eval

eq [eval15] : eval ([skip , m , s , q , db])

= [skip , m , s , q , db] .

eq [eval16] : eval ([p , m , s , q , db])

= [p , m , s , q , db] [owise] .

149

--- :=

eq [eval17] : eval ([(qid := ex); ps, [qid, v] : ms, s,

q, db]) = eval([ps, [qid, eval(ex, [qid, v]

: ms, s, q, db)] : ms, s, q,

db]) .

ceq [eval18] : eval ([(qid := ex); ps , ms, s, q ,

db]) = eval ([ps , [qid, eval(ex, ms, s,

q, db)] : ms, s, q, db])

if b66 := qid in ms /\ b66 =/= true .

--- if then else fi

ceq [eval19] : eval ([(if t then p1 else p2 fi) ; ps,

m, s, q , db]) = eval ([p1 ; ps , m, s,

q, db])

if TRUE := eval(t, m, s, q, db) .

ceq [eval20] : eval ([(if t then p1 else p2 fi) ; ps,

m, s, q , db]) = eval ([p2 ; ps , m, s,

q, db])

if FALSE == eval(t, m, s, q, db) .

--- if then fi

eq [eval21] : eval ([(if t then p fi); ps , m, s, q,

db]) = eval ([(if t then p

else skip fi)

; ps, m, s, q, db]) .

--- while do od

ceq [eval22] : eval ([(while t do p od); ps,

m, s, q , db]) = eval ([p ; while t do

p od ; ps , m, s, q, db])

if TRUE := eval(t, m, s, q, db) .

ceq [eval23] : eval ([(while t do p od); ps , m, s,

q , db]) = eval ([ps , m, s, q, db])

if FALSE := eval(t, m, s, q, db) .

150 Appendix A. Maude Specification of the Experimental Evaluation Examples

--- repeat until od

eq [eval24] : eval ([(repeat p until t od); ps , m,

s, q , db]) = eval ([p ; (while t do

p od) ; ps , m, s, q, db]) .

--- extended for the web

op setSession : Expression Expression -> Script .

op clearSession : -> Script .

eq [eval25] : eval ([(setSession(ex1, ex2)); ps, m,

s , q , db]) = eval ([ps , m,

setSessionValue (s, eval(ex1,

m, s, q, db), eval(ex2, m, s,

q, db)), q , db]) .

eq [eval26] : eval ([clearSession ; ps , m, s , q ,

db]) = eval ([ps , m, session-empty , q ,

db]) .

----- extended for persistente information

op updateDB : Expression Expression -> Script .

eq [eval27] : eval ([(updateDB(ex1, ex2)); ps, m,

s, q, db]) = eval ([ps, m, s, q,

update(db, eval(ex1, m, s,

q, db), eval(ex2, m,

s, q, db))]) .

endm

mod CONDITION is

inc TYPES + SESSION .

sorts Condition . --- Name Value .

vars c cs : Condition .

vars s ss : Session .

151

vars n : Value .

vars v v1 v2 : Value .

op TRUE : -> Condition [ctor] .

op FALSE : -> Condition [ctor] .

op cond-empty : -> Condition [ctor] .

op _’==_ : Value Value -> Condition [ctor] .

op _:_ : Condition Condition -> Condition

[ctor assoc comm id: cond-empty] .

op holdCondition : Condition Session -> Bool .

eq [holdCondition1] : holdCondition(cond-empty , s)

= true .

eq [holdCondition2] : holdCondition(TRUE , s) = true .

eq [holdCondition3] : holdCondition(FALSE , s) = false .

eq [holdCondition4] : holdCondition((n ’== v) : cs,

(n, v) : ss)

= holdCondition(cs, ss) .

eq [holdCondition5] : holdCondition(c , s)

= false [owise] .

endm

mod WEB_MODEL is

inc SCRIPT + CONDITION .

pr SET{Qid} .

sorts Page URL Continuation

Navigation Browser Server

Message ReadyMessage History .

vars id idw : Id .

vars z : Sigma .

vars np np1 np2 : Qid .

152 Appendix A. Maude Specification of the Experimental Evaluation Examples

vars q : Query .

vars sc : Script .

vars wapps : Page .

vars cont : Continuation .

vars nav : Navigation .

vars nat : Nat .

vars h hs : History .

vars url url1 url2 : URL .

vars m m1 m2 : Message .

vars s : Session .

--- URL -----

--- Page name , query .

op _?_ : Qid Query -> URL [ctor] .

op url-empty : -> URL [ctor] .

op _:_ : URL URL -> URL [ctor assoc comm id: url-empty] .

--- Continuation ---

--- condition , page name .

op ‘(_=>_‘) : Condition Qid -> Continuation [ctor] .

op cont-empty : -> Continuation .

op _:_ : Continuation Continuation -> Continuation

[ctor assoc comm id: cont-empty] .

--- Navigation -----

op ‘(_->_‘) : Condition URL -> Navigation [ctor] .

op nav-empty : -> Navigation .

op _:_ : Navigation Navigation -> Navigation

[ctor assoc comm id: nav-empty] .

--- WebPage -----

--- Name, script, continuation, navigation .

op ‘(_‘,_‘,‘{_‘}‘,‘{_‘}‘) : Qid Script Continuation

Navigation -> Page [ctor] .

op page-empty : -> Page .

op _:_ : Page Page -> Page

[ctor assoc comm id: page-empty] .

153

op pageNotFound : -> Qid .

op notFoundPage : -> Page .

eq notFoundPage = (pageNotFound, skip,

{cont-empty},

{nav-empty}) .

--- History -----

op H : Qid URL Message -> History [ctor] .

op history-empty : -> History [ctor] .

op __ : History History -> History

[ctor assoc id: history-empty] .

op _:_ : History History -> History .

op long : History -> Int .

eq [long1] : long (history-empty) = 0 .

eq [long2] : long (H(np,url,m) : h) = 1 + long(h) .

ceq [hc] : H(np1,url1,m1) : (hs H(np2,url2,m2))

= H(np1,url1,m2) hs if long(hs) = NHISTORY .

eq [h] : h : hs = h hs [owise] .

--- Browser -----

--- IdBrowser, IdWindows, NamePage, Urls,

--- Session Database LastMessage History IdLastMes

op B : Id Id Qid URL Session Sigma Message History Nat

-> Browser [ctor] .

op br-empty : -> Browser .

op _:_ : Browser Browser -> Browser

[ctor assoc comm id: br-empty] .

op PageNameEmpty : -> Qid .

eq [PageNameEmpty] : PageNameEmpty = ’PageNameEmpty .

op URLEmpty : -> URL .

op brEmpty : Id Id Sigma -> Browser .

154 Appendix A. Maude Specification of the Experimental Evaluation Examples

eq [brEmpty] : brEmpty (id, idw, z)

= B(id, idw, ’PageNameEmpty, url-empty,

session-empty, z, mes-empty,

history-empty , 1) .

op noPage : -> Qid .

eq [noPage] : noPage = ’noPage .

op newBrowser : Id Id URL Sigma -> Browser .

eq [newBrowser] : newBrowser (id, idw, (np ? q), z)

= B(id, idw, noPage, (np ? q),

session-empty, z, mes-empty,

history-empty, 1) .

--- Message -----

op m : Id Id URL Nat -> Message [ctor] .

op m : Id Id Qid URL Session Nat -> Message [ctor] .

op mes-empty : -> Message .

op _:_ : Message Message -> Message

[ctor assoc id: mes-empty] .

--- ReadyMessage ---

op rm : Message Session DB -> ReadyMessage [ctor] .

op readymes-empty : -> ReadyMessage .

op _:_ : ReadyMessage ReadyMessage -> ReadyMessage

[ctor assoc id: readymes-empty] .

--- Server -----

op S : Page UserSession Message ReadyMessage DB

-> Server [ctor] .

--- auxiliary operations

op allWebPages : Page -> Set{Qid} .

155

eq [allWebPages1] : allWebPages (page-empty)

= insert(noPage, (insert(’PageNameEmpty,

empty))) .

eq [allWebPages2] : allWebPages ((np , sc , { cont } ,

{ nav }) : wapps)

= insert(np, allWebPages (wapps)) .

endm

mod EVAL is

inc WEB_MODEL .

vars page wapp wapps w : Page .

vars np qid np1 np2 nextPage : Qid .

vars q q1 : Query .

vars sc sc1 : Script .

vars cont conts : Continuation .

vars nav : Navigation .

vars ss nextS : Session .

vars cond conds : Condition .

vars url urls nextURLs : URL .

vars id idw : Id .

vars uss : UserSession .

vars db nextDB : DB .

vars m : Memory .

vars idmes : Nat .

op pageNotContinuaton : -> Qid .

--- eval the continuation

op holdContinuation : Qid Continuation Session -> Qid .

eq [holdContinuation1] : holdContinuation(np, cont-empty,

ss) = np .

156 Appendix A. Maude Specification of the Experimental Evaluation Examples

eq [holdContinuation2] : holdContinuation(np,

(cond => np) : conts, ss)

= holdCont (np, (cond => np)

: conts , ss) .

ceq [holdContinuation3] : holdContinuation(np, conts, ss)

= qid

if np1 := holdCont (np, conts , ss)

/\ qid := whichQid(np, np1) [owise] .

op holdCont : Qid Continuation Session -> Qid .

eq [holdCont1] : holdCont (np, cont-empty, ss)

= pageNotContinuaton .

ceq [holdCont2] : holdCont (np, (cond => qid) : conts, ss)

= qid if (holdCondition(cond,ss)) .

eq [holdCont3] : holdCont (np, (cond => qid) : conts, ss)

= holdCont (np, conts, ss) [owise] .

op whichQid : Qid Qid -> Qid .

eq [whichQid1] : whichQid (np , pageNotContinuaton)

= np .

eq [whichQid2] : whichQid (np , np1) = np1 [owise] .

--- eval the navegation

op holdNavigation : Qid Page Session -> URL .

eq [holdNavigation1] : holdNavigation(np, ((np, sc,

{ cont }, { nav }) : wapp), ss)

= getURLs (nav, ss) .

eq [holdNavigation2] : holdNavigation(np , wapp , ss)

= url-empty [owise] .

op getURLs : Navigation Session -> URL .

eq [getURLs1] : getURLs (nav-empty , ss) = url-empty .

157

ceq [getURLs2] : getURLs ((cond -> url) : nav , ss)

= url : getURLs (nav , ss)

if (holdCondition(cond,ss)) .

eq [getURLs3] : getURLs ((cond -> url) : nav , ss)

= getURLs (nav , ss) [owise] .

--- eval the script

op evalScript : Page UserSession Message DB

-> ReadyMessage .

ceq [evalScript1] : evalScript (

((np , sc , { cont } , { nav }) : wapps) ,

us(id, ss) : uss ,

m(id , idw , (np ? q) , idmes) ,

db)

= rm(m(id, idw, nextPage, nextURLs, nextS, idmes),

nextS, nextDB)

if [sc1, m, nextS, q1, nextDB] := eval([sc, none, ss,

q, db])

/\ nextPage := holdContinuation (np, cont, nextS)

/\ nextURLs := holdNavigation (nextPage, ((np ,

sc , { cont } , { nav }) : wapps) , nextS) .

eq [evalScript2] : evalScript (wapp , us(id, ss) :

uss , m(id, idw, (np ? q), idmes) , db)

= rm(m(id, idw, pageNotFound, url-empty, ss,

idmes), ss, db) [owise] .

endm

158 Appendix A. Maude Specification of the Experimental Evaluation Examples

mod BROWSER-ACTION is

inc INT + QID .

sorts BrowserActions Tab .

vars np : Qid .

vars ba : BrowserActions .

vars ln tab f5 : Qid .

op T : Int Qid -> Tab [ctor] .

op tab-empty : -> Tab .

op _;_ : Tab Tab -> Tab [ctor assoc comm id: tab-empty] .

op f5-empty : -> Qid .

op _;_ : Qid Qid -> Qid [ctor assoc comm id: f5-empty] .

op bra-empty : -> BrowserActions .

op BA : Tab Qid -> BrowserActions [ctor] .

endm

mod PROTOCOL is

inc WEB_MODEL + EVAL + BROWSER-ACTION .

sorts WebState .

op ‘[_‘]_‘[_‘]‘[_‘] : Browser BrowserActions Message

Server -> WebState [ctor] .

vars id idw : Id .

vars p wapp : Page .

vars np np1 np2 f5 : Qid .

vars q q1 : Query .

vars z : Sigma .

vars urls urls1 urls2 : URL .

vars ms ms1 pms lms : Message .

159

vars rms : ReadyMessage .

vars sv : Server .

vars ss ss1 ss2 : Session .

vars uss : UserSession .

vars brs : Browser .

vars db : DB .

vars h : History .

vars idlm idlm1 idlm2 : Nat .

vars ba : BrowserActions .

vars n : Int .

vars tab : Tab .

op evalScriptRM : -> ReadyMessage .

op block-db : -> DB [ctor] .

op createUserSession : Id Server -> Server .

eq [createUserSession1] : createUserSession (id , S(wapp ,

us(id, ss) : uss , pms , rms, db)) =

S(wapp , us(id, ss) : uss , pms ,

rms, db) .

eq [createUserSession2] : createUserSession (id , S(wapp ,

uss , pms , rms, db)) =

S(wapp , us(id, session-empty)

: uss , pms , rms, db) [owise] .

--- definition of the protocol request-response -----

--- request.click

--- browser submit a request to the server.

rl [createSession] : [B(id, idw, np, (np1 ? q1) : urls,

ss, z, lms, h, idlm) : brs] ba

[ms]

[S(wapp , usersession-empty , pms , rms, db)]

=>

[B(id, idw, np, (np1 ? q1) : urls, ss, z, lms,

h, idlm) : brs] ba

[ms]

[S(wapp , us(id, session-empty) , pms , rms,

160 Appendix A. Maude Specification of the Experimental Evaluation Examples

db)] .

rl [ReqIni] : [B(id, idw, np, (np1 ? q1) : urls, ss, z,

lms, h, idlm) : brs] ba

[ms] [sv]

=>

[B(id, idw, ’PageNameEmpty, url-empty , ss, z,

m(id, idw, (np1 ? (sigma(z,q1))), idlm), h,

idlm)

: brs] ba

[ms : m(id, idw, (np1 ? (sigma(z,q1))), idlm)]

[sv] .

--- request.read

--- the server read the message and add to the set

--- of pending messages.

rl [ReqFin] :

[brs] ba

[m(id, idw, urls, idlm) : ms]

[S(wapp , uss , pms, rms, db)]

=>

[brs] ba

[ms]

[S(wapp, uss, pms : m(id, idw, urls, idlm),

rms, db)] .

--- eval script

--- read a pending message and running the script, and

--- then add to set of ready messages.

rl [ScriptEval] :

[brs] ba

[ms]

[S(wapp , uss , m(id, idw, urls, idlm) : pms,

rms, db)]

=>

[brs] ba

[ms]

161

[S(wapp , uss , pms , rms : evalScript (wapp,

us(id, session-empty), m(id, idw, urls,

idlm) , db) , block-db)] .

--- response

--- the server update the session of browser and db,

--- then sent a (pending) message to the browser.

rl [ResIni] :

[brs] ba

[ms]

[S(wapp , us(id, ss1) : uss, pms,

rm(m(id, idw, np , urls, ss2,

idlm), ss2, db) : rms , block-db)]

=>

[brs] ba

[ms : m(id, idw, np , urls, ss2, idlm)]

[S(wapp, us(id, ss2) : uss, pms, rms, db)] .

--- response

--- the browser read a message for selft and show

--- the page.

rl [ResFin] :

[B(id, idw, np1, urls1, ss, z, lms, h,

idlm1) : brs] ba

[m(id, idw, np2, urls2, ss2, idlm1) : ms]

[sv]

=>

[B(id, idw, np2, urls2, ss2, z, lms, h,

idlm1) : brs] ba

[ms]

[sv] .

--- is not the last message, make a top

rl [ResFinNo] :

[B(id, idw, np1, urls1, ss, z, lms, h,

idlm1) : brs] ba

[m(id, idw, np2, urls2, ss2, idlm2) : ms]

162 Appendix A. Maude Specification of the Experimental Evaluation Examples

[sv]

=>

[B(id, idw, np1, urls1, ss, z, lms, h,

idlm1) : brs] ba

[ms]

[sv] .

--- operations of browser -----

--- new tab

rl [newT] :

[B(id, idw, np, urls, ss, z, lms, h,

idlm) : brs] BA((T(n,np) ; tab), f5)

[ms]

[sv]

=>

[B(id, idw, np, urls, ss, z, lms, h, idlm) :

B(id, newid(idw,n), np, urls, ss, z,

mes-empty, history-empty, idlm) :

brs] BA(tab , f5)

[ms]

[sv] .

--- refresh F5

rl [F5] :

[B(id, idw, np, urls, ss, z, m(id, idw,

urls, idlm), h, idlm) : brs] BA(

tab, (np ; f5))

[ms]

[sv]

=>

[B(id, idw, np, urls, ss, z, m(id, idw,

urls, (idlm + 1)), h, (idlm + 1))

: brs] BA(tab, f5)

[ms : m(id, idw, urls, (idlm + 1))]

[sv] .

endm

163

mod WEBAPP is

inc PROTOCOL .

--- Webmail Application

ops WELCOME HOME EMAIL-LIST

VIEW-EMAIL CHANGE-ACCOUNT

ADMINISTRATION ADMIN-LOGOUT

LOGOUT : -> Qid .

eq [WELCOME] : WELCOME = ’Welcome .

eq [HOME] : HOME = ’Home .

eq [EMAIL-LIST] : EMAIL-LIST = ’Email-list .

eq [VIEW-EMAIL] : VIEW-EMAIL = ’View-email .

eq [CHANGE-ACCOUNT] : CHANGE-ACCOUNT = ’Change-account .

eq [ADMINISTRATION] : ADMINISTRATION = ’Administration .

eq [ADMIN-LOGOUT] : ADMIN-LOGOUT = ’Admin-Logout .

eq [LOGOUT] : LOGOUT = ’Logout .

--- Welcome page

op welcomePage : -> Page .

eq [welcomePage] : welcomePage = (WELCOME , skip ,

{ cont-empty } ,

{ (TRUE -> (HOME ? (’user ’= "") :

(’pass ’= ""))) }) .

--- Home page

op homePage : -> Page .

eq [homePage] : homePage

= (HOME , sHome ,

{((s("login") ’== s("no"))

=> WELCOME) :

((s("changeLogin") ’== s("no"))

164 Appendix A. Maude Specification of the Experimental Evaluation Examples

=> CHANGE-ACCOUNT) :

((s("login") ’== s("ok")) => HOME)} ,

{(TRUE -> CHANGE-ACCOUNT ? query-empty)

: ((s("role") ’== s("admin"))

-> (ADMINISTRATION ? query-empty)) :

(TRUE -> EMAIL-LIST ? query-empty) :

(TRUE -> LOGOUT ? query-empty)}) .

op sHome : -> Script .

eq [sHome] : sHome =

’login := getSession(s("login")) ;

if (’login = null) then

’u := getQuery(’user) ;

’p := getQuery(’pass) ;

’p1 := selectDB(’u) ;

if (’p = ’p1) then

’r := selectDB(’u ’. s("-role")) ;

setSession(s("user") , ’u) ;

setSession(s("role") , ’r) ;

setSession(s("login") , s("ok"))

else

setSession(s("login") , s("no"))

fi

fi .

--- EmailList page

op emailListPage : -> Page .

eq [emailListPage] : emailListPage

= (EMAIL-LIST, sEmailList ,

{ cont-empty } ,

{ (TRUE

-> (VIEW-EMAIL ? (’idEmail ’= ""))) :

(TRUE

-> (HOME ? query-empty))}) .

165

op sEmailList : -> Script .

eq [sEmailList] : sEmailList =

’u := getSession(s("user")) ;

’es := selectDB(’u ’. s("-email")) ;

setSession(s("idEmails-found") , ’es) .

--- View email page

op viewEmailPage : -> Page .

eq [viewEmailPage] : viewEmailPage = (VIEW-EMAIL,

sViewEmail, { cont-empty } ,

{ (TRUE -> (EMAIL-LIST ? query-empty)) :

(TRUE -> (HOME ? query-empty))}) .

op sViewEmail : -> Script .

eq [sViewEmail] : sViewEmail =

’u := getSession(s("user")) ;

’id := getQuery(’idEmail) ;

’e := selectDB(’id) ;

setSession(s("text-email") , ’e) .

--- Change account page

op changeAccountPage : -> Page .

eq [changeAccountPage] : changeAccountPage

= (CHANGE-ACCOUNT , skip ,

{ cont-empty } ,

{ (TRUE -> (HOME ?

(’newUser ’= "") :

(’newPass ’= "")))}) .

--- Administration page

op administrationPage : -> Page .

eq [administrationPage] : administrationPage

166 Appendix A. Maude Specification of the Experimental Evaluation Examples

= (ADMINISTRATION , sAdministration ,

{ ((s("adminPage") ’== s("busy"))

=> HOME) } ,

{ (TRUE ->

(ADMIN-LOGOUT ? query-empty))}) .

op sAdministration : -> Script .

eq [sAdministration] : sAdministration =

’adminPage := selectDB(s("adminPage")) ;

if (’adminPage = s("free")) then

updateDB(s("adminPage") ,

getSession(s("user")));

setSession(s("adminPage") , s("free"))

else

setSession(s("adminPage") , s("busy"))

fi .

--- Admin logout page

op adminLogoutPage : -> Page .

eq [adminLogoutPage] : adminLogoutPage

= (ADMIN-LOGOUT , sAdminLogout ,

{(TRUE => HOME)}, {nav-empty}) .

op sAdminLogout : -> Script .

eq [sAdminLogout] : sAdminLogout =

updateDB(s("adminPage") , s("free")) .

--- Logout page

op logoutPage : -> Page .

eq [logoutPage] : logoutPage = (LOGOUT, sLogout,

{(TRUE => WELCOME)}, {nav-empty}) .

op sLogout : -> Script .

167

eq [sLogout] : sLogout = clearSession .

---- Web Application

op wapp : -> Page .

eq [wapp] : wapp = welcomePage : homePage :

emailListPage : viewEmailPage :

changeAccountPage :

administrationPage :

adminLogoutPage : logoutPage .

endm

The Pathway Logic Example

The Pathway logic example that models responses to signal stimulation
in epithelial-like cells is specified in Maude as follows:

fmod PROTEIN is

pr NAT .

inc META-LEVEL .

sorts AminoAcid Protein .

subsort AminoAcid < Protein .

ops T Y S K P N : -> AminoAcid .

ops pT pY pS : -> AminoAcid .

endfm

168 Appendix A. Maude Specification of the Experimental Evaluation Examples

fmod THING is

pr PROTEIN .

inc META-LEVEL .

sort Thing Family Composite

DNA Complex Chemical

Signature Stimulus .

subsorts Protein Family Composite

DNA Complex Chemical

Signature Stimulus < Thing .

op (_:_) : Thing Thing -> Complex [assoc comm] .

op reduce : Complex -> Complex .

eq [reduce546] : reduce((T1:Thing : T2:Thing))

= (T1:Thing : T2:Thing) .

endfm

fmod SOUP is

pr THING .

inc META-LEVEL .

sort Soup .

subsort Thing < Soup .

op empty : -> Soup .

op __ : Soup Soup -> Soup [assoc comm id: empty] .

op _has_ : Soup Thing -> Bool .

169

ceq [r2152a] : (T1:Thing S:Soup) has T2:Thing

= true if T1:Thing == T2:Thing .

ceq [r2152b] : (T1:Thing S:Soup) has T2:Thing

= S:Soup has T2:Thing if T1:Thing =/= T2:Thing .

eq [r2654] : (S:Soup has T:Thing) = false [owise] .

op # : Nat Thing -> Soup .

eq [r3456] : #((s N:Nat),T:Thing)

= T:Thing #(N:Nat,T:Thing) .

eq [r3256] : #(0,T:Thing) = empty .

op <_> : Soup -> Complex .

op reduceS : Soup -> Soup .

eq [reduceS1] : reduceS(T:Thing T:Thing S:Soup)

= reduceS(T:Thing S:Soup) .

eq [reduceS2] : reduceS(S:Soup) = S:Soup [owise] .

eq [reduce] : reduce(< s:Soup >) = < reduceS(s:Soup) > .

endfm

fmod MODIFICATION is

pr SOUP .

inc META-LEVEL .

sorts Site Modification ModSet .

subsort Modification < ModSet .

op acetyl : -> Modification .

op acetyl : Site -> Modification .

op act : -> Modification .

170 Appendix A. Maude Specification of the Experimental Evaluation Examples

op act1 : -> Modification .

op act2 : -> Modification .

op act3 : -> Modification .

op bound : -> Modification .

op bound : Site -> Modification .

op deact : -> Modification .

op degraded : -> Modification .

op dim : -> Modification .

op disrupted : -> Modification .

op downreg : -> Modification .

op hydrox : -> Modification .

op hydrox : Site -> Modification .

op inhib : -> Modification .

op mem : -> Modification .

op mito : -> Modification .

op nm : Site -> Modification .

op notthere : -> Modification .

op out : -> Modification .

op phos : -> Modification .

op phos : Site -> Modification .

op phosbound : Site -> Modification .

op pro : -> Modification .

op reloc : -> Modification .

op Sphos : -> Modification .

op STphos : -> Modification .

op STphos1 : -> Modification .

op STphos2 : -> Modification .

op Tphos : -> Modification .

op trunc : -> Modification .

op ubiq : -> Modification .

op Yphos : -> Modification .

ops GTP GDP : -> Modification .

ops GTP GDP : Site -> Modification .

ops mono poly : -> Modification .

ops on off : -> Modification .

ops open closed : -> Modification .

ops ox red : -> Modification .

171

ops new : -> Modification .

op num : Nat -> Modification .

op none : -> ModSet .

op __ : ModSet ModSet -> ModSet [assoc comm id: none] .

op __ : AminoAcid Nat -> Site .

op _contains_ : ModSet Modification -> Bool .

var M M’ : Modification .

var MS : ModSet .

eq [e2384] : none contains M’ = false .

ceq [e9573a] : (M MS) contains M’ = true if M == M’ .

ceq [e9573b] : (M MS) contains M’

= MS contains M’ if M =/= M’ .

op [_-_] : Protein ModSet -> Protein .

op [_-_] : Family ModSet -> Family .

op [_-_] : Composite ModSet -> Composite .

op [_-_] : DNA ModSet -> DNA .

op [_-_] : Chemical ModSet -> Chemical .

var Ptin : Protein .

var Fmly : Family .

var Cmsite : Composite .

var DnaVar : DNA .

var Cmcal : Chemical .

eq [e2322n] : [Ptin - none] = Ptin .

eq [e2556v] : [Fmly - none] = Fmly .

eq [e2557e] : [Cmsite - none] = Cmsite .

eq [e2792d] : [DnaVar - none] = DnaVar .

eq [e2422c] : [Cmcal - none] = Cmcal .

endfm

172 Appendix A. Maude Specification of the Experimental Evaluation Examples

fmod LOCATION is

inc MODIFICATION .

inc META-LEVEL .

sort Location LocName .

subsort Location < Soup .

op {_|_} : LocName Soup -> Location

[format (n d d t d d)] .

ops CLo CLm CLi CLc : -> LocName .

ops NUo NUm NUi NUc : -> LocName .

ops MOo MOm MOi MOc : -> LocName .

ops MIo MIm MIi MIc : -> LocName .

ops ERo ERm ERi ERc : -> LocName .

ops PXo PXm PXi PXc : -> LocName .

ops GAo GAm GAi GAc : -> LocName .

ops LEo LEm LEi LEc : -> LocName .

ops EEo EEm EEi EEc : -> LocName .

ops LYo LYm LYi LYc : -> LocName .

ops CPo CPm CPi CPc : -> LocName .

op PTc : -> LocName .

op Sig : -> LocName .

endfm

fmod CELL is

inc LOCATION .

inc META-LEVEL .

sort Cell CellType .

173

subsort Cell < Soup .

op [_|_] : CellType Soup -> Cell .

op Cell : -> CellType .

op EpithelialCell : -> CellType .

op EverythingCell : -> CellType .

op Fibroblast : -> CellType .

op HMEC : -> CellType .

op LiverCell : -> CellType .

op Macrophage : -> CellType .

op MuscleCell : -> CellType .

endfm

fmod DISH is

inc CELL .

inc META-LEVEL .

sort Dish .

op PD : Soup -> Dish .

endfm

fmod THEOPS is

inc DISH .

inc META-LEVEL .

endfm

174 Appendix A. Maude Specification of the Experimental Evaluation Examples

fmod PROTEINOPS is

inc DISH .

inc META-LEVEL .

sort ErbB1L .

subsort ErbB1L < Protein .

op 1433x1 : -> Protein .

op Cbl : -> Protein .

op DAG : -> Chemical .

op Egf : -> ErbB1L .

op EgfR : -> Protein .

op ErbB2 : -> Protein .

op Gab1 : -> Protein .

op Grb2 : -> Protein .

op Hras : -> Protein .

op IP3 : -> Chemical .

op Pak1 : -> Protein .

op Pi3k : -> Composite .

op PIP2 : -> Chemical .

op PIP3 : -> Chemical .

sort Plc .

subsort Plc < Protein .

op Plcg : -> Plc .

op Plcg1 : -> Protein .

op Plcg2 : -> Protein .

op PP2a : -> Composite .

op Raf1 : -> Protein .

op Shc : -> Protein .

op Sos1 : -> Protein .

op Src : -> Protein .

175

op Tgfa : -> ErbB1L .

op Ube2l3 : -> Protein .

op Vav2 : -> Protein .

endfm

mod ALLBP is

inc PROTEINOPS .

inc META-LEVEL .

var cell : CellType .

vars clo clm cli clc nuo num nui nuc : Soup .

vars moo mom moi moc mio mim mii mic : Soup .

vars ero erm eri erc pxo pxm pxi pxc : Soup .

vars gao gam gai gac lyo lym lyi lyc : Soup .

vars eeo eem eei eec leo lem lei lec : Soup .

vars cpo cpm cpi cpc ct ptc sig : Soup .

var ms : ModSet .

rl [1.EgfR.act] :

?ErbB1L:ErbB1L

[CellType:CellType | ct

{CLm | clm EgfR }]

=>

[CellType:CellType | ct

{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L)}] .

rl [2.EgfR.ubiq] :

{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }

{CLi | cli [Cbl - Yphos] [Ube2l3 - ubiq] }

=>

{CLm | clm ([EgfR - ubiq] : ?ErbB1L:ErbB1L) }

{CLi | cli [Cbl - Yphos] Ube2l3 } .

176 Appendix A. Maude Specification of the Experimental Evaluation Examples

rl [4.Gab1.Yphosed] :

{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }

{CLi | cli [Grb2 - reloc] }

{CLc | clc Gab1 }

=>

{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }

{CLi | cli [Grb2 - reloc] [Gab1 - Yphos] }

{CLc | clc } .

rl [5.Grb2.reloc] :

{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }

{CLi | cli }

{CLc | clc Grb2 }

=>

{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }

{CLi | cli [Grb2 - reloc] }

{CLc | clc } .

rl [6.Hras.act.1] :

{CLm | clm PIP3 }

{CLi | cli [Grb2 - reloc] [Sos1 - reloc] [Hras - GDP]}

=>

{CLm | clm PIP3 }

{CLi | cli [Grb2 - reloc] [Sos1 - reloc] [Hras - GTP]} .

rl [7.IP3.from.PIP2.by.Plc] :

{CLm | clm PIP2 }

{CLi | cli [?Plc:Plc - act] }

{CLc | clc }

=>

{CLm | clm DAG }

{CLi | cli [?Plc:Plc - act] }

{CLc | clc IP3 } .

rl [8.Pi3k.act] :

{CLi | cli [Gab1 - Yphos] }

{CLc | clc Pi3k }

177

=>

{CLi | cli [Gab1 - Yphos] [Pi3k - act] }

{CLc | clc } .

rl [9.PIP3.from.PIP2.by.Pi3k] :

{CLm | clm PIP2 }

{CLi | cli [Pi3k - act] }

=>

{CLm | clm PIP3 }

{CLi | cli [Pi3k - act] } .

rl [10.Plcg.act] :

{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) PIP3 }

{CLi | cli Src }

{CLc | clc Plcg }

=>

{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) PIP3 }

{CLi | cli Src [Plcg - act] }

{CLc | clc } .

rl [11.Shc.Yphosed] :

{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }

{CLi | cli Src }

{CLc | clc Shc }

=>

{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }

{CLi | cli Src [Shc - Yphos] }

{CLc | clc } .

rl [12.Sos1.reinit] :

{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }

{CLi | cli [Grb2 - reloc] [Sos1 - reloc] }

{CLc | clc }

=>

{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }

{CLi | cli [Grb2 - Yphos] }

{CLc | clc Sos1 } .

178 Appendix A. Maude Specification of the Experimental Evaluation Examples

rl [13.Sos1.reloc] :

{CLi | cli [Grb2 - reloc] }

{CLc | clc Sos1 }

=>

{CLi | cli [Grb2 - reloc] [Sos1 - reloc] }

{CLc | clc } .

rl [15.Cbl.reloc.Yphos] :

{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }

{CLi | cli }

{CLc | clc Cbl }

=>

{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }

{CLi | cli [Cbl - Yphos] }

{CLc | clc } .

rl [E56.Pak1.irt.Egf] :

{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }

{CLi | cli }

{CLc | clc Pak1 }

=>

{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }

{CLi | cli [Pak1 - act] }

{CLc | clc } .

rl [280.Raf1.by.Hras] :

{CLi | cli [Hras - GTP] [Pak1 - act] Src }

{CLc | clc Raf1 1433x1 PP2a }

=>

{CLi | cli [Hras - GTP] [Pak1 - act]

Src [Raf1 - act] 1433x1 }

{CLc | clc PP2a } .

rl [14.Vav2.act] :

{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }

179

{CLi | cli Src }

{CLc | clc Vav2 }

=>

{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }

{CLi | cli Src [Vav2 - act] }

{CLc | clc } .

rl [clt1.ctest] :

{CLi | cli Src [Vav2 - act] [Cbl - Yphos]}

=>

{CLi | cli (Src : ([Vav2 - act] : [Cbl - Yphos]))} .

endm

	Introduction
	Contributions of the Thesis
	Part I – Backward Trace Analysis
	Part II – Forward Trace Analysis

	Related Work

	 Preliminaries
	The Term-language of Maude
	Program Equations and Rules
	Conditional Rewrite Theories
	Rewriting in Conditional Rewrite Theories
	Instrumented Execution Traces
	Term Slices and their Concretizations
	(Instrumented) Trace Slices and their Concretizations
	Meaningful Descendants and Ascendants

	I Backward Trace Analysis
	 Backward Trace Slicing for Conditional Rewrite Theories
	Backward Slicing for Execution Traces
	The Function slice-step
	Correctness of Backward Trace Slicing

	 The iJulienne System
	iJulienne at Work
	Debugging Maude Programs with iJulienne
	Trace Querying with iJulienne
	Dynamic Program Slicing

	Experimental Evaluation

	II Forward Trace Analysis
	 Exploring Conditional Rewriting Logic Computations
	The Generic Exploration Scheme
	Inspecting the Instrumented Traces
	Exploring the Instrumented Computation Tree Slices

	 Exploration Modalities
	Interactive Stepper
	Partial Stepper
	Stepper and Partial Stepper Correctness
	Forward Trace Slicer
	Forward Trace Slicer Correctness
	Backward Trace Slicing as an Instance of the Generic Scheme

	 The Anima system
	The Anima Exploration Tool
	Implementation of the Tool

	Conclusions
	Bibliography
	 Maude Specification of the Experimental Evaluation Examples

