Document downloaded from:

http://hdl.handle.net/10251/44264

This paper must be cited as:

Pulido-Velazquez, M.; Álvarez Mendiola, E.; Andreu Álvarez, J. (2013). Design of Efficient Water Pricing Policies Integrating Basinwide Resource Opportunity Costs. Journal of Water Resources Planning and Management. 139(5):583-592. doi:10.1061/(ASCE)WR.1943-5452.0000262.

The final publication is available at

http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000262

Copyright American Society of Civil Engineers

1 Design of efficient water pricing policies integrating basinwide resource opportunity costs

2 Pulido-Velazquez, M.¹, Alvarez-Mendiola, E.², Andreu, J.³

3

4 ABSTRACT

By ignoring the opportunity cost of water use, water is undervalued, which can lead to significant 5 6 errors in investments and water allocation decisions. The marginal resource opportunity cost 7 (MROC) varies in time and space, as resource availability, demands, and users' WTP vary. This 8 spatial and temporal variability can only be captured by basinwide hydro-economic models 9 integrating water demands and environmental requirements, resources, infrastructure, and 10 operational and institutional restrictions. This paper presents a method for the simulation of water pricing policies linked to water availability, and the design of efficient pricing policies that 11 12 incorporate the basinwide marginal value of water. Two approaches were applied: priority-based 13 simulation and economic optimization. The improvement in economic efficiency was assessed by 14 comparing the results from simulation of the current system operation and the pricing schedule. 15 The difference between the benefits for the simulated current management and the upper bound 16 benefits from optimization indicates the maximum gap that could be bridged with pricing. In the application to a synthetic case, a storage-dependent step pricing schedule derived from average 17 18 MROC values led to benefits that capture 80% of the gap of net benefits between management 19 without pricing and the economically optimal management. Different pricing policies were 20 tested, depending not only on reservoir storage but also on previous inflows. The results show 21 that the method is useful for designing pricing policies that enhance the economic benefits, 22 leading to more efficient resource allocations over time and across the competing uses.

Keywords: Water pricing; River basin management; Optimization; scarcity pricing; opportunity
 cost

- 1. Associate Professor, Research Institute of Water and Environmental Engineering (IIAMA). Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain. Email: mapuve@hma.upv.es
- 2. Profesor-Investigador, Centro de Investigaciones del Agua-Querétaro, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro, México. Email: almendi@uaq.mx
- 3. Professor, Research Institute of Water and Environmental Engineering (IIAMA). Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain. Email: ximoand@upvnet.upv.es

25 INTRODUCTION. WATER OPPORTUNITY COST

26 Of all the tools available for solving water scarcity problems, better pricing is probably the most 27 underutilized relative to its potential (Griffin 2006: 269). That water is often underpriced is 28 widely evident: quantity demanded frequently exceeds supply, often leading to a nonsustainable 29 use of the resources. Properly managed, this instrument has the potential to promote improved 30 economic efficiency (Rogers et al. 2002). Several international institutions have recently 31 promoted the application of the principle of full cost recovery and many countries are now 32 engaged in some form of pricing reform (OECD 1999, Dinar 2000). One recent institutional 33 attempt to design an efficient pricing system is the EU Water Framework Directive (WFD, 34 European Commission 2000). The WFD requires the implementation of a pricing policy that 35 provides incentives for efficient water use, contributing to the environmental objectives (a good 36 water status for all natural water), and ensures an adequate contribution of the various water uses 37 to the recovery of water service costs. The design of methods for implementing those principles 38 has produced considerable debate (WATECO 2002; Heinz et al. 2007; Iglesias and Blanco 2008).

39 The cost of water has two broad components: the cost of its provision and its opportunity cost, or 40 the value of the forgone option resulting from a water management/allocation decision. There is 41 always an opportunity cost if there is water scarcity, either in quantity or quality, since its use 42 involves a sacrifice to alternative uses. From the point of view of managing water as an economic 43 resource, the key challenge is to ensure that this cost is considered in resource allocation 44 decisions (Griffin 2001). Users should get a signal of water's opportunity costs so that they 45 behave accordingly. By ignoring this resource opportunity cost, water is undervalued, which can 46 lead to significant errors in investments and water allocation among users. When the price of 47 water reflects its marginal cost, the resource will be put to its highest-valued uses and an optimal 48 resource allocation would be reached, for which the marginal productivity of water would be 49 equal across the different uses and over time and society's economic welfare would be 50 maximized. Despite the apparent simplicity of the concept, measuring the opportunity costs of 51 scarce water is difficult. Since water markets are usually absent or inefficient, scarcity values go 52 frequently unrecognized, and the assessment of these opportunity costs requires a systems 53 approach and a proper method to estimate the value of water for the different users in the system 54 to develop shadow prices reflecting the value of water (Young 2005: 15; Pulido-Velazquez et al. 55 2008). Scarcity values in water use can arise at the spatial scale, from intersectoral competition at 56 a certain time (i.e., from economically inefficient spatial allocation of scarce existing resources) 57 or at the temporal scale, by inefficient water allocation over time (when making decisions on the

use of a certain water stock now or in the future). The term "marginal user cost" has been also 58 59 applied in the economic literature of depletable resources to refer to the discounted value of 60 sacrificed future uses (Tietenberg 2000:90; Griffin 2001): there is a trade-off between current and 61 future net benefits. In addition, when infrastructure capacity is binding, there is a third 62 opportunity cost to contemplate: the marginal capacity cost. Turvey (1976) defined the "marginal capital cost of water supply" as the cost savings from postponing a capacity addition scheme. 63 64 Newlin et al. (2002) and other subsequent applications of the CALVIN hydro-economic optimization model (e.g., Jenkins et al. 2004; Pulido-Velazquez et al. 2004; Medellin-Azuara et 65 66 al. 2009) have analyzed the marginal value of additional water supplies and infrastructure using 67 an spatially intense model of water allocation in the intertied water supply system of California.

68 An optimal pricing scheme under the goal of deriving the greatest value from scarce water should 69 include not only the marginal cost of water supply, but also the three components of the 70 "nonaccounting" opportunity costs: the basinwide marginal value of water at the source, the 71 "marginal user cost" or opportunity cost of water use over time, and the marginal capacity cost 72 from limited infrastructure (Griffin 2001). Since opportunity cost depends on the alternative uses, 73 an integrated basinwide approach is needed to account for all major competing water uses in the 74 basin. This paper presents a new method for the simulation of different water pricing policies 75 linked to water availability (or relative scarcity) in the basin, and the design of efficient water 76 pricing policies that incorporate the marginal basinwide value of the resource. The approach is 77 based on the systematic assessment of the basinwide marginal resource opportunity cost of water 78 (MROC), an indicator of the aggregated economic impact of water scarcity and how much the 79 users would be willing to pay (WTP) to mitigate that scarcity. The MROC varies dynamically in 80 time and space, as resource availability, demands, and users' WTP vary. This spatial and 81 temporal variability can only be captured by basinwide hydro-economic models integrating water 82 demands, resources, and infrastructure, and operational and institutional restrictions.

83 ASSESSMENT OF THE MARGINAL RESOURCE OPPORTUNITY COST (MROC)

The EU WFD integrates economics into water management and policy making. According to the Directive, Member States must implement a pricing policy that provides adequate incentives for efficient water use and ensures adequate contribution of the different water uses to the recovery of the cost of water services, including *environmental and resource costs*. Despite its key role in the design of such a pricing policy, the definition and assessment method of resource and environmental costs remains controversial and is one of the main issues regarding the implementation of the WFD that requires further methodological development (WATECO 2002;

91 Brouwer 2004; Heinz et al. 2007).

92 Pulido-Velazquez et al. (2006) proposed the term *marginal resource opportunity cost* (MROC) 93 at a specific location and time to refer to the systemwide cost or forgone net benefit of having 94 available one additional unit less of resource at that location and time. This shadow value varies 95 dynamically in time and space, and represents the marginal economic value of natural (raw) 96 water at the source, considering the intersectoral competition of water allocation in space and 97 over time. Its assessment requires to simultaneously consider the value of water for all alternative 98 water uses in the basin, as well as the system's variable operating costs. For that purpose, an 99 integrated basinwide hydro-economic model is needed. Integrated hydro-economic models have 100 to be capable to properly reproduce the physical behavior of the system, with a realistic 101 representation of the spatial and temporal variability of surface and groundwater resources, while 102 simultaneously incorporating the value of water for the different alternative uses in the basin 103 (Lund et al. 2006; Harou et al. 2009). The results of these models capture the spatial and temporal 104 variability of supply and demands, taking into account resource availability, storage capacity, 105 losses, return flows, and marginal WTP or economic value at each water use, as well as the 106 operation of the infrastructure. This representation allows the dynamic assessment of the 107 marginal economic value of water (or MROC) at different locations in the basin (Newlin et al. 108 2002; Fisher et al. 2002; Pulido-Velazquez et al. 2004, 2006, and 2007). Two complementary 109 approaches can be followed for analyzing water management in a water resource system: 110 simulation and optimization. By defining the objective function as the total net benefit from water 111 allocation, the optimization approach obtains the MROC as the shadow prices of the 112 optimization; these results correspond to the economically optimal water allocation. On the 113 contrary, the *simulation approach* assumes that the system is managed according to a set of 114 operating rules and constraints that represents the current modus operandi of the system.

115 MROC assessment using priority-based Simulation

As competition for water resources increases, so does the need of an institutional framework governing regional water allocation. Institutional criteria are often more influential than physical or economic factors in determining flow allocation among uses. This "institutional framework" often refers to water use priorities as specified by the existing water-rights structure (Israel and Lund 2000). However, water rights are not necessarily the only prioritized water uses in a system, but also other uses as environmental or recreational uses can gain this stature.

122 Simulation or descriptive models are often the best approach for assessing the system

performance for alternative strategies ("what if" scenarios), permitting a more detailed and 123 124 realistic representation of the complex characteristic of a river system. In the simulation 125 approach, water is allocated in accordance with a set of operating rules and priorities, which are 126 defined with the aim to reproduce the current institutional framework in modelling efforts. Multi-127 period simulation models utilize optimization (often network flow programming) for determining 128 operating decisions at each time step (e.g., Sigvaldason 1976; Labadie 1995; Andreu et al. 1996; 129 Wurb 2005). Unlike multi-period optimization models, the simulation models can reproduce the 130 actual operating rules of the system with reservoir releases based on existing storage without 131 anticipating future inflows (avoiding the perfect foresight issues inherent to multi-period 132 optimization), and replicate water allocation decisions based on water rights and priorities. This is 133 usually accomplished by introducing certain unit cost coefficients that preserve priority ranks 134 (Israel and Lund 2000). Unlike the optimization approach, the economic indicators provide 135 insight on economic inefficiencies but do not drive water allocation. These models are better 136 suitable to reproduce the modus operandi of the system under the current institutional setting.

The marginal economic value of raw water (or MROC) can be determined in simulation by assessing the impact on water use of a small change in streamflow, and then applying economic value estimates to the water use changes (e.g., Brown 1990; Pulido-Velazquez et al. 2006). The simulation approach that we propose is conceptually simple and consists of three steps:

Setting-up a simulation model of water management in the basin, in which all the relevant
 components (surface and groundwater resources, infrastructure, demands, etc.) are included.
 The model must be capable of reproducing current allocation rules and modus operandi.

• *Economic assessment of the resulting resource allocation determined by the model.* This assessment requires economic functions for the different modeled elements, representing the unit cost/benefit that flow, storage or delivery to each element generate. The simulation of the system for a given hydrologic scenario is named as the Base Case.

 Use of specific routines for the sequential and iterative use of the previous models to obtain the resource costs. A Modified Case corresponds to the simulation with the same hydrologic scenario and a perturbation by adding (or removing) a differential water volume (ΔVolume) at the location and time of interest. Thereafter, the model reallocates the resource over time and space, using the operating rules, yielding a new economic benefit. The difference in total benefit between the Base and the Modified Case (ΔBenefit) is computed. The ratio ΔBenefit/ΔVolume is an approximation of the aggregated MROC for the system, and reflects 155 the aggregated economic cost of water scarcity with the existing allocation criteria.

Hydro-economic models can be developed "ad hoc" for a specific system or using generic 156 157 Decision Support System (DSS) tools. AQUATOOL is a generalized DSS for integrated water 158 resources planning and management, including conjunctive use of surface and groundwater. 159 Computer-assisted design modules allow to represent any complex water resource system in a 160 graphical form, giving access to geographically referenced databases and knowledge bases. New 161 modules of the DSS AQUATOOL (Andreu et al., 1996) add tools for the economic assessment of 162 water management in the system (Collazos, 2004; Andreu et al. 2005; Pulido-Velazquez et al. 163 2008). Hydro-economic simulation in DSS AQUATOOL is performed in 2 steps:

First, the priority-based simulation module of AQUATOOL (Simges) is used to calculate
 monthly water allocation time series, and determine deliveries to the demands, deficits, and
 reliability of meeting each demand and environmental flow requirements.

Secondly, the economic simulation module, EcoWin, is used to assess the benefits and scarcity costs (or economic losses) at each demand and aggregated for the basin, based on economic demand curves and operating costs. The iterative procedure mentioned above is then used to compute the MROC from simulation

The MROC obtained by the iterative simulation procedure described represent a first approximation to the marginal value of water in the system in that location over time. In the case of simulation, these values are conditioned to certain operating rules and priorities in the target demands that determine water allocation at each time step. It represents a positive (descriptive) valuation of the MROC corresponding to a certain modus operandi of the system.

176 MROC assessment using Economic Optimization

177 In an optimization model, the optimal values of the dual variables, Lagrange multipliers, or 178 shadow prices reproduce directly the change in the optimal value of the objective function as a 179 consequence of a marginal change in the corresponding constraint. If the objective function 180 represents the basinwide net benefit from water use, the shadow prices associated with water 181 balance constraints at certain storage nodes of the flow network of the system (reservoirs, 182 aquifers) provide the net benefit derived of a unit increase of the resource in that node at that time 183 (or equivalently, the amount that the system is WTP for one additional unit of water at that 184 moment and location). Thus, the optimization model provides time series of the marginal value of 185 water at certain locations in the system, taking into account system-wide effects. The economic 186 value of water will change over time and space depending on water scarcity and water demands.

187 The resulting MROC can be used to obtain an indicator of the resource/scarcity opportunity cost 188 (Pulido-Velazquez et al. 2006 and 2008; Heinz et al. 2007). According to the economic theory, an 189 optimal efficient water pricing policy would have to include this resource opportunity cost 190 component, so that signals of water scarcity and the resource value are sent to the users. Since the 191 MROC is calculated for the economically optimal system operation, these values represent the 192 maximum (ideal) marginal economic value of one additional unit of water in the reservoir for the 193 users in the system. This shadow value is thus equivalent to the maximum price that users at that 194 location who value additional water the most would just be WTP for an additional cubic meter of 195 water, given the optimal flows of the model solution (Fisher et al., 2002). Unlike the case of 196 simulation, this MROC value corresponds to a normative valuation: the results from the 197 optimization model indicate the maximum attainable economic efficiency. The distance between 198 the benefits from the simulated current management and the maximum benefits obtained from 199 optimization indicates the maximum profit gap that could be bridged with pricing policies.

200 There is also certain disturbing effect from optimization. The system operation is optimized for 201 long hydrologic times, what means that the optimization is performed with perfect knowledge of 202 future hydrology, what is known as the "perfect foresight" issue (Labadie 1997). The perfect 203 foresight inherent to the deterministic optimization procedure overestimates the efficiency 204 attained, representing an ideal upper bound of what can be achieved with realistic hydrology 205 forecasts (Draper and Lund 2004). Perfect foresight can understate the value of new storage and 206 conveyance capacity and underestimate actual scarcity and scarcity cost (Pulido-Velazquez et al. 207 2004, 2008). But the effects of perfect foresight on the overall performance of the system can be 208 small when improved performance comes predominantly from consistent operation and 209 allocation changes that do not require hydrologic foresight (Newlin et al. 2002).

210 METHOD AND TOOLS FOR DESIGNING EFFICIENT PRICING POLICIES 211 INCLUDING BASINWIDE MROC

The resulting time series of MROC at the main reservoirs of the system can be used as the starting point for the design of basinwide efficient water pricing policies integrating marginal resource (scarcity) opportunity costs. When there is a reasonable correlation between reservoir storage and MROC at the reservoir, a step pricing schedule can be derived from average MROC values for different storage volumes. In this way, the price represents the average marginal opportunity cost of water use related to certain water availability in the system. The proposed methodology is based on the combined use of simulation and optimization hydro-economic 219 models at the basin/water resource system scale. The method involves the following steps:

220 Setting-up a simulation model of water management in the basin. This model should 1) 221 integrate resources, demands, and infrastructure, with a realistic representation of the legal, 222 institutional, environmental, and operational constraints. Once a conceptual model of the 223 system is developed, some key inputs are: configuration of the flow network, facility 224 capacities and operating rules, surface hydrology (represented by long inflow time series), 225 losses and return flow equations, aquifer dynamics and stream-aquifer interaction, 226 environmental water requirements (often imposed as instream flow constraints), and water 227 demands (as fixed supply targets to be satisfied).

228 2) *Economic characterization of the system*. Hydro-economic models require empirically
229 estimated marginal supply cost and benefit functions (or demand curves) for each alternative
230 water demands/uses at the basin (Harou et al. 2009).

3) *Priority-based simulation of water management in the system*. In river basin models, water
flow is basically simulated over space and time through mass balance or continuity equations
at the nodes with (reservoirs, aquifers) or without storage capacity. The simulation will yield
time series of flow, storage, delivery and water supply deficit (convertible into scarcity costs)
and reliability for all the system over the simulated time horizon. Herein, scarcity cost at
each water use (demand) is defined as the benefit forgone when deliveries are less than the
maximum demanded by each user (Newlin et al. 2002; Pulido-Velazquez et al. 2006).

4) Calculation of the time series of MROC at the main reservoirs of the system using
 simulation. The MROC at the reservoirs is obtained by applying the iterative procedure
 previously described.

5) Setting an economic optimization model for the system. In this case, the objective will be to
maximize the aggregated net benefit from water use over the optimization time horizon,
subject to the physical, environmental, institutional, and operational constraints.

Economic optimization of water management in the system. The optimization will yield time
series of flow, storage, delivery and water supply deficit (convertible into scarcity costs) for
all the system over the optimized time horizon.

247 7) Calculation of the time series of MROC at the main reservoirs of the system by optimization.

The shadow value associated to the reservoirs' mass balance equations directly providesMROC times series in optimization.

8) Analysis of net benefits and MROC from simulation and economic optimization. The
 distance between the benefits from simulation with the current management and the

maximum benefits obtained from the optimization indicates the profit gap that can bebridged by the pricing policies.

9) Proposal of pricing policies based on simulation/optimization MROC. A storage-dependent
step function is obtained by sorting and averaging the MROC values at different storage
intervals for a certain reservoir in the system. Other different pricing policies are also tested.

Simulation of economic results for different pricing policies. Improved aggregated economic
efficiency resulting from the application of pricing policies is assessed by comparing the
results obtained by simulating the current operation of the system with those obtained with
the simulation of the pricing policy. The use of simulation for assessing the efficiency
improvements from the tested pricing policies avoids the perfect foresight issue inherent to
multi-period optimization models (as discussed in the previous section). The results from the

264 It is assumed that users react to price changes according to microeconomic theory, either as 265 profit-maxing producers or as utility maximizing consumers. The change in water use for a 266 change in price will be given by the corresponding demand (marginal benefits) functions (point 267 2). When water reserves in the system are scarce, a high price in the step-pricing function will 268 lead to a reduction in the target demand for each use. In this way, the step-pricing function will 269 act as a kind of system operating rule, in which reservoir releases are modified through variations 270 in the quantity demanded (the target demand of the simulation model) under scarcity conditions. 271 The reduction in the quantity demanded will be not equal across uses, but it will rather vary 272 according to each demand curve, so that the reduction will be greater in percentage terms for the 273 low-value uses. This will ensure than, when water is scarce, it will be mainly used by the high-274 value uses. The temporal dimension of water opportunity cost is also implicitly considered in the 275 time series of MROC, and so, it is somehow embedded into the design of the pricing policy.

276 The practical implementation of this method was done with the coordinated use of different 277 modules of the generalized DSS AQUATOOL. The priority-based simulation module, SIMGES, 278 was used to simulate the basinwide effect of the pricing policy on the time series of storage, flow, 279 supply, and deficit of supply. The model applies an optimization algorithm to deal with monthly 280 decisions of water allocation among the different competing uses, minimizing the weighted 281 deviations from the target. The weights are defined consequently with the priorities given to each 282 demand (Andreu et al. 1996). The economic postprocessor, ECOWIN, then uses the operating 283 cost and demand functions to convert the time series of water delivered into net benefits and 284 scarcity costs for each demand and aggregated for the whole system. The storage-dependent step pricing policy is simulated in SIMGES by translating the level of water usage restrictions at each
level of price into a coefficient of restrictions to be applied to each target demand depending on

the status of reservoir storage at the beginning of each simulation period.

288 APPLICATION

289 A simple synthetic case study has been used to illustrate the method. The system is made up of a 290 reservoir and 2 demands (A and B) competing for a scarce resource (Fig. 1), with demand A with 291 the highest priority of supply (this could be the case of urban vs. agricultural demand, or two irrigation demands with different priorities). The reservoir has a useful storage capacity of 93 292 Mm³ (millions of cubic meters) and dead storage of 2 Mm³. Fig. 2 shows the 55-year monthly 293 294 inflow time series. The use of long natural inflow time series allows taking into account the 295 temporal variability of the hydrology, including periods of low flow/droughts and high flow 296 distributed over time as happened in the past. The economic demand curves are depicted in Fig. 3 297 (assuming linear demand curves). B is the use with the highest economic value (for a given 298 supply deficit, scarcity cost will be higher in use B) but with less priority of supply.

299 Priority-based simulation and economic optimization models

300 Once the simulation model is implemented using the simulation module of the DSS 301 AQUATOOL (step 1, previous section), water management is simulated with water allocated to 302 each demand in priority order (i.e., first, water is allocated to demand A, and from the remaining 303 storage, to B). Simulation results include water supply reliability indices, flow, delivery, and 304 storage time series and other summary statistics (step 3). Scarcity (water supply deficit) and 305 scarcity costs (forgone net benefits) are calculated over time per demand and aggregated for the 306 whole system, based on the economic demand curves (step 2) and the time series of deliveries. 307 The economic module of AQUATOOL, EcoWin, is then used to obtain the marginal economic 308 value of water at the reservoir (MROC time series, Fig. 4) for simulation (step 4). Fig. 4 shows 309 that, in agreement with the economic theory, the greatest MROC corresponds to the periods in 310 which the reservoir is at a minimum (at the dead storage). On the contrary, the marginal value of 311 water becomes zero when the reservoir is at full capacity (no water scarcity).

The non-linear economic optimization model has been implemented using the optimization package GAMS (General Algebraic Modeling System) (Brooke et al. 1998). The economic optimization model (steps 5-6) maximizes the aggregated net benefit from the two demands (or what is the same, minimizing scarcity plus variable operating costs) over the time horizon. Scarcity costs are found by integrating the demand curves from the maximum demand leftward to 317 the delivery. The model involves constraints for the maximum and minimum (dead pool) storage 318 capacity, the minimum environmental instream flow in the last reach of the river, the mass 319 balance equation at the reservoir, and the mass balance at the delivery node.

320 Fig. 4 depicts the marginal economic value (MROC) time series at the reservoir for optimization 321 (step 7). The MROC curve for optimization is more regular and smooth than the one for 322 simulation, since optimization better allocates water over time reducing the periods of severe 323 scarcity. The total net benefit is greater for optimization than for simulation (Table 1), given the 324 optimal water reallocation from use A (higher priority) to use B (higher economic value). The 325 optimization model significantly reduces the deficit to B and the maximum deficit values for A. Part of the increase in the total benefit is also due to the optimal management of the system over 326 327 time, what allows to significantly reduce the scarcity costs during the main drought events (since 328 scarcity cost increases non-linearly with the deficit). The distance between the benefits from 329 simulation with the current management and the maximum benefits obtained from optimization, 330 in this case, 2.2 M€/year, indicates the profit gap that can be bridged with pricing policies.

331 Storage-based step pricing function

332 Fig. 4 represents the MROC and storage time series at the reservoir for simulation and 333 optimization. The MROC varies over time depending on the relative scarcity in the system 334 (available resources and demands), but also on the future status of the system. The same storage 335 does not imply the same MROC, since the value of water also depends on the coming inflows 336 and future scarcity conditions. An additional unit of water will be used over time according to the 337 priorities in Simulation, and to the economically optimal operation in Optimization. The 338 objective is to derive a practical pricing policy using this information (step 9), and to value the 339 gains in terms of net benefits (step 10). For that purpose, the average MROC values for different 340 storage intervals are computed, and then used to derive the step pricing schedule, following the 341 procedure laid out in Fig. 5. In this case, the averaged MROC pricing levels for the Priority-based 342 Simulation are higher than for Optimization, what it is consistent with the fact that the economic 343 optimization reduces scarcity costs, leading to a lower marginal value of additional water. The 344 effect of the pricing schedules derived from the Simulation and the Optimization MROC and 345 storage time series (Fig. 6) were then simulated by imposing changes in the demanded quantities 346 at each use according to the demand curves. The results (see Table 2) indicate that the step 347 pricing schedule derived from average MROC values from simulation leads to economic benefits 348 that already capture 80% of the gap of total net economic benefits between management without 349 pricing (based on priorities) and the economically optimal management. By applying the storagebased pricing functions, the system penalizes water use B and allocates more water to use A (with higher economic values). In this case we obtained lower total net benefits in the pricing policy derived from the economic optimization's averaged MROC.

353 **Optimized storage-dependent step pricing**

354 An alternative for defining an efficient policy would be to optimize the price levels at each step 355 so that the total net economic benefit of water use is maximized ("optimal" step pricing policy). 356 For that purpose, the prices were optimized with non-linear programming, using as starting 357 values the prices from the averaged MROC values. Fig. 6 shows that the optimal step pricing 358 policy is closer to the one from MROC-simulation than to MROC-optimization, what confirms 359 the fact that better economic results were obtained using the former pricing policy. Other 360 basinwide pricing policies have been also tested with the aim of better approximate the variability 361 of the MROC time series using different explanatory variables.

362 Step pricing depending on previous inflows

363 The MROC at a certain location and time depends not only on water availability (storage) in the 364 system, but also on the coming reservoir inflows and the evolution of the scarcity conditions. In 365 order to introduce this in the design of a pricing policy, the last-year annual inflow to the 366 reservoir was included in the definition of the step pricing function, using the averaged MROC-367 optimization as the starting point. Analyzing the droughts in the historical inflow time series 368 through the "run theory" (Dracup et al. 1980) with the mean annual inflow as the threshold, ten 369 droughts events were found during the historical period, with an average duration of 3.1 years. 370 Most drought episodes are multiannual, what corresponds to a time series with a significant autocorrelation over time. Close to the mean magnitude of the droughts, 100 Mm³ was used as 371 372 the lowest threshold for the inflow categorization, and the MROC values from optimization were 373 averaged for each inflow interval. The resulting inflow-dependent pricing function (Fig. 7) was 374 tested and compared against the other pricing policies.

375 Annual constant pricing policy depending on initial storage and previous annual flow

The information provided by the previous inflows and the status of the system reserves can be used as a tool for predicting future flows and drought forecasting, in order to achieve an efficient hedging operation of the reservoirs with anticipation to droughts (Ochoa-Rivera et al. 2007). To include this issue in the design of an efficient pricing policy, the pricing steps were defined as dependent on the annual inflow in the first and even the second previous year and the available storage at a certain month, according to the following equation:

382
$$p_{\text{year}(t)} = a + b \cdot V_{\text{oct}} + c \cdot Q_{\text{year}(t-1)} + d \cdot (Q_{\text{year}(t-1)} + Q_{\text{year}(t-2)})$$
(1)

where p_{year} is the constant price for that year, V_{oct} is the initial storage for October (the starting of the irrigation season), Q_{year} are the inflow values in the last and the year before the last, and a, b, c, and d are parameters calibrated so that the time series of the resulting prices gets as close as possible to the MROC time series.

387 Seasonal pricing depending on initial storage and previous annual flow

With the purpose of reflecting the variation of the MROC for the same storage volumes depending on whether scarcity is growing or decreasing over time, the price has also been dependent on the previous status of the system in the precedent seasonal period. The adjusted functions are:

392
$$p_{oct-april} = a + b \cdot V_{oct} + c \cdot Q_{apr,year(t-1)}$$
(2)

393
$$p_{apr-sept} = d + e \cdot V_{apr} + f \cdot Q_{oct, year(t-1)}$$
(3)

where $p_{oct-april}$ and $p_{april-sept}$ are the seasonal prices, V_{apr} is the initial storage for April and V_{apr} for October, $Q_{apr, year(t-1)}$ and $Q_{oct, year(t-1)}$ are the inflow values corresponding to the last April and October, and a, b, c, d, e, and f are parameters calibrated to approximate the MROC time series.

397 Testing price efficiency with synthetic inflow time series

398 Although it is usual to adopt a deterministic approach in the analysis of water resource systems 399 and simulate for the historical flow records, these series represent just a single realization of the 400 infinite number of likely future hydrologic scenarios. But the future sequence of flows will not be 401 the historical one. The generation of multiple synthetic hydrologic time series that statistically 402 resemble the historical one allows us to address the issue of uncertain future inflows by providing 403 a broader range of equally likely flow sequences for testing alternative policies. The use of 404 synthetic streamflows improves the precision with which performance indices can be estimated; 405 this is particularly useful for water resources with large amounts of over-year storage (Loucks 406 and van Beek 2005). Fifty synthetic time series have been generated using a classic stochastic 407 ARMA model and applied to test whether the resulting benefits (averaged through the synthetic 408 scenarios) were consistent with the value for the historical record.

409 **RESULTS AND DISCUSSION**

410 In this particular case, the step pricing function derived from the averaged MROC-Simulation for 411 each storage interval leads to total benefits quite close to those from the economic optimization 412 (Table 2). The simulation of this pricing policy indicates an increase in economic benefits that 413 capture 80% of the gap of total net benefits between management without pricing and the 414 economically optimal management. Although these pricing policies were derived from the 415 average values of MROC at each interval, other statistical measures of central tendency (e.g., the 416 mode, the median) could be tested. The step pricing function derived from the averaged MROC 417 from optimization (shadow values) led to a lower economic efficiency. The optimized storage-418 dependent step pricing did not improve much the economic efficiency either. Thus, the MROC 419 time series at the reservoir has been useful for designing an economically efficient basinwide 420 water pricing policy. For this particular example, despite the advantage of the practical simplicity 421 of an annually constant pricing policy at the beginning of the hydrological year and the security 422 for the users' decisions, total net benefits are not as high as the ones corresponding to the storage-423 dependent pricing policy. The two seasonal pricing functions depending on both inflow and 424 storage yielded almost the same benefit, but in any case, lower than for the storage-dependent 425 step pricing. The long persistence of the historical flow time series (Fig. 2) produces long over-426 year droughts, so that the seasonal variation is not so significant in terms of water scarcity. The 427 inflow-dependent pricing function (classified by inflow thresholds) produced greater benefits 428 than the priority-based simulation (actually, all pricing policies did, since these policies translate 429 a component of the marginal opportunity cost into water management), but lower than for the 430 storage-dependent step pricing.

431 From this analysis we can deduce some recommendations for designing efficient basinwide 432 pricing policies. First, the MROC time series are calculated by simulating water management in 433 the system with the existing operating rules (priority-based simulation). If possible, an 434 optimization model can be implemented to maximize the economic benefit of water use in the basin over time and across the competing uses. The results of this model provide an upper bound 435 436 of the benefit that can be achieved with an efficient pricing policy. Then, a step pricing policy is 437 defined as a function of available storage, using average MROC values for the range of storage 438 volumes of the corresponding step. By comparing the resulting total benefit from the pricing 439 policy with the one corresponding to the economic optimum, the pricing policy can be proposed 440 or further refined. The use of pricing policies depending on the previous status of the system or 441 annual or seasonal price functions make the calculation more complex; in this particular case, 442 these policies did not imply a substantial improvement of the benefits from water use. But this is 443 only confirmed for this particular case, and it can be different in other cases. In any case, all these 444 policies represent an increase in net benefits as compared to the traditional water allocation

system based on priorities. Finally, multiple synthetic flow time series are used to check howrobust the calculation of the expected benefits is.

447 SUMMARY AND CONCLUSIONS

448 This paper presents a new method for the simulation of different water pricing policies linked to 449 water availability (or relative scarcity) in a river basin and the design of efficient water pricing 450 policies including the marginal value of the resource at the basin scale, based on the use of 451 basinwide hydro-economic models. Storage-based water pricing policies are simulated by 452 dynamically changing the target demands according to the price level that corresponds to the 453 storage at the reservoir. The design of efficient pricing policies is based on the assessment of the 454 marginal resource opportunity cot (MROC) as the value for the system of an additional unit of 455 water at a certain location and time. The MROC time series can be estimated for the existing 456 priorities and modus operandi (priority-based simulation) or by the shadow values of the balance 457 constraints when water is allocated to maximize the total net benefit in water use (economic 458 optimization). The improvement in economic efficiency was assessed by comparing the results 459 from the simulation of the current system operation and from the pricing schedule. The distance 460 between the benefits from the simulated current management to the maximum benefits from 461 optimization indicates the maximum profit gap that could be bridged with pricing.

462 In the application to a synthetic case, a step pricing schedule derived from average MROC values 463 from simulation led to economic benefits that capture 80% of the gap of net benefits between 464 management without pricing and the economically optimal management. Different pricing 465 policies depending not only on storage but also on previous inflow have been tested. The relative 466 efficiency of the different pricing policies depends on many factors inherent to the complexity of 467 the system such as the economic demand functions, the time-dependent structure of the inflow 468 time series and the statistical droughts properties, the configuration and infrastructure of the 469 system, the regulatory capacity, etc. The results show that the method is useful for designing 470 efficient pricing policies that enhance economic benefits and lead to more efficient resource 471 allocations over time and across the different competing uses of the system. Even though the 472 absolute increase in net benefits for the particular example presented is not so high, the method is 473 totally generalizable and could yield much larger improvements in other water resources systems, 474 especially when dealing with marked water scarcity conditions, competing uses with important 475 differences in economic value, and significant economic inefficiencies derived from the existing 476 water allocation policies.

477 Although economically efficient prices should incorporate the marginal value at the source 478 (MROC), these prices are not necessarily the prices that water consumers should be charged. The 479 final prices can be a matter of social or national policy (Fisher et al. 2002). Other important 480 pricing goals apart from economic efficiency, as revenue sufficiency and neutrality, equity, or 481 environmental sustainability should be also considered. The literature on the analysis of these 482 pricing issues at the basin scale is still very scarce (Ward and Pulido-Velazquez 2008 and 2009). 483 Environmental restrictions can be addressed by imposing minimum ecological flow constraints in 484 the models and analyzing the implications for water pricing. Equity can be also addressed in 485 different ways, although the extent to which water pricing methods can affect income 486 redistribution is limited (e.g. Tsur and Dinar, 1995, for the agricultural sector). Measures taken to 487 guarantee access to water should not be confused with income redistribution, a function that is 488 typically reserved for the fiscal instruments, including general taxes (Griffin, 2001). From the 489 different ways to promote equity, efficiency, and sustainability in water management, water 490 pricing is probably the simplest conceptually, but maybe the most difficult to implement 491 politically (Rogers et al. 1998).

492 Stochastic dynamic programming is an alternative for determining the marginal value of water in 493 a reservoir (e.g. Tilmant et al. 2008), with the advantage over deterministic optimization 494 techniques that it explicitly considers the effect of hydrologic uncertainty on the results. In this 495 case, however, the aim was to develop a general method that can be applied in practice to any 496 complex system with available generalized DSS tools. In this sense, most DSS tools are based on 497 network flow optimization for dealing with multiperiod multireservoir large complex systems 498 (eg, Labadie, 1995; Andreu et al., 1996; Jenkins et al., 2004). In any case, the "deterministic 499 optimization" is used in our approach just to assess the efficiency gap between current 500 management and perfect profit-maximizing water allocation and to help develop efficient water 501 pricing policies based on average MROC (also alternatively developed with simulation MROC 502 values). The effect of each pricing policy under uncertain future inflows is then assessed through 503 simulation, avoiding the perfect foresight issue of optimization and obtaining more realistic costs 504 and benefits. Given the unavoidable uncertainty regarding the different inputs of the model, the 505 issue of the uncertainty associated with the model predictions about the impacts of the pricing 506 policies would need to be further explored in a comprehensive way over a broad number of 507 model inputs.

508 Some tools have been prepared for the practical implementation of the method with GAMS and 509 new modules for the DSS AQUATOOL. River basin simulation models are already available in AQUATOOL for several Spanish river basins, some developed in the context of the new River Basin Plans for the implementation of the EU WFD (Paredes-Arquiola et al. 2010). Once the economic characterization of water uses in the basin is available, the approach is ready to be extended to more complex real cases. For the practical use of the approach in the implementation of the WFD, further research is needed on issues as the contribution of pricing policies to the good status of water bodies (Riegels et al. this issue) and the integration of the financial, resource, and environmental components of the cost of water services.

517

518 Acknowledgements

- 519 This study has been partially funded by the EU 6th FP project AQUAMONEY (SSPI-022723),
- 520 the 7th FP GENESIS project (226536), and SAWARES (Plan Nacional I+D+i 2008-2011,
- 521 CGL2009-13238-C02-01 and C02-02) and SCARCE (Consolider-Ingenio 2010 CSD2009-
- 522 00065) of the Spanish Ministry of Economy and Competitiveness.

REFERENCES:

Andreu, J., Pulido-Velázquez, M. and Collazos, G. (2005). *Methodology and tools for integrated assessment of resource and environmental requirements costs*. In: Second International Workshop on Implementing Economic Analysis in the Water Framework Directive, Paris, France.

Andreu, J., Capilla, J., and Sanchis, E. (1996). "AQUATOOL, a generalized decision-support system for water-resources planning and operational management". *J. of Hydrology* 177 (3–4), 269–291.

Brouwer, R. (2004). "The concept of environmental and resource cost. Lessons learned from ECO2". In: Brouwer, R., Strosser, P. (Eds.), *Environmental and Resource Cost and the Water Framework Directive. An overview of European practices.* RIZA Working Paper 2004. 112x. Amsterdam, Holland.

Brown, T. (1990). "Marginal economic value of streamflow: a case study for the Colorado River Basin". *Water Resources Research*, 26 (12), 2845–2859.

Collazos, G., (2004). "Sistema soporte de decisión para evaluación y optimización económica de sistemas de recursos hídricos". PhD dissertation (in Spanish). Univ. Politéc. de Valencia, Spain.

Dinar, A. (2000). "Political economy of water pricing reforms". In: Dinar, A. (Ed.), *The Political Economy of Water Pricing Reforms*. Oxford University Press, New York.

Dracup, J. A., K. S. Lee, and E. G. Paulson Jr. (1980). "On the definition of droughts". *Water Resour. Res.*, 16, 297–302.

European Commission (2000). *Directive 2000/60/Ec of the European Parliament and of the Council, of 23 October 2000, establishing a framework for community Action in the Field of Water Policy*. Official Journal of the European Economics (OJL) 1, 22.12.

Fisher, F.M., Arlosoroff, S., Eckstein, Z., Haddadin, M., Hamati, S.G., Huber-Lee, A., Jarrar, A., Jayyousi, A., Shamir, U., and Wesseling, H. (2002). "Optimal water management and conflict resolution: the Middle East water project". *Water Resour. Res.*, 38 (11), 10.1029/2001WR000943.

Griffin, R.C. (2001). "Effective water pricing". J. of the American Water Resources Association, 37 (5), 1335–1347.

Griffin, R.C. (2006). "Water Resource Economics – The Analysis of Scarcity, Policies and Projects". MIT Press, Cambridge, Massachusetts.

Harou, J.J., Pulido-Velazquez, M., Rosenberg, D.E., Medellin-Azuara, J., Lund, J.R., Howitt, R.E. (2009). Hydro-economic Models: Concepts, Design, Applications, and Future Prospects. *J. of Hydrology*, 375 (3-4), 627–643, doi:10.1016/j.jhydrol.2009.06.037

Iglesias, E., and M. Blanco (2008). "New directions in water resources management: The role of water pricing policies". *Water Resour. Res.*, 44(W06417).

Israel, M.S. and J.R. Lund (1999). "Priority Preserving Unit Penalties in Network Flow Modeling". J.

Water Res. Plan. Manage., 125(4), 205-214.

Jenkins, M.W., Lund, J.R., Howitt, R.E., Draper, A.J., Msangi, S.M., Tanaka, S.K., Ritzema, R.S., and Marques, G.F. (2004). "Optimization of California's water supply system: results and insights". *J. Water Res. Plan. Manage.*, 130 (4), 271–280.

Lund, J.R., Cai, X., Characklis, G.W. (2006). "Economic engineering of environmental and water resource systems". *J. Water Res. Plan. Manage.*, 132 (6), 399–402.

Labadie, J., 1995. "*MODSIM: Technical manual river basin network model for water rights planning*". Colorado State University, Fort Collins, Colo.

Labadie, J. (1997). "Reservoir system optimization models". *Water Resources Update*, 108. Universities Council on Water Resources.

Loucks, P., and van Beek, E. (2005). "Water resources systems planning and management. An introduction to methods, models and applications". UNESCO and WL Delf Hydraulics, The Netherlands.

Lund, J.R., Cai, X., and Characklis, G.W. (2006). "Economic engineering of environmental and water resource systems". *J. Water Res. Plan. Manage.*, 132 (6), 399–402.

Medellín-Azuara, J., Mendoza-Espinosa, L.G., Lund, J.R., Harou, J.J., and Howitt, R.E. (2009). "Virtues of simple hydro-economic optimization networks: Baja California, Mexico". *J. of Environmental Management*, 90(11): 3470-3478.

Newlin, B.D., Jenkins, M.W., Lund, J.R., and Howitt, R.E. (2002). "Southern California water markets: Potential and limitations". *J. Water Res. Plan. Manage.*, 128 (1), 21–32

Ochoa-Rivera, J.C., Andreu, J., and Garcia-Bartual, R. (2007). "Influence of inflows modeling on management simulation of water resources system". *J. Water Res. Plan. Manage.*, 133 (2), 106–116.

OECD (1999). "*The Price of Water: Trends in OECD Countries*". Organization for Economic Cooperation and Development. OECD Publishing, Paris.

Paredes-Arquiola J, Andreu-Álvarez J, Martín-Monerris M, and Solera A. (2010). "Water quantity and quality models applied to the Jucar River Basin, Spain". *Water Resour Management*, 24(11), 2759-2779.

Pulido-Velazquez, M., Jenkins, M.W., Lund, J.R. (2004). "Economic values for conjunctive use and water banking in southern California". *Water Resources Research*, 40 (3).

Pulido-Velazquez, M., Andreu, J., and Sahuquillo, A. (2006). "Economic optimization of conjunctive use of surface water and groundwater at the basin scale". *J. Water Res. Plan. Manage.*, 132 (6), 454–467.

Pulido-Velazquez, M., Andreu, J., Sahuquillo, A., and Pulido-Velazquez, D. (2008). "Hydro-economic

river basin modelling: The application of a holistic surface-groundwater model to assess opportunity costs of water use in Spain". *Ecological Economics*, 66(1), 51-65.

Rogers, P., Silva, R.d., and Bhatia, R. (2002). "Water is an economic good. how to use prices to promote equity, efficiency, and sustainability". *Water Policy*, (4), 1–17.

Riegels, N., Pulido-Velazquez, M., Doulgeris, C., Valerie, S., Jensen, R., Moller, F., and Bauer-Gottwein, P., 2011 (this issue). "Comparison of two water pricing policies in a hydro-economic modelling study". *J. Water Res. Plan. Manage*.

Sigvaldason, O. T. (1976). "A simulation model for operating a multipurpose multireservoir system". *Water Resour. Res.*, 12(2), 263–278.

Tietenberg, T. (2002). "Environmental and Natural Resources Economics" (sixth ed.). Addison Wesley.

Tilmant, A., D. Pinte, and Q. Goor (2008). Assessing marginal water values in multipurpose multireservoir systems via stochastic programming. Water Resour Res, 44, W12431.

Tsur, Y. and A. Dinar (1995). "*Efficiency and Equity Considerations in Pricing and Allocating Irrigation Water*." World Bank Policy Research Paper #1460, Washington, D.C.

Turvey, R. (1976). "Analyzing the Marginal Cost of Water Supply', Land Economics, 52(2):158-68.

Ward, F.A., and Pulido-Velazquez, M. (2008). "Efficiency, equity, and sustainability in a water quantity–quality optimization model in the Rio Grande basin". *Ecological Economics*, 66 (1), 23–37.

Ward, F.A., and Pulido-Velazquez, M. (2009). "Incentive pricing and cost recovery at the basin scale". *J. of Environmental Management*, 90 (1), 293–313.

WATECO (2002). *Economics and the Environment. The Implementation Challenge of the Water Framework Directive. A Guidance Document.* Guidance Document No. 1. Common Implementation Strategy for the Implementation of the Water Framework Directive, European Commission.

Wurb, R. (2005). "Texas Water Availability Modeling System". J. Water Res. Plan. Manage., 131(4), 270–279.

Young, R.A. (2005). *Determining the economic value of water: concepts and methods*. Resources for the Future, Washington, DC.

FIGURE CAPTION LIST

Fig. 1. Scheme of the synthetic case study (DSS Aquatool)

- Fig. 2. Monthly inflow into the reservoir
- Fig. 3. Economic demand curves.

Fig. 4. Time series of MROC vs. storage for Simulation and Economic Optimization.

Fig. 5. Procedure for deriving the step pricing schedule from the MROC and storage time series

Fig. 6. Storage-based step pricing functions from Priority-based Simulation, Economic Optimization and optimized steps

Fig. 7. Step pricing depending on previous inflows

Approach	Benefit A (M€/year)	Benefit B (M€/year)	Mean total Benefit (M€/year)	Mean deficit A (Mm ³ /year)	Mean deficit B (Mm ³ /year)
ECONOMIC OPTIMIZATION	25,49	28,05	53,54	10,85	2,94
PRIORITY-BASED SIMULATION	26,05	25,38	51,43	4,21	9,04

Table 1. Benefits and mean annual deficits for simulation and optimization

Approach	Benefit A (M€/year)	Benefit B (M€/year)	Total Benefit * (M€/year)	Total benefit, synthetic (M€/year)**				
ECONOMIC OPTIMIZATION	25,49	28,05	53,54	53,99				
PRIORITY-BASED SIMULATION	26,05	25,38	51,43	52,51				
STORAGE-DEPENDENT STEP PRICING								
Based on MROC-SIMULATION	25,34	27,73	53,07	53,57				
Based on MROC-OPTIMIZATION	25,78	26,90	52,68	52,46				
Optimized storage-dependent step pricing	25,24	27,87	53,11	53,57				
Inflow-dependent step pricing	25.60	27.11	52.71	52.91				
ANNUAL CONSTANT PRICING								
Based on MROC-OPTIMIZATION	25,60	27,01	52,61	53,24				
Based on MROC-SIMULATION	25,90	26,35	52,25	51,37				
SEASONAL PRICING based on storage and previous inflows								
Based on MROC-OPTIMIZATION	25,71	26,91	52,62	53,31				
Based on MROC-SIMULATION	24,76	27,58	52,34	53,00				

Table 2. Comparison of annual benefits for different pricing policies. Historical vs. synthetic inflow time series.

* Based on the historical flow records ** Average value across generated synthetic inflow scenarios