
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://dx.doi.org/10.1002/asi.23146

http://hdl.handle.net/10251/44358

Association for Information Science and Technology (ASIS&T): JASIS&T

Kay L.; Newman, N.; Youtie, J.; Porter A.L.; Rafols García, I. (2014). Patent Overlay
Mapping: Visualizing Technological Distance. Journal of the American Society for
Information Science and Technology. 65(12):2432-2443. doi:10.1002/asi.23146.



1 
 

Patent Overlay Mapping: Visualizing Technological Distance 
 
 
Luciano Kay, Center for Nanotechnology in Society, University of California Santa 

Barbara, Santa Barbara, CA, USA, e-mail: luciano@cns.ucsb.edu 
Nils Newman, Intelligent Information Services Corporation, Atlanta, GA, USA, e-

mail: newman@iisco.com 
Jan Youtie, Enterprise Innovation Institute & School of Public Policy, Atlanta, GA, 

USA, e-mail: jan.youtie@innovate.gatech.edu 
Alan L. Porter, School of Public Policy, Georgia Institute of Technology, Atlanta GA & 

Search Technologies, Norcross, GA, USA, e-mail: alan.porter@isye.gatech.edu 
Ismael Rafols,Ingenio (CSIC-UPV), UniversitatPolitècnica de València, València, Spain 

& SPRU – Science and Technology Policy Research, University of Sussex, 
Brighton, England, e-mail: i.rafols@ingenio.upv.es 

 
 

Accepted in October 2013 in the 
Journal of the American Society for Information Science and Technology (JASIST) 

 
Further information and supplementary files available at 

http://interdisciplinaryscience.net/topics/patmap 
 
Abstract 
 
This paper presents a new global patent map that represents all technological categories, 
and a method to locate patent data of individual organizations and technological fields on 
the global map. This overlay map technique may support competitive intelligence and 
policy decision-making. The global patent map is based on similarities in citing-to-cited 
relationships between categories of theInternational Patent Classification (IPC) of 
European Patent Office (EPO) patents from 2000 to 2006. This patent dataset, extracted 
from the PATSTAT database, includes 760,000 patent records in 466 IPC-based 
categories. We compare the global patent maps derived from this categorization to related 
efforts of other global patent maps. The paper overlays nanotechnology-related patenting 
activities of two companies and two different nanotechnology subfields on the global 
patent map. The exercise shows the potential of patent overlay maps to visualize 
technological areas and potentially support decision-making. Furthermore, this study 
shows that IPC categories that are similar to one another based on citing-to-cited patterns 
(and thus are close in the global patent map) are not necessarily in the same hierarchical 
IPC branch, thus revealing new relationships between technologies that are classified as 
pertaining to different (and sometimes distant) subject areas in the IPC scheme. 
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Introduction 
 
The visualization of knowledge or technological landscapes has been a prominent part of 

publication and patent analyses since their origins (Hinze, Reiss, & Schmoch, 1997; 

Small, 1973). However, only in the last decades, improvements in computational power 

and algorithms have allowed the creation of large maps covering a full database, the so-

called global maps of science (see overviews by Klavans & Boyack, 2009; Rafols, Porter, 

& Leydesdorff, 2010).i

Visualization procedures for science maps have generally been used to explore 

and visually identify scientific frontiers, grasp the extent and evolution of scientific 

domains, and analyze the frontiers of scientific research change (Van den Besselaar & 

Leydesdorff, 1996). Science mapping efforts have been also used to inspire cross-

disciplinary discussion to find ways to communicate scientific progress (see, for example, 

Mapping Science at 

 These science maps or scientograms are the visualization of the 

relations among areas of science using network analysis algorithms. 

http://www.scimaps.org/). Although science maps cannot replace 

other methodological approaches to data analysis, “visual thinking” can help to interpret 

and find meaning in complex data by transforming abstract and intangible datasets into 

something visible and concrete (Chen, 2003). Diverse approaches can be used to create 

visualizations. 

The purpose of this paper is twofold: first, to present the results of a global patent 

map and, second, to introduce the ‘overlay map’ technique to locate the relative 

technological position of an organization’s patent activity to support competitive 

intelligence and policy decision-making. This research draws on the concept of 

http://www.scimaps.org/�
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technological distance to interpret linkages among technologies and elaborate a method 

for a meaningful visualization of technological landscapes. 

This visualization approach is a logical extension of the experience with science 

overlay maps. It draws closely on our previous work on science mapping(Rafols et al., 

2010) and opens up new avenues for understanding patent landscapes, which as we will 

see markedly differ from scientific landscapes. The need for development of tools to 

benchmark and capture temporal change of organizational innovation activities, or 

patterns of technological change, also motivates this work. More generally, this new 

approach also accompanies the broader change from hierarchical, structured knowledge 

in science and technology (i.e. with subdisciplines and specialties that match 

departmental structures) to a web of “ways of knowing” resulting from changing social 

contracts (Gibbons et al., 1994), increasing institutional hybridity (Etzkowitz & 

Leydesdorff, 2000), and dissonance between epistemic and social structures. Our paper 

will show that in many instances, technological similarity based on citing-to-cited 

references is not the same as the hierarchical structures used to organize patented 

knowledge. 

To exemplify the kind of analytical support offered by this approach, this paper 

illustrates the application of patent overlay maps to benchmark the nanotechnology-

related patenting activities of two companies and to reveal the core structure of patenting 

activities in two different nanotechnology subfields. Nanotechnology is an umbrella term 

referring to a diverse set of emerging technologies that improve or enable materials, 

devices and systems using novel properties resulting from the engineering and assembly 

of matter at extremely small scales. At the nanoscale, scientific discoveries have unveiled 
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novel properties that offer the potential for applications in a wide array of market 

segments such as energy, pharmaceuticals, and semiconductors. With a wide range of 

potential applications, nanotechnology is anticipated to have significant business and 

economic impacts in future years. Our previous work illustrated how science overlay 

maps help to provide a better understanding of the characteristics and evolution of the 

nanotechnology field and its subfields (see, for example, Porter & Youtie, 2009; Rafols & 

Meyer, 2010). 

This paper is organized as follows. Section 2 reviews and discusses the concept of 

technological distance and the analysis of patent literature. Section 3 presents the 

methodological approach. Section 4 presents preliminary outputs based on the application 

of patent overlay maps to general patent datasets and the analysis of company patent 

portfolios and technological fields. Section 5 discusses the advantages and drawbacks of 

the method and elaborates on next steps and future of patent mapping. The paper also 

includes information to access supplementary material made available by the authors 

online as detailed in the Appendix. 

 
Technological distance and its operationalization 
 
Technological distance, or the extent to which a set of patents reflects different types of 

technologies, is a key characteristic in being able to visualize innovative opportunities 

(Breschi, Lissoni, & Malerba, 2003). Patent documents that reference other patents in 

similar technology areas have been suggested to offer incremental opportunities to 

advance an area whereas patent documents that refer across diverse categories may offer 

the potential for radical innovation (Olsson, 2004). Technological distance is often 

proxied by patent categories, with patents in a given patent category being considered 
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more similar to one another than to those in other patent categories (Jaffe, 1986; 

Kauffman, Lobo, & Macready, 2000). For example, Franz (2009) uses patent citations 

between U.S. patent categories and assigns weights to a patent citing another patent in a 

different category to reflect a larger technological distance. Hinze et al. (1997) look at co-

assignment of multiple IPC categories as a measure of the distance between 30 

technological fields. A challenge in relying on patent classifications is that, as technology 

changes, technology-oriented applications may draw from patents in different 

hierarchical categories, and subsequently lead to further diversity in patents that cite 

patents in these categories.Hinze et al’s (1997) contribution was important because it 

established that the global map of patents is similar fordifferent countries (U.S., Japan, 

Germany) and for different time periods (1982-1985, 1986-1989 and 1990-1993). Given 

such stability, one can then think of this stable structure as a basemap over which to 

compare the technological distribution of specific organisations, in the same way that we 

may compare the distribution of different plant species or multinationals over the world 

map. 

This investigation draws on the concept of technological distance and proposes an 

alternative approach to relying on administrative patent categories, using patent mapping 

techniques to visualize technological landscapes based on similarity as indicated through 

citing-to-cited relationships. A patent map is a symbolic representation of technological 

fields that are associated with relevant themes. Technological fields are positioned in the 

map so that similar fields are situated nearby and dissimilar components are situated at a 

distance. The map is constructed from a similarity matrix based on citing-to-cited patents 

(i.e. a matrix that reflects similarities amongst IPC categories in how patent cite each 
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other). The similarity measures are calculated from correlation functions among fields 

according to citations among patent categories. This multidimensional matrix is projected 

onto a two-dimensional space. Visual output provides for flexibility in interpreting the 

multidimensional relationships among the patent categories. In addition, this approach 

allows the user to “overlay” subsets of patent data–representing different types of 

technological fields, institutions, or geographical regions–to understand the particular 

technological thrusts and areas of concentration of these entities(Rafols et al., 2010). 

Recently other scholars have pursued a similar patent record-level approach to 

create global maps of technology that characterizes the proximity and dependency of 

technological areas (see, for example, preliminary work in Boyack & Klavans (2008), 

and related approaches by Schoen et al. (2012), or Leydesdorff, Kushnir& Rafols (In 

Press).) ii  Those efforts have also sought to use the maps to benchmark industrial 

corporations to inform corporate and policy decision-making. The differences with the 

approach presented in this paper are primarily related to the definition of categories 

(which yields different number and composition of technology groups) and the 

relationships among them (generally based on citation-based co-occurrence of IPC 

categories, which yields maps with different structures). The Boyack&Klavans (2008) 

work is based on class (3-digit) level IPC categories, while Leydesdorff, Kushnir& 

Rafols(In Press) include Class (3-digit) and Sub-Class (4-digit) analyses based on 

USPTO data rather than EPO. These IPC-based approaches work with the existing 

classification system, which is a product of patent office history, regardless of the 

intensive quantity of patents in certain categories. For example, categories such as A61 

(“Medical or Veterinary Science”) has a very large quantity of patents, while categories 
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such as A42B (“Hats”) have very few. This uneven distribution of patents limits 

visualization ability if using the native classification system as is. The contribution of this 

work is the development of a patent mapping approach based on IPC categories that 

corrects this uneven patent distribution as explained below. Schoen et al. (2012) patent 

map is based in technology-based categorization that combines different IPC branches. 

As it was the case in science maps (Klavans&Boyack, 2009; Rafols & Leydesdorff, 

2009), it is very important to compare the results of diverse global patent maps using 

different classification and visualization algorithms to test the robustness of patterns 

observed. Without significant consensus on the shape and relative position of categories, 

global maps are meaningless as stable landscapes needed to compare organizational or 

technological subsets. 

The approach used in this paper draws on learning from the authors’ prior work 

on science mapping, particularly the trade-off between sufficient detail and not too much 

detail to be easily visualized by the user. The challenges faced when developing this kind 

of patent map include gathering patent data in appropriate quantity to create meaningful 

maps and the choice of an equivalent to citation patterns (because citations may not be 

functionally equivalent to journal citations) and an equivalent to Web of Science 

Categories (previously known as ISI Subject Categories,) for which IPC categories may 

not be suitable analogs. Using IPC categories from patent documents also involves 

specific challenges, such as deciding on the appropriate level of analysis to obtain 

satisfactory results. This latter point is related to the IPC classification scheme that offers 

Sections, Classes, Sub-Classes and Groups from which to choose. While the Sub-Class 

(i.e., 4-digit IPC) level seems appropriate because of the degree of detail in subject matter 
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definitions, it suffers a “population” problem related with the significant variation of the 

number of patents classified in each IPC Sub-Class, which is likely to lead to 

underrepresented technologies in maps. Some Sub-Classes have several hundred 

thousand patents, whereas others have only a few hundred. Thus, a more appropriate 

grouping of IPC categories is needed to more evenly represent the number of patents 

across the patent system. 

 
Implementation 
 
This global patent map is based on citing-to-cited relationships among IPCs of European 

Patent Office (EPO) patents from 2000-2006. This period was chosen because of its 

stability with respect to IPC 7 categories. IPC 7, at the time we conducted this study, 

represented the longest period of stable classification, as IPC 8 was just rolling out at the 

time of this research and could potentially add and/or modify categories. Future work 

would involve comparing patent overlay maps based on IPC 7 and IPC 8, but first, the 

project team needed to make sure it could produce mapping process with a stable set of 

categories. The dataset containing IPCs relationships, extracted from the Fall, 2010, 

PATSTAT database version, represents more than 760,000 patent records in more than 

400 IPC categories. This data range begins with patent EP0968708 (which was published 

in January 2000) and ends with patent EP1737233 (published in December 2006.) An 

analysis with this kind of coverage benefits from a relative stability of Version 7 of the 

patent classification system maintained during the 2000-to-2006 time period. 

In this approach, the process of data gathering and pre-processing involves, first, 

going through each patent record to collect all the instances of IPC categories in the 

dataset and, second, solving the aforementioned “population” problem. The proposed 
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solution for patent categories with relatively few patents is to fold the IPC category up 

into the next highest level of aggregation to create relatively similar sized categories. This 

solution comprises three rules: 1) for IPC categories with large population, use the 

smallest Sub Group level; 2) for small population IPC categories, aggregate up to General 

Group level, Sub-Class or Class; and, 3) establish a floor cut-off and drop very small 

aggregated populations. As a result, IPC categories with instance counts greater than 

1,000 in the dataset were kept in their original state. Those categories with instance 

counts less than 1,000 were folded up to the next highest level until the count exceeded 

1,000 or the Class level was reached. During the folding, any other IPC categories with 

counts exceeding 1,000 in the same branch were left out of the folding count. If at the 

Class level (i.e. 3-digit), the population was less than 1,000, the IPC code was dropped 

for being too small to map. Table 1 illustrates this approach for the 4-digit IPC class 

A61K. 

 

Table 1. Data pre-processing to group IPC categories, selected examples1 
Original IPC in dataset Catchwords Original Record Count 
A61B Diagnosis; Surgery; 

Identification 
25,808 

Authors’ process splits this out into: 
A61B 5/00 Measuring for diagnostic 

purposes 
1,415 

A61B 17/00 Surgical instruments, devices 
or methods, e.g. tourniquets 

1,493 

A61B 19/00 Instruments, implements or 
accessories for surgery or 
diagnosis not covered by any 
of the groups 

1,444 

and a remainder: 
A61B2  21,456 
Notes: 1. Each IPC with an instance count greater than 1,000 was kept in its original state.  
2. Each IPC with an instance count less than 1,000 was folded up to the next highest level until the count 
exceeded 1,000 or the class level was reached.  
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This pre-processing (in which the roll-up heuristics were performed through a 

compiled code written in C++) yields IPC categories at the Class, Sub-Class, Main Group 

and Sub-Group levels, with levels that ensure broadly similar numbers (i.e. within two 

orders of magnitude) of patents across categories. Although we keep referring to these 

categories as ‘IPC categories’, they are not the standard IPC categories since they have a 

mixed hierarchical composition. The smallest categories in the dataset have 1,000 

patents, with this bottom threshold chosen to yield a sufficient count for statistical 

analyses. The largest category—A61K (defined as “Preparations for Medical, Dental, or 

Toilet Purposes”) but subtracting 16 seven-digit IPCs with more than 1,000 patents 

each—has more than 85,000 patents. The initial implementation actually involved testing 

several cut-off values (e.g. 700, 1,000 and 1,500 records) that yielded different numbers 

of IPC categories. The cut-off at 1,000 was deemed suitable for this analysis, as it seems 

to provide a sensible compromise between accuracy of the fields, and readability in the 

map. This choice produces 466 IPC categories that are mapped to a thesaurus for data 

pre-processing. Out of these categories, 44 categories (representing 2.78 million patents) 

remain at the Class (3-digit) level, 297 categories (representing 29.11 million patents) 

remain at the Sub-Class (4-digit) level, 56 at categories at the Main Group level 

(representing 5.10 million patents) and 69 at the Sub-Group level (representing 4.75 

million patents.) 
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Table 2. Number of categories and patents obtained with the multi-level aggregation 
process 
Level in Classification1 # Categories Mean # apps2 % of apps3 
Class (3 digit) 44 63,280 6.7% 
Sub-Class (4 digit) 297 97,997 69.7% 
Main Group (7 digit, \00) 56 91,144 12.2% 
Sub-Group (7 digit, \##) 69 68,781 11.4% 
Total 466 89,569 100.0% 

Notes: 1. See www.wipo.int for more information about these levels; 2. Mean number of patent 
applications. 3. Share of patent applications in the dataset. 

 

The next step involves extracting from PATSTAT the patents cited by the target 

records. The IPCs of those patents are mapped to the 466 IPC categories. Some of the 

patents cited by those in our IPC 7 dataset were published under previous categorization 

systems; however, this spillover does not lead to any problems from a categorization 

standpoint because IPC integrates prior categorizations into more recent versions. The 

result of this data collection allows the creation of a table containing, in each row, sets of 

Patent Number, IPC Number, Cited Patent Number, andCited IPC Number. This data 

table has been further processed and saved in an appropriate file format for the next step 

using the software Pajek. This software also helped to create the global map and 

individual overlay maps for examples of companies and technological fields. 

The final data processing steps involve generating a cosine similarity matrix 

among citing IPC categories (using conventional cosine similaritynormalized by the 

square root of the squared sum,) and then factor analysis of the IPC categories (following 

the method used in global science maps by Leydesdorff and Rafols (2009). A factor 

analysis of the citing-to-cited matrix among IPC categories is then used to consolidate the 

466 categories into 35 “macro patent categories.” No distinction was made between 

primary and second classifications and all citing-to-cited relationships were counted 

http://www.wipo.int/�
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equally (i.e. without fractional counting.)We tested different factor solutions from 10 to 

40. The 35-factor solution appeared to provide a sensible and convenient classification of 

the IPC categories. These 35 factors form the basis for color-coding the 466 categories 

that are represented in visualizations. The list of 35 factors is available in Supplementary 

File 1 (see details at the Appendix).The visualizations also require converting IPC codes 

to succinct text labels, which we did by shortening lengthy IPC definitions. Therefore, 

labels may not fully capture all the technologies within a category. These IPC category 

labels were then used as a basis for creating descriptors for each factor as shown in the 

maps (next section.) 

The creation of patent overlay maps using a wide range of IPC-based categories 

requires consideration of the classification system of reference. This research draws on 

the IPC 7 classification system that, compared to previous versions, includes class codes 

such as B82B that are relevant to the nanotechnology domain. The IPC 7 system is also 

more stable than the more recent IPC 8, but still received some updates during the time-

period relevant to this study, including the addition of the B82B technology 

classification. Those updates do not affect the structure of the maps because the newly 

added classifications represent a small number of patents (i.e. below our cut-off value) 

and do not affect the map-based analyses because patent records in newly added 

classifications are generally assigned to other technology categories as well. iii

 

 Future 

developments of these maps will require updating the thesaurus developed to match the 

466 categories of the global patent maps. 

Test and preliminary results 
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The full map of patents shows all 466 categories in a Kamada-Kawai layout (using Pajek) 

that represents technological distances and groups of technologies in each of the 

35factors or technological areasshown with the same color (Figure 1). Label and color 

related settings were adjusted to produce a reasonably clear map and facilitate its 

examination. The map suggests three broad dimensions of patenting interrelationships 

based on the overall position of technological areas. The left side of the map represents 

bio-related patents, including food, medicine and biology. The lower right part of the map 

includes semiconductor, electronics, and information & communications technologies 

(ICT). The upper right portion of the map is primarily comprised of automotive and 

metal-mechanic related technology groups.  

The global patent map 

 

Figure 1. Full patent map of 466 technology categories and 35 technological areas 

 
Note: each node color represents a technological area; lines represent relationships between technology 
categories (the darker the line the shorter the technological distance between categories;) labels for 
technological areas are placed close to the categories with largest number of patent applications in each 
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area. Higher resolution figures can be found in supplementary file 2, as indicated in the Appendix. An 
interactive version of the map is available here: 
http://www.vosviewer.com/vosviewer.php?map=http://www.sussex.ac.uk/Users/ir28/patmap/KaySuppleme
ntary3.txt 
 

 
Difference between hierarchy and similarity 

A closer look shows that the structure of the map reflects technological 

relationships across the hierarchical administrative boundaries of the subject matter 

specifications in the IPC scheme. While counts of IPC sections (i.e. the first letter of IPC 

codes, A, B, C, D, E, F, G, H) are commonly used as a measure of technological distance 

in patents, the 35 technological areas that are derived from cross-citations in our patent 

map often span multiple sections. For instance, the Vehicles area includes six different 

sections, and the Heating and Cooling, Construction, and Metals areas include five 

different sections. Textiles, Lighting, Semiconductors, and Chem and Polymers include 

four different sections. Eleven technological areas (Measurement, Domestic Appliances, 

Plastics and Wheels, Photolithography, Optics, Copying and Printing, Catalysis and 

Separation, Lab equipment, Cosmetics and Med Chem, Biologics, Drugs and Med Chem) 

include three different sections. Ten areas (Turbines and Engines, Machine Tools, 

Furnace, Electric Power, Info Transmission, Data Commerce, Med Instruments, 

Combustion Engines, Telephone Comm, TV, Imaging &Comm) have two different 

sections. Only Medical Devices, Food, Recording, Computing, and Radio 

Communication areas encompass a single section (further details on this are available in 

Supplementary File 1.) 

This difference between hierarchy and similarity can be observed by comparing 

Figure 1 with the same map with the nodes colored according to the eight major IPC 

sections (Figure 2). This observation is strong evidence that the IPC classification on its 

http://www.vosviewer.com/vosviewer.php?map=http://www.sussex.ac.uk/Users/ir28/patmap/KaySupplementary3.txt�
http://www.vosviewer.com/vosviewer.php?map=http://www.sussex.ac.uk/Users/ir28/patmap/KaySupplementary3.txt�
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own is not an appropriate framework to investigate technological diversity without taking 

account technological distance. 

 

Figure 2. Full patent map of 466 technology categories and eight 1-digit IPC classes 

 
Note: each node color represents a 1-digit IPC section; lines represent relationships between technology 
categories (the darker the line the shorter the technological distance between categories).Yellow is for 
Section A: Human Necessities; Light green is for Section B: Performing Operations, Transporting; Red is 
for Section C: Chemistry, Metallurgy; Light blue is for Section D: Textiles, Paper; Light red is for Section 
E: Fixed Constructions; White is for Section F: Mechanical Engineering, Lighting, Heating, Weapons, 
Blasting; Orange is for Section G: Physics; Blue is for Section H: Electricity. 
 

 

We can further elucidate the classification underlying our map by relating these 

categories to those in another prominent patent map. The map developed by Leydesdorff 

and colleagues uses Classes (3-digit) and Sub-Classes (4-digit)(refer 

to http://www.leydesdorff.net/ipcmaps/).In contrast, our map uses more detailed 

categorizations to disaggregate some of the patent groupings into more fine-grained 

analyzable components. By way of example, Leydesdorff’sClass-based (3-digit)map has 

http://www.leydesdorff.net/ipcmaps/�
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a single node representing "Medical or Veterinary Science" (IPC A61) on the bottom left 

side of the map. However, because A61 includes a large share (well over twenty percent) 

of patents, our map disaggregates this “super-node” into 53 different nodes which end 

upinfive different medical/veterinary science related clusters or technological areas: (1) 

Drugs, Med. Chemistry, (2) Biologics, (3) Cosmetics and Med. Chemistry, (4) Medical 

Instruments, and (5) Medical Devices. Each of these areas is made up of categories that 

come from different sections and are classified at different levels. Table 3 illustrates how 

these multiple levels co-exist for the case of the technological area that we labeled 

“Biologics.”This area includes categories at the Class level (“Agriculture”, A01,) Sub-

Class (“Peptides”, C07K,)Main Group (“Peptides, medical”, A61K 38/00) and Sub-Group 

(“Recombinant DNA”, C12N 15/09.) 

 

Table 3. List of categories for the technological area “Biologics” 
Category Label IPC number # Apps 
Agriculture A01 45,126 
Animal husbandry A01K 14,548 
Peptides, medical A61K38/00 482,120 
Antigens A61K39/00 20,010 
Antibodies A61K39/395 47,662 
Gene therapy A61K48/00 15,899 
Saccharides C07H21/00 14,578 
Peptides, compounds C07K 58,219 
Peptides from humans C07K14/435 43,462 
Peptides from animals C07K14/47 14,602 
Immunoglobulins C07K16/18 27,481 
Extractions from organisms C12N 26,627 
Modified fungi C12N1/15 47,884 
Modified yeasts C12N 1/19 32,469 
Cellulose processes C12N 1/21 13,631 
Virus transformed cells C12N 5/10 10,402 
Recombinant DNA C12N15/09 21,345 
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Genes encoding animal proteins  C12N15/12 25,010 
Fermentation for food C12P 29,202 
Testing, microorganisms C12Q 18,442 
Testing, nucleic acids C12Q1/68 22,731 
Bacteriology C12R 48,984 
Measuring biological material G01N33/50 517,367 
Immunoassay G01N33/53 43,835 
Measuring using proteins, amino acids, lipids G01N33/68 119,957 

Note:An equivalent table for each of the 35 technological areas can be find at Supplementary File 1, under 
the tab “Label and Count Table”.iv

 
 

Given our map's ability to present disaggregated categories, we are able to show 

35 technological areas or clusters versus only five in the Leydesdorff map. This more 

disaggregated clustering enables differentiation of the patent portfolios of a company 

engaged in cosmetics patenting from one engaged in drug development and from yet 

another engaged in medical instrument development. In conclusion, we believe that the 

multi-level method of classification proposed here achieves a more accurate description 

than a straightforward use of IPC classes at the Class or Sub-Class level. 

A major problem in these comparisons is that in the case of patents, unlike the 

map of science, where there has been a pre-established conventional understanding of 

disciplines, it is not clear how groups of technologies can be interpreted. This problem is 

compounded by the heterogeneous nature of the patent classes, which includes materials 

(e.g. “Alloys”, C22C,) devices (e.g. “Machines and engines”, F01) and products (e.g. 

“Ships”, B63.)This conceptual diversityis observed within the technological classes 

derived from the factor analysis. For example the area of “Turbines and engines” includes 

“Turbines” (F01D,) “Jet propulsion” (F02K,) “Aircraft equipment” (B64D) and 

“Airplanes and helicopters” (B64D)—elements from distinct branches of the IPC 

classification. These four subclassesobviously co-occur but rather thanbeing similarthey 
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likely co-occur because they areembedded and/or complementary.And the area of 

“Lightning” includes “Basic electric elements” (H01,)Lighting (F21,) “Vehicle signaling” 

(B60Q) and “Specialized equipment used in roads” (E01F)—which again are 

complementary pieces of technology at different levels of aggregation. This difficulty we 

are facing is not simply a problem of classification, but a conundrum due to the multiple 

meanings and scales that the technology concept may take (Arthur 2010, p. 28). 

Awareness of the conceptual heterogeneity of nodes or elements in the map raises 

the issue of whether the maps show “similarity” between categories as we have assumed, 

or other properties such as co-occurrence and complementarity. For example, patents of 

metals and automobiles are related not because these categories are similar but because 

automobiles are often made of metals. Also, plastics and metals may co-occur simply 

because they are materials that are used in similar products such as buckets and 

automobiles, not because they are similar.v

 

This issue suggests that the interpretation of 

the patent map should be ontologically flexible. In other words, when interpretingthis 

patent map, one should take into account that both the elements and the relations may 

have different meanings. 

 The overall structure of our map appears to be consistent with previous 

technological maps based on patents that used different algorithms for aggregating IPC 

categories (Hinze et al., 1997, Boyack & Klavans, 2008; Leydesdorff et al., 2012; Schoen 

et al., 2012).Hinze’s map offers the most straightforward comparison given that it only 

has 35 categories. The similarity in position to our map with the technological areas in 

Comparison of map structures 
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the extreme ends of the network is quite striking. For example, in the bioscience pole, 

categories related with food, drugs and biotechnology have the same relative position. In 

the ICT pole as well, optics, audiovisual technologies and telecommunications also keep 

the relative position. “Semiconductors” however occupies a more central position in our 

map than in Hinze’s, resemblingthe map developed by Boyack but not the one 

byLeydesdorff. In the vehicle/mechanical pole, one can relate Hinze’s categories to our 

technological areas (engines, turbines, mechanical elements, transport,) but it is not 

possible to compare the relative positions of the two maps due to the lack of comparable 

labels in the categories. It is worth stressing that Hinze’s visualisation is based in 

multidimensional scaling, whereas the one presented in Figure 1 is achieved with 

Kamada-Kawai algorithm; hence, the similarities arise from factors other than the 

particular layouts used in each case. 

Based on these similarities between Hinze’s and Figure 1, we are confident that 

our map captures the main axis in the broad relative position of technologies. The map 

that differs the most, among those inspected, is the one by Schoen et al. (2012), which 

nevertheless still partially captures the three axes mentioned. The difference in Schoen’s 

map might reflect a different layout algorithm rather than substantive differences in the 

relations between technologies. In sum, further research is needed to better understand 

the relative structure of technologies, and ascertain whether the structure observed is 

robust and stable (as it was surprisingly found in the map of science, see Klavans and 

Boyack, 2009), or whether it is susceptible to differences stemming from the use of 

different (still equally valid) presentation angles. 
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Another interesting feature of the global patent map is the high level of 

interconnectedness of most of the 35 technological areas. This can be observed not only 

in many connections among technology groups within each technological area, as shown 

by the densest areas of the map, but also across them. Some exceptions are areas such as 

Food, Drugs & Med Chem, Biologics, TV Imaging &Comm, Cosm& Med Chem, and 

Radio &Comm that form more uniform clusters of technology groups (i.e. they appear as 

clusters of nodes of the same color) (Figure 1). Another notable feature is the short 

distance among technologies in a handful of groups such as Drugs & Med Chem and 

Biologics, as shown by denser areas and darker lines in the left hand side of the maps. 

The sparse areas of the map are those associated with technological areas that comprise 

fewer technology categories include, for example, Electric Power, Lighting, and 

Recording. 

Interconnectedness 

 

Based on the global patent map, patent overlay maps allow, for example, benchmarking 

of companies and specific technological fields. To illustrate and test the application of 

patent map overlays, two corporate datasets of nanotechnology patent applications have 

been created for Samsung and DuPont, and two nanotechnology subfield datasets have 

been created for Nano-Biosensors and Graphene nanotechnology applications, using data 

from the Georgia Tech Global Nanotechnology databases in the same time period (2000-

2006). 

Patent overlay maps 
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The visual examination of maps shows nanotechnology development foci that 

vary across companies (even for those in similar industry sectors) and different patenting 

activity levels for the studied period. The two overlays presented herein appear 

diversified and encompass a number of technological areas. The patent overlay created 

for Samsung, for example, shows activity concentrated on semiconductors and optics, 

with a notable level of patenting activity across other areas as well (Figure 3a). The 

company has also some prominent activity on technological areas broadly defined as 

Catalysis & Separation, Photolithography, and Chemistry & Polymers. The focus of 

DuPont (Figure 3b), on the other hand, is more on Drugs, Medicine & Chemistry, 

Chemistry & Polymers, and Biologics. This company seems to have a portfolio of patent 

applications that is even more diversified, but it also is less active in terms of patenting 

activity, than Samsung. 

  



22 
 

Figure 3. Patent overlays applied to company benchmarking 
 

a) Samsung 

 
 

b) DuPont 

 
Note: labels shown only for top technological areas of the company patent portfolio; the size of nodes is 
proportional to the number of patent applications in the corresponding technology group. Higher resolution 
figures can be found in supplementary file 2, as indicated in the Appendix. 
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The application of patent overlays to the analysis of technological subfields can 

also help provide a better understanding of technologies involved in the development of 

these subfields and relationships between them and with the patent portfolio of 

companies. Yet, while the patent maps applied to companies reflect the result of a 

corporate strategy implemented by a single organization, patent maps applied to 

technological fields reflect the aggregation of activities of multiple (and usually 

numerous) categories in the same or different sectors.  

In the application of patent overlay maps to nanotechnology, technological 

developments in nano-biosensors are focused on categories such as Laboratory 

Equipment, Semiconductors and Biologics (Figure 4a). The subfield of Graphene, a more 

recent development that was recognized with the 2010 Nobel Prize in Physics, presents 

lower activity levels with a diversified focus on Catalysis & Separation, Chemistry & 

Polymers, Semiconductors and Optics among others (Figure 4b). 
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Figure 4. Patent overlays applied to field mapping 
 

a) Nano-biosensors 

 
 

b) Graphene 

 
Note: labels shown only for top technological areas in the subfield; the size of nodes is proportional to the 
number of patent applications in the corresponding technology group. Higher resolution figures can be 
found in supplementary file 2, as indicated in the Appendix. 
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Conclusion 
 
This paper presents preliminary results of a new patent visualization tool with potential to 

support competitive intelligence and policy decision-making, following a methodology 

successfully used in science overlay mapping (Rafols et al., 2010). The approach 

involves a two-step visualization process. First, we build a global map that shows the 

technological distance among patent categories using citing-to-cited information for 

seven years of EPO data. Second, we overlay the patenting activity of specific 

organisations or in specific technological fields over the fixed “backbone” of the patent 

map. The aim of this superposition or overlay, is to help understand the patent portfolio 

of an organisation in the context of the overall technological landscape.  

The approach offers distinctive visualization capability with parsimony. In 

contrast to prior IPC-based global patent maps, this approach recombines IPC categories 

to reflect a finer distribution of patents. Thus, it enables improved differentiation ability 

in categories with a large amount of patenting activity such as “Medical or Veterinary 

Science” (IPC A61).  

The definition of categories and its implementation using a thesaurus to match 

IPC categories facilitates replication by helping to trace back individual categories to 

verify results and make improvements. Nevertheless, these maps are only reliable to the 

extent that assignation of patents to IPC categories is accurate and meaningful. Since 

patent assignation to IPCs may not always be accurate, a large set of patents may be 

required to ensure that the portfolio of patents shown in an overlay map can be trusted to 

convey the patenting activities of an organisation represented (in the case of science 
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maps, this was estimated to be above 1,500 publications for high resolution accuracy, and 

above 100 publications for lower resolution) (see Appendix 1 in Rafols et al. (2010).) 

One of the most interesting findings is that IPC categories that are close to one 

another in the patent map are not necessarily in the same hierarchical IPC branch. This 

finding reveals new patterns of relationships among technologies that pertain to different 

(and sometimes distant) subject areas in the IPC classification. The finding suggests that 

technological distance is not always well proxied by relying on the IPC administrative 

structure, for example, by assuming that a set of patents represents substantial 

technological distance because the set references different IPC sections. This paper shows 

that patents in certain technology areas tend to cite multiple and diverse IPC sections. For 

example, the Drugs & Medicine and Biologics dimensions include various drug-related 

Sub-Classes in IPC Class A61, but they also include several chemistry compound Sub-

Classes in IPC Class C07; traditional measures would assume that technologies in these 

dimensions are distant because they include two different sections (sections A and C), but 

our network map shows that technologies in these two sections are closely interrelated, 

inasmuch as the patents in these Sub-Classes tend to cite one-another. An improved 

measure of technological distance would take into consideration patent citation or co-

occurrence characteristics.  

Potential applications of patent overlay maps include organizational and 

regional/country benchmarking (e.g. for the examination of competitive positions,) 

exploration of potential collaborations, and general analysis of technological changes 

over time. For example, the comparison of maps over time can reveal new patterns of 

relationship among categories that might help to understand the emergence of new fields 
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and the extent of their impact. Patent maps may also reveal relatively unexplored 

technological areas that are more central to other technologies or highlight denser areas 

with more technological interdependency that might form platforms for the emergence of 

future technology applications (like the Drugs & Medicine and Biologics categories in 

the maps shown in this paper.) Most of these explorations may require greater granularity 

for such analysis and policy decision-making (except in the case of large firms with 

extensive patent portfolios, such as the example of Samsung and DuPont illustrated). This 

need for granularity is a challenge that faces all global maps. Future work would enable 

greater ability to drill-down in certain areas, as well as to compare different global 

maps—for example, maps based on IPC 8 with maps based on IPC7 version—but a 

stable global map is required as an initial base for such an effort. 

Ongoing work has sought to overcome some issues found in the development of 

the original patent overlay maps. Among the most important issues is the coverage of the 

thesaurus developed to match 466 IPC categories based on the main patent dataset. While 

this dataset covers a wide range of IPC categories, the resulting thesaurus still does not 

match a number of IPC categories in the datasets created for patent overlay maps. This 

kind of issue varies across patent overlay datasets and may represent a significant 

proportion of the patent records in certain cases. This is, however, a problem that can be 

solved in future implementations by creating a new thesaurus based on a larger dataset 

that covers more than seven years of patent activity. 

Next steps in this research thrust include updates of the basemap based on the 

current version of the PATSTAT database and use of the most recent IPC classification, 

version 8. Refining the patent database to focus only on patent grants (it currently 
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includes applications as well as grants) is one path for future work, while another is to 

develop a patent map for patents from other patent authorities besides EPO. In addition, 

the stability of the patent maps could be tested with the segmentation of maps by year or 

year ranges. The backbone patent map in this paper should be compared with results from 

other global patent mapping efforts to determine the extent of consistency between these 

maps. Although we have presented some preliminary comparisons, a more rigorous and 

systematic approach for comparing these maps and categorizations is needed (see, for 

example,Klavans&Boyack, 2009; Rafols & Leydesdorff, 2009). Potential future research 

includes the analysis of connections between patent maps and science maps, with 

particular focus on technological fields with strong science links vi

 

, as well as 

classifications based on full clustering of an entire database rather than a subset (as 

recently done in science with more than 10 million records by Waltman& van Eck, 

2012). 
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Appendix: Supplementary materials 
The authors made available three supplementary online files:  

• Supplementary File 1 is an MS Excel file containing the labels of IPC categories, 
citation and similarity matrices, factor analysis of IPC categories. It can be found 
at:  
 http://www.sussex.ac.uk/Users/ir28/patmap/KaySupplementary1.xls 

• Supplementary File 2 is an MS PowerPoint file with examples of overlay maps 
of firms and research topics. It can be found at: 
 http://www.sussex.ac.uk/Users/ir28/patmap/KaySupplementary2.ppt 

• Supplementary File 3 is an interactive version of map in Figure 1visualized with 
the freeware VOSviewer. It can be found 
at: http://www.vosviewer.com/vosviewer.php?map=http://www.sussex.ac.uk/User
s/ir28/patmap/KaySupplementary3.txt 
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i Lately, there has been a proliferation of global maps (see, for example, Bollen et al., 
2009; Boyack, Börner, & Klavans, 2009; Boyack, Klavans, & Börner, 2005; Janssens, 
Zhang, Moor, & Glänzel, 2009; Leydesdorff & Rafols, 2009; Moya-Anegon et al., 2004; 
Moya-Anegón, Vargas-Quesada, Chinchilla-Rodríguez, Corera-Álvarez, & Herrero-
Solana, 2007; Rosvall & Bergstrom, 2010). 
ii Thomson Reuters also has a patent visualization capability, Aureka, but it is a local 
rather than a global mapping application. 
iii The analysis shows that only 0.2 percent of the patents of Samsung and 2.6 percent of 
the patents of Dupont that are solely assigned to the B82B class are not represented in the 
maps.  
iv Available at: http://www.sussex.ac.uk/Users/ir28/patmap/KaySupplementary1.xls 
vWe thank Antoine Schoen for this point. 
viSee for example http://www.mapofscience.com for an overlay of patents in the map of 
science carried out by Kevin Boyack and Richard Klavans (unpublished). Accessed 
September 23rd 2013. 
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