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Chapter 1

Introduction

Current and incoming chip–multiprocessor (CMP) present important constraints
of power and area that must be addressed to sustain the performance. To this end,
critical components must be identified and their design must be revisited in order to
devise new efficient power-aware structures with no or minimal performance penalties,
which is the focus and goal of this work.

To achieve this goal this work considers the different types (i.e. private and shared)
of blocks in parallel workloads to devise i) an energy and area efficient directory cache,
and ii) a power-aware first-level processor cache.

1.1 Problem Description

As the number of cores increases in both incoming and future shared-memory CMP
generations, the cache hierarchy prevents processor performance to scale due to power
and area design concerns. In this context, coherence protocols and first-level data
caches are among the critical components in the cache hierarchy, whose design should
be revisited to provide new memory structures to enable scalability.

From the memory coherence point of view, directory–based coherence is the com-
monly preferred approach over snoop–based coherence, since the former keeps track of
cached blocks to avoid the use of broadcast messages. Two main design choices have
been used in both research proposals [MH07, CRG+11] and commercial processors
[CKD+10, BGM00, SBB07] to implement CMP directories: Duplicate Tags and Sparse
Directories. Both approaches present different design concerns. Duplicate Tags do
not scale for large systems due to the high energy consumed by the highly associative
lookups, required to build the sharer vector. Sparse directories use a directory cache,
that is implemented as a typical processor cache to keep track of the cached blocks.

9



10 Introduction

This approach presents two main disadvantages: i) implements a large sharer vector
that is expected to introduce important on–chip area and leakage overheads in future
CMPs [ZSQM09], and ii) blocks in the processor cache must be invalidated when the
associated directory entry is evicted. However, due to power reasons directory caches
is the preferred approach and the focus of this work. This work proposes the PS direc-
tory that deals with the mentioned drawbacks of directory caches. For this purpose, a
new design is presented, namely the PS directory, that reduces the area occupied by
the sharer vector field, as well as the consumed energy. Moreover, the proposed design
combines different RAM technologies (SRAM and eDRAM) to deal with both area and
energy.

On the other hand, processor caches, typically organized in a two- or three-level
cache hierarchy, occupy a significant percentage of the overall CMP die area [BJ11]
and consume an important fraction of the overall energy budget. Dissipated energy
has two main components: dynamic energy and static energy or leakage energy. The
former is consumed when transistors switch their value while the latter is due to leakage
currents.

Dynamic energy mainly concentrates in the first-level cache due to this level is the
mostly accessed one. An important fraction of this energy is due tag comparisons
on each cache access, that are typically accessed in parallel for performance in set-
associative caches. Because of this reason, many research has been performed in the
past concentrating in monolithic processors to tackle this problem. However, this
research cannot be directly applied to CMPs.

This work presents a new cache scheme, namely the PS cache, to reduce the highly
energy consumed due to tag comparisons. The proposed approach only looks up a
subset of ways of the cache set. To this end, blocks in the different ways are tagged ac-
cording to a given non-speculative criterion, and only those tags of the blocks matching
the target criterion are compared.

The two main contributions of this work discussed above lay on the fact that private
(P) and shared (S) blocks in parallel workloads exhibit different behavior. Based on
this fact, the proposals take advantage of it, by performing different actions according
to the type of block that is being accessed. The remainder of this chapter is organized
as follows. Section 1.2 describes the basics of NUCA (non uniform cache access) archi-
tectures that are the assumed in the baseline CMP system. Section 1.3 presents the
different types of coherence protocols and summarizes their pros and cons. Section 1.4
depicts the current scalability issues in current and future CMPs. Section 1.5 lists how
the rest of this thesis is structured.



1.2 Non Uniform Cache Access (NUCA) 11

Figure 1.1: Evolution in the access times.

1.2 Non Uniform Cache Access (NUCA)

The improvements in the integration scale have brought an increase in memory
cache’s capacity and deeper memory hierarchy (L1, L2, L3, etc.), that, in general,
occupies a large percentage of the chip’s area. The problem lies that the bigger de
memory size, the higher the access latency is. Figure 1.1 shows an example. In a con-
ventional memory design the worst case scenario is taken into account, which in this
case is defined as the time required to access the memory position furthest away. When
sizes were not as big this was not a serious problem, but nowadays it is a considerable
penalization in memory access.

A common solution to this problem is the utilization of NUCA (Non Uniform Cache
Architecture) type caches, in which the big-sized memory is divided in many of lesser
size banks, resulting in different access latency depending on the distance. In other
words, an organization of a NUCA consists of a number of columns, a number of banks
and the individual capacity of each one of them. Then, for a NUCA with m columns
and n banks of c capacity, we achieve a total capacity of C = m× n× c.

In Figure 1.2 we can observe several different configurations and their respective
average access times. In the the upper ones a traditional UCA along an inclusive
multilevel UCA are presented. With this additional level in the memory hierarchy we
can reduce the high latencies of the UCA. Then, several desgin variants of a NUCA
are presented. In the S-NUCA-1 (Static-NUCA-1) the less significant bits are used to
decide in which bank the block can be found or should be stored, each one of them
with a different acess latency. All banks are connected through data and address buses,
which imposes a wire overhead of 20.9%, which is a serious performance problem. In the
S-NUCA-2 said overhead is reduced up to 5.9% through the use of a 2D interconnection
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Figure 1.2: Average access time depending of the memory configuration.

network. Lastly, we have the D-NUCA (Dynamic-NUCA) which shares a design similar
to the S-NUCA-2. In this configuration a block does not have a fixed bank assigned,
but regarding of its utilization rate it will be found on the nearest or furthest banks.
That is, the dynamic migration of data between the banks of the cache is allowed.
With this we can achieve an improvement in the average access latency.

1.3 Coherence Protocols

In order to maintain the coherence between all processors of a CMP the use of
cache coherence protocols is required. In this section a brief summary about the design
options of these protocols will be made.

1.3.1 MOESI Protocol

There are many alternatives in the design of coherence protocols depending of
the possible states of the blocks stored in their private caches (typically L1). This
alternatives are often named by the states they make use of: MOESI, MOSI, MESI,
MSI, etc. Each state represents somre read and write permissions for the block stored
in the private cache. In this work a MOESI protocol has been used, which has a bigger
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number of states (other protocol employ a subgroup of them), and which states are the
following:

• M (Modified): A block in modified state has the only valid copy of the data. The
core maintains this copy in its cache and has write and read permission over the
block. The other private caches can’t have a copy. The copy in the shared L2 (if
present) is obsolete. When another core requests this block, the cache with the
block in modified state must provide it.

• O (Owner): A block in owner state has a valid copy of the data, but in this
case, other copies in a shared state may coexist. There can be only a block in
owner state. The core maintaining a copy of this block has read permission, but
cannot modify it. When a core tries to modify it, coherence actions are needed
to invalidate the other copies. In this way, the owner state is similar to the
shared one. The difference resides in the fact that the owner is responsible for
providing a copy of the block after a cache miss, since the copy in the shared
L2 (if present) is obsolete. Furthermore, the evictions of blocks in owner state
always need writeback operations.

• E (Exclusive): A block in exclusive state has a valid copy of the data. The other
private caches cannot have a copy of this block. The core with this copy has read
and write permissions. The shared L2 may also have a valid copy of the block’s
data.

• S (Shared): A block in shared state has a valid copy of the data. Other cores may
also have a copy in shared state and one of them in owner state. If no private
cache has the block in owner state, the shared L2 also has a valid copy of the
block and is responsible for providing it if requested.

• I (Invalid): A block in invalid state has no valid copy of the data. The valid
copies may be found either in the shared L2 cache or in some other private cache.

1.3.2 Update and Invalidation Protocols

When a block that was already stored in cache by another core is writte, it is nec-
essary to take specific actions in order to keep the coherence of the memory system.
There exist two main options: update protocols and invalidation protocols.
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Figure 1.3: State transition diagram for a MOESI protocol.

Figure 1.4: Example of how an update protocol works.

In an update protocol, when a core writes on a block, all other copies in the rest of
the CMP caches are updated. Subsequent access to that block will have an updated
value of it. In order to do this, it is necessary that this update is notified to the rest
of the caches, indicating the number of the implicated block and updated value. Once
the block is updated, the read operations of other processors don’t provoke a cache
miss. This is specially good when there are writings made by a processor followed by
a sequence of readings of other processors.

On the other hand, we have the invalidation protocols, in which when a core writes
on a block, all other copies in the other caches are invalidated. In this case, subsequent
accesses will provoke a cache miss. After the resolution of this miss, the cache will ob-
tain an updated copy. With this method, once a block is invalidated, new modifications
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Figure 1.5: Example of how an invalidation protocol works.

by the same core will not trigger new invalidations. Therefore, the best case scenario
for an invalidation protocol is that in which there are multiple write operations by a
same core.

In this work an invalidation protocol has been chosen, because it is faster and
simpler to implement, since we only need to indicate the block number to the remaining
caches, than the update one.

1.3.3 Directory-based and Snoopy Protocols

When implementing the coherence mechanisms in the cache system, for example
the invalidation or update orders explained in the previous section, we have two op-
tions: snoopy and directory-based protocols.

In snoopy protocols this orders must be sent to all caches of all cores, even if they
do not have a copy of the block, and they are responsible of finding if that same order
affects them in any way or not. For this to be a viable options, an interconnection
network that simplifies broadcasting (MPs with shared centralized memory, a common
bus) is needed. Furthermore, the system needs to implement a monitorizing mecha-
nism of the bus in order to intercept the invalidation/update orders and add specific
lines to the bus in order for it to support the specific protocol being used. The main
disadvantage of this kind of protocols is that the higher the number of cores of the
CMP, the bigger the traffic induced in the network.

Directory protocols aim to solve this scalability and interconnection problems of
snoopy protocols. The systems employing these protocols are the recommended ones
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when scalability (in the number of processors) is an important design factor.

One of the main objectives of directory-based protocols is the avoidance of broad-
casting. In its place, communications only takes place between those processors which
will likely have a copy in its caches. For that, we need a structure that stores if a
memory line is in a private cache, which proessors have a copy and if said line is clean
or dirty. In a full directory scheme, all information of all memory lines is kept. For
example, for a system with n cores, each one with its private cache, a boolean array of
size n+1 is needed. If a bit i (i=1,...,n) is set to true, that means that processor i has a
valid copy of the line. The (i=0) bit indicates if the line is clean or dirty. An array in
which all elements are zero means that the lines is found exclusively in main memory.
If the (i=0) bit is active, the line is dirty and only one of the other bits can be active
as well. With this we achieve that memory traffic grows linearly with the number of
cores, while this grow in snoopy protocols is quadratic. In this point of view we achieve
improvements in scalability.

In order to store all information of all memory lines of a full directory, an impor-
tant amount of area is needed, with brings again scalability restrictions. That is why
directory caches, which work similarly to a full directory, are used. Main difference
between the two of them is that, when a directory cache is forced to evict a line because
of space reasons (something that cannot happen in a full directory), the blocks in the
private caches must be invalidated, even if they are still being used, in order to keep
the coherence. This way a new kind of miss arises and adds itself to the list of misses
that are inherent to private caches (cold, conflict and capacity) and to those inherent
to shared memory systems (coherence). They are the so called coverage misses, misses
that are the result of a block access that has been evicted because there was no space
left in the directory cache.

In this work a study of this structure will be made, proposing a new one that
improves in terms of energy and area, without compromising performance. For this
purpose, we will focus on the behaviour of private and shared blocks (explained in
section 3.2).
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1.4 Dealing with Scalability in Future CMPs

CMP systems must be designed to accommodate specific area and power budgets.
Both technological constraints represent major design concerns since they prevent fu-
ture manycore CMPs from scalability with future increasing core counts. Power con-
sumption is mainly distributed between cores and large on-chip cache memories in
current designs. Caches occupy a large percentage of the on-chip area to mitigate
the huge penalties of accessing the off-chip main memory. Giving more silicon area
and power to the cache hierarchy and related structures (e.g. directory caches) leaves
less space and power for cores, which could force CMP designs with simpler cores so
yielding to lower performance, especially for single-threaded applications [MH08].

Many efforts have been carried out in either the industry and academy to deal
with power and area focusing on the cache subsystem, including processor caches, off-
chip caches and directory structures. Regarding the processor caches they are the
responsible of a significant percentage of the area and power consumption of proces-
sors. Regarding the directory caches, they have been proven to provide effectiveness
and scalability, both in terms of power and area, for a small to medium number of
cores. However, these design issues must be properly faced for future systems since the
pressure on achieving good cache performance increases with the core counts. There
are two main ways to tackle these issues: i) architectural solutions to achieve a good
tradeoff among performance, area and power (as in the PS cache), and ii) combining
disparate technologies in a power and/or area aware design. Both ways can be applied
independently (as in the PS cache) or together, as in the PS directory cache.

This work presents architectural innovations to track separately private and shared
blocks in two independent directory caches. The main aim of this two-cache approach
is to tailor each cache structure to the requirements of each type of blocks with different
architectural solutions. In addition, distinct technologies can be used for implementing
the different caches. For instance, a power aware technology can be used for one cache
while a fast technology can be employed for the other one. In the case of the PS cache
such innovations aim to reduce the number of ways looked up.

The cache hierarchy has been typically implemented with SRAM technology (6 tran-
sistors per cell) which consumes important amounts of power and area. A few years
ago, technology advances have allowed to embed DRAM (eDRAM) cells in CMOS tech-
nology [MS05]. An eDRAM cell integrates a trench DRAM storage into a logic circuit
technology. Table 1.1 highlights the main properties of these technologies regarding
the design issues addressed in this work. Compared to SRAM, eDRAM cells have both
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Table 1.1: Comparing Technological Features of SRAM versus eDRAM.
Technology Density Speed Power
SRAM low fast high
eDRAM high slow low

less power consumption and higher density but lower speed. Because of the reduced
speed, eDRAM cells have not been used in manufactured first-level high-performance
processor caches. In short, both technologies present diverse features regarding density,
speed, and power.

These CMOS compatible technologies have been used both in the industry and
the academia to implement processor caches. For instance, in some modern micropro-
cessors [TDF+02, SKT+05, KSSF10] SRAM technology is employed in L1 processor
caches while eDRAM cells are used to allow huge storage capacity in last level caches.
Regarding academia, some recent works [VSP+09, WLZ+09] mingle these technologies
in different cache levels. In short, both technologies properly combined at different (or
even the same) cache structures can be used to address speed, area, and power in the
cache subsystem.

In this work, and to the best of our knowledge, this is the first time that both
technologies are combined to implement the directory cache. We use SRAM for speed
in the frequently accessed Shared cache while eDRAM is employed for power and area
savings in the much larger Private cache. Therefore, scalability and performance are
provided by design thanks to the joined use of architectural techniques and the choice
of the appropriate technology for each cache structure.

1.5 Work Structure

The rest of this work is organized as follows. Chapter 2 discusses the related
work. Chapter 3 presents the PS directory proposal. Chapter 4 presents the PS
cache proposal. Chapter 5 describes the simulation environment. Chapter 6 analyzes
the performance, area and energy consumption of the proposals. Finally, Chapter 7
presents some concluding remarks.



Chapter 2

Related Work

This work focuses on two main memory structures of the cache hierarchy: directory
caches and processor caches. This chapter summarizes related research to this thesis,
broken down according to the memory structure being studied.

2.1 Directory Caches

Cache coherence is needed in shared memory systems where multiple cores have
copies of the same memory blocks. Part of this work focuses on directory-based pro-
tocols, which are the commonly adopted solution for a medium to large core count.
These protocols use a coherence directory to track which private (e.g. L1) processor
caches share each block. The directory structure is accessed to carry out coherence
actions such as sending invalidation requests to serialize write operations, or asking a
copy of the block to the owner (e.g. the last processor that wrote it).

Traditional directory schemes does not scale with the core count, which is the cur-
rent trend in the microprocessor industry. Thus, implementing directories that scale
to hundreds of cores in terms of power and area is a major design concern. Direc-
tory implementations, both in academia and industry, follow two main approaches:
duplicate-tag directories and sparse directories.

2.1.1 Duplicate-tag and directories

Duplicate-tag directories maintain a copy of the tags of all tracked blocks in the
lower cache level (e.g. the L1 core cache). Therefore, this approach does not raise
directory induced invalidations. The sharer vector is obtained by accessing the highly
associative directory structure. This approach has been implemented in modern small

19



20 Related Work

CMP systems [BGM00, SBB07] and is the focus of recent research works [RAG10,
ZSQM09]. The main drawback of this approach is the required associativity of the
directory structure, which must be equal to the product of the number core caches
by the associativity of such caches. This means that a directory access requires a 512
associative search for 64 8-way L1 caches. Duplicate-tag directories are area–efficient,
however, the highly associative structures yield to a non-scalable quadratic growth of
the aggregated energy consumption [FLKBF11a], so this approach becomes prohibitive
for a medium to large core count.

The high power consumption incurred by duplicate-tag directories has led some
research to focus on providing high associativity with a small number of ways. Cuckoo
Directory [FLKBF11a] uses a different hash function to index each directory way, like
skew–associative caches. Hits require a single lookup but replacements require from
multiple hash functions to provide multiple candidates, so giving the illusion of a cache
with higher associativity but at the expense of higher consumption and latency.

2.1.2 Sparse directories

Sparse cache directories [GWM90] are organized as a set-associative cache like struc-
ture indexed by the block address. Reducing the directory associativity makes this ap-
proach more power–efficient than duplicate–tag directories. Each cache directory entry
encodes the set of sharers of the associated tracked block. Conventional approaches
use a bit vector, that is, a bit per-core cache, to encode the sharers. In this scheme,
the per-core area grows linearly with the core count and the aggregated directory area
grows quadratically, since the number of directory structures increases with the number
of cores. Previous research works have focused on reducing directory area by focusing
on the entry size.

To shorten the entry size some approaches use compression [AGGD01, CKA91,
Che93, ON90]. In [AGGD01, AGGD05] a two-level cache directory is proposed. The
first-level stores the typical sharer vector while the second-level uses a compressed code.
When using compression, area is saved at expenses of using an inexact representation
of the sharer vector, thus yielding to performance losses. Hierarchical [GWX+10] rep-
resentation of the sharer vector has been also used for entry size reduction purposes.
However, hierarchical organizations impose additional lookups on the critical path so
hurting latency. Sparse directories may reduce area by reducing the number of directory
entries but at the expense of performance since directory evictions force invalidations
at the core caches of the blocks being tracked.
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Unlike typical sparse directories, a recent scheme [SK12] uses different entry formats
of the same length. Lines with one or a few sharers use a single directory entry while
widely shared lines employ several cache lines (multi-tag format) using hierarchical bit
vectors. This scheme requires extra complexity and accesses for managing dynamic
changes (expanding/contracting) in the format.

Finally, other proposals [CRG+11] focus on reducing the number of entries imple-
mented in the cache directory instead of focusing on the sharer vector. While this
approach does not affect the performance, it requires modifying the OS, the Page
Table, the processor TLBs and the coherence protocol.

2.2 Cache Memories

The second proposal of this work is an energy-efficient cache design that takes
advantage of a private-shared detection of the blocks referenced by applications. Hence,
this section first reviews some related work about energy-efficient cache designs, and
then, it discusses some other optimizations based on a private-shared detection.

2.2.1 Energy-efficient cache designs

Caches consumption comes from both leakage (or static) and dynamic consump-
tion. Regarding leakage reductions, Powell et al. [PhYF+00] proposed a Gated-Vdd
technique that aims to reduce leakage for instruction caches by reconfiguring them
and turning off unused lines. Kaxiras et al. [KHM01] proposed the Cache Decay, an
approach that reduces the leakage power of processor caches by turning off those cache
lines that are predicted to be dead, i.e., not referenced by the processor before they are
evicted. Alternatively, Flautner et al. [FKM+02] exploited the fact that in a particular
period of time only a subset of the cache lines are accessed to propose the Drowsy
Caches. Different from the previous proposals, the voltage is reduced, but not cut off,
for those cache lines that are not being accessed. In this way, the content of the cache
line is not erased.

While techniques that aim to save leakage focus on reducing (or cutting off) voltage,
dynamic energy saving techniques try to minimize the number of data read and written
on every cache access. For example, Albonesi [Alb99] proposed Selective Cache Ways,
a cache design able to enable only a subset of the cache ways when the cache activity
is not high. The prediction of ways was previously proposed by Calder et al. [CG96]
to reduce the access time of set-associative caches. Ghosh et al. [GÖF+09] proposed
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Way Guard, a mechanism for large set-associative caches that employs bloom filters to
reduce dynamic energy by skipping the lookup of cache lines that do not contain the
requested data according to the bloom filter.

Other techniques focus on reducing both leakage and dynamic consumption, for
example, by reducing the area of the cache tags, like in the TLB Index-Based Tagging
[LHK11], or by performing run-time partitioning, like in the Cooperative Caching
scheme [SPJ+12] or in the ReCaC scheme [KCG+10].

Our proposal will allow the reduction of both leakage and dynamic consumption
without arising the need for a reconfiguration.

2.2.2 Private-shared optimizations

The detection of private and shared data can be employed to optimize performance
and power. Kim et al. [KKH10] detect the sharing degree of memory pages to re-
duce the fraction of snoops in a token-based protocol. In this way, they can replace
broadcast messages with multicast ones, thus reducing the energy consumption of the
interconnection. The R-NUCA approach by Hardavellas et al. [HFFA09] detects pri-
vate and read-only pages and maps them efficiently in a distributed NUCA cache. By
mapping private pages to the closest NUCA bank to the core accessing them, the access
latency is reduced, but also the amount of traffic generated, which will impact in the
energy consumed by the network. Cuesta et al. [CRG+11] deactivate coherence for
private pages, thus avoiding their tracking by directory caches. This enables to reduce
the directory size up to eight times while still maintaining performance. Reductions in
directory area also leads to reduce both dynamic and leakage consumptions.

Some previous works rely on the compiler and/or memory allocator to classify
memory pages in order to either remove coherence for private pages [MS09] or improve
data placement [LAMJ10, LMJ12]. In [LAMJ10], a data ownership analysis of memory
regions is performed at compilation time. This information is transferred to the page
table by modifying the behavior of the memory allocator by means of hooks. This
proposal is further improved in [LMJ12] by considering a new class of data, named
as practically-private, which is mapped to the NUCA cache according to a first-touch
policy. In [MS09], private data is not stored at the LLC with the aim of avoiding cache
thrashing for private blocks. Different from our approach, these works mark statically
data as private either by the memory allocator or at compile time, when privacy of
some data cannot be guaranteed.

SWEL [PSNB10] is a novel hardware-based coherence protocol that uses a private-
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shared block classification at the directory to allocate shared read-write blocks only
at the shared LLC, so removing the need of coherence maintenance for them. The
main drawback of that proposal is the latency penalization of accessing shared read-
write blocks, which must be served by the LLC cache. POPS [HDH11] decouples
data and coherence information in the shared LLC to reduce access latency to this
information and to improve the aggregate NUCA capacity. It also employs a directory
private-shared classification (this time with the help of a predictor table). Spatio-
temporal Coherence Tracking [Ali12] also classifies private and shared data at the
directory, accounting for temporal private data. It tries to find large private regions
to merge them in the directory to save directory space. Finally, Ros and Kaxiras
[RK12] proposed VIPS, a complexity-efficient coherence protocol that employs write-
back caches for private data for efficiency reasons and write-through caches for shared
data for protocol simplicity.



Chapter 3

PS Directory

This chapter analyzes the behavior of private and shared blocks, and presents the
PS directory proposal. Also, the baseline CMP that will be considered in this work is
introduced.

3.1 Base Architecture

A tiled CMP architecture consists of a number of replicated tiles connected by
a switched direct network. Different tile organizations are possible so, to focus the
research, this work assumes that each tile contains a processing core with primary
caches (both instruction and data caches), a slice of the L2 cache, and a connection to
the on-chip network. Cache coherence is maintained at the L1 caches. In particular,
a directory-based cache coherence protocol is employed with a directory cache storing
coherence information. Both the L2 cache and the directory cache are shared among
the different processing cores but they are physically distributed among them, that is,
it is implemented as a NUCA architecture [KBK02]. Therefore, a fraction of accesses
to the L2 NUCA cache is sent to the local slice while the rest is serviced by remote L2
slices. In addition, L1 and L2 caches are non-inclusive, that is, some blocks stored in
the L1 caches may not have an entry in the L2 cache (but in the directory). Figure
3.1 shows the organization of a tile (left side) and a 16-tile CMP (right side), which is
used as baseline for experimental purposes.

This work pursues to take advantage of the parallel workload behavior to design
more efficient directory and data caches.
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Figure 3.1: Organization of the tile assumed in this work and a 4×4 tiled CMP.

3.2 Analyzing the Behavior of Private and Shared
Blocks from the Directory Point of View

The PS directory relies on the fact that private and shared blocks present different
behavior from the directory point of view, which can be outlined in four key observa-
tions and one finding. As explained below, these five key points advocate to organize
directory caches in two independent structures, one for tracking private blocks and the
other for shared blocks.

• Observation 1: Directory entries keeping track of private blocks do not require
the shared vector field.

• Observation 2: Most data blocks in parallel workloads are private.

This observation suggests to store entries of shared and private blocks in two dif-
ferent structures. According to these two observations, the Private cache should be
designed narrower and taller than the Shared cache, respectively, that is, with shorter
entries but with a higher number of them. Due to the smaller entry size in the Pri-
vate cache important area savings can be achieved, especially for systems with a large
number of cores, thus offering scalability. Notice that the larger the Private cache is
in comparison with the Shared cache, the more area savings can be obtained, thanks
to the missing sharer vector field.

• Observation 3: Most directory look–ups concentrate on shared entries.
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Figure 3.2: Number of accesses to private and shared entries per kilo instruction in a
conventional directory.
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Figure 3.3: Number of evictions of private and shared entries per kiloinstruction in a
conventional directory and its effect on performance.

• Observation 4: Almost all directory entries for private blocks are accessed only
once.

These observations emphasize that private blocks access the directory either when
they are not stored in the processor cache (e.g., first access or invalidations due to
directory evictions) or when a write-back is performed (e.g., due to space constraints
in the processor cache). The first case will cause a directory miss, while the second case
will hit in the private directory cache and will invalidate the corresponding entry. On
the other hand, shared entries are accessed more times due to the different cores sharing
the same block. Thus, most directory accesses are due to shared blocks. According
to this reasoning, the PS directory accesses the Shared cache first so preventing likely
useless accesses to the Private cache, which will result in energy savings.

Figure 3.2 depicts the number of directory entries looked-ups (differentiating be-
tween shared and private) per kilo instructions committed, varying the number of ways
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in the directory cache and keeping constant the number of sets1. Two benchmarks,
Barnes from the SPLASH-2 benchmark suite [WOT+95] and Blackscholes from PAR-
SEC [BKSL08], have been used to illustrate these observations.

As can be seen, the number of accesses to entries tracking shared blocks is about
5× larger than that to entries tracking private blocks in Barnes. Entries of private
blocks are only looked up again in case a block is replaced either from the directory
or from the processor cache, and then asked again by the processor. In both cases,
the directory entry is removed, thus when the corresponding private block is looked up
in the directory, a miss will occur. Number of accesses in the figure is different from
zero because a given block can walk the directory several times. Consequently, private
entries are scarcely accessed in spite of being the number of them much larger than
that of shared entries. Results for Blackscholes show minor differences for a higher
number of ways because the number of directory evictions is noticeably reduced in this
benchmark as the directory capacity increases. These results suggest that while shared
blocks should have a reduced directory access time for performance, this time is not
so critical for private blocks. Keeping this observation in mind, we study the potential
benefits of using a power and area aware technology to implement the private cache.

• Finding 1: Shared directory entries have much less associativity requirements
than private directory entries.

To quantify the proper associativity degree, we ran experiments with a conventional
(or single–cache) directory varying the number of ways. We identified and quantified
the number of evicted directory entries that cause subsequent misses in the processor
caches, and classified them into private and shared according to the type of the block
that was being tracked. Then, the effect of both types of blocks on performance was
measured. Misses in the processor caches that occur due to an eviction of directory
entries will be referred to as coverage misses as also done is some recent works [CRG+11,
RCFP+12].

We found that private and shared entries have different associativity requirements.
Figure 3.3 illustrates the results for two different workloads. Results reveal that the
number of evicted shared blocks provoking coverage misses slightly varies with the
number of ways, while the number of private blocks drops dramatically. The number
of evicted private blocks is really high for a low associativity degree, which translates
to significant performance degradation.

1Experimental conditions are defined in Chapter 6



28 PS Directory

Assuming a typical LRU replacement policy and tacking into account that entries
in the directory tracking private blocks are not accessed again, the time an entry is
busy tracking a given block works out like a FIFO policy, that is, in absence of locality,
the impact of private blocks on performance mainly depends on the number of ways
available to them. If it is too low, it is likely that the block will be forced to be
evicted from the processor cache being stored in, even though it is still being used,
thus increasing the number of coverage misses. On the other hand, with a higher
number of ways, we give them more chances before eviction. It can be observed that
around 8 ways is enough to stabilize the number of evictions of private blocks as well
as the system performance.

Based on these results, the Private cache will be designed with around 8 ways (see
Chapter 5 for further details), whereas the Shared cache will implement a lower number
of ways (i.e., 2 ways), since the impact of shared blocks on performance mainly depends
on their access locality and are not benefited from such a large complexity.

3.3 The PS Directory Scheme

The main goal of this proposed approach is to take advantage of the different
behavior exhibited by shared and private directory entries to design scalable directory
caches while, at the same time, improving their performance. Figure 3.4 depicts the
proposed two-level organization consisting of the Private cache and the Shared cache.

As previously exposed, the Private cache is designed with narrower entries since
they do not require the sharer vector and with a larger number of entries because of
the expected high number of private blocks. On the other hand, the Shared cache has
a reduced number of entries, thus the sharer vector is only implemented in a small
fraction of directory entries.

When an access to a memory block misses in the processor cache, it is looked up on
the directory for coherence maintenance. Then, if the access results on a directory miss,
the block is provided by the NUCA slice (or by the main memory) to the processor
cache, and an entry is allocated in the directory cache to track that block. In the PS
directory this entry is allocated in the Private cache since the block is held at this point
of time by a single cache. Then, the core identifier is stored in the entry owner field.

On subsequent accesses to that memory block by the same processor, it will find
the block in its L1 cache, so that no additional access to the directory cache will be
done. On the other hand, when that block is evicted from the processor cache two
main actions are carried out: i) the data block is written back in the NUCA cache,
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Figure 3.4: Private-Shared directory organization.

and ii) the directory cache is notified in order to invalidate the entry of that block
(stored in the Private cache). Thus, a subsequent access to that block will result in a
directory cache miss. This means that the Private cache access time does not affect
the performance of private blocks since these blocks are provided directly to cores by
the NUCA cache or main memory.

If a block tracked by the Private cache is accessed by a core other than the owner,
the block becomes shared and its entry is moved to the Shared cache updating the
sharer vector accordingly. From then until eviction, coherence of this block is tracked
in the Shared cache. That is, the proposal allows only unidirectional movements from
the Private to the Shared cache. Bidirectional transfers of entries among both caches
have been also explored but the extra hardware cost does not justify the scarce benefits.

Regarding timing, directory caches are typically accessed in parallel with the NUCA
cache. On a directory hit, the data block can be provided either by the NUCA cache
or by a remote processor cache (i.e. the owner). In case that the data block must be
provided by a remote processor cache, the NUCA access is canceled. Analogously, the
PS directory could access both directory cache structures, however since most directory
accesses concentrate on shared blocks, the PS scheme only accesses the Shared cache
in parallel with the NUCA slice. This way provides major energy savings with minimal
performance penalty. Figure 3.5 depicts this design choice. Depending on the protocol,



30 PS Directory

time

L2 NUCA access time

Shared cache

  acc. time

Private cache

  acc. time

hit: - start indirection to the owner

      - proceed to invalidate 

Figure 3.5: Parallel access of the Shared cache and the NUCA cache. Private cache is
only accessed on a miss in the Shared cache.

Figure 3.6: Directory controller flow-diagram.

specific coherence actions can start as soon as a hit rises in the Shared cache; for
instance, read requests can be forwarded to the owner of the block, or invalidation
requests can be issued to the caches sharing the block in case of write requests. On
a miss in the Shared cache, the Private cache is accessed. This access could be also
performed in parallel with the Shared cache but at expenses of power while bringing
minimal benefits on performance.

Figure 3.6 summarizes the actions carried out by the directory controller on a
coherence access, which works as follows:

• When a coherence request reaches the directory, the directory controller looks up
first the Shared cache since it is more likely that the access results in a hit in this
cache due to the higher fraction of accesses to shared entries. On a hit, the con-
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troller updates (if needed) the sharer vector, performs the associated coherence
actions, and cancels the NUCA access (depending on the block state). On a miss
in the Shared cache, the controller looks up the Private cache. This sequential
timing has, on average, negligible impact on performance since most directory
accesses are to shared blocks, and most accesses to private blocks provide the
block from the NUCA cache.

• A hit in the Private cache means that the block is shared because another core
already has a copy of it in its cache. The processor that accessed it the first time
will not access the directory again because its cache already holds the block,
unless a data cache or directory eviction occurs and them the entry will miss in
the directory again. Hence, the directory entry is moved to the Shared cache.
This way ensures that entries for private blocks are retained in the Private cache
while shared entries are filtered and moved to the Shared cache.

• On a directory miss, an entry is allocated in the Private cache to keep track of
the missing block. As there is no coherence information stored for that block
in the two directory caches, then the block is not being currently cached by any
processor. Thus, the block is assumed to be private to the core accessing it and
the owner information (requesting processor) is updated with the core identifier.

• In the proposed implementation, when an entry is replaced from any of both
directory caches it moves away from the directory after performing the corre-
sponding invalidations, and no movement to the other cache is allowed.

The proposal reduces area by design with respect to conventional caches imple-
mented with the same number of entries since directory entries in the Private cache
are much narrower. In addition, power is also reduced by accessing smaller cache
structures sequentially. Nevertheless, the use of two independent organizations with
different design goals, speed for the Shared and capacity for the Private, suggests that
using specific technologies addressing these design issues could provide the proposal
further energy and area savings.

Low-leakage technologies or transistors with low leakage currents could be used
in the Private cache, whose number of entries is much higher and its access time is
not critical for performance. This work explores the use of eDRAM technology in the
Private cache which provides, as experimental results show, important area and leakage
savings.



Chapter 4

PS Cache

This chapter studies how memory reference instructions access the different struc-
tures of the cache hierarchy. The study discern among writes (stores) and reads (loads).
Then, the PS cache scheme is proposed, which represents one of the major contributions
of this work.

4.1 Accessing the Cache Hierarchy

Memory reference instructions represent a significant percentage of the executed
instructions. Moreover, when running multithreaded workloads, in addition to access
the local cache, remote caches (e.g. remote caches) can be accessed for coherence
purposes.

Unlike multiprogrammed workloads, the accessed blocks in these workloads can be
classified in two different categories: private blocks and shared blocks. The former
are accessed only by a core while the latter are accessed by several cores. Figure 4.1
illustrates a possible distribution of shared and private blocks in a cache with 8-way
sets. Some blocks can be in an invalid state, so they are neither classified as private
nor shared.

Cache memories, especially first-level caches, are frequently accessed. Low level
caches are much less frequently accessed since L1 caches filter many of the memory
instructions issued by the processor. For instance, assuming that a 4-way superscalar
out-of-order core executing a given benchmark reaches an IPC equal to 2, and memory
reference instructions represent a fifth of its executed instructions, then the L1 data
cache of the core is accessed 40% of the processor cycles. However, if the L1 data cache
filters by 80% of the processor requests, the L2 data cache will be only accessed by
the remaining 20% requests. This means that L1 caches consume most of the dynamic
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power of the cache hierarchy which is our focus in the PS cache design.
We launched experiments to quantify these values in the studied workloads. Figure

4.2 shows the percentage of memory reference instructions in each individual bench-
mark executed on a 16-core CMP system1. This value is roughly the same, around
20%, across the different benchmarks.

Only about a fifth of accesses issued to the L1 cache go on to the L2 cache. This
means that most of the dynamic energy consumed by caches comes from first-level
caches. Consequently, it makes sense to focus on saving dynamic energy at that level.
Even more, if we consider that both the tag and data arrays are accessed in parallel
in L1 caches and that some recently processors such as the Intel Core i7 [HP11] has
been deployed with high associativity in the L1 cache (i.e. 8 ways). To provide further
insights in these values and which fraction is filtered by the L1, we classify requests to
L1 in four main categories according to the result of the access as: load hit, store hit
to a private block, store hit to a shared block and L1 misses. Those accesses falling
into the two former categories are filtered by L1 and do not access to the second-cache
level, while the remaining memory requests access both to the L1 (since this cache is
accessed by every memory instruction) and to the L2. Figure 4.3 shows these results.
As observed, a very small fraction of L1 requests (below 5%) access then to the L2.
Notice that the percentage of writes to shared blocks can hardly be appreciated in the
plot since this value is negligible.

When running parallel workloads, the number of accesses to the cache increases
with respect to monolithic processors because of coherence requests issued by other

1Experimental environment, system parameters, protocols and cache hierarchy are described in
Chapter 5.

Figure 4.1: Example of private-shared blocks distribution in a 8-way set cache.
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Figure 4.2: Fraction of memory instructions.
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Figure 4.3: Distribution of accesses to the L1 cache and to the L2 cache.

cores. In other words, the cache is not only accessed from the processor side but also
from the interconnection network (NoC) side, therefore increasing the dynamic power
consumption. In this context, the number of accesses coming from the NoC strongly
depends on the type, snoop-based or directory-based, of the underlying coherence pro-
tocol.

Snoop-based protocols are based on broadcasting coherence requests to all the cores,
which requires high bandwidth and energy consumption at the network but also at the
cache since all caches in the system are accessed on a coherence request. Thus they are
only appropriate at small system scales [APJ09, CSL+06, KKH10]. Directory-based
protocols keep track of the various copies of cached blocks in a directory structure
between the private and the shared cache levels [CRG+11, FLKBF11b, ZSQM09]. This
allows processors to easily identify replicas of a block. Coherence requests are only sent
to cores storing a replica, so only a subset of caches are looked up. This makes them
more suitable for large-scale CMPs.

Figure 4.4 shows the percentage of cache accesses coming from the bus side in both
types of protocols in a 16-core system1. As observed, this value is noticeable in snoopy
protocols and it represents around one fifth of the total accesses, moreover, in some
workloads this value is as high as 45%. In contrast, this value presents a scarce interest
in directory-based protocols.
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Figure 4.4: L1 Coherence lookups

The previous discussion illustrates the importance of reducing dynamic power con-
sumption in caches of CMP systems, mainly in L1 caches and in snoop based protocols
as well, where more coherence requests are issued by the cache controllers. To deal
with this problem, this work proposes the PS cache, an architectural approach with
the aim of taking advantage of the behavior exhibited in parallel workloads.

In particular, previous research has observed that the percentages of private (ac-
cessed only by a core) and shared cache blocks in parallel workloads running in CMP
systems widely differ among them. The aim of this thesis is to save energy by reduc-
ing the number of lookups on each cache access. More precisely, the proposal saves
significant energy consumption by looking up only those blocks having the same type
(shared or private) as the requested one either by the processor or by the coherence
access.

4.2 The PS Cache Scheme

The main goal of this proposal is to take advantage of the classification between
private and shared blocks to design a more power-efficient cache architecture that
reduces the number of ways looked up on each cache access. Instead of accessing all
the ways in a set, only a subset of them are searched. Our baseline architecture is the
same as the one presented in section 3.1.

In order for the proposal to work we need i) to keep blocks tagged as private or
shared in the cache, and ii) a private-shared classification mechanism to indicate the
type of the block to be searched. Blocks are tagged in the cache using a bit (the PS
bit) attached to each cache line. This bit indicates the type of each stored block. In
addition, although our proposal can work with any of the private-shared classification
mechanisms, in this work we assume the TLB-based private-shared mechanism used
in [CRG+11] and previously proposed in [HFFA09] to find out the block type before
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Figure 4.5: The PS cache architecture.

accessing the data and tag arrays, and in this way only access those ways whose type
(PS bit value) matches it. In other words, only those ways of the set whose type mathes
the TLB bit of the searched block page are accessed.

4.2.1 The PS Page Classification Mechanism

On a memory reference, the core obtains the block type of the reference from the
TLB when it is accessed with the purpose of getting the address translation. The
classification mechanism is OS-based and stores sharing information both in the page
table and in the core TLB. The sharing information comprises the PS bit and the keeper
(this is only stored in the page table), which is the core that first accessed the page.
On a TLB miss, the page table is accessed and the sharing information is updated
comparing the keeper with the core requesting the access and the PS bit is copied in
the TLB of the requestor core. This TLB bit is the one used by the core on a memory
reference to know the type of the requested block.

The classification mechanism assumes that by default a page is on a private state
so all the blocks of that page stored in the first-level caches are also private. If the
OS detects that a second core is trying to access any block within a private page
(that is, the keeper field in the page table is different to the core identifier accessing
the page), the page must become shared. The page table entry is updated but as
in [CRG+11, HFFA09], a private-shared update mechanism is triggered to maintain
coherence between the page table and the keeper’s TLB.

The private-shared update mechanism has to ensure that all the PS bits in the
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cached blocks of a given page as well as in the TLBs keep the same type as their entry
in the page table. For doing this, the core requestor, i.e. the core that wants to access
a block in the page, issues a recovery request to the page keeper (obtained from the
page table entry). On the arrival of such a request, the keeper updates its TLB PS bit
and also the PS bits of the cached blocks of the given page.

This way we keep the PS bit, of the different ways in the cache, coherent with the
state of the page in the TLBs and the page table. As commented above, the PS bit
allows us to discern the group of ways in which the requested block can be found and,
consequently, only search in those ways for it.

4.2.2 The PS Cache Architecture

Figure 4.5 depicts an overview of the proposed cache architecture. On a memory
reference instruction, the cache controller first looks in the TLB to get the physical
address. As can be seen, the TLB includes a bit per entry, the PS (Private-Shared) bit,
that indicates how the page is classified. The value of this bit is read from the TLB
entry jointly with the physical address. With this information, the cache controller
proceeds searching the block in the L1 cache. The key difference is that only those
ways which share the same type as the one indicated by the TLB are searched.

As observed, each cache line has attached a PS (Private-Shared) bit which indicates
the type of each block (according to the page table and the TLBs). The PS bit provided
by the TLB is compared with the PS bits of all the ways in the set. A simple logic
is included to select the wordline (WL) of those ways whose PS bit matches the value
of that obtained from the TLB. This means, that in the tag array, only a subset of
the tags are read and then compared with the tag of the physical address and, in the
data array, only a subset of data blocks are read. This allows the proposal to reduce
significant dynamic power consumption across the memory accesses since in general, as
experimental results will show, only a small fraction of ways is required to be searched
in many memory operations.

Apart from reducing the number of searched ways when accessing the cache from the
core side, our proposal also allows to reduce the dynamic consumption when accessing
the cache from the NoC side (i.e. coherence requests). When accessing from the NoC
side, only shared ways are looked up, since the classification mechanism ensures that
before arriving the coherence request, the block is shared or it has been reclassified as
shared by the private-shared update mechanism.

In addition, in order to reduce the static power consumption our mechanism takes
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also advantage of the invalid bit. The power of all ways in an invalid state is turned
off and are also excluded from the process of searching the block. This allows not only
reducing the number of possible ways for the block (the lower the number, the less
dynamic consumption), but also reducing the static energy consumption since power
supply to these ways is cut off while they are in the invalid state.

Regarding hardware complexity, the proposal requires minimal complexity. On one
hand, no extra information must be added to the TLB except a single bit (the PS bit)
to each entry. On the other hand, the proposal can be easily adapted to current caches.
In fact, using a single wordline for all the ways in the set presents several problems
due to, among others, many transistors are connected to the row’s wordlines and the
column’s bitlines increasing the total capacitance and resulting in an increase in delay
and power dissipation. Thus, to deal with this problem, current SRAM cache designs
employ the divided wordline approach (DWL), which divides the wordline into a fixed
number of blocks, for instance, one WL per cache way [JNW07]. Notice, that our
proposal takes benefit of this wordline scheme already working in current caches. In
addition, the proposal can be easily integrated in current L1 caches which are pipelined
in three or four stages, so we could get the PS bit in a first stage and then adapt the
following cache stages.

The previous discussion focused on typical physical tag and physical index caches.
However, the proposal could be also applied to other types of caches; for instance,
virtually indexed but physically tagged. These caches access the tag array in parallel
with the TLB, and then the physical address is used to compare tags. Notice that
our scheme would not carry out any tag comparison since the PS bit of the TLB is
obtained at the same time as the physical tag. Therefore, energy consumption due to
tag comparison, which dominates the dynamic energy, would be avoided.
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Experimental Framework

This chapter describes the experimental framework used to carry out this work.
This framework includes the simulation packages, the followed methodology and the
used workloads.

5.1 Simulation tools

In this section, we describe the simulation tools employed through this thesis. We
use the Simics-GEMS simulator in order to perform the performance evaluation. The
area requirements of our proposals and the latencies of cache accesses used in our
simulations have been calculated using the CACTI tool.

5.1.1 Simics-GEMS

Simics [MCE02] is a functional full-system simulator capable of simulating several
types of hardware including multiprocessor systems. Full-system simulation enables us
to evaluate our ideas running realistic workloads on top of actual operating systems.
In this way, we also simulate the behavior of the operating system. Differently from
trace-driven simulators, Simics allows dynamic change of instructions to be executed
depending on different input data.

GEMS (General Execution-driven Multiprocessor Simulator) [MSB05] is a simu-
lation environment which extends Virtutech Simics. GEMS is comprised of a set of
modules implemented in C++ that plug into Simics and add timing abilities to the
simulator. GEMS provides several modules for modeling different aspects of the archi-
tecture. For example, Ruby models memory hierarchies, Opal models the timing of an
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out-of-order SPARC processor, and Tourmaline is a functional transactional memory
simulator. Since we assume simple in-order processing cores we only use Ruby for the
evaluations carried out in this thesis.

Ruby provides an event-driven framework to simulate a memory hierarchy that is
able to measure the effects of changes to the coherence protocols. Particularly, Ruby
includes a domain-specific language to specify cache coherence protocols called SLICC
(Specification Language for Implementing Cache Coherence). SLICC allows us to eas-
ily develop different cache coherence protocols and it has been used to implement the
protocols evaluated in this thesis.

The memory model provided by Ruby is made of a number of components that
model the L1 caches, L2 caches, memory controllers and directory controllers. These
components model the timing by calculating the delay since a request is received until a
response is generated and injected into the network. All the components are connected
using a simple network model that calculates the delay required to deliver a message
from one component to another.

5.1.2 CACTI

CACTI (Cache Access and Cycle Time Information) [MBJ09] provides an integrated
cache and memory access time, cycle time, area, leakage, and dynamic power model.
By integrating all these models together, users can have confidence that trade-offs
between time, power, and area are all based on the same assumptions and, hence, are
mutually consistent.

CACTI is continually being upgraded due to the incessant improvements in semi-
conductor technologies. Particularly, we employ the version 5.3 for the results presented
in this thesis. We are mainly interested in getting the access latencies and area require-
ments of both cache and directory structures that are necessary for implementing our
proposals, assuming a 32nm process technology.

5.1.3 Simulated System

The values of the main system parameters used for the base system in the evaluation
are shown in Table 5.1. We used the CACTI 6.5 tool [MBJ09] to estimate access time,
area requirements and power consumption of the different cache structures for a 32nm
technology node.
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Table 5.1: PS Cache System parameters
Memory Parameters

Cache hierarchy Non-inclusive
Cache block size 64 bytes
Split L1 I & D caches 64KB, variable number of ways
L1 cache access time 2 cycles
Shared single L2 cache 512KB/tile, variable number of ways
L2 cache access time 6 cycles (2 if only tag accessed)
Memory access time 160 cycles

Network Parameters
Topology 2-dimensional mesh (4x4)
Routing technique Deterministic X-Y
Flit size 16 bytes
Data and control message size 5 flits and 1 flit
Routing, switch, and link time 2, 2, and 2 cycles

Different configurations for the PS directory have been evaluated, and results com-
pared with the ones obtained by a conventional directory (single cache configuration)
with a 1× coverage ratio if not stated a different ratio. This ratio indicates the number
of directory entries per processor cache entry. So when the ratio is 1× each directory
cache slice has the same number of entries as an L1 cache (i.e. 1×). Two PS directory
configurations have been evaluated varying its shared-to-private ratio (1:3 and 1:7),
that is, the number of entries in the Private cache is three and seven times greater
than that of the Shared cache. These two directory configurations have been chosen
for comparison purposes, because they have the same number of entries (computed as
the sum of entries in both directory caches). Additionally, we perform a sensitivity
study with lower coverage ratios for our PS directory in order to show the significant
reduction in directory area and power that it can achieve without degrading application
performance (Section 6.1.3).

Table 5.2 shows the access time and characteristics for each directory structure.
Values for the Private cache were calculated both for SRAM and eDRAM technologies
and for different coverage ratios. CACTI provides latencies in ns thus we rounded
these values to obtain an integer number of processor cycles. The L2 cache access time
was assumed to be 6 cycles, and the remaining access times were scaled accordingly.
Notice that eDRAM latency is much longer than SRAM latency.

A key finding discussed in Section 3.2 is that private blocks are more benefited from
a higher number of ways than shared blocks. This finding suggests that the Private
cache should implement higher associativity. Based on this finding, the baseline design
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Table 5.2: Directory latencies

1× Latency
Directory cache # Ways # Sets 1× 0.5× 0.25× 0.125×
Single cache 4 256 2 2 2 -
Shared dir 1:3 2 128 2 2 2 2
Private dir 1:3 SRAM / eDRAM 6 128 2 / 4 2 / 4 2 / 3 2 / 3
Shared dir 1:7 2 64 2 2 2 2
Private dir 1:7 SRAM / eDRAM 7 128 2 / 4 2 / 4 2 / 3 2 / 3

propose a 6-way Private cache (two ways over the conventional cache). However, for a
fair comparison, the associativity of the Shared cache is reduced down to only 2-ways
(i.e. two ways less than the conventional one). Notice that, considering both cache
structures, the average number of ways per set matches that of the conventional cache,
but skewed to the Private cache. In addition, since most of the accesses to the directory
are solved in the Shared cache, which is accessed first, power consumption is reduced
compared to the 4-way single cache, as studied in Section 6.1.2.

The PS cache evaluation analyzes two different cache coherence protocols: a directory-
based protocol and a snoop-based protocol. Both protocols store the blocks in the
private caches considering MOESI states, and implement a non-inclusive policy be-
tween the L1 and the LLC. Also, invalidation acknowledgements are directly sent to
the requester. The main difference between the two protocols is the trade-off between
area and power. The directory protocol implements an on-chip directory cache, which
increases its area overhead, while the snoopy protocol performs a broadcast on every
write, and on every load in case the data is not found in the LLC. Snoopy protocols
induce a higher number of coherence requests to the L1 caches, therefore it benefits
more from a reduction in the number of ways searched during those requests.

5.2 Metrics and Methodology

The proposals presented in this work have been evaluated in terms of performance,
on-chip area required and energy consumed. For evaluating the performance, we mea-
sure the total number of cycles employed for each application during its parallel phase,
i.e., the execution time of the parallel phase. Although the IPC (instructions per cy-
cle) constitutes a common metric for evaluating performance improvements, it is not
appropriate for multithreaded applications running on multiprocessor systems [AW06].
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This is due to the spinning performed during the synchronization phase of the different
threads. For example, a thread can be repeatedly checking the value of a lock until it
becomes available, which increases the number of completed instructions (and maybe
the IPC) but actually the program is not making progress.

In order to show why execution time improvements are achieved, we also show L1
cache misses, since a L1 cache miss corresponds to an access to the directory structure,
which is the memory hierarchy element which this proposal focus on. This misses are
divided in three types of misses (3C, coherence and coverage) to betterunderstand how
the PS directory affects each of them. Of special interest are the coverage misses, since
one of our main reasons in the directory design is to reduce them. Finally, this L1
misses have also been divided in directory hits and misses, so we can study why we
improve o worsen the execution time. A directory miss, if it is already at full capacity,
will mean that a directory entry will have to be evicted and, as a consquence, it is
possible that a block has to be evicted from one or many L1 caches, which if referenced
again will have a negative impact on performance.

Energy consumption is a design issue in actual CMPs, since it influences the en-
capsulation costs (package) and refrigeration. For this reason, processor desgins must
adjust to some specific power restrictions (target power budget). This means that when
a processor is designed, its performance cannot be evaluated by itself, but energetic
cost must also be taken into account.

In this work area and energy consumption of the proposals will also be evaluated.

All cache coherence protocols evaluated in this thesis have been implemented using
the SLICC language included in GEMS. Other protocols, like Token, are already pro-
vided by the simulator. All the implemented protocols have been exhaustively checked
using a tester program provided by GEMS. The tester program stresses corner cases
of cache coherence protocols to raise any incoherence by issuing requests that simulate
very contended accesses to a few memory blocks.

All the experimental results reported in this thesis correspond to the parallel phase
of each program. We have created benchmark checkpoints in which each application
has been previously executed to ensure that memory is warmed up and, hence, avoiding
the effects of page faults. Then, we run each application again up to the parallel phase,
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where each thread is bound to a particular core. The application is then run with full
detail during the initialization of each thread before starting the actual measurements.
In this way, we warm up caches to avoid cold misses

5.3 Benchmarks

The proposed schemes have been evaluated with a wide range of scientific applica-
tions. Barnes (16K particles), FFT (64K complex doubles), Ocean (514×514 ocean),
Radiosity (room, -ae 5000.0 -en 0.050 -bf 0.10), Radix (512K keys, 1024 radix), Raytrace
(teapot –optimized by removing locks for unused ray ids–), Volrend (head), and Water-
Nsq (512 molecules) are from the SPLASH-2 benchmark suite [WOT+95]. Blackscholes
(simmedium) and Swaptions (simmedium) belong to PARSEC suite [BKSL08]. The
experimental results reported in this work correspond to the parallel phase of the eval-
uated benchmarks.

5.3.1 Barnes

The Barnes application simulates the interaction of a system of bodies (galaxies
or particles, for example) in three dimensions over a number of time steps, using the
Barnes-Hut hierarchical N-body method. Each body is modeled as a point mass and
exerts forces on all other bodies in the system. To speed up the interbody force calcu-
lations, groups of bodies that are sufficiently far away are abstracted as point masses.
In order to facilitate this clustering, physical space is divided recursively, forming an
octree. The tree representation of space has to be traversed once for each body and
rebuilt after each time step to account for the movement of bodies.

The main data structure in Barnes is the tree itself, which is implemented as an
array of bodies and an array of space cells that are linked together. Bodies are assigned
to processors at the beginning of each time step in a partitioning phase. Each processor
calculates the forces exerted on its own subset of bodies. The bodies are then moved
under the influence of those forces. Finally, the tree is regenerated for the next time
step. There are several barriers for separating different phases of the computation and
successive time steps. Some phases require exclusive access to tree cells and a set of
distributed locks is used for this purpose. The communication patterns are dependent
on the particle distribution and are quite irregular. No attempt is made at intelligent
distribution of body data in main memory, since this is difficult at page granularity
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and not very important to performance.

5.3.2 FFT

The FFT kernel is a complex one-dimensional version of the radix-
√

n six-step FFT
algorithm, which is optimized to minimize interprocessor communication. The data set
consists of the n complex data points to be transformed, and another n complex data
points referred to as the roots of unity. Both sets of data are organized

√
n x
√

n

matrices partitioned so that every processor is assigned a contiguous set of rows which
are allocated in its local memory. Synchronization in this application is accomplished
by using barriers.

5.3.3 Ocean

The Ocean application studies large-scale ocean movements based on eddy and
boundary currents. The algorithm simulates a cuboidal basin using discretized cir-
culation model that takes into account wind stress from atmospheric effects and the
friction with ocean floor and walls. The algorithm performs the simulation for many
time steps until the eddies and mean ocean flow attain a mutual balance. The work
performed every time step essentially involves setting up and solving a set of spatial
partial differential equations. For this purpose, the algorithm discretizes the continuous
functions by second-order finite-differencing, sets up the resulting difference equations
on two-dimensional fixed-size grids representing horizontal cross-sections of the ocean
basin, and solves these equations using a red-back Gauss-Seidel multigrid equation
solver. Each task performs the computational steps on the section of the grids that it
owns, regularly communicating with other processes. Synchronization is performed by
using both locks and barriers.

5.3.4 Radiosity

Radiosity is an application of the finite element method to solving the rendering
equation for scenes with surfaces that reflect light diffusely. Unlike rendering methods
that use Monte Carlo algorithms (such as path tracing), which handle all types of
light paths, typical radiosity methods only account for paths which leave a light source
and are reflected diffusely some number of times (possibly zero) before hitting the
eye; such paths are represented by the code "LD*E". Radiosity is a global illumination
algorithm in the sense that the illumination arriving at the eye comes not just from the
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light sources, but all the scene surfaces interacting with each other as well. Radiosity
calculations are viewpoint independent which increases the computations involved, but
makes them useful for all viewpoints.

5.3.5 Radix

The Radix program sorts a series of integers, called keys, using the popular radix
sorting method. The algorithm is iterative, performing one iteration for each radix
r digit of the keys. In each iteration, a processor passes over its assigned keys and
generates a local histogram. The local histograms are then accumulated into a global
histogram. Finally, each processor uses the global histogram to permute its keys into a
new array for the next iteration. This permutation step requires all-to-all communica-
tion. The permutation is inherently a senderdetermined one, so keys are communicated
through writes rather than reads. Synchronization in this application is accomplished
by using barriers.

5.3.6 Raytrace

This application renders a three-dimensional scene using ray tracing. A hierarchical
uniform grid is used to represent the scene, and early ray termination is implemented.
A ray is traced through each pixel in the image plane and it produces other rays as
it strikes the objects of the scene, resulting in a tree of rays per pixel. The image is
partitioned among processors in contiguous blocks of pixel groups, and distributed task
queues are used with task stealing. The data accesses are highly unpredictable in this
application. Synchronization in Raytrace is done by using locks. This benchmark is
characterised for having very short critical sections and very high contention. Barriers
are not used for the Raytrace application.

5.3.7 Volrend

The Volrend application renders a three-dimensional volume using a ray casting
technique. The volume is represented as a cube of voxels (volume elements), and an
octree data structure is used to traverse the volume quickly. The program renders
several frames from changing viewpoints, and early ray termination is implemented.
A ray is shot through each pixel in every frame, but rays do not reflect. Instead,
rays are sampled along their linear paths using interpolation to compute a color for the
corresponding pixel. The partitioning and task queues are similar to those in Raytrace.
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Data accesses are input-dependent and irregular, and no attempt is made at intelligent
data distribution. Synchronization in this application is mainly accomplished by using
locks, but some barriers are also included.

5.3.8 Water-Nsq

The Water-Nsq application performs an N-body molecular dynamics simulation of
the forces and potentials in a system of water molecules. It is used to predict some of
the physical properties of water in the liquid state.

Molecules are statically split among the processors and the main data structure in
Water-Nsq is a large array of records that is used to store the state of each molecule.
At each time step, the processors calculate the interaction of the atoms within each
molecule and the interaction of the molecules with one another. For each molecule, the
owning processor calculates the interactions with only half of the molecules ahead of
it in the array. Since the forces between the molecules are symmetric, each pair-wise
interaction between molecules is thus considered only once. The state associated with
the molecules is then updated.

Although some portions of the molecule state are modified at each interaction, oth-
ers are only changed between time steps. Most synchronization is done using barriers,
although there are also several variables holding global properties that are updated
continuously and are protected using locks.

5.3.9 Blackscholes

The Blackscholes application is an Intel RMS benchmark. It calculates the prices
for a portfolio of European options analytically with the Black-Scholes partial differ-
ential equation (PDE).

Blackscholes stores the portfolio with numOptions derivatives in array OptionData.
The program divides the portfolio into a number of work units equal to the number of
threads and processes them concurrently. Each thread iterates through all derivatives
in its contingent and calls function BlkSchlsEqEuroNoDiv for each of them to compute
its price.
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5.3.10 Swaptions

The Swaptions application is an Intel RMS workload which uses the Heath-Jarrow-
Morton (HJM) framework to price a portfolio of swaptions. The HJM framework
describes how interest rates evolve for risk management and asset liability manage-
ment for a class of models. Its central insight is that there is an explicit relationship
between the drift and volatility parameters of the forward-rate dynamics in a noar-
bitrage market. Because HJM models are non-Markovian the analytic approach of
solving the PDE to price a derivative cannot be used. Swaptions therefore employs
Monte Carlo (MC) simulation to compute the prices.

The program stores the portfolio in the swaptions array. Each entry corresponds
to one derivative. Swaptions partitions the array into a number of blocks equal to the
number of threads and assigns one block to every thread. Each thread iterates through
all swaptions in the work unit it was assigned and calls the function HJM Swaption
Blocking for every entry in order to compute the price. This function invokes HJM
SimPath Forward Blocking to generate a random HJM path for each MC run. Based
on the generated path the value of the swaption is computed.



Chapter 6

Experimental Evaluation

This chapter evaluates performance and energy of the PS directory and the PS
cache proposed in this work. In addition, area for the PS directory is also analyzed.

6.1 PS Directory Results

During simulations a L1 cache with 4 ways, a L2 cache with 8 ways and a single
directory cache witch 256 sets and 4 ways, same number of entries as an L1 cache, are
assumed.

6.1.1 Performance

This section analyzes the performance of the proposed PS directory for a 16-tile
CMP compared to a traditional single cache directory with the same number of entries.
The performance of the directory cache may significantly affect system performance.
Effectively, every time a directory entry is evicted, invalidation messages are sent to
the corresponding processor caches for coherence purposes. These invalidations will
cause coverage misses upon a subsequent memory request to those blocks, therefore
impacting on the final performance.

Figure 6.1(a) shows the L1 cache misses classified in 3C (i.e., cold or compulsory,
capacity and conflict), Coherence, and Coverage. As observed, the PS directory cache
is able to remove most coverage misses caused by a single cache approach with the
same number of entries (by 84.2% and 68.2% for 1:7 and 1:3 private-to-shared ratios,
respectively). Essentially, this reduction in coverage misses comes from removing con-
flict misses in the directory cache. These conflict misses are mainly caused by private
directory entries, as shown in Section 3.2. Therefore, by adding two additional ways to
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(a) Normalized L1 cache misses.
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(b) Normalized directory accesses.

Figure 6.1: Normalized misses with respect to a conventional single-cache directory.
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Figure 6.2: Normalized execution time with respect to a perfect directory.
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the Private cache (at the cost of reducing the number of sets, so the number of entries
remains the same) most directory conflict misses can be reduced.

To illustrate where benefits come from, lets study the 1:3 ratio. This ratio provides
the same number of sets to the Shared and to the Private cache, with 2-way and 6-way
associativity, respectively. In other words, this PS organization has exactly the same
number of sets as the 4-way single cache, and on average, the same number of ways per
set. Thus this scenario clearly shows that critical private sets are efficiently handled by
the PS scheme. To sum up, performance benefits mainly come from identifying that
the private entries suffer from conflict misses and assigning associativity in a smarter
way to different structures depending on the requirements of the type of the entries.

Performance of a multilevel directory cache can be defined as the number of coher-
ence requests that find the required coherence information in the directory, that is, as
the overall directory hit ratio regardless of the directory structure that provides such
information. Figure 6.1(b) presents the accesses to each cache organization and from
those which miss and which hit and in the case of a hit the directory structure that
has the entry (Private or Shared caches).

Notice that, as expected by design, the Private cache shows on average a poor hit
ratio despite the much higher number of entries (3× and 7× times the entries of the
Shared cache), and most accesses hit in the Shared cache, which corresponds to the
smaller and faster directory structure. Remember that each hit in the Private cache
refers to a private block that becomes shared. Although the 1:7 ratio could seem to
have a Shared cache too small, it provides on average better results than the 1:3 ratio.

Reducing both the number of coverage misses in the processor caches and the access
latency to the directory cache translate into improvements in execution time as shown
in Figure 6.2. This figure compares the performance of the studied schemes with that
of a perfect directory cache. A directory cache is referred to be perfect when it does
not incur in performance degradation, that is, there are no coverage misses. Therefore,
a perfect directory cache provides the same performance as a duplicate tags approach
but more scalability. Nevertheless, unlike the proposed scheme, there is no realizable
implementation of a duplicate tag approach. Compared to the single directory cache,
the PS directory reduces execution time on average by 13.6% and 11.1% for the 1:7
and 1:3 shared-to-private ratios, respectively. Compared to the perfect cache, the
Single cache increases the execution time on average by 22.3%, yielding in some case to
unacceptable performance (e.g. by 60% in Radix). However, performance drops of the
proposal with respect to the perfect cache are by 6.4% and 2.9% for the ratios 1:3 and
1:7 respectively. In short, results probe that the PS directory is a simple and effective
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Figure 6.3: Normalized energy consumed by the directory with respect to a single-cache
directory. eDRAM technology is used in the Private directory cache.

design since it is able to reach performance close to a perfect directory.

6.1.2 Area and Energy Analysis

This section shows how the PS directory is able to reduce area and energy con-
sumption while increasing performance.

Table 6.1 shows the area required for different PS schemes and the single directory
cache. As expected, all the PS configurations are able to reduce area, even those
entirely implemented with SRAM technology. In particular, compared to the single
cache, the PS configurations with SRAM Private caches save 18.51% and 25.48% of
area for 1:3 and 1:7 shared-to-private ratios, respectively. These savings come because
the Private cache does not include the sharer vector field. In addition, when eDRAM
technology is considered, these reductions increase up to 25.02% and 33.12% for 1:3
and 1:7 shared-to-private ratios, respectively.

On the other hand, the PS directory attacks energy consumption by design, espe-
cially leakage, since it uses two low hardware complexity structures with less storage
capacity than a single conventional directory cache.

In Figure 6.3 we show the total energy consumed during the benchmarks execution,

Table 6.1: Area (in mm2∗1000) of the different PS configurations for 16 cores compared
with the Single cache directory.

Directory Private Shared Private Total Area (%)
Single 19.51 – 19.51 100.00%
PS 1:3 SRAM 6.40 9.50 15.90 81.49%

eDRAM 6.40 8.22 14.63 74.98%
PS 1:7 SRAM 3.45 11.08 14.54 74.52%

eDRAM 3.45 9.60 13.05 66.88%
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normalized with respect to a single-cache directory using SRAM technology in the
Private directory cache. We can observe that a PS directory with the same number
of entries as a single cache directory can save around 27% and 20.5% of the energy
consumption of the single cache directory for the 1:7 and the 1:3 ratios, respectively.
When taking eDRAM technology in the Private directory cache into consideration, the
savings are as high as 87.3% and 81.3% for the 1:7 and the 1:3 ratios, respectively.

Figure 6.4 depicts the required silicon area per-core for the studied directory con-
figurations. As observed, the conventional directory requires more area than any of
the PS configurations, which grows exponentially with the number of cores. The PS
directory is able to reduce by 84.3% (ratio 1:7) and 73.3% (ratio 1:3) the area required
by the conventional directory cache for a 1024–core system in spite of implementing
both the same number of entries. Thus, the PS directory overcomes one of the biggest
problems that sparse directories present, namely, their scalability.
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Figure 6.4: Scalability analysis in terms of area.

6.1.3 Directory Coverage Ratio Analysis

In this section we evaluate the impact on performance of reducing the directory
coverage ratio, that is, the number of entries in the PS directory cache. As the number
of entries is reduced in the directory cache, a degradation in performance is expected,
but at the same time area and energy consumption will benefit. The ideal directory
cache size is the one that entails negligible impact on performance while at the same
time allows reductions in area requirement and power consumption.

Figure 6.5(a) shows the L1 cache misses classified in 3C, Coherence, and Coverage.
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Figure 6.5: Normalized performance with respect to a conventional single-cache direc-
tory.

This figure is similar to Figure 6.1(a) but for this study we show different coverage
ratios for the directory cache. As shown, with the only exception of a 0.125× coverage
ratio, we still incur in less L1 cache misses than a single cache directory, on average,
allowing a significant reduction in directory cache area. For a 0.125× coverage ratio
the increase in the number of cache misses is roughly 20%, on average.

This increase in coverage misses translates into a degradation in execution time with
respect to a 1× coverage ratio PS directory. However, with respect to a single directory,
the execution time is still reduced, even for a 0.125× coverage ratio, as Figure 6.5(b)

Table 6.2: Area (in mm2∗1000) of the different PS configurations for 16 cores compared
with the 1× Single cache directory.

Coverage Directory Private Shared Private Total Area (%)
1× Single 19,51 – 19,51 100,00%

PS 1:3 SRAM 6,33 9,50 15,83 81,15%
PS 1:7 SRAM 3,28 11,08 14,37 73,65%
PS 1:3 eDRAM 6,33 8,22 14,56 74,61%
PS 1:7 eDRAM 3,28 9,60 12,88 66,02%

0.5× PS 1:3 eDRAM 3,28 4,80 8,09 41,47%
PS 1:7 eDRAM 1,74 4,80 6,55 33,60%

0.25× PS 1:3 eDRAM 1,74 3,01 4,76 24,39%
PS 1:7 eDRAM 0,84 3,01 3,85 19,76%
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Table 6.3: Static and dynamic energy consumption of the different PS configurations
for 16 cores compared with the 1× Single cache directory.

Configurations Pleakage (mW) Eread (pJ)
Coverage Directory Private Shared Private Total Shared Private Total
1× Single 4,2346 – 4,2346 0,0048 – 0,0048

PS 1:3 SRAM 1,1877 2,2572 3,4450 0,0027 0,0028 0,0055
PS 1:7 SRAM 0,6404 2,6334 3,2739 0,0016 0,0032 0,0049
PS 1:3 eDRAM 1,1877 0,5123 1,7001 0,0027 0,0067 0,0094
PS 1:7 eDRAM 0,6404 0,5977 1,2382 0,0016 0,0078 0,0094

0.5× PS 1:3 eDRAM 0,6404 0,4114 1,0518 0,0016 0,0035 0,0052
PS 1:7 eDRAM 0,3650 0,4799 0,8450 0,0010 0,0041 0,0052

0.25× PS 1:3 eDRAM 0,3650 0,3276 0,6927 0,0010 0,0027 0,0037
PS 1:7 eDRAM 0,2181 0,3822 0,6003 0,0007 0,0032 0,0039
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shows. Therefore, if reducing silicon area is a target design goal, which would be the
main reason for a lower coverage ratio, one can opt for reducing the area overhead
of the directory without losing performance with respect to a conventional directory.
The PS directory is able to improve the performance of a conventional single directory
cache while using 8 times less entries.

Table 6.2 shows the area required for different PS schemes with different coverage
ratios1 and the single directory cache. As expected, all the PS configurations are able
to reduce area, even those with the same number of entries (1×) as the conventional
directory cache. This is due to the fact that the Private cache does not implement
the sharer vector field. When the directory coverage ratio is reduced (0.5× and 0.25×
coverage ratios), area savings significantly increase up to 80, 24% for the 0.25× 1:7
configuration, while still improving the system performance (as shown previously).
Comparing the results for both shared-to-private ratios, we can see that configurations
with 1:7 ratio are more area efficient since they are able to reduce area from 12% up
to 26% (depending on the directory coverage ratio) over configurations with 1:3 ratio,
while providing similar performance results.

Table 6.3 shows the energy (dynamic and static) consumed by the PS directory
cache with different coverage ratios and compared to the 1× single directory cache.
As it can be seen, the 1× and 0.5× PS configurations consume more dynamic energy
per access than the conventional cache, but this is highly offset by the much lower
leakage consumed by the PS configurations, which is highly reduced even using SRAM
technology in the Private cache. Leakage is reduced from 19% for the SRAM 1× 1:3
configuration up to 86% in the eDRAM 0.25× 1:7 configuration. Comparing 1:3 and 1:7
shared-to-private ratios, we can see that 1:7 configurations are able to reduce leakage
consumption from 5% up to 15% with respect to the 1:3 configurations. Taking into
account these values, Figure 6.6 shows the energy consumed during the execution of the
benchmarks by the PS directory normalized with respect to the energy consumption
of a single-cache directory. Smaller coverage ratios lead to less energy consumed at the
cost of performance degradation.

Figure 6.7 depicts the area per core scalability for the studied directory configura-
tions. As observed, the conventional directory exhibits the worst area behavior with
significant area difference with the PS directory configurations. These differences in-
crease as the number of cores does. Even it requires for 128 cores more area than all
the PS configurations with up to 1024 cores, with the only exception of PS 1× 1:3.

As stated in previous section for a 1× coverage configuration, the PS directory
1Results for 0.125× are not shown because CACTI is not able to provide results for so small caches.
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Figure 6.7: Scalability analysis in terms of area.

is able to reduce to 26, 71% (ratio 1:7) and 15, 71% (ratio 1:3) the area required by
the conventional directory cache for a 1024–core system using both the same number
of entries. Of course, the area is further reduced when using smaller coverage ratios.
In particular, for the 0.5× PS configurations, the PS directory is able to require only
14, 47% (ratio 1:3) and 8, 13% (ratio 1:7) the area required by the single cache directory,
and for the 0.25× PS configurations only 7, 52% (ratio 1:3) and 4, 77% (ratio 1:7) the
area required by the single cache directory.

6.2 PS Cache Results

During simulations a L1 cache with 8 ways and a L2 cache with16 ways are assumed.

6.2.1 Private-Shared Blocks Behaviour Analysis

Benefits of the proposal will depend on the average number of ways that are looked
up by the cache accesses. This number would mainly change depending on which cache
we are accessing to (L1 or L2), on the applications behavior and on the type of block
we are looking for.

Figure 6.8(a) shows the average number of blocks of each type in the 8-way set
associative L1 cache. Results are shown for the snoopy and directory-based protocols
considered in this work. As observed, on average, there is just a single private block,
whose access would result in important energy savings. However, since some appli-
cations, e.g. Ocean, issue some bursts of loads to shared blocks followed by burst of
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(b) Average number of ways of each type seen when looking for a shared block
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Figure 6.8: Average number of blocks of each type in the L1 cache for both studied
protocols.

writes; the final number of searched ways will vary according to the type of block we
are looking for and the application dynamic behavior. That is, the average number
of blocks of each type seen on the arrival of a request to a private block can widely
differ from that seen on the arrival of a request to a shared block. This claim can be
observed in Figure 6.8(b) and Figure 6.8(c).

To provide further insights on how much energy savings the proposal is able to
bring, Figures 6.9(a) and 6.9(b) show the distribution of the number of ways searched
on each access on the arrival of a private or shared request respectively. As observed,
most applications search more ways when accessing shared blocks than when accessing
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Figure 6.9: Distribution of the number of ways searched in the L1 cache normalized
with respect to the snoopy protocol.

private blocks, with only few exceptions such as Barnes and Radiosity. An interesting
observation is that when looking for a private block, most of the times, i.e. over 93% of
the accesses, just look up one or two ways. Benefits, are lower when looking up a shared
block, but even in this case, around 40% of times, five or less ways are looked up, which
will also bring important energy savings. Regarding protocols, two main observations
can be drawn. First, it can be appreciated that the rate of shared to private blocks
looked up is quite similar in both protocols regardless if a shared or private block is
looked up. Second, major differences among protocols only appear when looking for a
shared block. In this case, a directory based protocol reduces the number of lookups
on average around 30% with respect to the snoopy protocol. Moreover, this reduction
can be as high as 70% in Water-Nsq when looking a shared block.

As mentioned above, the proposal can be applied to any level of the cache hierarchy,
thus this section also explores the benefits on the L2 cache. Figure 6.10 depicts the
average number of private and shared ways looked up, on average, on each L2 access.
As can be seen, with only few exceptions (i.e. Ocean), most of the ways (12 of 16) are
in an invalid state over the execution time. This is due to the characteristics of the
protocol implementation. In the devised implementation, when a block moves from L2
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Figure 6.10: Average state of ways during lookups in the L2.
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Figure 6.11: Static and dynamic energy comparison.

to L1, the associated L2 entry is invalidated. Unlike L1 caches, the amount of private
ways looked up is close to that of shared ways. This number is as low as only 2 ways
from 16, which indicates that potential benefits achieved by any mechanism addressing
energy savings will be minor when compared to those of the L1 cache. In addition, the
high number of invalid ways, indicates that significant static energy reduction can be
achieved by just turning off all invalid ways.

6.2.2 Power Consumption

This section analyzes the impact of the PS cache in the energy consumption.
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Figure 6.12: Comparison of dynamic energy consumption in L1 and L2.

Barnes FFT Ocean Radiosity Radix Raytrace-opt Volrend Water-Nsq Blackscholes Swaptions Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

L1
 D

yn
am

ic
 C

on
su

m
pt

io
n

Directory Baseline
Directory Protocol

Snoopy Baseline
Snoopy Protocol

Figure 6.13: Reduction of the dynamic energy consumption.

Figures 6.11(a) and 6.11(b) show a comparison between both dynamic and static
energy consumption of all evaluated benchmarks with a conventional directory protocol
in both caches of our cache hierarchy. All applications behave mostly the same with
81.07% of the total energy consumed in the L1 being dynamic, and only 2.24% in the
L2. This is to be expected, since most of the accesses are filtered in the first-level cache
and only few of them arrive to the L2, thus being its static energy consumption much
higher.

Since the L2 cache is much bigger than the L1 one, it is quite obvious that its static
energy consumption will be much larger, and hence there is minor interest in studying
it. On the other hand, a comparison between the dynamic energy in both members of
the hierarchy is shown in Figure 6.12. Only 7.09% of the total dynamic consumption
of the cache system comes from the L2, which means that our proposal will be much
more effective on the highly accessed first-level caches rather than the less frequented
ones.

Therefore, for now on, we focus the analysis on how much our proposal can reduce
the energy consumption in the first-level cache. Figure 6.13 shows the dynamic energy
consumed by a conventional directory and snoopy protocol, where all ways in the cache
sets are searched, along with the two variants of our proposal for each of the coherence
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protocols.
Experimental results show, on average, a 22.88% decrease in dynamic power con-

sumption for snoopy protocols and a 20.09% for directory protocols. Furthermore, a
snoopy protocol with the PS cache architecture can consume less than a conventional
directory one. This is simply achieved through the selective search within the different
ways of a set provided by our PS bit.

As suggested in the previous section, applications with a large number of private-
block lookups, obtain higher energy reductions. For example, Barnes reduces dynamic
power consumption by 44.04% and 51.09%, for snoopy and directory protocols re-
spectively, and Radiosity by 47.51% and 53.47% respectively. On the other hand,
applications with a low number of private-block lookups offer no such benefits. Best
example of this scenario is the Blackscholes benchmark, which only reduces the power
consumption by 3.07% and 3.44% respectively.



Chapter 7

Conclusions and Future Work

This chapter draws some concluding remarks regarding the proposals presented in
this work. Also future work and a list of publications related with this thesis are
presented.

7.1 Conclusions

One of the major design concerns in current high-performance chip multiprocessors
is the power consumption, which increases as the number of core counts grows. On-chip
caches often consume a significant fraction of the total power budget, and important
research has focused on reducing energy consumption in these memory structures at
the cost of performance.

This work presents two main contributions: the PS directory and the PS cache.
Below we summarize the conclusions for each of them.

PS directory: This work identifies five characteristics that clearly difference the
behavior of private and shared blocks from the directory point of view. Based on these
differences, we introduce the PS directory, a directory cache that uses two different
cache structures, each one tailored to one of these types of blocks (i.e., private and
shared). The Shared directory cache, which tracks shared blocks is small, with low
associativity and fast. The Private directory cache is aimed at tracking private blocks,
which are highly dominant in current workloads. This structure does not store the
sharer vector, is larger than the shared cache, and it has higher associativity.

Experimental results for 16 cores show that, compared to a single directory cache
with the same number of entries, the PS directory improves performance by 14% due
to the separate treatment of private and shared blocks. Additionally, directory area is
reduced by 26.35% mainly due to not storing the sharer vector for the private blocks,
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and by 33.98% when eDRAM technology is considered for the design of the Private
cache. In terms of energy consumption, reductions around 27% are achieved. Thus,
we can conclude that by saving area and energy, the proposal provides scalability for
the widely preferred sparse directories. Moreover, this is achieved by reaching almost
the same performance as the duplicate tags approach (i.e., perfect directory) but with
a feasible implementation that scales with the number of cores.

PS cache: In this work, we have proposed an energy-efficient cache design which
only accesses a subset of the set ways without hurting performance. Blocks are classified
at page level as shared or private according to the TLB information. In addition, the
proposal adds a single bit attached to each cache line, which activates only the word
line if the blocks whose type matches the one provided by the TLB. In this way dynamic
energy is largely saved. Moreover, coherence requests to a remote cache only access
the shared subset of ways. This cache design can be implemented in all cache levels
of the cache hierarchy, although the most frequently accessed one will achieve the best
energy reductions.

Experimental results have proven that, although recent work has concentrated on
reducing dynamic energy in mid-level caches (e.g. L2 caches), major benefits can be
achieved by focusing in first level caches, since these memory structures dominate, by
far, the dynamic energy consumed along the cache hierarchy.

Results have shown that, compared to conventional directory or snoopy protocols
where all ways are searched, the PS cache can reduce the dynamic power consumption
by a 22.88% and 20.09% for directory and snoopy protocols respectively in the L1.

An interesting observation is that when the proposal is applied to CMPs working
with a energy-hungry snoop-based protocol, the consumed energy is on par with that
consumed by a power-aware directory-based protocol.

7.2 Future Work

As for future work we plan to study and evaluate other filtering mechanisms that
can be applied to any kind of application (multithreaded or multiprogrammed). One
possibility is to avoid accessing all the set ways on a cache access by using a few bits
of the block address to select the ways that are finally accessed. This will work mostly
the same as the PS cache in this work but the benefits obtained from this new (or any
other) filter will surely vary. On the directory side, one possibility that we are taking
into consideration is the viability of an asymmetric directory cache, which would have
some ways like the ones in the private cache and other like the ones in the shared
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one. One problem arises with this scheme: the migration of blocks in the ways. If this
number of migrations were low, though, the potential gains of this would be of interest.

7.3 Thesis-related Publications

Here we will show a list of some publications related to this work:

Joan J. Valls, Alberto Ros, Julio Sahuquillo and María E. Gómez. El directorio PS:
Una caché de directorio multinivel escalable para CMPs. In XXIII edición Jornadas
de Paralelismo SARTECO, 19-21 September 2012.

Joan J. Valls, Alberto Ros, Julio Sahuquillo, María E. Gómez and José Duato. PS-
Dir: A Scalable Two-Level Directory Cache. In 21st International Conference on Par-
allel Architectures and Compilation Techniques (PACT-2012), 19-23 September 2012.

Joan J. Valls, Alberto Ros, Julio Sahuquillo and María E. Gómez. PS Directory:
A Scalable Multilevel Directory Cache for CMPs. In IEEE Transactions on Parallel
and Distributed Systems (TPDS) (TPDS-2014), submitted

Joan J. Valls, Alberto Ros, Julio Sahuquillo and María E. Gómez. PS-Cache: An
Energy-Efficient Cache Design for Chip Multiprocessors. In 22st International Con-
ference on Parallel Architectures and Compilation Techniques (PACT-2013), submitted

Joan J. Valls, Alberto Ros, María E. Gómez and Julio Sahuquillo. PS-Cache: An
Energy-Efficient Cache Design for Chip Multiprocessors. In 9th International Confer-
ence on High-Performance and Embedded Architectures (HiPEAC TACO-2014), sub-
mitted
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