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Abstract. In the era of cloud computing and huge information sys-
tems, distributed applications should manage dynamic workloads; i.e.,
the amount of client requests per time unit may vary frequently and
servers should rapidly adapt their computing efforts to those workloads.
Cloud systems provide a solid basis for this kind of applications but
most of the traditional relational database systems are unprepared to
scale up with this kind of distributed systems. This paper surveys differ-
ent techniques being used in modern SQL, NoSQL and NewSQL systems
in order to increase the scalability and adaptability in the management
of persistent data.
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1 Introduction

Scalability, pay-per-use utility model and virtualisation are the three key charac-
teristics of the cloud computing paradigm. Many modern distributed applications
are service-oriented and can be easily deployed in a cloud infrastructure. One of
the main difficulties for achieving scalability in a cloud-based information system
can be found in the management of persistent data, since data have traditionally
been stored in secondary memory and replicated in order to overcome failures.
As a result, this management necessarily implies noticeable delays.

In order to increase scalability while maintaining persistent data, some sys-
tems simplify or even eliminate transactions [1,2,3,4,5] in order to reduce syn-
chronisation needs, avoiding full ACID guarantees and using simple operations
that only update a single item. In contrast, other papers [6] and systems [7,8,9]
still consider that regular transactions are recommendable and they need to
be supported, contradicting the former. The first kind of systems is known as
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NoSQL systems, whilst systems that maintain the relational model with trans-
actions and ACID guarantees that improve scalability applying a set of new
mechanisms, are becoming to be known as NewSQL systems.

Besides, other papers [10] argue that the key elements could be the use of
idempotent actions and asynchronous propagation, generating thus a relaxed con-
sistency that should be assumed by application programmers. Therefore, no
complete agreement on the set of mechanisms to be used in order to obtain a
scalable system exists nowadays.

The aim of this paper is to provide a general description of the techniques and
mechanisms that the application designer of a modern distributed information
system must follow in order to guarantee an acceptable level of adaptability and
scalability in data management. We also outline a general comparison of some
of these systems.

The rest of the paper is structured as follows. Section 2 presents the general
mechanisms to achieve scalability. Later, Section 3 summarises the main charac-
teristics of some relevant scalable systems and, finally, Section 4 concludes the
paper. An extended version of this paper can be found in [11].

2 Scalability Mechanisms

Intuitively, a distributed system is scalable if it is able to increase its computing
power in order to deal with increasing workloads. To this end, two different
approaches exist: vertical scalability and horizontal scalability. In the vertical
case, the computing capacity of each node should be increased; for instance,
expanding its memory or upgrading its CPU. In the horizontal case, the system
is extended including additional nodes to it and, in an ideal world, when the set
of nodes that compose the system was extended, a linear scalability would be
obtained. Nowadays the horizontal approach is the most used and, from now on,
we are going to assume this type of scalability in this paper.

Some characteristics of scalable data systems have been suggested in different
papers [1,2] and they have been widely followed in the design of modern data
scalable systems. The aim of this section is recall those recommendations and
to note that none of these characteristics (or as we call, mechanisms) comes for
free, since there are some trade-offs between them.

The mechanisms to be considered are:

M1 Replication. Data must be replicated. This allows that different server nodes
hold copies of the data and each of such servers could be placed close to a
given set of clients, minimising the time needed for propagating the requests
and replies exchanged by clients and servers. If replication is used, failure
transparency will be provided so, when any of the components failed, the
user would not be able to perceive such failure.
Assuming a ROWAA (read one, write all available) model, replication is able
to ensure linear scalability when read-only requests are considered. Note that
in that case the workload can be divided among all data replicas, and no
interaction is needed among them.



Scalable Data Management in Distrib. Information Systems 3

Unfortunately, updates always need some interactions among servers. Up-
date propagations introduce non-negligible delays and they might prevent
the system from scaling. As a result, different complementary rules should
be considered for minimising those delays.

M2 Data partitioning. Since the set of data being managed in a modern cloud
system could easily reach Petabyte sizes [3,12], it is impossible to maintain
an entire copy of all these data in each of the server nodes. As a result, some
kind of partial replication should be adopted; i.e., only some subset of the
data is stored in each server.
However, partial replication introduces the risk of requiring multiple nodes
for serving a single read-only query, since the set of items to be accessed
might not be allocated to a single server. So, when the set of possible queries
is known in advance, a refinement of the partial replication strategy called
database partitioning [13] can be considered: to partition the data in disjoint
subsets, assigning each data subset to a different server.
Database partitioning has been recommended in most systems maintaining
large stores [12,14,15,8,4,16,17,5,1,6] which, in order to minimise service de-
lays, recommend a passive (or primary-backup) replication model. In that
model, conflicts among concurrent requests can be locally managed by the
primary server and the need of coordination with other replicas is eliminated
(if we only consider the steps related to conflict detection and transaction
ordering).

M3 Relaxed consistency. In a distributed system, consistency usually refers to
bounding the divergence among the states of multiple replicas of a given piece
of memory. The strongest models require a complex coordination among
replicas but provide a very comfortable view for the application program-
mer (almost identical to that of a single machine), while the most relaxed
ones are able to admit multiple differences among replicas’ states and they
minimise the coordination needed by system nodes, but they are very hard
to programme.
Regarding consistency, the key for guaranteeing a minimal delay when client
operations should be managed by a replicated data store is to select a re-
laxed consistency model. Most modern data systems have adopted the even-
tual consistency [18] model. Such model requires that, in the absence of
further updates, the states of all item replicas eventually converge. If we
consider that previous principles have advised a partitioned store with a
passive replication model, this allows us to use lazy propagation [19] (also
known as asynchronous replication) of updates.

M4 Simple operations. If data operations are protected by transactions, data
stores should provide concurrency control mechanisms in order to guarantee
isolation, logs for ensuring data durability, and different levels of buffering
and caching in order to maintain an acceptable performance level. All these
managements demand a high computing effort and many I/O accesses, so it
is recommended [1,2] to avoid such costs in a scalable system. The immediate
effect of such attempt might be to eliminate transactions or to simplify them,
only allowing single-item accesses in each transaction.
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Single-item operations do also simplify the design of partitioned databases
because operations will not need to access more than one partition and there-
fore, no algorithm will be needed to obtain a perfect database partitioning.
Moreover, if we turn these operations into idempotent ones [1,10,20,2], we will
achieve that their effects do not depend on how many times the operation is
executed. Thus, if unreliable communication protocols were used, application
semantics can be ensured with an at-least-once message delivery policy.
A final requirement that simplifies the design of recovery protocols for pre-
viously failed replicas consists in guaranteeing that all updating operations
were commutative [10]. This recommendation is specially important in sys-
tems that assume an asynchronous multi-primary replication model.

M5 Simple schemas. Relational databases provide an SQL interface that is as-
sumed by most programmers when they use a database. Unfortunately, a
relational schema admits some operations (joins, for instance) that would
be difficult to support in a distributed environment where the database has
been partitioned (Mechanism M2) and the amount of server coordination
steps needs to be minimised. Because of this, many scalable data stores
[3,4,5,21] have renounced to the relational model and have adopted a sim-
pler single-table key-value [5] schema.
These systems are becoming to be known as NoSQL systems.

M6 Limited coordination. In spite of needing a minimal server coordination, scal-
able data stores should maintain some meta-data (for instance, which are the
current data partitions and which has been the assignment of primary repli-
cas to each partition) whose availability is critical. So, meta-data is also
replicated but it cannot follow the loosely consistent model described above
for the regular store contents: its consistency should be strong and should
be managed by a specialised mechanism that provides strong coordination
between nodes. As there is no agreement on the name given to the set of
nodes that manage these meta-data, we suggest the term kernel set for that
mechanism.
Recent examples of kernel sets in scalable data stores are: the Chubby ser-
vice [22] in Google’s Bigtable clouds, Elastra’s Metadata Manager and Mas-
ter (MMM) [17] component, ZooKeeper [23] in Cassandra-based [21] and
Yahoo!’s [4] systems, the Paxos Service component [24] in the Boxwood ar-
chitecture, etc.

In order to sum up, notice that Mechanism M1 (Partial replication) does not
admit any objection since all distributed systems require failure transparency
and it compels some kind of replication. On the other hand, all remaining mech-
anisms (M2 to M6) do not perfectly match the regular deployment of common
data services in a distributed system.

3 Scalable Systems

This section presents several scalable systems, describing which combinations of
the mechanisms explained above are actually used in them. To this end, Section
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Table 1. Characteristics of some scalable data management systems.

Systems

Key-value SQL VoltDB /
Mechanisms

stores
Hyder Megastore

Azure H-Store

Data partitioning (M2) Hor.(+Vert.) No Horiz. Horiz. Horiz.

Consistency (M3) Eventual Strong Multiple Sequential Sequential

Update prop. Async. Cache-upd. Sync. Async. None

Simple operations (M4) Yes No No No No

Concur. ctrl. No MVCC MVCC Yes No
Isolation No MVCC MVCC Serialisable Serial

Transactions No Yes Yes Yes Yes

Simple schema (M5) KeyValue Log KeyValue No No

Coordination (M6) Minimal Medium Medium Medium Minimal
Admin. tasks Yes No Yes Yes Yes
Transac. start No No No No Yes

Dist. commit No Cache-upd Yes At times No (active repl.)

3.1 groups the set of data stores that follow the key-value schema suggested by
Mechanism M5, whilst Sections 3.2 to 3.5 describe some of the systems that do
not follow such recommendation. Table 1 summarises these relationships.

3.1 Key-value Stores

The term key-value store encompasses a large set of data storing systems, with
some common attributes. Following Stonebraker et al. [25], as well as the in-
formation collected from different sources, key-value stores can be classified in
three types:

– Simple key-value stores: Systems which store single key-value pairs, and pro-
vide very simple insert, delete and lookup operations. The different values
can be retrieved by the associated keys, and that is the only way of re-
trieving objects. The values are typically considered as blob objects, and
replicated without further analysis. It is the simplest approach and provides
very efficient results. Some examples are Dynamo [5], Voldemort, Riak and
Scalaris.

– Document stores: Systems which store documents, complex objects mainly
composed of key-value pairs. The core system is still based on a key-value
engine, but extra lookup facilities are provided, since objects are not con-
sidered just black boxes. In this way, the documents are indexed and can be
retrieved by simple query mechanisms based on the provided key-value pairs.
Some examples are SimpleDB [26], CouchDB, MongoDB and Terrastore.

– Tabular stores: They are also known as (wide) column-based stores. These
systems store multidimensional maps indexed by a key, which somehow pro-
vides a tabular view of data, composed of rows and columns. These maps
can be partitioned vertically and horizontally across nodes. Column-oriented
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data stores are very well suited for storing extremely big tables without ob-
serving performance degradation, as some real implementations have proved.
Some examples are Bigtable [3], HBase, Hypertable, Cassandra [21] and
PNUTS [4].

These data stores typically implement all recommended scalability mecha-
nisms cited in Section 2. As a result, they are able to reach the highest scalability
levels. Their main limitation is a relaxed consistency that might prevent some
applications from using those systems. However, other modules in a cloud system
are still able to mask such problems, enforcing stricter consistency guarantees.

3.2 Megastore

Google Megastore [15] is a layer placed on top of a key-value database (concretely,
Bigtable [3]) with the aim of accepting regular ACID transactions with an SQL-
like interface in a highly scalable system.

The entity group [1] abstraction is used in order to partition the database.
Each entity group defines a partition, and each partition is synchronously repli-
cated (i.e., with synchronous update propagation) and ensures strong consistency
among its replicas. Replicas are located in different data-centres. Therefore, each
entity group is able to survive regional ”disasters”. On the other hand, consis-
tency between different entity groups is relaxed and transactions that update
multiple entity groups require a distributed commit protocol. So, inter-entity-
group transactions are penalised and they will be used scarcely.

Transactions use multi-versioned concurrency control. They admit three dif-
ferent levels of consistency: current (i.e., strong), snapshot and inconsistent
(i.e., relaxed) [15]. So, this system ensures strong consistency thanks to its syn-
chronous update propagation but it is also able to by-pass pending update re-
ceptions when the user application may deal with a relaxed consistency, thus
improving performance.

Note that Megastore is bound to the schema provided by Bigtable. So, it
is compelled to use a simple schema that is not appropriate for relational data
management. So, some “denormalisation” rules are needed for translating regular
SQL database schemas, implementing them in Megastore/Bigtable. To this end,
Megastore DDL includes a “STORING” clause and allows the definition of both
“repeated” and “inline” indexes.

Regarding coordination, as we have previously seen, distributed commit pro-
tocols are needed at times in Megastore. Besides this, every regular Megastore
transaction uses a simplified variant of the Paxos [27] protocol for managing
update propagation. Therefore, coordination needs may be strong in some cases.

3.3 Hyder

Hyder [28] is a data sharing system that enhances scalability sharing a single data
store between multiple servers. Its architecture still assumes relational databases
and horizontal partitioning. It uses a shared set of networked flash stores (notice
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that the use of a networked data store could introduce a bottleneck for achieving
extreme scalability levels). Furthermore, inter-server communication is kept to a
minimum in this architecture since each server is able to manage its transactions
using only local concurrency control mechanisms based on multi-versioning. Be-
sides this, distributed commit is unneeded since each transaction does only use
a single server.

Another important aim of this system is the usage of NAND flash mem-
ory in order to store its persistent data, since its performance and costs are
improving at a fast pace. However, flash memory imposes severe restrictions
on the way read/write operations and storage is administered. So, the usage
of log-based file systems and a redesign of several components of the database
management system [28,29] are needed. As a result, the design of Hyder is based
on a log-structured store directly mapped to a shared flash storage that acts as
the database: write operations will be always kept as appended records at the
end of the database log while read operations (queries) are managed using local
caches in each server node.

Although Coordination is unneeded (distributed commit protocols are avoided),
since each transaction can be served by a single node (no remote subtransaction
is needed), once update transactions are completed, messages should be sent to
remote nodes in order to update their caches.

In order to sum up, Hyder is able to ensure strong consistency and a good
scalability level without respecting all suggestions given by the mechanisms de-
scribed in our paper. Nevertheless, data are actually replicated at the file sys-
tem level and transactions are admitted with a SQL-like interface that might be
provided on top of Hyder (although details are not discussed in [28]), making
possible a regular ACID functionality.

3.4 SQL Azure

As it has been shown in the last subsections, ACID transactions may be needed
in highly scalable systems, and different solutions to this lack have been proposed
in Megastore and Hyder. However, none of those solutions have left the simple
schema recommended in Mechanism M5. Because of this, all those systems still
provide a good scalability level but they are unable to manage a fully compliant
SQL interface, and such functionality is required by a large set of companies
that plan to migrate their IT services to the cloud with a minimal programming
effort. Note that in this case, most of those companies are more interested in
database outsourcing (due to the saving in system administration tasks and in
hardware renewal costs) than in extreme scalability. Microsoft SQL Azure [8,30]
fills this void.

Obviously, in this kind of systems Mechanism M5 should be forgotten and a
regular relational schema must be adopted instead. This implies a small sacrifice
in scalability, since relational databases need specialised management regarding
buffering, query optimisation, concurrency control, etc. in order to guarantee all
ACID properties. However, although Mechanism M4 should also be dropped,
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since the aim is to fully support ACID SQL transactions, all other mechanisms
(i.e., M1, M2, M3 and M6) discussed in our paper are still followed.

To this end, databases are passively replicated and horizontally (or, at least,
with a table-level granularity) partitioned and asynchronous propagation of up-
dates to the secondary replicas are allowed, reducing the perceived transaction
completion time.

A distributed commit protocol might be needed, but only in case of transac-
tions that access items placed in multiple database partitions. This will not be
the regular case in this system.

3.5 VoltDB

VoltDB [31] and its previous prototype H-Store have similar aims to those of
SQL Azure: to maintain a relational schema and ACID SQL transactions in
a scalable data store. However, there is an important difference between both
proposals: SQL Azure is the data store for a public cloud provider company,
whilst VoltDB is mainly designed for a private cluster.

VoltDB/H-Store follows the design recommendations given in [6] for improv-
ing the scalability of relational DBMSs: horizontal partitioning, main-memory
storage, no resource control, no multi-threading, shared-nothing architecture
(complemented with partitioning) and high-availability (replication).

Its database partitioning schema is designed by the developer, who decides if
a table must be horizontally partitioned by a certain column (partition column)
or if, in contrast, a table must be replicated. With this, distributed commit
protocols are not needed and the required distributed coordination efforts are
minimal: they only consist in monitoring the state of each node, reacting to
node joins and failures. Furthermore, since most modern applications are not
interactive, their transactions can be implemented as stored procedures and
executed sequentially from begin to end without any pause, discarding multi-
threading and local concurrency control mechanisms.

In summary, VoltDB is designed for systems that need SQL and transac-
tional support with full ACID guarantees and whose data fits in main memory.
Unfortunately, this system is not allowed to grow elastically: if new nodes have
to be added while the system is running, it is halted in order to be reconfig-
ured. Notice that since concurrency is avoided in this architecture, a workload
dominated by long transactions would be difficult to manage in this system.

4 Conclusions

The current paper resumes which are the essential mechanisms in order to im-
prove the scalability of persistent data storing services. It briefly describes such
mechanisms and provides some pointers to systems and research papers that
have adopted them or have proposed other complementary techniques.

We have seen that most key-value stores are able to directly implement all
these recommended mechanisms, but provide a data consistency model that
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might be too relaxed. Additionally, simple operations and schemas seem to pro-
hibit the usage of ACID transactions and relational stores. So, other systems
were designed to by-pass some of these mechanisms but still achieving compara-
ble levels of scalability. We have also presented a short summary of each of these
systems, providing references that would be useful to deepen in the knowledge
of this field.
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