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Abstract

In this work, a general structure to control long time-delay plants is proposed and an easy methodology to tune the control
parameters is outlined. All the sensitivity transfer functions are delay free. The proposed scheme is equivalent to the Smith
Predictor but able to cope with any kind of systems, including non-minimum phase, unstable and integrating plants. The
controllers are designed based on the delay free model. Contrary to other approaches, other than for the digital implementation,
no delay approximation is used. A tuning parameter is provided in order to reach an intuitive tradeoff between performance
and robust stability. A comparative analysis with respect to recently successful proposals shows a substantial improvement in
the performance/robustness tradeoff as well as in the tuning process.
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1 Introduction

Most industrial processes are characterized by the pres-
ence of time delays [23]. Conventional controllers, such as
PID controllers [6], could be used when the dead-time is
small but they show poor performance when the process
exhibits long dead-times [12]. In these cases, it is con-
venient to introduce a dead-time compensating (DTC)
structure [22].

DTCs structures include a model of the process in or-
der to cope with the dead time. The Smith Predictor
(SP) [30] was the first and seminal proposal. As it is well
known, the main idea is to generate the undelayed plant
response by using the available information: the process
input and output and the process model. The main ad-
vantage of the SP method is that time delay is elimi-
nated from the characteristic equation (not only from
the set-point to output transfer function but from all the
sensitivity functions of the closed-loop system). Thus,
the analysis and design problem for processes with de-
lay can be translated into a delay-free one. On the other
hand, as the SP uses the actual model of the plant, it
presents several problems in presence of integrating or
unstable processes [22, 11], being also sensitive to time
delay uncertainty|[20].
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The control community has devoted a great effort
against such drawbacks. Some DTCs have been pro-
posed to simplify and improve the tuning of the con-
troller [14, 13, 12, 32, 21], to reject load disturbances
for processes with integration and long dead-time
[5, 18, 25, 35, 9, 33], and to control unstable time-delay
systems [17, 31, 34, 15, 16, 8, 24, 1]. However, for in-
tegrating and unstable systems none of the proposed
schemas, except those proposed in [24, 1], fulfill the SP
principle, the time delay being eliminated from all the
sensitivity function of the closed loop system [10].

Several PID-based design methods have been proposed
for the control of integrating and unstable processes with
time delay. The tuning design can be performed follow-
ing different approaches (see [27] for a tutorial on the
topic) but there is always an approximation in the delay
term to obtain the final PID control structure [31]. Some
times this PID algorithm is in cascade with a lead-lag
first or second order filter [27]. A common drawback in
this kind of approaches is that ideal PID controllers are
usually proposed, but the tuning of the PID derivative
filter is not a simple issue. Small values of the time con-
stant of this filter causes strong control action and poor
noise attenuation. On the other hand, large values may
drive the system to instability [6, 10].

Recently the so called MSP-PID controller has been pro-
posed in [19] to cope with stable, integrating and un-
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stable processes. The proposal can be implemented as a
DTC control structure or in a PID form in a two-degree
of freedom control structure although a better set-point
tracking is obtained in the later implementation form.
In this MSP-PID controller, the control parameters of
the main controller are obtained by solving an optimiza-
tion problem, and a second order Padé approximation is
used to get an effective realization of the DTC control
structure.

In this work, a general structure to control stable, inte-
grating or unstable long delayed plants based on a gen-
eralized predictor (GP), [1], is presented and a method-
ology for an easy and robust tuning of the control pa-
rameters is proposed. The control structure includes four
blocks: the main controller, an optional set-point filter,
the undelayed output predictor and a prediction error
filter. A new parameter is introduced in both, the pre-
dictor and the prediction error filter to get a tradeoff
between performance and robust stability, keeping in
mind that the waterbed effect between the sensitivity
and complementary sensitivity function is unavoidable
[29]. The principal advantages of the proposed structure
is the easy tuning and industrial implementation as well
as the intuitive effect of the control parameters. The tun-
ing procedure is shown to be simple and easy to apply to
a variety of processes, including those with a long dead-
time. It is worth to note that, except for the predictor,
the remaining blocks are independent of the delay, al-
though the final behavior is unavoidably affected by the
delay. A re-tuning of the control structure parameters
may reduce this effect.

This paper is organized as follows. First, the ideal, unde-
layed control situation is reminded. Then, the structure
and components of the GP are summarized. The pro-
posed predictor-based control is described and a simple
procedure to tune the different parameters in the con-
trol structure is outlined. In particular, the use of the
new parameter (\) to improve the controlled plant ro-
bustness is discussed. Some examples, applying this ap-
proach to some typical plants already used in the litera-
ture, illustrate the design methodology and the achieved
improvements with respect to recently presented alter-
native approaches. Some comments and suggestions are
drafted in the last section.

2 Problem statement

An input-output delayed SISO process can be described
by
Py(s) = Gy(s)e™* (1)

where L, is the time-delay and G, (s) represents the un-
delayed dynamics. Due to modeling errors and uncer-
tainties, the plant model

P(s) = G(s)e ™t (2)

Figure 1. Ideal delay-free loop

differs from the actual plant. Since in any practical ap-
plication a computer is used to implement the control
law [7], it is justified to study the overall closed-loop sys-
tem in the discrete framework.

Thus, the discrete time (DT) behavior of the actual plant
will be represented by the DT transfer function

Py(z) = Gy(2)z™" 3)

where the time delay will be approximated by a multiple
of the sampling period!, T, being L, = d,T, d, € N.
The assumed plant model is

For perfect model matching, P(z) = G(2)z=% = P,(2),
with L = L, = dT.

The ideal setting to design the control is to keep the
delay out of the loop and design the control structure
for the undelayed plant. Assume a plant as depicted in
Figure 1, where the undelayed output g(z) is accessible.
The ideal system output is

_ K(2)G(2)z~1
y(2) =K () e ais T K()G0)
G(z)z74
YOO ©)
B K(2)G(z)z™1

1+ K(2)G(2)

r(2) ()

n(z) (7)

The controller K(z) may be designed to achieve some
desired performance on the closed-loop disturbance re-
sponse, whereas the filter K¢ (2) can be designed to fulfil
the tracking performance. If K (z) is properly designed,
the system is proved to be internally stable [4].

In general, the undelayed plant output, ¥, is not accessi-
ble and a model-based predictor should be implemented.
The predictor should work for any kind of systems.

! As the control structure should be robust under model
parameters uncertainty, the round-off of the fractional delay
will not be a problem.
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Figure 2. Predictor-based control structure

3 Generalized Predictor Structure

In order to design a delay free control, an undelayed
output g(z) should be predicted based on the current
available information: u(z), y(z) and the plant model.
The proposed predictor structure is shown in Figure 2.

In this way, the predicted undelayed output will be
y(z) = Fi(2)u(z) + Fa(2)[y(2) + n(2)] (8)

In the GP, as initially presented at [1], two stable filters
based on the plant model are computed. In this work, in
order to improve the robust tuning of the overall closed-
loop system, a new but equivalent undelayed output pre-
dictor g(z) is considered. This predictor includes a de-
sign parameter, A, that can be tuned in order to get an
easy and intuitive tradeoff between load disturbance re-
jection and robust stability.

3.1 Undelayed output predictor

Let us consider an equivalent model of the plant (4)
represented by

271 =Gz, \)T(z, Nz (9)

where the plant zeros are collected in

N(z)

[(z,A) = m;

A< 1 (10)

where A is the tuning parameter and m is the number of
zeros on the polynomial N(z).

Remark 1.If A =0 and only the non-minimum phase
zeros are collected in N(z), the process model decompo-
sition considered in [1] is obtained.

According to (9)-(10), the transfer function G(z) includ-
ing all the system’s poles is

Slzny= EZN™ N (1)

where (A,b,¢)? is a minimum order state space model,
very convenient to make easier the following computa-
tions.

Let us define also a new transfer function
N*(z,\)

G*(z,\) == c(zI — A)~1 A% = D0

(12)

Lemma 3.1 For any process, no matter being sta-
ble/unstable and minimum/ non-minimum phase, de-
noting by (A, b, c) a minimum order state space represen-
tation of G(z, \), including the possibly unstable part of
the transfer function, the stable filters in (8) computed by

Fi(z,A) =®(z,\)T'(2,\) (13)
B N*(z,\)
FQ(Z7 )\) = m (14)
where ;
D(z,N) :=c(N) Z ATyt (15)

provide o stable undelayed output estimation.

Proof The proof follows a reasoning similar to that in
Lemma 3.1 of [1] (see Remark 1). For the nominal undis-
turbed plant (9), assuming w = 0 and n = 0, the unde-
layed output is obtained by:

U(2) =Gz, N (2, A)u(z) (16)
Taking into account (11) and (12), that is 3

W N
G = 5y C (17)

adding and subtracting G*2~¢ from (17) in (16), it can
be rewritten as

s A A —d t A
But from (14) and (9), it results

N*
Fy= —GT(z, \)u

EEY
y= [G - é*zid]Fu + Foy(z)

2 If a controllability canonical representation is chosen, the
A-parameter only appears in the vector ¢()\) € R'*™. This is
assumed in the following, to simplify the notation.

3 In the following, the arguments z and ), if not needed, are
avoided to simplify the notation.



On the other hand, it is easy to verify that:

d
(21 — A) Z Aty — Adyd
i=1
d . .
S AT = (2l — A) T - A% (18)
=1

Thus, premultiplying (18) by ¢ and postmultiplying by
bI', it yields F} in the left hand side and the right hand
side, taking into account (11) and (12), leads to (13):

Fiu= (G -Gz Hl'u
proving the lemma.
|
3.2 Prediction error compensation

Due to disturbances and model uncertainties, there is an
error in the prediction, such that

Z_d

<y

e=y—

This predictor error can be used to improve the behavior
of the controlled plant if the control is generated through
the predicted undelayed output, as described in the next
section.

4 Control structure

The predictor-based control structure is shown in Fig-
ure 2, where there is a main controller K(z) and the
optional set-point filter K;(z). In order to improve the
robustness, a predictor error filter Fj(z) can be added,
being tuned to achieve a tradeoff between performance
and robust stability. This filter can be any stable and
unitary steady-state gain filter (see [9, 1]).

Lemma 4.1 In the nominal case, from the schema in
Figure 2, and according to Lemma 3.1, the following ez-
pressions are obtained:

KGz4
A el (19)
Gz~ ¢ KGz—¢
T RGY T TR RG Y (20)
KGz—¢
Sl
1+ x5G 2" (21)
where:
H,:=(F, — FyF 2% (22)
Hsy = (FQ + Fi, — FkFQZ_d) (23)

Figure 3. Simplified control structure for analysis proposes.

Proof The control structure depicted in Figure 2 can
be simplified as shown in Figure 3, where H; and H, are
expressed by (22)-(23).

Thence, the following expressions are obtained:

KP,
=K P r
Y= RIT T K(H, + HoPy)
N P, N KP,H,
w w
1+ K(Hy, + H2P,) 1+ K(Hy + H2Py)
~-KP,

HQ’/I/

_|_
1+ K(H, + HyP,)

In the nominal case (P, = P), from Lemma 3.1, it is easy
to show that F} = G — Gz~%, and G2~ % = Gz 4, so
Fi + FQGZid =dG.

Thus:

H,+ HyP=F, — FF127 %4 (Fy + Fy — F,Foz" )P
=F(1 - Frz= % 4+ F,P(1 — Frz=%) + F,.P
=G (24)

Then, replacing (22), (23) and (24) in the above expres-
sions, (19-21) is obtained.

Remark 2. Note that, contrarily to most approaches
presented in the literature (except the one proposed in
[24]), the characteristic equation of all sensitivity func-
tions is delay-free.

4.1 Internal stability

Lemma 4.2 The controlled system depicted in Figure
2, where K(z) has been designed to stabilize G(z), is
internally stable.

Proof The proof is straightforward. Note that, in (19-
21), K(z) has been designed to stabilize 1 + K (2)G(z),
and Hi(z) and Ha(z) are stable filters.

Remark 3. Note that the design A\-parameter has no
influence in the computation of the predicted undelayed
output, and it does not appear in the set-point tracking



performance. But this parameter can be tuned in order
to reach a tradeofl between load disturbance rejection
and robust stability in an easy way, as seen in the next
section.

4.2 Tradeoff between performance and robust stability

In order to evaluate the performance of the proposed
undelayed output prediction Fj(z) = 1 is considered in
this section.

Performance: A commonly used measurement of dis-
turbance performance is the integral of the absolute er-
ror (IAF) index. The lower the TAE index the better
the performance is. If the controlled plant is designed to
have an over damped closed-loop system, under constant
disturbances the IAFE is equal to the integral of the er-
ror (IFE), and an analytical expression can be obtained
by (see, for instance, [6])

. T

where T is the sampling period and Gy, (2) is as de-
scribed in (20).

Then, the overall TAE is the sum of two terms (20):

TAE =TAE; + IAE;p

=IAE; + lim (Fy — Fiz79)
z—1 2 —
(L, )
=IAFE; + N(1) ——22-dT 2
+ N ( )(1_”,” (26)

where I AFE; is the contribution of the “ideal” controlled
plant (without delay), and the second term is due to the
proposed predictor.

The I AFE performance can be computed as a function of
the parameter A *. Then, (26) can be used to compute
the value of A\ to get a desired IAE by using the pro-
posed control scheme. This performance (26) is plotted
as a function of A in Figure 4, for the process model of
Example 1 in Section 6.

Robustness: For multiplicative uncertainties, that is,
if a process transfer function P,(z) = P(2)(1 4+ W (%))
is assumed, where W (2) defines the process multiplica-
tive uncertainty bound, the robust stability condition is

4 Note that ®(1,)) depends on both, A and the process
model parameters. In all the examples considered in this
work the higher this parameter is the higher the IAE is, but
an analytical study of the effect of this parameter for any
kind of systems is out of the scope of this work and will be
a matter of further research.

obtained from the output-noise sensitivity function

where

KG

TT1+KGW

Hoo <1 (27)

N*(2)z=% = N*(2) — (z = \)™

T, = (Foz = Fy—1) =
r ( 27 2 ) (Z*)\)m

(28)

The tuning of A could be done in order to reduce |T| in

, increasing the

the frequencies of the peak of ‘%W

controlled plant robustness.

But it is well know that for any closed-loop control sys-
tem the higher the robustness is the lower the perfor-
mance is obtained, then a tradeoff between both prop-
erties should be considered.

The robustness function (28) for the same process model
of Example 1 in Section 6 is plotted as a function of A in
Figure 4° . The lower the robustness function the more
robust the controlled plant is. This easy and intuitive

graphical plot can be used to find some value of A to
achieve a tradeoff between IAE and robust stability.

It can be seen that the lower the A parameter is the lower
TAE is obtained but there is a considerable increment
in the robustness function (28) (i. e., the robustness de-
creases). Nevertheless, this effect is bounded. Note that
if [A| > 1 the system becomes unstable because an un-
stable pole is introduced in the predictor scheme. The
internal stability is not preserved anymore.

Predictor error filter Fi(2):

In order to improve the robustness, the predictor error
filter Fj(z) can be also included. This filter can be any
stable and steady-state unitary gain filter, but in order to
simplify the number of tuning parameters, in this work,
the following filter is considered

Fi(z) = (_7 (29)
In that case, the TAE introduced by the DTC structure
can be computed by:

B(1, )N (1)
(L=x)m

[AEGp = T + (30)

and the robustness function (28) will be T, = Hj, (23).

5 Similar result are obtained for all considered examples in
this work.
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Figure 4. Plot of TAE and T, according to (26) and (28)
respectively (Example 1).
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Figure 5. Plot of T’ in (28) and (23) respectively.

For the same Example 1 in Section 6, the robustness
function (23) is plotted as a function of A in Figure 5,
for Fi, = 1 (same as in Figure 4) and for Fj(\) (29).
Note that for the same A the robustness function is lower
(the robustness is higher) if the prediction error filter is
used. Thus, for a given IAE an increment in the robust
stability is obtained, although this effect almost vanishes
for A — 1.

The tradeoff between performance and robust stabil-
ity can be tuned in two stages. First, in designing the
main controller K (z). Then, by selecting the X filter pa-
rameter. The first step is independent of the process
time-delay and it can be obtained by any robust design

method, leading to an inner control loop weighting these
characteristics. Once this step is fulfilled, the global bal-
ance between performance and robustness can be fine
tuned by the A parameter.

5 Tuning design procedure

In this section a general, easy, intuitive and systematic
procedure to design the control structure of Figure 2 is
outlined. The proposed procedure is as follows:

(1) Design of the main controller K(z): First, a
discrete model of the process is obtained by us-
ing an appropriate sampling period T, according to
the controlled plant requirements. Then, this con-
troller is designed according to the closed-loop re-
quirements for the ideal loop ® (depicted in Figure
1). It can be any controller, depending on the re-
quirements. As a result, an output/reference trans-
fer function M (z) will be obtained:

—d. __ GR)K()
M.(2) =M(2)z=% M(z) [+ GLKGE)
(31)
Note that this set-point tracking design is indepen-
dent of both, the plant delay, d, and the filter pa-
rameter, .
If necessary, the reference changes could be fil-
tered or smoothed by means of the filter Ky

where M is usually taken as the minimum-phase
components of M, and « is the only tuning param-
eter in this filter.

(2) Undelayed output prediction: The undelayed
output prediction g (8) (Figure 2) is computed by
(13) and (14). It is independent of A, although this
parameter appears in both filters. Its relevance is
shown up when the disturbance response or the
noise effect are considered.

Note that A, if it is convenient, can be used in the
last step to reach a tradeoff between performance
and robust stability. Otherwise it can be set equal
to zero.

(3) Tradeoff between performance and robust
stability: The tuning of A could be done in an
analytical way according to (26) and (27), or as a
rule of thumb: the larger the parameter A the more
robust the system is but a decrease in the load
disturbance rejection results.

5 The tuning of this controller can be done either in the

discrete or continuous time framework, to be implemented in
discrete time, and it is design for the delay-free plant model.



In order to improve the robustness, the predictor
error filter Fj(z) can be also included. As both in-
dices (30) and (23) depend on the A-parameter and
the plant model but not on the designed controller,
for a given plant model it is possible to provide a
graphical tuning procedure to find a value of A to
have a given tradeoff between the TAE performance
and the robust stability.

6 Illustrative Examples

In this section the proposed GP-based control schema
is applied to several processes recently used in the lit-
erature to illustrate the design procedure as well as the
variety of situations that can be considered. Similar to
the SP [30], the controller parameters on the proposed
scheme can be tuned by following any general purpose
control design tuning rules for delay-free plants, [6], or
by means of a specific method for DTC in the delay
free sensitivity functions [33]. Nevertheless, the predic-
tor should take into account the actual plant delay and
thus, affecting the global performances.

The results are compared with two schemes conceived
to improve the performance of integrating [3] and un-
stable time-delay systems [19]. For a fair comparison,
the proposed controller is tuned to provide similar dis-
turbance performance, then robustness is evaluated for
each scheme. Performance and robustness are compared
using standard metrics.

To evaluate the control performance, the integrated ab-
solute error (IAE) and the total variation (TV) of the
manipulated input u(t), TV = 3¢=5°|u; 11 —u;|, are com-
puted. Both indices should be as small as possible [28].
To evaluate the robustness standard robustness metrics
such as Gain margin (M,) and Phase margin (¢.,) are
used. Some times, these figures cannot capture the idea
of stability margin [6]. An alternative measure of the sta-
bility margin is the delay margin (DM), that is, the max-
imum extra time delay admitted before the controlled
plant becomes unstable, [2], which is also considered as
a robustness measurement.

Keeping in mind the waterbed effect, for integrating and
unstable time-delay systems the most critical point is the
tradeoff between disturbance rejection and robustness.
The set-point tracking can be always modified by an
ad-hoc set-point filter. Note that, for unstable systems,
robustness cannot be increased arbitrarily. This is an
expected result because certain feedback action is needed
to maintain stability, thus, the detuning of the controller
has a limit [26].

To illustrate different properties, the following systems
will be considered:

(1) An integrating process with dead-time [3], to show
a detailed application of the design procedure.

(2) A double integrator process with a dead-time, also
treated in [3].

(3) An unstable system taken from [19].

(4) The two previous cases, 1 and 3, initially assumed
with the same delays as reported in the referred
papers, but now with a very long delay.

Example 1: Let us consider an integrating process
with dead-time [3]:

Bpls) = s(s+1)

Following the design procedure, let us consider the
scheme in Figure 1. The tuning of the controller can
be done to fulfill some requirements, for example, a 0%
overshoot and recovery time of 60s for step load distur-
bance. Then, the PID controller for the delay-free plant
could be such as:

(s +1)(s+1/20)
(015 + 1)

K(s)=0.21

A suitable sampling time, such as T = 0.2s, is consid-
ered, although it could be larger. The discrete time con-
troller K(z) is obtained by discretizing K (s), and the
discrete process model is:

~ 0.018731(z + 0.9355)
G =15 —osisn)

Following the design procedure (second step), with A =
0:

_0.018731(z + 0.9355)

I'(z)
G(z) =

. (32)

(z —1)(z — 0.8187)

(33)

Thence, the filters F(z) and F5(2) are computed from
(32) and (33) by (13) and (14) respectively with d =
L/T = 20. The obtained results, assuming Fj(z) = 1,
compared with the ideal closed-loop delay-free system
(see Figure 1), are shown in Figure 6.

In order to improve the robust tuning of the overall
closed-loop system the parameter A should be adjusted
(third step). In this example, and in order to compare
with the proposal in [3], the parameter A is computed
from (30) to obtain in both a similar TAE (see Table 1),
being taken as A = 0.84.

_0.0048374(z 4-0.9672)

=)= (z — 0.84)
(z—0.84)

(z —1)(z — 0.9048)

é:
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Figure 6. Nominal output response compared with the ideal
closed-loop system free of delay for a unit step change in the
reference and a step load disturbance of —0.1 at ¢ = 80s.
(Example 1).

Table 1
Performance & Robustness (nominal case of Example 1)

Load disturbance | TAE | TV | M, ¢m | DM

3] 11.78 | 0.20 || 1.65 | 50.50 | 4.35

GP 11.72 | 0.15 || 1.94 | 44.16 | 4.38

IAE and TV are computed for load disturbance case
(t > 80s in Figure 7).

Thence, the filters Fy(z) and F»(z) are computed from
(34) and (35) with d = 20, the predictor error filter
being:

(1-0.84)

Fr(z) = (=084

In [3], the following parallel PID-controller is designed
based on the delayed plant model:

Td S 1

PID(s) =ke(l+ ——+ —
(s) = ke( +Tfs+1+Tis

)

where k. = 0.19, T; = 22.37, Ty = 2.79and Ty = 0.279,
are the result of an optimization process where the de-
layed plant model is used.

For the nominal case, the results obtained, compared
with those in [3] are shown in Figure 7, 8 and Table 1,
where the different metrics for performance and robust-
ness are collected.

Similar to [3], the robust performances of the proposed
scheme is studied by assuming a 20% change in the
steady state gain or the plant delay. The results ob-
tained, compared with those in [3], are shown in Figure
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Figure 7. Nominal system responses for a unit step change
in the reference and a —0.1 step load disturbance at ¢t = 80s
(Example 1).

Nyquist Diagram
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Figure 8. Nyquist plots for Example 1.
Table 2

Performance & Robustness (perturbed cases Example 1)

+20% gain +20% time delay

IAE TV | IAE TV
[3] 11.76 0.34 | 11.77 0.26
GP | 11.69 0.21 | 11.70 0.19

ITAE and TV are computed as before, for load disturbance,
with a 20% change in the steady state gain and the plant
delay.

9 and Figure 10 and Table 2. In both cases, the IAE is
similar for both schemes but the TV is better in the pro-
posed scheme.

If the modeling errors are increased in both, the delay
and gain, the difference could be greater. For a 40%
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Figure 9. Responses for a change of 20% in process gain
(Example 1).
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Figure 10. Responses for a change of 20% in process time
delay (Example 1).

modeling errors, the proposal of [3] becomes unstable
whereas the GP remains stable (see Nyquist plot in Fig-
ure 11), but it is fair to note that the differences are
not so large and both designs are acceptable for reduced
model mismatching and low time delays.

Finally, let us consider the effect of a white noise in the
measurement device, with a power spectrum of 0.02. For
the nominal case, the results are shown in Figure 12.

For this example it is worth to conclude that, if both
schemes are tuned to have the same IAE in the nominal
case, the phase margin is slightly higher in the scheme
proposed by Ali & Maihi [3], but the gain margin and
the Nyquist plot distance to the (—1,0) point (M;) are
lower, the DM being similar. For gain or delay uncertain-
ties the computed TAFE is similar for both schemes but

Nyquist Diagram
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Figure 11. Nyquist plots, for the perturbed case when time
delay and gain are increased by 40% (Example 1).
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Figure 12. Nominal system responses for white-noise mea-
surement (Example 1).

the TV is better in the GP. For simultaneous uncertain-
ties (in both delay and gain), the proposed scheme shows
better robustness again uncertainties and load distur-
bance rejection.

Example 2: Now let us consider the same integrating
process but with a much higher dead-time:

6_128

Pp(s):m

The authors in [3] announce major difficulties in the
controller design for dead-time greater than 10, and “for
delay dominated plants, the Smith predictor should be
used for integrating plant models with large time de-
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Figure 13. Nominal system responses for a —0.05 step dis-
turbance at t = 100s (Example 2).

layn 7 .

Following the proposed methodology, the controller
K(z) and the predictor error filter Fj(z) are initially
the same that those computed in the previous case.
The filters F(z) and F»(z) are computed from (34) and
(35), with the same sampling period T' = 0.2s, but with
d = L/T = 60. Then, the comparative results as a func-
tion of the delay are shown in Figure 13. The worsening
of the robustness against model uncertainties is shown
in Figure 14.

Note that as expected by the nature of the integrative
systems, the robustness and the load disturbance rejec-
tion are degraded as far as the time delay increases. If
necessary, a robustness improvement can be done by the
A-parameter, but at the expense of decreasing the load
disturbance rejection. Also, the initially designed robust
control K (z) can be redesigned.

Example 3: Let us now consider a double integrator
process with a dead-time, also treated in [3]:

Following the design procedure, the tuning of the con-
troller can be done to fulfill some requirements for a step
load disturbance, for example:

(2.5s+1)(s+1/5)
5(0.255 + 1)

K(s) =0.20

" Quoted from [3].
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Figure 14. Perturbed system responses when the delay and
gain are increased by 10% for a —0.05 step disturbance at
t = 100s (Example 2).

The following set-point filter could be included if the
overshoot should be avoided:

M(s)~!
Ki(s) = )

£(s) EEE
The discrete time controllers K(z) and Kf(z) are ob-
tained by discretizing the previous K(s) and Ky(s),
where T = 0.2s. The discrete process model is:

SEMCC

Note that a zero appears at z = —1. Then, following the
design procedure, the A parameter should be adjusted. In
this example, and in order to compare with the proposal
in [3], A = 0.953 is selected to obtain the same IAE for
the nominal case there proposed (see Table 3).

0.02(z + 1)
M) =005 (36)
. (z—0953)
Y=o (37)

Thence, the filters F(z) and F5(2) are computed from
(36) and (37) by (13) and (14) respectively.

As before, in [3], the following PID is proposed:

TdS 1
_|_
Trs+1 Tis

PID(s) = ke(1 + )

where a set-point filter is also included in order to avoid



Table 3

Nominal Performance & Robustness (Example 3)

Load disturbances | TAE | TV || M, ¢m | DM
[3] 25.17 | 0.46 1.82 | 15.21 | 0.47
GP 24.73 | 0.29 1.95 | 19.47 | 0.70
15 ;
GP
= = = Ali & Majhi
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Figure 15. Nominal system responses for a —0.1 step distur-
bance at t = 100s (Example 3).

Nyquist Diagram
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Figure 16. Nyquist plots for Example 3.

the overshoot:

1
C TiTys? +Tis+ 1

Fop(s)

with k. = 0.17, T; = 8.51, Ty = 2.87and Ty = 0.287.

The results obtained, compared with those in [3] are
shown in Figure 15 and Table 3 (see also the Nyquist
plots in Figure 16).
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Figure 17. Closed loop responses for the perturbed case when
the delay and gain are increased by 25% (Example 3).
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Figure 18. MSP-PID control structure proposed in [19].

If the modeling errors are increased by 25% in both, the
delay and gain, the results are shown in Figure 17.

Again, if the modeling errors are increased by 50% the
proposal of [3] becomes unstable whereas the GP re-
mains stable.

Thus, for a double integrator process, it is possible to
conclude that, if both schemes are tuned to have a similar
[AE for regulatory proposes in the nominal case, the
proposed scheme shows a slightly improvement in the
performance and robustness again uncertainties. Note
that also the DM is higher in the GP.

Example 4: Let us consider an unstable processes with
a dead-time [19]:

2 —5s5

B = a5 e °

In the scheme proposed in [19], the so called MSP-PID,
the following controllers are proposed (see Figure 18):

kgs® + ks + k;

Cls) =~ s(Tys + 1)

F.(s)



for the output feedback, and

bks—&-k‘iF

Crs(s) =~ e(5)

S

for the set-point tracking, and

(azs® +a1s+1)
(azs® 4+ a1s +141n)

F.(s) =

where v = 1, k = 4.1452, ky = 6.7044, k; = 0.1960,
Ty = 02871, b = 0, n = 2.864 and a; = 7/2, and
az = 72/12 with 7 = 7 are the result of an optimization
process where the delayed plant model is used. Following
the tuning procedure here proposed, the main controller
and set-point filter are tuned to fulfill the closed-loop
stability. Assume, for example, the PID controller ®:

(2s +1)(s+1/10)

K(s) =29—C5 15571

The set-point filter, can be taken as:

1

Kf(s):Mfl(S)m

with a =5

The proposed scheme (Figure 2) is implemented with a
sampling time of 7" = 0.1s. The parameter A is adjusted
to obtain a [AE slightly lower than the one in the MSP-
PID, that is with A = 0.98 the IAE is 26.54 (see Table
4), then:

(z)  Q00049342(: + 0.9568)
(= — 0.98)
(z — 0.98)
z—1.01)(z — 0.9512)

G =

Thence, the filters Fy(z) and F»(z) are computed from

(38) and (39) with d = 50 , being Fj(z) = (=095

The obtained results, compared with those in [19], are
shown in Figure 19 and Table 4 (see also Nyquist plots
in Figure 21). In Figure 20 the same simulation but in-
cluding a unit step change in the set-point is considered.

In order to evaluate the robust performances of the pro-
posed scheme, a variation of —18% in all process param-
eters is assumed, as done in [19]. The obtained results,
are shown in Figure 22.

8 This controller should be designed according to the dis-
turbance rejection requirements, in the general case.
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Table 4
Performance & robustness (Example 4)

Load disturbances | TAE | TV M, bm DM
[19] 28.57 | 0.53 || 1.36 | 15.22 | 1.33
GP 26.54 | 0.42 || 1.40 | 17.11 | 1.51
GP
= = = MSP-PID||
26 4‘0 6;0 86 160 120
Time (sec)
0.4r
GP
031 - — = MSP-PID
Eo2
0.1
0 i i i j
0 60 80 100 120
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Figure 19. Nominal system responses for a —0.1 step distur-
bance at ¢t = 10s (Example 4).
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Figure 20. Nominal system responses for an unit step in the
set-point and a —0.1 step disturbance at ¢ = 80s (Example
4).

But, if the parameter variations in the process are +25%
in the time delay and —25% in the other parameters,
that is, for

0.13333¢~6-3¢
(s + 0.6667)(s — 0.1333)

Py(s) =

the results obtained, compared with those in [19], are
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Figure 21. Nyquist plots for Example 4.
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Figure 22. Perturbed system responses; all process parame-
ters are changed by —18% (Example 4).

shown in Figure 23. Note that the control proposed in
[19] becomes unstable whereas the GP is stable.

Example 5: Let us consider the same unstable pro-
cesses but with a longer dead-time:

2 —12s

B = G0 D@1

The proposed scheme has been implemented with the
filters F1(z) and Fs(z) computed from (38) and (39),
but with d = L/T = 120. Being the controller K(2)
and the predictor error filter Fj(z) the same that in the
previous example. Then, the results in Figure 24 and 25
are obtained.

As pointed out in Example 2, the proposed controller
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Figure 23. Closed loop responses for the perturbed case when
the time delay is increased by 25% and other parameters are
decreased by —25% (Example 4)

Time (sec)

u(t)

Time (sec)

Figure 24. Nominal system responses for a —0.05 step load
disturbance at t = 100s (Example 5).

design methodology is independent on the delay but, as
expected by the nature of the unstable plant, the ro-
bustness index and the load disturbance rejection are
degraded as far as the time delay increases. If neces-
sary, a robustness improvement can be done by the \-
parameter, but at the expense of decreasing the load
disturbance rejection.

7 Conclusions

The GP has been shown to be a convenient alternative
to the classical SP, allowing the delay-free control design
for stable, integrating or unstable processes with large
time delay. Based on this new predictor, where a new
tuning parameter has been included, a control structure
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Figure 25. Perturbed system responses for a —0.05 step load
disturbance at ¢ = 200s (Example 5).

has been proposed. It can be seen that the A\-parameter
can improve the robustness, the larger the A-parameter
the lower the disturbance performance is obtained but
an increment in the robustness results. This new param-
eter can also be introduced in the prediction error fil-
ter to get an intuitive tradeoff between performance and
robust stability. The main advantages of the proposed
structure is the easy tuning and industrial implementa-
tion as well as the intuitive effect of the control param-
eters. Similarly to the original SP, any suitable control
structure and design for the free-delay process can be
applied, independently on the proposed GP.

The proposed control scheme has been applied and the
results compared to those recently published by using
alternative approaches, where excellent results were
claimed. In the reported examples, disturbance rejec-
tion and robustness against model uncertainties and
measurement noise have been considered. Our proposal,
as described in the previous sections, is general, appli-
cable to any kind of plants with long time delays and
it can be easily designed and implemented, leading to
better results.

It is worth to remark that the main controllers are de-
signed independently of the delay. The same controllers
are applied for the same system if the time delay is
changed, and the reference responses are the same in all
cases, as can be seen in Figures 6, 13 or 24, where the
delay effect on disturbance rejection is also shown. The
delay is taken into account in designing the predictor
and its negative effects can be balanced by means of the
tuning parameter \.
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