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Summary

In recent years the field of linear dynamics has been taken an important part
in the theory of functional analysis and dynamical systems. The study of the
dynamical properties of operators and semigroups of operators in spaces of in-
finite dimension has awaken the interest of many researches. The main idea
behind this area of the mathematics is to study the orbits of certain operators
in the space where they are defined. Some of these properties will be defined in
this work (like hypercyclicity, weakly-mixing, mixing or linear chaos). For more
information about this field see [8, 29].

The aim of this work is not only point out different dynamical properties of
operators but also consider these properties in a more general context. The idea
is that, rather that consider just a Banach space X and a linear and continuous
operator T : X → X, consider the product space A×X where A is a probability
space and a map P over A × X. This map is what we call later the skew-
product of the operator T . P is defined using an ergodic map f : A→ A and an
integrable function h : A→ C and has not linearity in general. For that reason,
the results of linear dynamics cannot been applied to P . In this work we study
how some of this properties also hold for the skew-products.

The structure of this work is the following:
In the first chapter we present the general concepts of functional analysis,

dynamical systems and ergodic theory to introduce the main part of this work
and to understand better the tools we will use. The purpose of this first chapter
is been a self-contained introduction to the field.

The second chapter introduces the concept of skew-product and analyze the
linear and dynamical properties that, under certain conditions, these maps can
exhibit. The final part of the chapter presents some examples of skew-products
of classical operators. Also it is studied under which conditions this examples
has also the behavior described at the beginning of the chapter.
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Chapter 1

Preliminaries

1.1 General Topology and Functional Analysis The-
ory

In this section we set up basic definitions, theorems and some tools that will
be helpful in this work. Firstable, we will give some basic definitions to point
out the general framework in where we will work. After that, we will give
some concrete results of the fields of mathematics that are connected with the
main purpose of this work. The main references can be found in the books
[32, 40, 43, 45].

1.1.1 Metric, Banach, Frèchet and Hilbert spaces
We can start with the notion of metric, Banach and Hilbert spaces and their
properties:

Definition 1.1.1 (Metric space). A real-valued function d : X×X → R, where
X is a general set, defined for each pair of elements x, y ∈ X is called a metric
if it satisfies:

(i) d(x, y) ≥ 0, d(x, x) = 0 and d(x, y) > 0 if x 6= y;

(ii) d(x, y) = d(y, x);

(iii) d(x, z) ≤ d(x, y) + d(y, z), the triangle inequality.

A set X provided with a metric is called ametric space and d(x, y) is called
the distance between x and y.

We will understand by a neighborhood of a point p ∈ X a set U ⊂ X,
which contains an open set V containing p, where the open sets V are unions of
open balls in the metric space, where the open balls of center x ∈ X and radius
r > 0 are the sets defined as follows: {y ∈ X : d(x, y) < r}

A point x in a metric space X is called isolated if some neighbourhood of
x contains no other point in X.

7



8 General Topology and Functional Analysis Theory

A compact set A is a set in which every sequence defined using elements
of A has a convergent subsequence and the limit of that sequence lies in A.

A metric space is said to be locally compact if each point has a compact
neighbourhood.

A sequence (xn)n is called a Cauchy Sequence in X if:

∀ε > 0 ∃n0 ∈ N : (n,m ≥ n0 ⇒ |xn − xm| < ε)

Finally, we say that a metric space is complete if every Cauchy sequence
in X converges to an element of X.

The next theorem will be one of the most used theorems throughout the
main part of this work:

Theorem 1.1.2 (Baire category theorem). Let (X, d) be a complete metric
space and {Gn}n a sequence of nonempty dense open sets. Then

G :=

∞⋂
n=1

Gn,

is a dense Gδ-set1 in X.

Now, we will give some concrete definitions that allows us to know where
exactly we are working:

Definition 1.1.3. A functional p : X → R+ on a vector space X over K =
R or C is called a seminorm if for all x, y ∈ X and λ ∈ K:

(i) p(x+ y) ≤ p(x) + p(y)

(ii) p(λx) = |λ|p(x).

If, in addition,

(iii) p(x) = 0 implies that x = 0 then p is called a norm.

Definition 1.1.4 (Frèchet space). A Frèchet space is a vector space X endowed
with a separating increasing sequence of seminorms (pn)n, which is complete in
the metric given by:

d(x, y) :=

∞∑
n=1

1

2n
min(1, pn(x− y)), x, y ∈ X.

Definition 1.1.5 (Normed space). The pair (X, ||·||) is called a normed space
where X is a vector space endowed with a norm || · ||.

Every normed linear space may be regarded as a metric space, being ‖x−y‖
the distance between x and y. A Banach space is a normed linear space which
is complete with the metric defined by its norm.

1Where we understand a Gδ-set as a countable intersection of open sets
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Definition 1.1.6 (Hilbert space). A Hilbert space H is a real or complex
inner product space that is also a complete metric space with respect to the
distance function induced by the inner product. So H is a complex vector space
on which there is an inner product 〈x, y〉 associating a complex number to each
pair of elements x, y of H that satisfies the following properties:

(i) 〈y, x〉 = 〈x, y〉.

(ii) It is linear in its first argument. For all complex numbers:

〈ax1 + bx2, y〉 = a〈x1, y〉+ b〈x2, y〉.

(iii) It is positive definite: 〈x, y〉 ≥ 0 and it’s equal to 0 if and only if x = 0.

The norm defined by the inner product 〈·, ·〉 is the real-valued function:

‖x‖ =
√
〈x, x〉

and the distance between two points x,y in H is defined in terms of the norm
by:

d(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉.

As in the case of sets, where we use maps, we need to connect two different
normed spaces. The maps between normed spaces are called operators.

Proposition 1.1.7. Let X and Y be Banach spaces and let T : X → Y be a
linear operator. The following four statements are equivalent:

(i) T is continuous at 0.

(ii) T is continuous.

(iii) T is uniformly continuous.

(iv) T is bounded, i.e., there exists a constant C > 0 such that ‖Tx‖Y ≤
C‖x‖X for all x ∈ X.

Definition 1.1.8. Let X and Y be Banach spaces and T : X → Y be a
continuous linear operator. We define

‖T‖ := inf{C > 0 : ‖Tx‖Y ≤ C‖x‖X for all x ∈ X},

and we refer to ‖T‖ as the operator norm of T .

Some equivalent formulations are the following:

‖T‖ = sup
‖x‖≤1

‖Tx‖Y = sup
‖x‖=1

‖Tx‖Y .

Definition 1.1.9. Let X,Y be Banach spaces. A map T : X → Y is said to
have closed graph when for any sequence (xn)n ∈ X with limn→∞ xn = x and
lim
n→∞

Axn = y ∈ Y then x ∈ X and Ax = y.

Theorem 1.1.10 ((Closed Graph Theorem)). Let X,Y be Banach spaces and
let T : X → Y be a linear map that has closed graph. Then T is continuous.
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Definition 1.1.11. Let X and Y be Banach spaces. We denote by L(X,Y ) the
space of all continuous linear operators T : X → Y endowed with the operator
norm. This space turns into a Banach space whenever Y is a Banach space. If
K denotes R or C, the dual X∗ = L(X,K) of a Banach space X is the space of
all continuous linear functionals on X. If x∗ ∈ X∗ then we write,

x∗(x) = 〈x, x∗〉, x ∈ X.

The adjoint T ∗ : X∗ → X∗ of an operator T on X is defined by T ∗x∗ =
x∗ ◦ T ; that is,

〈x, T ∗x∗〉 = 〈Tx, x∗〉, x ∈ X, x∗ ∈ X∗.

Now we will show some general and fundamental results of functional anal-
ysis that will be necessary throughout this work, such as:

Theorem 1.1.12 (Hahn-Banach). Let X be a vector space, M a subspace of
X, p a seminorm on X and u : M → K a linear functional such that |u(x)| ≤
p(x) for all x ∈ M . Then u has a linear extension ũ defined in X such that
|ũ(x)| ≤ p(x) for all x ∈ X.

Theorem 1.1.13 (Banach-Steinhaus). Let X and Y be Banach or Frèchet
spaces and Tj : X → Y with j ∈ J a family of operators. If, for every x ∈ X, the
set {Tjx : j ∈ J} is bounded in Y , then the family (Tj)j∈J is equicontinuous,
i.e., sup{‖Tj‖ : j ∈ J} <∞

1.1.2 Spectral Theory

In this work we will use, at some point, concepts and results based on the spec-
tral theory of operators. Some basic results of functional analysis that will be
useful in understanding some of these concepts are the following:

Definition 1.1.14. Let X be a complex Banach space X, and let T be an
operator on X. The spectrum σ(T ) of T is defined as:

σ(T ) = {λ ∈ C ; λI − T is not invertible}.

Moreover, each 0 6= x ∈ X satisfying Tx = λx is an eigenvector for T
corresponding to λ, that is an eigenvalue for T .

The point spectrum σp(T ) is the set of eigenvalues of T .
The number

r(T ) = sup
λ∈σ(T )

|λ|

is called the spectral radius of T .

Proposition 1.1.15. The spectrum σ(T ) is a nonempty compact set for an
operator T : X → X. Moreover, |λ| ≤ ‖T‖ for any λ ∈ σ(T ).

Proposition 1.1.16. If T : X → X is an invertible operator on X, then
σ(T−1) = σ(T )−1



General Topology and Functional Analysis Theory 11

Theorem 1.1.17 (Riesz decomposition theorem). If σ(T ) = σ1(T ) ∪ σ2(T ),
where σ1 and σ2 are two disjoint non-empty closed sets, there exist non-trivial
T -invariant closed subspaces M1 and M2 of X such that X =M1 ⊕M2, and

σ(T |M1
) = σ1 and σ(T |M2

) = σ2.

Theorem 1.1.18 (Spectral Radius Formula). For the spectral radius of an
operator T : X → X we have that:

lim
n→∞

‖Tnx‖1/n = r(T )

1.1.3 Classical Banach and Frechet spaces
Now we introduce the classical sequence and function spaces that we will use
in this work. Here, K denotes R or C. The symbol X will always stand for a
Banach space over K.

If p ∈ [1,∞), we define `p := `p(X) and Lp := Lp(X) as follows:

• `p(X) = {x = (xn)n ∈ XN : ‖x‖p <∞} where ‖x‖p =
(∑∞

n=1 |xn|p
) 1
p

• Lp(X) = {f ∈ M(X) : ‖f‖p <∞} where ‖f‖p =
(∫

X
|f(x)|pdx

) 1
p

and

M(X) denotes the set of the measurable functions f : X → X

If p =∞, we define `∞ := `∞(X) and L∞ := L∞(X) as follows:

• `∞(X) = {x = (xn)n ∈ XN : ‖x‖∞ <∞} where ‖x‖∞ = sup{|xn| : n ∈
N}

• L∞(X) = {f ∈ M(X) : ‖f‖∞ < ∞} where ‖f‖∞ = inf{M > 0 :
|f(x)| < M}

A particular case of that spaces that will be very used throughout this work will
be Lpρ(R+) where ρ : R+ → R is a strictly positive locally integrable function
(i.e.

∫ b
0
ρ(t)dt <∞ for all b > 0). These spaces are defined as follows:

Lpρ(R
+) := {f : R+ → K, f is measurable on R+ and ‖f‖p,ρ <∞},

where ‖f‖p,ρ =
(∫∞

0
|f(t)|pρ(t)dt

) 1
p

The last example we will see is of a Frechet space. We define the following
space:

H(C) = {f : C→ C : f is holomorphic},

that is, the space of all entire functions (that is, complex-valued functions that
are complex differentiable in a neighborhood of every point in its domain (C)).

The natural concept of convergence for entire functions is that of local uni-
form convergence, that is, the uniform convergence on all compact sets. In
contrast to Banach spaces, convergence is described here by a countably infinite
collection of conditions. More precisely, we have that fk → f inH(C) if and only
if, for all n ∈ N, pn(fk−f)→ 0 as k →∞, where pn(f) := sup{|f(z)| : |z| ≤ n}.
Here, (pn)n is an increasing sequence of seminorms.
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1.1.4 Basic Ergodic Theory
In this section will introduce some rudiments of ergodic theory that will be
necessary throughout this work. The main reference for this section will be [49].

We start with some basic and general definitions:

Definition 1.1.19. Let A an arbitrary set. A collection A of subsets of A is
called a σ-algebra of A if it satisfies the following conditions:

(i) A ∈ A

(ii) If B ∈ A then A \B ∈ A

(iii) If Bn ∈ A for every n ≥ 1 then
∞⋃
n=1

Bn ∈ A (that is, that is closed under

countable unions)

Definition 1.1.20. A pair (A,A) where A is an arbitrary set and A is a σ-
algebra is called a measurable space (that is, it admits a measure).

Definition 1.1.21. Let (A,A) be a measurable space. A function µ : A → R+

is said to be a measure if the following conditions holds:

(i) µ(∅) = 0

(ii) µ(
∞⋃
n=1

Bn) =
∞∑
n=1

µ(Bn) whenever {Bn}n is a sequence of elements of A

that are pairwise disjoint

Definition 1.1.22. Let (A,A) be a measurable space and let µ : A → R+ be
a measure. We say that µ has full support if µ(U) > 0 for every non-empty
open set U ∈ A

Definition 1.1.23. A triple (A,A, µ) where A is an arbitrary set, A is a σ-
algebra and µ : A → R+ is a measure is called a measure space. When, in
addition, we have that µ(A) = 1 we said that (A,A, µ) is a probability space.

Definition 1.1.24. Let (A,A) and (B,B) be two measurable spaces. A function
f : (A,A) → (B,B) is said to be a measurable function when f−1(B) ∈ A
for every B ∈ B.

Definition 1.1.25. Let (A,A) be a measurable space, f : A→ A a measurable
function and µ a probability measure. The function f is said to be measure-
preserving with respect to µ if for every B ∈ A we have that µ(f−1(B)) =
µ(B)

Definition 1.1.26. Let (A,A) be a measurable space, f : A→ A a measurable
function and µ a probability measure. The function f is said to be ergodic
with respect to µ if f is measure-preserving with respect to µ and for every
B ∈ A that verifies that f−1(B) ⊂ B, µ(B) ∈ {0, 1}.

Moreover, if there exists just one probability measure on (A,A) with respect
to which f is ergodic, then we say that f is uniquely ergodic with respect
to µ.

Definition 1.1.27. Let A be a compact metric space and let f : A → A be a
homeomorphism. We say that f is minimal if orb(x, f) is dense in A for every
nonzero x ∈ A.
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Proposition 1.1.28. Let (A,A, µ) be a compact metric probability space with µ
having full support and let f : A→ A to be a uniquely ergodic homeomorphism.
Then f is minimal.

Now we will give two important results that, with the Baire’s Category
Theorem (see 1.1.2), will play an important role in this work.

Theorem 1.1.29 (Birkhoff Ergodic Theorem). Let (A,A, µ) be a probability
space and let f : A→ A be an ergodic function with respect to µ. Then for every
φ ∈ L1(µ) (the space of all integrable functions with respect to the measure µ)
we have that

lim
N→∞

1

N

N−1∑
n=0

φ(fn(a)) =

∫
A

φdµ,

for µ-almost every a ∈ A.

Theorem 1.1.30 (Oxtoby’s Theorem). Let (A,A, µ) be a probability space and
let f : A → A be an ergodic function with respect to µ. If A is a compact
metric space, A the σ-algebra of Borel subsets of A and f is uniquely ergodic
with respect to µ then for every φ ∈ C(A) (the space of all continuous functions
over A) we have that

lim
N→∞

1

N

N−1∑
n=0

φ(fn(a)) =

∫
A

φdµ,

for every a ∈ A.

1.2 Discrete Linear Dynamics: Iterates of an Op-
erator

In this section we will introduce some basic definitions and results of linear
dynamical systems. The results that are shown in this chapter can be found
in [8] and [29]. Dynamical systems play a important role in this work because
our main purpose is to study the dynamical properties of a general maps called
skew-products, that we will define later.

1.2.1 General Concepts
Dynamical systems are used to study the behavior of evolving systems. Let X
be a set of elements that describes the different acceptable states of a system.
If xn ∈ X is the state of the system at time n ≥ 0, then its evolution will be
given by a linear map T : X → X such that xn+1 = T (xn). We will work in a
Banach space X and a continuous map T .

Definition 1.2.1 (Discrete dynamical system). Let X be an metric space and
let T be a continuous map T : X → X. A discrete dynamical system is
a pair (X,T ). We define the orbit of a point x ∈ X as the set Orb(x, T ) =
{Tn(x) : n ∈ N}, where Tn denotes the n-th iterate of a map T . We will often
simply say that T or (T ;X) is a dynamical system.

Definition 1.2.2. Let (S;Y ) and (T ;X) be dynamical systems.
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1. Then T is called quasi-conjugate to S if there exists a continuous map
ϕ : Y → X with dense range such that T ◦ϕ = ϕ◦S; that is, the following
diagram commutes.

Y
S−→ Y

↓ϕ ↓ϕ
X

T−→ X

2. If ϕ can be chosen to be a homeomorphism, then S and T are called
conjugates.

3. ϕ is called a quasi-conjugation or a conjugation depending on in which
case we are.

Definition 1.2.3. We say that a property ℘ for dynamical systems is preserved
under (quasi-)conjugacy if the following holds: if a dynamical system S : Y →
Y has property ℘ then every dynamical system T : X → X that is (quasi-
)conjugate to S also has property ℘.

Definition 1.2.4. Let T : X → X be a dynamical system. Then Y ⊂ X is
called T -invariant or invariant under T if T (Y ) ⊂ Y .

Definition 1.2.5. We say that x ∈ X is a fixed point for the dynamical
system T : X → X if Tx = x, and we say that x ∈ X is a periodic point for
the dynamical system T if Tnx = x for some n ∈ N. The set of all periodic
points is denoted by Per(T ). If x ∈ Per(T ) then the smallest positive integer
n such that Tnx = x is called a primary period of x.

Definition 1.2.6. A dynamical system T : X → X is:

(i) topologically transitive if for any pair of nonempty open sets U ,V ⊂ X
there exists an n ∈ N such that Tn(U) ∩ V 6= ∅;

(ii) weakly mixing if the map T × T is topologically transitive on X ×X;

(iii) mixing if for any pair of nonempty open sets U ,V ⊂ X there exists some
n0 ∈ N such that Tn(U) ∩ V 6= ∅ for every integer n ≥ n0;

Note 1.2.7. For any linear dynamical system we have that:

mixing =⇒ weak mixing =⇒ topological transitivity

In 1989 Robert L. Devaney proposed the definition of chaos that is the most
used in Linear Dynamics; see [23]. This concept reflects the unpredictability of
chaotic systems because the definition contains the sensitive dependence on
initial conditions, i.e.:

Definition 1.2.8. Let (X, d) be a metric space without isolated points. Then
the dynamical system T : X → X is said to have sensitive dependence on
initial conditions if there exists some δ > 0 such that, for every x ∈ X and
ε > 0, there exists some y ∈ X with d(x, y) < ε such that, for some n ≥ 0,
d(Tnx, Tny) > δ. The number δ is called a sensitivity constant for T .

Definition 1.2.9 (Devaney chaos). A dynamical system T : X → X is called
chaotic in the sense of Devaney if it satisfies the following properties:
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(i) T is topologically transitive,

(ii) Per(T ) is dense in X,

(iii) T has sensitive dependence on initial conditions.

However, Banks, Brooks, Cairns, Davis and Stacey proved in 1992, through
their work in [4], that if X is an infinite set, the sensitivity is a consequence of
transitivity and dense periodicity.

Theorem 1.2.10 (Banks, Brooks, Cairns, Davis & Stacey). Let X be a non-
finite metric space. If a dynamical system T : X → X is topologically transitive
and has a dense set of periodic points then T has sensitive dependence on initial
conditions with respect to any metric defining the topology of X.

A link between chaos theory and linear operator theory was established by
by Birkhoff’s Transitivity Theorem in 1920. In this theorem, he showed that
the topological transitivity was equivalent to the existence of an element with
dense orbit. This last condition was coined as hypercyclicity by Beauzamy in
1986:

Definition 1.2.11 (Beauzamy). Let X be a topological vector space.
An operator T : X → X is said to be hypercyclic if there is some x ∈ X whose
orbit Orb(x, T ) is dense in X. In that case, x is called a hypercyclic vector
for T . The set of hypercyclic vectors is denoted by HC(T ).

Theorem 1.2.12 (Birkhoff Transitivity Theorem). Let X be a separable com-
plete metric space without isolated points, and let T : X → X be a continuous
map. Then the following assertions are equivalent:

(i) T is topologically transitive;

(ii) T is hypercyclic operator.

If one of these conditions holds then, using Theorem 1.1.2, one can see that the
set HC(T ) of hypercyclic vectors is a dense Gδ-set.

In 1991 Godefroy and Shapiro also adopted Devaney’s definition of chaos for
linear chaos.

Definition 1.2.13 (Godefroy & Shapiro). Let X be a complete metric vector
space. An operator T : X → X is called chaotic in the sense of Devaney, if:

(i) T is hypercyclic.

(ii) Per(T ) is dense in X.

One can prove that Devaney chaos implies weakly-mixing, which means that
the precedent schedule changes for this one:

Chaos

⇓

Mixing =⇒Weakly-Mixing =⇒ Hypercyclic
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Proposition 1.2.14. The converses of these implications do not hold in gen-
eral:

• Hypercyclicity does not imply weakly-mixing (see [21])

• Hypercyclicity does not imply mixing (if it does hypercyclicity will imply
also weakly-mixing, which is a contradiction with the previous point)

• Hypercyclicity does not imply chaos (if it does hypercyclicity will imply
also weakly-mixing)

• Mixing does not imply chaos (see [29] page 47)

• Chaos does not imply mixing (see [2])

Proposition 1.2.15. The following properties are preserved by quasi-conjugacy:

(i) Topological transitivity.

(ii) The property of having a dense orbit.

(iii) The property of having a dense set of periodic points.

(iv) Devaney Chaos.

(v) The mixing property.

(vi) The weak-mixing property.

The reader can find the proofs of the following results in [8]. Additionally,
the original proofs of some of these results can be found in [35]:

Proposition 1.2.16. Let T be a hypercyclic operator on a (real or complex)
Banach space X. Then we have:

(i) T ∗ has no eigenvalues, that is, σp(T ∗) = ∅;

(ii) the orbit of every x∗ 6= 0 in X∗ under T ∗ is unbounded.

Theorem 1.2.17 (Kitai). Let T be a hypercyclic operator on a complex Banach
space X. Then every connected component of σ(T ) meets the unit circle S1, i.e.,
σ(T ) ∩ S1 6= ∅.

Proposition 1.2.18. Let T be a linear map on a complex vector space X. Then
the set Per(T ) of periodic points of T is given by

span{x ∈ X ; Tx = λx for some λ ∈ C with λn = 1 for some n ∈ N}.

Proposition 1.2.19. Let T be a chaotic operator on a complex Banach space
X. Then its spectrum has no isolated points and it contains infinitely many
roots of unity; in particular, σ(T ) ∩ S1 is infinite.

Theorem 1.2.20. No compact operator is hypercyclic.
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1.2.2 Hypercyclicity criterion
There are some criteria under which an operator is chaotic, mixing or weakly
mixing. These criteria are the following:

Theorem 1.2.21 (Kitai’s Criterion). Let T be an operator. If there are dense
subsets X0, Y0 ⊂ X and a map S : Y0 → Y0 such that, for any x ∈ X0, y ∈ Y0:

(i) Tnx→ 0,

(ii) Sny → 0,

(iii) TSy → y,

then T is mixing.

Theorem 1.2.22 (Godefroy-Shapiro Criterion). Let T ∈ L(X) with X a Ba-
nach space. Suppose that the subspaces

X0 := span{x ∈ X; Tx = λx for some λ ∈ K with |λ| < 1}

Y0 := span{x ∈ X; Tx = λx for some λ ∈ K with |λ| > 1}

are dense in X.
Then T is mixing, and in particular hypercyclic.

If, moreover, X is a complex space and the subspace

Z0 := span{x ∈ X; Tx = λx for some λ ∈ C with |λ|n = 1 for some n ∈ N}

is dense in X, then T is chaotic.

Theorem 1.2.23 (Gethner-Shapiro Criterion). Let T be an operator. If there
are dense subsets X0, Y0 ⊂ X, an increasing sequence (nk)k of positive integers,
and a map S : Y0 → Y0 such that, for any x ∈ X0, y ∈ Y0:

(i) Tnkx→ 0,

(ii) Snky → 0,

(iii) TSy → y,

then T is weakly mixing.

Theorem 1.2.24 (Bes-Peris Hypercyclicity Criterion). Let T be an operator.
If there are dense subsets X0, Y0 ⊂ X, an increasing sequence (nk)k of positive
integers, and maps Snk : Y0 → X, k ≥ 1 such that, for any x ∈ X0, y ∈ Y0:

(i) Tnkx→ 0,

(ii) Snky → 0,

(iii) TnkSnky → y,

then T is weakly mixing, and in particular hypercyclic.

In the last theorem, we can consider a general family of operators (Tn)n and
the result still holds.
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1.2.3 Examples of Operators
In this section we will study some examples of operators that one can see that
are chaotic, mixing, weakly-mixing or hypercyclic using the different criteria we
showed in the previous section.

Rolewicz’s Operators

This kind of operators are defined onX := `p, 1 ≤ p <∞, orX := c0 (this space
is the space of all sequences that have null limit, i.e., {(xn)n : limn |xn| = 0}).
We consider in these spaces the backward-shift operator, defined by:

B(x1, x2, x3, . . .) = (x2, x3, x4, . . .),

and consider:
T = λB : X → X,

T (x1, x2, x3, . . . )→ λ(x2, x3, x4, . . . )

where λ ∈ K.
First, if |λ| ≤ 1 then ‖Tnx‖ = |λ|n‖Bnx‖ ≤ ‖x‖ for all x ∈ X and n ≥ 0.

Thus T cannot be hypercyclic.
On the other hand, T is hypercyclic whenever |λ| > 1. In fact, it is mixing

and chaotic (that is deduced from the Godefroy-Shapiro Criterion using Hahn-
Banach Theorem).

Weighted Shifts Operators

We consider the space `p or c0 and the backward-shiftB, that gives theweighted
backward shift, defined as follows:

Bw(x1, x2, x3, . . .) = (w2x2, w3x3, w4x4, . . .),

where w = (wn)n is called a weight sequence. The weights wn will always be
assumed to be non-zero.

Firstable, in order to have a well-defined and continuous operator, the weights
must hold:

sup
n

wn
wn+1

<∞

If this previous condition holds, we have the following result:

Theorem 1.2.25. In `p with 1 ≤ p <∞ or in c0 we have that:

1. The following assertions are equivalent:

(i) Bw is hypercyclic

(ii) Bw is weakly mixing

(iii) supn≥1
∏n
ν=1 |wν | =∞

2. The following assertions are equivalent:

(i) Bw is mixing

(ii) limn→∞
∏n
ν=1 |wν | =∞
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3. Suppose that the basis (en)n is unconditional (that is, for every x ∈ `p

or x ∈ c0, the representation x =
∑∞
n=1 anen converges unconditionally).

Then the following assertions are equivalent:

(i) Bw is chaotic;

(ii) The series
∞∑
n=1

1∏n
ν=1 |wν |p

converges in `p or c0
(iii) The sequence (

1∏n
ν=1 |wν |p

)
n

belongs to `p or c0

MacLane’s Operators

We consider the Frèchet space of all holomorphic functions defined in the whole
complex plane, H(C). We next consider the differentiation operator D : f → f ′

on H(C). Through the Kitai’s Criterion or the Godefroy-Shapiro Criterion one
can deduce that this kind of operators are also mixing and chaotic and for that
hypercyclic.

The last example we will show in this section is the concerning with the
Birkhoff’s Operators. These operators are also defined in H(C). These are
a kind of translation operators given by

Taf(z) = f(z + a) , a 6= 0,

where f ∈ H(C). Using the Kitai’s Criterion we can show that this operators
and mixing and using the Godefroy-Shapiro Criterion, that are also chaotic and
hence, hypercyclic.

1.3 Continuous Linear Dynamics: Semigroups of
Operators

In this section we will introduce the continuous case for a linear dynamical
system. The results can be found in [6, 11, 18, 19, 29].

1.3.1 General Concepts

From now on, X will denote a separable Banach space. The aim of this section
is to provide an analogous of the concepts and results studied in the discrete
case but in the continuous framework. For that, we must start defining the
concept of semigroup and C0-semigroup:

Definition 1.3.1. A one-parameter family of operators {Tt : X → X : t ≥ 0}
is called a semigroup of operators if the following two conditions are satisfied:

(i) T0 = I
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(ii) Tt+s = TtTs for all s, t ≥ 0

Definition 1.3.2. A one-parameter family of operators {Tt : X → X : t ≥ 0}
is called a C0-semigroup of operators or a strongly continuous semigroup
of operators if the following three conditions are satisfied:

(i) T0 = I

(ii) Tt+s = TtTs for all s, t ≥ 0

(iii) lim
s→t

Tsx = Ttx for all x ∈ X and for all t ≥ 0 (that is nothing more that
the convergence in the Strong Operator Topology)

This new condition expresses the pointwise continuity of the semigroup. If
this condition is replaced by:

(iii)’ lim
s→t

Ts = Tt for all t ≥ 0 in the bounded sets of X.

we say that the semigroup is an uniformly continuous semigroup of oper-
ators.

The Banach-Steinhaus Theorem (see 1.1.13) yields that C0-semigroups are
locally equicontinuous, that is, for any b > 0 we have that:

sup
t∈[0,b]

‖Tt‖ <∞,

or equivalently, there exists some M > 0 such that

‖Ttx‖ ≤M‖x‖ for all t ∈ [0, b], x ∈ X

Remark 1.3.3. Local equicontinuity implies that Ttnxn converges to zero
whenever(tn)n is bounded and xn converges to zero

We can refine the estimation over the operator norm of the C0-semigroup.

Proposition 1.3.4. If τ = (Tt)t≥0 is a C0-semigroup, then there exist M ≥ 1
and w ∈ R such that ‖Tt‖ ≤Mewt for all t ≥ 0

One concept that is fundamental in the study of C0-semigroups is the concept
of infinitesimal generator of the semigroup. If τ = (Tt)t≥0 is a C0-semigroup on
X the set

D(A) := {x ∈ X , existe lim
t→0

1

t
(Ttx− x)}

is a dense subset of X. That set is called domain of the infinitesimal gen-
erator A. We define a map A : D(A)→ X that acts as follows:

Ax := lim
t→0

1

t
(Ttx− x)

This map has the following properties:

• It is linear

• It has closed graph and by Closed Graph Theorem we deduce that A is
an operator
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• Tt(D(A)) ⊂ D(A) with ATtx = TtAx for every t ≥ 0 and x ∈ D(A)

In that conditions we say that (A,D(A)) is the infinitesimal generator of the
C0-semigroup τ

Proposition 1.3.5. The infinitesimal generator (A,D(A)) of a C0-semigroup
τ determines the semigroup uniquely.

Using the following general theorem of Spectral Theory:

Theorem 1.3.6 (Point Spectral Mapping Theorem for Semigroups). Let (A,D(A))
be the generator of a C0-semigroup τ = (Tt)t≥0 defined on a complex Banach
space X. Then we have the following identity:

σp(Tt)\0 = etσp(A),

for t ≥ 0

We can deduce another property of the infinitesimal generator of a C0-
semigroup:

Proposition 1.3.7. If X is a complex Banach space and τ = (Tt)t≥0 is a C0-
semigroup with (A,D(A)) as infinitesimal generator then, for every x ∈ X and
λ ∈ C, if

Ax = λx

then
Ttx = eλtx

for every t ≥ 0, which means that the eigenvectors of A are also eigenvectors of
Tt for every t ≥ 0. In fact, the eigenvalues of A became eigenvalues of Tt in the
form eλt for every t ≥ 0.

1.3.2 Hypercyclicity, weakly-mixing, mixing and chaotic-
ity for C0-semigroups

Now we are in condition of translating the different dynamical properties studied
in the discrete case to the continuous case.

Definition 1.3.8. Let τ = (Tt)t≥0 a C0-semigroup on X. Then for any x ∈ X
we call

orb(x, (Tt)) = {Ttx : t ≥ 0}

to be the orbit of x under τ

Definition 1.3.9. Let τ = (Tt)t≥0 a C0-semigroup on X. If there exists x ∈ X
such that orb(x, (Tt)) is dense in X then we say that x is a hypercyclic vector
for τ . In that case we say that the semigroup is hypercyclic

Definition 1.3.10. Let τ = (Tt)t≥0 a C0-semigroup on X. If, for any pair of
nonempty open subsets U, V ⊂ X, there exists some t ≥ 0 such that Tt(U)∩V 6=
∅ we say that the semigroup is topologically transitive

An analogous of the Birkhoff Transitive Theorem (see 1.2.12) holds in this
case also:
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Theorem 1.3.11 (Birkhoff Transitive Theorem for C0-semigroups). Let (Tt)t≥0
be a C0-semigroup on a separable Banach space X. Then (Tt)t≥0 is hypercyclic
if and only if it is topologically transitive. In that case, the set of hypercyclic
vectors for (Tt)t≥0 is a dense Gδ-set

We now introduce a notion that allow us to characterize the concept of being
hypercyclic for C0-semigroups in a very useful way.

Definition 1.3.12. A discretization of τ = (Tt)t≥0 is a sequence of operators
(Ttn)n with tn →∞. In addition, if there is some t0 > 0 such that tn = nt0 for
n ∈ N, then (Ttn)n = (Tnt0)n is called an autonomous discretization of τ

Using also the separability of X one can deduce that the notion of hyper-
cyclicity for C0-semigroups is equivalent to the hypercyclicity of a discretization
of the C0-semigroup.

Definition 1.3.13. Let τ = (Tt)t≥0 a C0-semigroup on X. Then we say that
τ is mixing if, for any pair of nonempty open subsets U, V ⊂ X, there exists
some t0 ≥ 0 such that Tt(U) ∩ V 6= ∅ for all t ≥ t0

Definition 1.3.14. Let τ = (Tt)t≥0 a C0-semigroup on X. Then we say that
τ is weakly-mixing if (Tt ⊕ Tt)t≥0 is topologically transitive on X ⊕X

Remark 1.3.15. Note that if τ1 = (Tt)t≥0 is a C0-semigroup on X and τ2 =
(St)t≥0 is a C0-semigroup on Y then τ1 ⊕ τ2 = (Tt ⊕ St)t≥0 is a C0-semigroup
on X ⊕ Y . Besides, the direct sum of a mixing semigroup with a hypercyclic
semigroup is hypercyclic.

Definition 1.3.16. Let τ = (Tt)t≥0 a C0-semigroup on X. Then:

• A point x ∈ X is called a periodic point of τ if there is some t > 0 such
that Ttx = x. The set of periodic points for τ is denoted by Per((Tt))

• τ is said to be chaotic if it is hypercyclic and its set of periodic points is
dense in X.

As in the discrete case, we have that:

Chaos

⇓

Mixing =⇒Weakly-Mixing =⇒ Hypercyclic

Definition 1.3.17. Let (St)t≥0 and (Tt)t≥0 two C0-semigroups.

1. Then (Tt)t≥0 is quasi-conjugate to (St)t≥0 if there exists a continuous
map ϕ : Y → X with dense range such that Tt ◦ ϕ = ϕ ◦ St for all t ≥ 0;
that is, for every t ≥ 0, the following diagram commutes:

Y
St−→ Y

↓ϕ ↓ϕ
X

Tt−→ X

2. If ϕ can be chosen to be a homeomorphism, then (Tt)t≥0 and (St)t≥0 are
conjugates.
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3. ϕ is called a quasi-conjugation or a conjugation depending on the case
in which we are.

Proposition 1.3.18. Hypercyclicity, mixing, weakly-mixing and chaos for a
C0-semigroups are preserved under quasiconjugacy.

Concluding the preliminaries about the behavior of C0-semigroups, we now
will give some criteria to determine when a C0-semigroup is hypercyclic or mix-
ing or even chaotic. For understand better how these criteria work it is necessary
to introduce some results concerning to the discretization of semigroups (concept
that has been given before).

Proposition 1.3.19. Let τ = (Tt)t≥0 a C0-semigroup on X. Then the following
assertions are equivalent:

(i) τ is weakly-mixing

(ii) some discretization of τ is mixing

(iii) some discretization of τ is weakly-mixing

(iv) every autonomous discretization of τ is weakly-mixing

Proposition 1.3.20. Let τ = (Tt)t≥0 a C0-semigroup on X. Then the following
assertions are equivalent:

(i) τ is mixing

(ii) every discretization of τ is mixing

(iii) every discretization of τ is weakly-mixing

(iv) every discretization of τ is hypercyclic

(v) every autonomous discretization of τ is mixing

(vi) some autonomous discretization of τ is mixing

Proposition 1.3.21. Let τ = (Tt)t≥0 a C0-semigroup on X and x ∈ X. Then
the following assertions are equivalent:

(i) x is hypercyclic for τ

(ii) x is hypercyclic for some discretization of τ

(iii) x is hypercyclic for some autonomous discretization of τ

(iv) x is hypercyclic for every autonomous discretization of τ

The following are two results about the heritability of some of the dynamic
properties studied throughout this section and it can be found in [6], [18] and
[19]:

Theorem 1.3.22 ((Conejero-Müller-Peris)). Let τ = (Tt)t≥0 be a hypercyclic
C0-semigroup on X and let x ∈ HC(τ). Then x ∈ HC(Tt) for every t > 0

That means that being hypercyclic for a C0-semigroup can be inherit by
every single operator of the semigroup except for the identity operator.

However, the same is not true when we talk about chaoticity.
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Theorem 1.3.23 ((Bayart-Bermúdez)). There exists a C0-semigroup (Tt)t≥0
on a separable Hilbert space H such that there exists t0 6= t1 with Tt0 being
chaotic but with Tt1 not being chaotic.

Now we are in conditions of give the different criteria for C0-semigroups that
can be found in [11].

Theorem 1.3.24 (Hypercyclicity Criterion for Semigroups). Let τ = (Tt)t≥0 a
C0-semigroup on X. If there are dense subsets X0, Y0 ⊂ X, a discretization of
τ , and maps Stn : Y0 → X, n ∈ N, such that, for any x ∈ X0, y ∈ Y0,

(i) Ttnx→ 0,

(ii) Stny → 0,

(iii) TtnStny → y,

then τ is weakly-mixing, and in particular hypercyclic

Theorem 1.3.25 (Mixing Criterion for Semigroups). Let τ = (Tt)t≥0 a C0-
semigroup on X. If there are dense subsets X0, Y0 ⊂ X, and maps St : Y0 → X,
t ≥ 0, such that, for any x ∈ X0, y ∈ Y0,

(i) Ttx→ 0,

(ii) Sty → 0,

(iii) TtSty → y,

then τ is mixing

And finally a criteria for chaotic behavior that uses the spectral theory ap-
plied to C0-semigroups that can be found in [22].

Before to give this criteria we need to introduce the concept of weakly holo-
morphic function:

Definition 1.3.26. A weakly holomorphic function f : U → X on an
open set U ⊂ C is an X-valued function such that, for every x∗ ∈ X∗, the
complex-valued function z →< f(z), x∗ > is holomorphic on U .

Theorem 1.3.27 ((Desch-Schappacher-Web)). Let X be a complex separable
Banach space, and τ = (Tt)t≥0 a C0-semigroup on X with generator (A,D(A)).
Assume that there exists an open connected subset U and weakly holomorphic
functions fj : U → X, j ∈ J , such that:

(i) U ∩ iR 6= ∅

(ii) fj(λ) ∈ ker(λI −A) for every λ ∈ U , j ∈ J

(iii) for any x∗ ∈ X∗, if < fj(λ), x
∗ >= 0 for all λ ∈ U and j ∈ J then x∗ = 0

Then τ is mixing and chaotic.
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1.3.3 Examples of C0-semigroups
We now introduce the main examples of C0-semigroups along with the different
linear properties that they have.

• Translation Semigroup:
On (Lpρ(R+), ‖·‖), introduce in the section of “Classical Banach spaces” (see
1.1.3), we can define a translation semigroup. For every f ∈ (Lpρ(R+), ‖·‖)
we define a one-parameter family of operators as

Tt(f(x)) = f(x+ t),

with t, x ≥ 0.
It is easy to see that this family of operators satisfies the conditions for
being a semigroup. Moreover, (Tt)t≥0 is a C0-semigroup if and only if
there exist M ≥ 1 and w ∈ R such that, for all t ≥ 0,

ρ(x) ≤Mewtρ(x+ t),

for almost all x ≥ 0. This identity is used in the following way:

ρ(x) ≤Mew(y−x)ρ(y),

whenever y ≥ x ≥ 0.
A function ρ fulfilling that condition is usually called an admissible
weight function. This C0-semigroup has the following properties:

– The infinitesimal generator is (A,D(A)) with A being the differenti-
ation operator and D(A) = {f ∈ Lpρ(R+) : ∃f ′ and f ′ ∈ Lpρ(R+)}

– The following assertions are equivalent:
(i) (Tt)t≥0 is hypercyclic
(ii) (Tt)t≥0 is weakly-mixing
(iii) lim inf

x→∞
ρ(x) = 0

– The following assertions are equivalent:
(i) (Tt)t≥0 is mixing
(ii) lim

x→∞
ρ(x) = 0

– The following assertions are equivalent:
(i) (Tt)t≥0 is chaotic
(ii)

∫∞
0
ρ(x)dx <∞ (that is, that ρ is integrable on R+)

• Exponential Semigroup

Given a Banach space X and an operator A : X → X, we can construct
a one-parameter family of operators given by the identity:

Ttx = etAx =

∞∑
n=0

tn

n!
Anx,

for any t ≥ 0. Is easy to see that is well-define (as A is an opertator, we

know that is bounded and due to that ‖
∑∞
n=0

tn

n!
An‖ ≤

∑∞
n=0

tn

n!
Mn =
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eMt <∞ that proves that the operator Tt is well-defined for every t ≥ 0)
and that satisfies the conditions of C0-semigroup.

In fact, we can show that, for any t ≥ 0, lim
s→t

Ts = Tt that is the definition
of being an uniformly continuous semigroup of operators.

Moreover, one have this strong result:

Theorem 1.3.28. Let (Tt)t≥0 a C0-semigroup on X. The following as-
sertions are equivalent:

(i) (Tt)t≥0 is uniformly continuous

(ii) The generator (A,D(A)) of (Tt)t≥0 is defined everywhere (that is,
D(A) = X)

(iii) There is an operator A on X such that Tt = etA for every t ≥ 0

That provides a characterization of the uniformly continuous semigroups
(that are no more no less than the exponential of an operator).



Chapter 2

Discrete Dynamics on
Skew-Products of Operators

The aim of this chapter is to present the concept of the skew-product of operators
and to relate this concept with some of the dynamical properties of operators
presented in the previous chapters.

2.1 General Definitions

We first give the general definition of skew-products in ergodic theory:

Definition 2.1.1. A skew-product is an automorphism P of a measure space
E such that E is the direct product of two measure spaces A×X and the action
of P in E is defined by:

P (α, x) = (R(α), S(α, x)),

where R is an automorphism of A (the "base") and S(α,−), with α fixed, is an
automorphism of X (the "fibre").

The particular case of skew-products we are working with is the following:

Definition 2.1.2. Let X be a separable complex Banach space, (A,µ) a proba-
bility space, T : X → X a linear and continuous operator, f : A→ A an ergodic
map with respect to the measure µ and h : A→ C a L1(µ) function. The map

P : A×X → A×X

defined by:
P (α, x) = (f(α), h(α)Tx)

is said to be a skew-product of the operator T .

Skew-products provide a rich source of dynamical systems whose dynamics
vary as the state of the system evolves. One may think of a skew-product as
a dynamical system dependent on a parameter that is perturbed as the system
evolves in a particular way.

27
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In connection with linear dynamics the first thing we notice about skew-
products is that we have a lack of linear structure so P is not an operator
and we cannot apply the known results of linear dynamics making necessary to
redefine the concepts and prove the results. We first focus on the concept of
topological transitivity of the skew-product.

2.2 Topologically Transitive Skew-Products of Op-
erators

This section is based in the papers of Bayart, Costakis and Hadjiloucas [20, 7].
In that papers the authors study the dynamical behavior of the skew-products
of backward shift operators and the dynamics.

We recall that the definition of being topologically transitive is that for every
non-empty open sets U, V ∈ A×X there exists n ≥ 0 such that Pn(U)∩V 6= ∅.
Now, the iterates of a skew-product of operators are of the form:

Pn(α, x) = (fn(α), h(fn−1(α))h(fn−2(α)) . . . h(α)Tnx)

If we denote hn(α) = h(fn−1(α))h(fn−2(α)) . . . h(α), then

Pn(α, x) = (fn(α), hn(α)Tnx)

In order to work better with skew-products in this general framework we will
suppose that X is a separable Banach space, A is a compact metric space and
f : A → A and h : A → C are continuous functions unless it was explicitly
mentioned.

The first important result is a characterization of the concept of topological
transitivity for general skew-products.

Proposition 2.2.1. Let P be a skew-product of the operator T over A × X
where (A,µ) is a probability compact metric space and X is a Banach space.
Then P is topologically transitive if and only if for every a ∈ A, x ∈ X and
δ > 0 the set

E(a, x, δ) = {(b, y) ∈ A×X : ∃n ≥ 0 , d(a, fn(b)) < δ, ‖hn(b)Tny − x‖ < δ}

is dense in A×X.

Proof. =⇒
Suppose that E(a, x, δ) is not dense in A × X for some a ∈ A, x ∈ X and

δ > 0. By definition of being dense, there exist (b, y) ∈ A ×X and ε > 0 such
that BD((b, y), ε)∩E(a, x, δ) = ∅, where BD(−,−) is the ball in the distance D
define in the product of two metric spaces (A and X).

The first thing we are going to see is that for every a ∈ A, x ∈ X and δ > 0,
E(a, x, δ) is open. To see this we just need to prove that for every (b, y) ∈
E(a, x, δ) there exists an open set V such that (b, y) ∈ V ⊂ E(a, x, δ). For
doing that, we will use the continuity of f and h. For an arbitrary a ∈ A,x ∈ X
and δ > 0, as f and h are continuous functions there exists ε > 0 such that if

d(b, β) < ε then d(fn(b), fn(β)) < δ − d(a, fn(b))
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where δ − d(a, fn(b)) > 0 because (b, y) ∈ E(a, x, δ).

d(b, β) < ε then |hn(b)− hn(β)| < δ − ‖hn(b)Tny − x‖
‖Tny‖+ 1

where
δ − ‖hn(b)Tny − x‖

‖Tny‖+ 1
> 0 because (b, y) ∈ E(a, x, δ), which implies that

the numerator is strictly positive and, by definition of norm, the denominator
is positive so the entire fraction is strictly positive.

Now, we define V := Bd(b, ε) × B(y, ε). It is clear that (b, y) ∈ V and for
seeing that V ⊂ E(a, x, δ) we just must see that for every (c, z) ∈ V it holds
that (c, z) ∈ E(a, x, δ). As (c, z) ∈ V we have that d(b, c) < ε which implies
that d(fn(b), fn(c)) < δ−d(a, fn(b)) and as a consequence of that we have that

d(a, fn(c)) ≤ d(a, fn(b)) + d(fn(b), fn(c)) < d(a, fn(b)) + δ − d(a, fn(b)) = δ.

In other hand we have that d(b, c) < ε implies also that |hn(b) − hn(c)| <
δ − ‖hn(b)Tny − x‖

‖Tny‖+ 1
and, as a result, we obtain that

‖hn(c)Tny − x‖ ≤ ‖hn(b)Tny − x‖+ |hn(b)− hn(c)|‖Tny‖ <

< ‖hn(b)Tny − x‖+ δ − ‖hn(b)Tny − x‖
‖Tny‖+ 1

‖Tny‖

< ‖hn(b)Tny − x‖
(
1− ‖Tny‖
‖Tny‖+ 1

)
+

δ‖Tny‖
‖Tny‖+ 1

(1)
<

(1)
< δ

(
1− ‖Tny‖
‖Tny‖+ 1

)
+

δ‖Tny‖
‖Tny‖+ 1

=
δ

‖Tn‖+ 1
+

δ‖Tny‖
‖Tny‖+ 1

= δ,

where (1) is that as (b, y) ∈ E(a, x, δ) by hypothesis we have that ‖hn(b)Tny −
x‖ < δ who allows us to consider the inequality. Then, we have shown that
V ⊂ E(a, x, δ) and for that we can conclude that E(a, x, δ) is open. Besides, is
non-empty because (a, x) belongs always to E(a, x, δ) for any δ > 0.

Moreover, BD((b, y), ε) is also a non-empty open set. So, we have two non-
empty open sets, E(a, x, δ) and BD((b, y), ε). As we have by hypothesis that
P is topologically transitive, there exists ≥ 0 such that Pn(BD((b, y), ε)) ∩
E(a, x, δ) 6= ∅. That means that there exists (c, z) ∈ BD((b, y), ε) such that
Pn(c, z) ∈ E(a, x, δ).

Pn(c, z) ∈ E(a, x, δ)⇐⇒ (fn(c), hn(c)Tnz) ∈ E(a, x, δ)⇐⇒

⇐⇒ d(a, fn(fn(c))) < δ ‖hn(fn(c))Tn(hn(c)Tnz)‖ < δ ⇐⇒ 1

⇐⇒ d(a, f2n(c)) < δ ‖h2n(c)T 2nz‖ < δ,

which means that (c, z) belongs also to E(a, x, δ) which is a contradiction with
the identity suppose before (BD((b, y), ε)∩E(a, x, δ) = ∅), so E(a, x, δ) is dense
for every a ∈ A, x ∈ X and δ > 0.
⇐=

1hn(fn(c))Tn(hn(c)Tnz) = hn(fn(c))hn(c)T 2nz =
= h(f2n−1(c))h(f2n−2(c)) . . . h(fn(c))h(fn−1(c)) . . . h(c)T 2nz = h2n(c)Tnz
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Suppose now that P is not topologically transitive, i.e., that there exist two
non-empty open sets U, V ⊂ A×X such that Pn(U) ∩ V = ∅ for every n ≥ 0.

Every (b, y) ∈ U verifies that Pn(b, y) 6= (a, x) for every (a, x) ∈ V and
for every n ≥ 0, which is equivalent to (fn(b), hn(b)Tny) 6= (a, x) for every
(a, x) ∈ V and for every n ≥ 0. So that for an arbitrary (b, y) there exists
ε > 0 such that d(a, fn(b)) > ε and ‖hn(b)Tny − x‖ > ε for every n ≥ 0
and for every (a, x) ∈ V . But that implies that (b, y) /∈ E(a, x, ε). As, by
hypothesis, E(a, x, δ) is dense for every a ∈ A, x ∈ X and δ > 0, we have
that (b, y) ∈ E(a, x, ε) \E(a, x, ε). As a consequence, (b, y) = lim

n→∞
(bn, yn) with

(bn, yn) ∈ E(a, x, ε). But, if (bn, yn) ∈ E(a, x, ε) then ‖hm(bn)T
myn − x‖ < ε

2
for some m ≥ 0. As the norm is continuous we have:

lim
n→∞

‖hm(bn)T
myn − x‖ = ‖ lim

n→∞
hm(bn)T

myn − x‖ = ‖hm(b)Tmy‖,

so as ‖hm(bn)T
myn − x‖ < ε

2 we have that ‖hm(b)Tmy − x‖ ≤ ε
2 < ε. But now

we have a contradiction because we had that ‖hn(b)Tny−x‖ > ε for any n ≥ 0,
so P is topologically transitive.

This result allows us to state a criterion for topological transitivity of skew-
products. For now on, when we talk about a skew-product P of the operator T
we will understand a skew-product P : A×X → A×X with (A,µ) a compact
probability space and X a Banach space, defined by the expression:

P (a, x) = (f(a), h(a)Tx),

where f : A → A is ergodic with respect to measure µ, h : A → C is a L1(µ)
function (or a continuous one if it is necessary) and T : X → X a linear and
continuous operator.

Theorem 2.2.2. Let P be a skew-product of the operator T and µ is an ergodic
probability measure on A for f giving non-zero measure to every non-empty open
set. Suppose that

γ :=

∫
A

log |h|dµ

is finite. Assume that there exist two dense subsets D1, D2 of X and a sequence
of maps Sn : D2 → X such that the following hold:

(i) lim infn ‖Tnx‖1/n < e−γ for every x ∈ D1

(ii) lim supn ‖Sny‖1/n < eγ for every y ∈ D2

(iii) lim
n→∞

‖TnSny − y‖ = 0 for every y ∈ D2

Then P is topologically transitive.

Proof. We want to see that E(a, x, δ) is dense for every a ∈ A, x ∈ X and δ > 0
and use the precedent result to conclude that P is topologically transitive. For
doing that we should consider an arbitrary element (c, z) ∈ A × X and an
arbitrary ε and find (b, y) ∈ E(a, x, δ) such that d(b, c) < ε and ‖y − z‖ < ε.
Let us take U as the open ball Bd(a, δ) and let us define A1 and A2 as:

A1 := {b ∈ A :
1

n

n−1∑
j=0

1U (f
j(b))→ µ(U)},
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A2 := {b ∈ A :
1

n

n−1∑
j=0

log |h(f j(b))| →
∫
A

log |h|dµ}

Now, using the Birkhoff ergodic theorem (1.1.29), we have that µ(A1) = 1
and µ(A2) = 1, and as a consequence, µ(A1 ∩ A2) = 12. Since µ has full
support, µ(Bd(c, ε)) > 0 and then µ(A1 ∩ A2 ∩ Bd(c, ε)) > 0. We can find
b ∈ A1∩A2∩Bd(c, ε). As D1 and D2 are dense, we can take u ∈ D1 and v ∈ D2

with ‖u− z‖ < ε
2 and ‖v − x‖ < δ

2 . From condition (i), we have that

inf{‖Tnku‖
1
nk } < e−γ ,

so there exist η > 0 such that

‖Tnku‖ < enk(−γ−η) (2.1)

Let ω be any positive number satisfying that (max(1, ‖T‖)eγ+
η
2 )ω ≤ e

η
2 . We

claim that for any p ∈ [nk, (1 + ω)nk], one has

‖T pu‖ ≤ ep(−γ−
η
2 ) (2.2)

This follows from:
•

‖T pu‖ = ‖T p−nk+nku‖ ≤ ‖T p−nk‖‖Tnku‖ ≤ max(1, ‖T‖)ωnkenk(−γ−η) ,
(2.3)

where the last inequality comes from the inequality 2.1 and from the fact that if
p ∈ [nk, (ω+1)nk] then p−nk ≤ ωnk which implies that ‖T p−nk‖ ≤ ‖T‖p−nk ≤
‖T‖ωnk .
•

e−p(γ+
η
2 ) ≥ e−nkγ−nk(

η
2 )−ωnkγ−ωnk(

η
2 ) = e−(γ+η)nkenk(

η
2−ωγ−ω

η
2 ) , (2.4)

where the first inequality comes from the fact that if p ∈ [nk, (ω + 1)nk] then
−p ∈ [−(ω + 1)nk,−nk] which means that −p ≥ −(1 + ω)nk.

From 2.3 and 2.4 we obtain the inequality 2.2 as follows:
‖T pu‖ ≤ max(1, ‖T‖)ωnkenk(−γ−η) from the first deduction. On the other

hand we have that (max(1, ‖T‖)eγ+
η
2 )ω ≤ e

η
2 or equivalently, (max(1, ‖T‖)ω ≤

e−ω(γ+
η
2 )e

η
2 , so (max(1, ‖T‖)ωnk ≤ e−ωnk(γ+

η
2 )enk

η
2 . To sum up we obtain that:

‖T pu‖ ≤ max(1, ‖T‖)ωnkenk(−γ−η) ≤ e−ωnk(γ+
η
2 )enk

η
2 enk(−γ−η)

≤ e−p(γ+
η
2 )

Now, we fix ω and consider α > 0 with
µ(U)

1 + ω
+ α < µ(U) − α, and we set

E = {j ∈ N : f j(b) ∈ U}. Since b ∈ A1 we have that, by the Birkhoff Ergodic
Theorem (1.1.29), there exists N ∈ N, such that, for any n ≥ N ,one has that:∣∣∣∣∣∣ 1n

n−1∑
j=0

1U (f
j(b))− µ(U)

∣∣∣∣∣∣ < α

2Since µ(A1 ∪ A2) = µ(A1) + µ(A2) − µ(A1 ∩ A2) the 1 ≥ µ(A1 ∪ A2) ≥ µ(Ai) = 1 for
i = 1, 2 we deduce that µ(A1 ∩A2) = 2− 1 = 1
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which is equivalent to ∣∣∣∣ |E ∩ [1, n]|
n

∣∣∣∣ < α,

by the definition of the set E. This gives:

µ(U)− α < |E ∩ [1, n]|
n

< µ(U) + α

Suppose now, that for k large enough, the set E ∩ [nk, (1+ω)nk] = ∅. Then:

|E ∩ [nk, (1 + ω)nk]|
(1 + ω)nk

(1)
=
|E ∩ [1, nk]|
(1 + ω)nk

(2)

≤ µ(U) + α

(1 + ω)
<
µ(U)

1 + ω
+ α

(3)
< µ(U)− α,

where (1) is because E ∩ [nk, (1 +ω)nk] = ∅ for large values of k, (2) is because
of the inequality deduce from the Birkhoff Ergodic Theorem and (3) comes from
the condition that we set for α. This leads us to contradiction since:

µ(U)− α < |E ∩ [nk, (1 + ω)nk]|
(1 + ω)nk

< µ(U)− α.

So E ∩ [nk, (1 + ω)nk] 6= ∅, so we obtain a sequence (pk)k, each of them in
[nk, (1 + ω)nk], which means that ‖T pku‖ ≤ epk(−γ−

η
2 ), and also in E which

means that fpk(b) ∈ U = Bd(a, δ).
Now, we use condition (ii) to ensure that:

‖Spkv‖ ≤ epk(γ−
η
2 )

for k large enough (we need that because if not η
2 could not be the number that

verifies the inequality). On the other hand, since b ∈ A2, for ε = η
4 there exists

N1 ∈ N such that for every n ≥ N2 the following expression holds:

| 1
n

n−1∑
j=0

log |h(f j(b))| − γ| = | 1
n
log |

n−1∏
j=0

h(f j(b))| − γ| = | 1
n
log |hn(b)| − γ| < η

4

That implies that

γ − η

4
<

1

n
log |hn(b)| < η

4
+ γ ⇐⇒

⇐⇒ n(γ − η

4
) < log |hn(b)| < n(

η

4
+ γ)⇐⇒ e

n(γ−
η

4
)
< |hn(b)| < e

n(
η

4
+γ)

.

Thus,
hpk(b)‖T pku‖ ≤ epk(γ+

η
4 )epk(−γ−

η
2 ) = epk(−

η
4 ),

so when k tends to infinity hpk(b)‖T pku‖ converges to zero. On the other hand,

|hpk(b)|−1‖Spkv‖ ≤ epk(−γ+
η
4 )epk(γ−

η
2 ) = epk(−

η
4 ),

so |hpk(b)|−1‖Spkv‖ converges also to zero. Now, we can conclude the proof
because if we set y = u+ (hpk(b))−1Spkv we have for k large enough that:

1. d(b, c) < ε because b ∈ Bd(c, ε) by definition.
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2. ‖y − z‖ < ε because ‖y − z‖ = ‖u + (hpk(b))−1Spkv − z‖ ≤ ‖u − z‖ +
‖(hpk(b))−1Spkv‖ ≤ ‖u − z‖ + |hpk(b)|−1‖Spkv‖ <

ε

2
+
ε

2
= ε because of

how we have chosen u and because |hpk(b)|−1‖Spkv‖ converges to zero.

3. (b, y) ∈ E(a, x, δ) because U = Bd(a, δ) and as b ∈ A1 we know that
fpk(b) ∈ U which means d(a, fpk(b)) < δ. On the other hand,

hpk(b)‖T pky − x‖ = hpk(b)‖T pk(u+ (hpk(b))−1Spkv)− x‖ ≤
≤ hpk(b)‖T pku‖+ hpk(b)(hpk(b))−1‖T pkSpkv − x‖ =
= hpk(b)‖T pku‖+ ‖T pkSpkv − v + (v − x)‖ ≤
≤ hpk(b)‖T pku‖+ ‖T pkSpkv − v‖+ ‖v − x‖ ≤

≤ δ

4
+
δ

4
+
δ

2
= δ

because hpk(b)‖T pku‖ and ‖T pkSpkv − v‖ converges to zero.

One of the most interesting things that we can deduce from the proof of
this theorem is that it does not depend on f , as long as if was continuous and
ergodic. Another way of presenting this criterion is shown below (we omit this
proof because is completely analogous to the proof presented for the previous
theorem).

Theorem 2.2.3. Let P be a skew-product of the operator T and µ is an ergodic
probability measure on A for f giving non-zero measure to every non-empty open
set. Suppose that

γ :=

∫
A

log |h|dµ

is finite. Assume that there exist two dense subsets D1, D2 of X, a sequence of
integers (nk)k and a bounded linear operator S : X → X such that the following
conditions hold:

(i) lim infnk ‖Tnkx‖1/nk < e−γ for every x ∈ D1

(ii) lim supn ‖Snky‖1/nk < eγ for every y ∈ D2

(iii) TSy = y for every y ∈ D2

Then P is topologically transitive.

The interest of having right inverse comes from the fact that we can estimate
the norm of Spkv knowing the norm of Snkv. That was not possible in the proof
of theorem 2.2.2.

Now, we will study the topologically transitivity of skew-products from a
spectral theory point of view. We first introduce a theorem from [41] that will
be very useful in this section:

Theorem 2.2.4 (Müller). If X is a Banach space, then the set {x ∈ X :
lim inf
n→∞

‖Tnx‖1/n = r(T )} is dense in X with r(T ) the spectral radius of T .
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Therefore, if r(T ) < e−γ (with γ as we have defined before) then D1 := {x ∈
X : lim inf

n→∞
‖Tnx‖1/n = r(T )} is dense and then we have the first condition of

theorem 2.2.2.
If, in addition, we suppose that T is invertible, we can deduce from the

following inequalities:
1 ≤ r(T )r(T−1)

r(T ) < e−γ

that r(T−1) > eγ . So that, by Müller’s result we have that taking

D2 := {x ∈ X : lim inf
n→∞

‖T−nx‖1/n = r(T−1)},

this set is dense in X. Moreover, this implies that for every x ∈ D2 it holds that

lim inf
n→∞

‖T−nx‖1/n > eγ .

This contradicts the second condition of theorem 2.2.3.
To sum up, it is impossible to follow an argument that gives both conditions

using the spectral radius. However, the existence of sufficiently many eigenvec-
tors will be enough for our purposes.

Theorem 2.2.5. Let P be a skew-product of the operator T and µ is an ergodic
probability measure on A for f giving non-zero measure to every non-empty open
set. Suppose that

γ :=

∫
A

log |h|dµ

is finite and that the following two vector spaces

Hγ
+(T ) = span{ker(T−λI) : |λ| > e−γ} and Hγ

−(T ) = span{ker(T−λI) : |λ| < e−γ}

are dense. Then P is topologically transitive.

Proof. This result is, in fact, a corollary of Theorem 2.2.2. We just should
choose D1 := Hγ

−(T ) = span{ker(T − λI) : |λ| < e−γ} and D2 := Hγ
+(T ) =

span{ker(T − λI) : |λ| > e−γ}.
Now, any y ∈ D2 y will be of the form:

y =

r∑
i=1

aiyi

with ai ∈ C with 1 ≤ i ≤ r and yi ∈ ker(T −λiI), which means that Tyi = λiyi.
Now, defining the operators Sn as:

Sny :=

r∑
i=1

ai
1

λni
yi

is easy that the Theorem 2.2.2 holds because:



Topologically Transitive Skew-Products of Operators 35

• lim infn ‖Tnx‖1/n < e−γ for every x ∈ D1:

Since x ∈ D1 we have that x =
r∑
i=1

bixi for some bi ∈ C with Txi = λixi

with |λi| < e−γ . For that:

lim inf
n
‖Tnx‖1/n = lim inf

n
‖Tn

(
r∑
i=1

bixi

)
‖1/n = lim inf

n
‖

r∑
i=1

biT
nxi‖1/n =

= lim inf
n
‖

r∑
i=1

biλ
n
i xi‖1/n ≤ lim inf

n

(
r∑
i=1

‖biλni xi‖

)1/n

=

= lim inf
n

(
r∑
i=1

|bi||λi|n‖xi‖

)1/n

< lim inf
n

(
r∑
i=1

|bi|e−nγ‖xi‖

)1/n

=

= lim inf
n

e−γ

(
r∑
i=1

|bi|‖xi‖

)1/n

= e−γ ,

where the last identity is due the fact that
r∑
i=1

|bi|‖xi‖ is a real constant

that converges to one when we consider lim
n
(
r∑
i=1

|bi|‖xi‖)1/n

• lim supn ‖Sny‖1/n < eγ for every y ∈ D2:

lim sup
n
‖Sny‖1/n = lim sup

n

∥∥∥∥ r∑
i=1

ai
1

λni
yi

∥∥∥∥1/n ≤
≤ lim sup

n

(
r∑
i=1

|ai||
1

λni
|‖yi‖

)1/n

< lim sup
n

eγ

(
r∑
i=1

|ai|‖yi‖

)1/n

= eγ ,

in the same way as before.

• lim
n
‖TnSny − y‖ = 0 for every y ∈ D2:

lim
n
‖TnSny − y‖ = lim

n

∥∥∥∥Tn
(

r∑
i=1

ai
1

λni
yi

)
− y
∥∥∥∥ =

= lim
n

∥∥∥∥ r∑
i=1

ai
1

λni
λni yi − y

∥∥∥∥ = lim
n

∥∥∥∥ r∑
i=1

aiyi − y
∥∥∥∥ = 0,

by the definition of y ∈ D2

In case that f was uniquely ergodic we have the following result:

Proposition 2.2.6. Let P be a skew-product of the operator T and µ is an
ergodic probability measure on A for f giving non-zero measure to every non-
empty open set. Suppose that, in addition, f is uniquely ergodic with respect to
µ and P is topologically transitive. Then every component of σ(T ) (the spectrum
of T ) meets the circle of radius e−γ centered at 0.
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Proof. First, we suppose that σ(T ) is connected. By contradiction, suppose that
σ(T )∩{z ∈ C : |z| = e−γ} = ∅. Since σ(T ) is connected there exists η > 0 such
that σ(T ) is either contained in D(0, e−γ−η) or outside of D(0, e−γ+η). Now we
will prove that either ‖Tn‖ ≤ en(−γ−η) or ‖Tnx‖ ≥ en(−γ+η) for every x ∈ X
and for n large enough. To see this we proceed as follows:

By the compactness of σ(T ) and the spectral radius formula (1.1.18), we
have that lim

n→∞
‖Tn‖1/n = r(T ) < e−γ−η. Hence,

lim
n→∞

‖Tnx‖1/n ≤ lim
n→∞

‖Tn‖1/n‖x‖1/n < e−γ−η

or equivalently,
‖Tnx‖ < en(−γ−η)

for n large enough, that is one of the desirable inequalities. The other can be
obtained in an analogous way taking in count that, as 0 /∈ σ(T ), T is invertible
and since σ(T−1) = σ(T )−1 we can refer to the proof of the previous case.

Now, since f is uniquely ergodic and h is continuous we can use the Oxtoby’s
Theorem (1.1.30), that states that:

lim
n

1

n

n−1∑
j=0

log |h(f j(a))| = γ,

uniformly for every a ∈ A, which means that, taking ε = η, there exists N ∈ N
such that, for every n ≥ N one has:∣∣∣∣∣∣ 1n

n−1∑
j=0

log |h(f j(a))| − γ

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1n log

∣∣∣∣∣∣
n−1∏
j=0

h(f j(a))

∣∣∣∣∣∣− γ
∣∣∣∣∣∣ =

=

∣∣∣∣ 1n log |hn(a)| − γ
∣∣∣∣ < η

which implies that

n(γ − η) < log |hn(a)| < n(γ + η)⇐⇒ en(γ−η) < |hn(a)| < en(γ+η)

Hence, either
|hn(a)|‖Tnx‖ ≤ en(γ+η)en(−γ−η) = 1

or
|hn(a)|‖Tnx‖ ≥ en(γ−η)en(−γ+η) = 1

for n large enough, which implies that (a, x) cannot be a transitive because these
inequalities would imply that E(a, x, δ) is not dense for every a ∈ A, x ∈ X and
δ > 0 so by the characterization of the transitivity gave in the introduction of
the section is not transitive. But that contradicts the hypothesis that we have
so σ(T ) meets the disk centered in 0 and of radio e−γ .

For the general case, it is enough to consider every connected component of
σ(T ) and use the Riesz Decomposition Theorem (1.1.17) in order to have that,
if M is a invariant subspace of X for T , then the operator induced by P on
A × X/M is topologically transitive too. Restricted to every single connected
component of the spectrum of the operator T we can use the first part of the
proof.
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Remark 2.2.7. If we do not assume that f is uniquely ergodic, then we obtain
that for µ-almost every a ∈ A, (a, x) is not transitive for every x ∈ X, which is
not the uniformly convergence that provides the Oxtoby’s Theorem (1.1.30) and
that is fundamental for the construction of the precedent proof (summarizing,
that the hypothesis of uniquely ergodicity for f cannot be ignored).

The case where f is uniquely ergodic with respect to the measure µ is in-
teresting because it allows us to change the two above mentioned critera in a
stronger one.

Theorem 2.2.8. Let P be a skew-product of the operator T and µ is an ergodic
probability measure on A for f giving non-zero measure to every non-empty open
set. Suppose that f is a uniquely ergodic homeomorphism with respect to µ and
that

γ :=

∫
A

log |h|dµ

is finite. Assume that there exist two dense subsets D1, D2 of X, a sequence of
maps Sn : D2 → X such that the following hold:

(i) lim supn ‖Tnx‖1/n < e−γ for every x ∈ D1

(ii) lim supn ‖Sny‖1/n < eγ for every y ∈ D2

(iii) lim
n→∞

‖TnSny − y‖ = 0 for every y ∈ D2

Then for any b ∈ A there exists x ∈ X such that (b, x) has dense orbit under P .

Proof. Let b ∈ A fixed and let (a, x, δ) ∈ A × X × (0,+∞) be an arbitrary
element. As before, we just have to prove that E(a, x, δ) is dense in A×X. As
we have fixed b ∈ A we have to prove that

E(a, x, δ) = {y ∈ X : ∃n ≥ 0 , d(a, fn(b)) < δ , ‖hn(b)Tny − x‖ < δ}

is dense in X. To see that we consider an arbitrary element z ∈ X and an
arbitrary ε > 0 and see that B(z, ε)∩E(a, x, δ) 6= ∅, i.e., that exists y ∈ X such
that y ∈ E(a, x, δ) and ‖y − z‖ < ε.

Since f is uniquely ergodic homeomorphism and µ has full support we have
that f is minimal (see result 1.1.28), which means that every orbit of an element
of A is dense in A. Therefore, there will be n0 > 0 such that d(a, fn0(b)) < δ.
As D1 and D2 are dense subsets of X we can choose u ∈ D1 and v ∈ D2 such
that ‖u− z‖ < ε

2 and ‖v − x‖ < δ
2 .

Using now conditions (i) and (ii) we have that there exists η > 0 and N1 ∈ N
such that, for every k ≥ N1:

‖Tnku‖ ≤ enk(−γ−η) and ‖Snkv‖ ≤ enk(γ−η),

because of the the definition of lim sup. Now, we use Oxtoby’s Theorem (1.1.30)
with ε′ = η

2 and we obtain that there exists N2 ∈ N such that, for every n ≥ N2

we have that:

| 1
n

n−1∑
j=0

log |h(f j(b)| − γ| < η

2
,
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where the convergence is uniformly. With a similar argument this last inequality
is equivalent to:

e
n(γ−

η

2
)
< |hn(b)| < e

n(γ+
η

2
)

which implies also that:

e
nk(γ−

η

2
)
< |hnk(b)| < e

nk(γ+
η

2
)

for every subsequence (nk)k of (n)n.
So, as reasoning in the precedent results, we have that both of hnk(b)‖Tnku‖

and (hnk(b))−1‖Snkv‖ tend to zero in general for k ≥ N1 and n ≥ N2 (remember
that hnk(b)‖Tnku‖ ≤ enk(γ+

η
2 )enk(−γ−η) = enk(−

η
2 ) and (hnk(b))−1‖Snkv‖ ≤

enk(γ−
η
2 )enk(γ−η) = enk(−

3η
2 )). If we set y = u+ (hnk(b))−1Snkv, we have that

‖z−y‖ = ‖z−u− (hnk(b))−1Snkv‖ ≤ ‖z−u‖+‖(hnk(b))−1Snkv‖ <
ε

2
+
ε

2
= ε,

because of the inequality gave at the beginning of the proof and because the
convergence of (hnk(b))−1Snkv to zero. That gives the first of the things that
we want. For the second:

‖hnk(b)Tnky − x‖ = ‖hnk(b)Tnk(u+ (hnk(b))−1Snkv)− x‖ =
= ‖hnk(b)Tnku+ hnk(b)Tnk(hnk(b))−1Snkv − x‖ ≤
≤ ‖hnk(b)Tnku‖+ ‖hnk(b)Tnk(hnk(b))−1Snkv − x‖ =
= ‖hnk(b)Tnku‖+ ‖TnkSnkv − v + v − x‖ ≤
≤ ‖hnk(b)Tnku‖+ ‖TnkSnkv − v‖+ ‖v − x‖ ≤

≤ δ

4
+
δ

4
+
δ

2
= δ,

because ‖hnk(b)Tnku‖ and ‖TnSnv − v‖ go to zero (the second one due to
condition (iii)) and the inequality of the beginning of the proof.

Notice that if we have a uniquely ergodic homeomorphism we obtain more
than transitivity, because we obtain that every point of A gives a dense orbit
under P .

2.3 Examples of Transitive Skew-Products

2.3.1 Backward Shift Operators
We consider the Banach space of sequences X = `p or X = c0 with 1 ≤ p <∞.
The Backward Shift Operator defined on this space will be B : `p → `p

defined by:
B((x1, x2, . . . , xn, . . . )) = (x2, x3, . . . , xn, . . . ).

However, we will work with multiples of the backward shift, i.e.,

(λB)((x1, x2, . . . , xn, . . . )) = λ(x2, x3, . . . , xn, . . . ),

for λ ∈ C.
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In the preliminaries we have pointed out that λB is hypercyclic for |λ| > 1.
The skew-product that arises when we consider an operator of this kind is of
the form:

Pλ(a, x) = (f(a), h(a)(λB)x)

To set sufficient conditions for this skew-product to be topologically transitive
we need to point out some consideration.

The first is that there is a conceptual difference between the concept of being
topologically transitive in this framework and the concept for the rest of cases.
Here, we understand that the skew-product will be topologically transitive if
there exists some point (a, x) ∈ Ap whose orbit under P is dense. In order
to follow the proof given by Costakis and Hadjiloucas (that is easier to under-
stand) we will consider this alternative definition in this section. We need also
a complementary result:

Proposition 2.3.1. Let A be a compact metric space, f : A → A continuous
with f(A) = A, and µ a probability measure on the Borel subsets of A (that is,
the σ-algebra generated by the open sets) that has full support. If f is an ergodic
measure-preserving transformation with respect to µ, then

µ({a ∈ A : {fn(a) : n = 1, 2, . . . } is dense }) = 1.

Proof. Since A is compact, there exists a finite subcover of open subsets for
every cover of A. Let U0, . . . , UN be a fixed subcover of A. The first thing we
notice is that

{a ∈ A : {fn(a) : n = 1, 2, . . . } is dense } ≡ {
N⋂
m=0

∞⋃
j=1

f−j(Um)}

Now,
∞⋃
j=1

f−j(Um) is invariant under f for every m = 0, . . . , N because for each

one of these m’s we have:

f−1(

∞⋃
j=1

f−j(Um)) ⊂
∞⋃
j=1

f−1(f−j(Um)) =

∞⋃
j=1

f−j−1(Um) ⊂
∞⋃
j=1

f−j(Um).

Since f is ergodic, we have that µ(
∞⋃
j=1

f−j(Um)) ∈ {0, 1}. As every Um is open

and f is continuous, f−j(Um) remains open and
∞⋃
j=1

f−j(Um) is also open.

As a consequence, µ(
∞⋃
j=1

f−j(Um)) = 1 because µ has full support and also

µ(
N⋂
m=0

∞⋃
j=1

f−j(Um)) = 1 because if µ(Ai) = 1 for every i = 1, . . . , S then

µ(∩Ai) = 1 (the proof is made for two sets in 2.2.2 and the general case is
obtained by induction). So, by the equality of sets gave at the beginning we
have that µ({a ∈ A : {fn(a) : n = 1, 2, . . . } is dense } = 1 as we want.

Now we can give the main result of this section, that is based in the work of
Costakis and Hadjiloucas [20]:
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Theorem 2.3.2. Let A be a compact metric space, f : A → A a continuous
map with f(A) = A, µ an ergodic probability measure on A for f giving non-zero
measure to every non-empty open set, and h : A → C a continuous function.
For every complex number λ consider the skew-product Pλ : A × `p → A × `p
defined by:

Pλ(a, x) = (f(a), h(a)(λB)x)

Suppose that:

γ :=

∫
A

log |h(a)|dµ

is finite. Then:

(i) If |λ| > e−γ , Pλ is topologically transitive.

(ii) If |λ| < e−γ , for µ-almost every a ∈ A, {Pnλ (a, x) : n = 0, 1, . . . } is not
dense in A× `p for every x ∈ `p.

(iii) If f is uniquely ergodic and |λ| < e−γ , then Pλ is not topologically transi-
tive.

Proof. If we set

A1 = {a ∈ A : lim
n

1

n

n−1∑
j=0

log |h(f j(a))| = γ},

then, by Birkhoff’s Ergodic Theorem (1.1.29) we have that µ(A1) = 1. Taking
now any λ such that |λ| > e−γ we have that there exists 0 < ρ < 1 such that

|λ|e(1−ρ)γ > 1,

To prove assertion (i) we should consider three different cases:
Case 1 =⇒ γ > 0

For every a ∈ A1 and for ε = ργ there exists Na (depends on a because for
every a ∈ A1 we have a different limit) such that for any n ≥ Na we have that∣∣∣∣ 1n

n−1∑
j=0

log |h(f j(a))| − γ
∣∣∣∣ = ∣∣∣∣ 1n log |

n−1∏
j=0

h(f j(a))| − γ
∣∣∣∣ =

=

∣∣∣∣ 1n log |hn(a)| − γ
∣∣∣∣ < ργ

which is equivalent to

−ργ < 1

n
log |hn(a)| − γ < ργ

n(γ − ργ) < log |hn(a)| < n(γ − ργ)

en(γ−ργ) < |hn(a)| < en(γ−ργ)

Now, let X1 = {x ∈ `p : xn = 0 from some n onwards}, which is separable and
dense in `p. Let (am, xj) with m, j ∈ N be a countable dense set in A× `p. This
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can be done thanks to the fact of the separability of `p and the compactness of
A.

Let now

E(m, j, δ, n) = {(a, x) : d(am, f
n(a)) <

1

δ
and ‖hn(a)(λB)nx− xj‖ <

1

δ
}

for m, j, δ, n ∈ N. Our interest now is to show that

∞⋃
n=1

E(m, j, δ, n)

is open and dense in A× `p for every m, j, δ ∈ N.
Open

Fix m, j, δ, n ∈ N and let (a, x) be an arbitrary element of E(m, j, δ, n) (we
suppose that is nonempty because if not it will be direct). We have to show
that there exists an open set V such that (a, x) ∈ V ⊂ E(m, j, δ, n). Since f
and h are continuous there exists η > 0 such that:

If d(a, b) < η then d(fn(a), fn(b)) <
1

δ
− d(am, fn(a))

If d(a, b) < η then |hn(a)− hn(b)| <
1
δ − ‖h

n(a)(λB)nx− xj‖
‖(λB)nx‖+ 1

Now, we define V = Bd(a, η) × B(x, η). It is obvious that (a, x) ∈ V so to
conclude this part of the proof we just need to show that V ⊂ E(m, j, δ, n). For
doing that, we take (β, y) ∈ V and using the previous inequalities we have that:

d(am, f
n(b)) ≤ d(am, fn(a)) + d(fn(a), fn(b)) ≤

≤ d(am, fn(a)) +
1

δ
− d(am, fn(a))

=
1

δ

‖hn(b)(λB)nx− xj‖ ≤ ‖hn(a)(λB)nx− xj‖+ |hn(a)− hn(b)|‖(λB)nx‖ <

< ‖hn(a)(λB)nx− xj‖+
1
δ − ‖h

n(a)(λB)nx− xj‖
‖(λB)nx‖+ 1

‖(λB)nx‖ =

= ‖hn(a)(λB)nx− xj‖
(
1− ‖(λB)nx‖
‖(λB)nx‖+ 1

)
+

1

δ

‖(λB)nx‖
‖(λB)nx‖+ 1

<

<
1

δ

1

‖(λB)nx‖+ 1
+

1

δ

‖(λB)nx‖
‖(λB)nx‖+ 1

=
1

δ
,

where the last inequality comes from the fact that (a, x) ∈ E(m, j, δ, n), which

means that ‖hn(a)(λB)nx−xj‖ <
1

δ
. So we have that E(m, j, δ, n) is open and

that
∞⋃
n=1

E(m, j, δ, n) is also open.

Dense
To see the density of this set we pick an arbitrary point (b, y) ∈ A×`p and an

arbitrary ε > 0 and we want to find an element in Bd((b, y), ε) (i.e, d(b, a) < ε
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and ‖y − x‖ < ε) such that it also belongs to
∞⋃
n=1

E(m, j, δ, n). Without loss of

generality we can consider that 0 < ε < 1
δ . Now we take z ∈ X1 such that there

exists N1 ∈ N verifying that for every n ≥ N1 it holds that:

zn = 0 ∀n ≥ N1 and ‖z − y‖ < ε

2
.

Now we set

D :=

{
a ∈ A : {fn(a) : n = 0, 1, 2, . . . } is dense in A

}
.

By the previous result we have that µ(D) = 1. Since µ(A1) = 1 also, we have
that µ(A1 ∩ D) = 1. Since Bd(b, ε) is an non-empty open set and µ has full
support we can deduce that µ(Bd(b, ε)) > 0 and for that, µ(A1∩D∩Bd(b, ε)) >
0.

Therefore there exists a ∈ A1∩D∩Bd(b, ε). We recall that, for every a ∈ A1,
we have:

|hn(a)| > enγ(1−ρ) ⇐⇒ |λnhn(a)| > |λ|nenγ(1−ρ), (2.5)

because, by hypothesis, |λ| > e−γ > 0. On the other hand, we have that

|λnhn(a)| > |λ|nenγ(1−ρ) > e−nγenγ(1−ρ) = e−nργ ,

and then
1

|λnhn(a)|
≤ 1

e−nργ
,

where the right part of the inequality tends to zero when n tends to infinity, i.e.
for every ε′ > 0 there exists N2 ∈ N and N2 ≥ N1 such that

|hn(a)λn|−1 < ε′

. Taking ε′ = ε
2‖xj‖ we obtain, that for the a ∈ A1 ∩D ∩Bd(b, ε) chosen by 2.5

there exists N2 ≥ N1 such that:

|hn(a)λn|−1 < ε

2‖xj‖
.

As a ∈ D also, we have that the orbit of a under f is dense, so there exists
n0 ∈ N such that n0 ≥ N2 and

d(am, f
n0(a)) < ε <

1

δ
,

so we have the a of the pair (a, x) that belongs to
∞⋃
n=0

E(m, j, δ, n) and it also

verifies that d(b, a) < ε because a ∈ Bd(b, ε).
On the other hand we take

x = z + (hn0(a))−1
(
1

λ
S

)n0

xj ,

where S : `p → `p is the forward shift operator defined as S(x1, . . . ) = (0, x1, . . . ).
So we must see that ‖x− y‖ < ε and ‖hn0(a)(λB)n0x− xj‖ < 1

δ . For the first
inequality we proceed as follows:

‖x− z‖ = |hn0(a)λn0 |−1‖Sn0xj‖ <
ε

2‖xj‖
‖xj‖ =

ε

2
,
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because of the estimation that we have obtain before and because of the fact
that the forward shift maintains the norm of any element.

‖x− y‖ ≤ ‖x− z‖+ ‖z − y‖ < ε

2
+
ε

2
= ε,

since we have picked z such that ‖z − y‖ < ε

2
.

For the second inequality we have that:

‖hn0(a)(λB)n0x− xj‖ = ‖hn0(a)(λB)n0(z + (hn0(a))−1
(
1

λ
S

)n0

xj)− xj‖ =

= ‖hn0(a)(λB)n0z+(hn0(a))−1hn0(a)(λB)n0(

(
1

λ
S

)n0

xj)−xj‖ = 0+xj−xj = 0 <
1

δ
,

because zn0 = 0 because zn = 0 for every n ≥ N1 and because S is the right
inverse of B (i.e., BS = I).

So that (a, x) ∈ E(m, j, δ, n0) and, as a consequence, (a, x) ∈
∞⋃
n=1

E(m, j, δ, n).

As
∞⋃
n=1

E(m, j, δ, n)

is open and dense we have that

∞⋂
m=1

∞⋂
j=1

∞⋂
δ=1

∞⋃
n=1

E(m, j, δ, n)

is a dense Gδ set in A× `p by the Baire’s Category Theorem (1.1.2). As in the
result proved before, this set is precisely the set of points in A× `p whose orbit
under P is dense. This concludes this part of the proof.

Case 2 =⇒ γ < 0

It is completely analogous to the precedent case just considering ε = −ργ in
the limit that gives the Birkhoff’s Ergodic Theorem.

Case 3 =⇒ γ = 0

It is also completely analogous to the precedent two cases just considering
that there exists ρ > 0 such that |λ|e−ρ > 1. So, taking ε = ρ in the limit that
gives the Birkhoff’s Ergodic Theorem and following the steps followed in the
previous cases we obtain the result.

To prove now assertion (ii) we proceed as follows:
Case 1 =⇒ γ > 0

Recall that we have that |λ| < e−γ ⇐⇒ |λ|eγ < 1. Now, we take ε > 0 such
that |λ|eγ+ε < 1. The Birkhoff’s Ergodic Theorem provides that the set

A1 = {a ∈ A : lim
n

1

n

n−1∑
j=0

log |h(f j(a))| = γ}

has full measure. So, for every ε′ > 0 and for every a ∈ A1 there exists Na(it
depends on a because for every a ∈ A1 we have the limit) such that for every
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n ≥ Na it is verified that:∣∣∣∣∣∣ 1n
n−1∑
j=0

log |h(f j(a))| − γ

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1n log

n−1∏
j=0

|h(f j(a))| − γ

∣∣∣∣∣∣ =
= | 1

n
log |hn(a)| − γ| < ε′

which is equivalent to

γ − ε′ < 1

n
log |hn(a)| < γ + ε′

en(γ−ε
′) < |hn(a)| < en(γ+ε

′)

Now, we take ε′ = ε, and we have that for every a ∈ A1 and for every n ≥ Na:

en(γ−ε) < |hn(a)| < en(γ+ε) ⇐⇒ |λ|nen(γ−ε) < |λ|n|hn(a)| < |λ|nen(γ+ε)

Now, as we have that |λ|eγ+ε < 1, then lim
n
|λ|nen(γ+ε) = 0, so for every a ∈ A1

we have that |hn(a)|‖(λB)nx‖ converges also to zero for every x ∈ `p. This
means that for every a ∈ A1 the orbit of (a, x) under Pλ is not dense for every
x ∈ `p which concludes this part of the proof (If part of the orbit goes to zero
as we increase the number of iterates it cannot be dense). Since A1 has full
measure, the condition we have obtained can be reformulate as follows:
For µ-almost every a ∈ A the orbit of (a, x) under Pλ is not dense in A× `p for
every x ∈ `p.

Case 2 =⇒ γ ≤ 0

It is completely analogous, taking ε > 0 such that |λ|eγ−ε < 1 and ε′ = −ε.
Finally, to prove assertion (iii) we proceed as follows:
Case 1 =⇒ γ > 0

Recall that we have that |λ| < e−γ ⇐⇒ |λ|eγ < 1. Now, we take ε > 0 such
that |λ|eγ+ε < 1. The Oxtoby’s Theorem (1.1.30) provides that the set

A2 = {a ∈ A : lim
n

1

n

n−1∑
j=0

log |h(f j(a))| = γ}

where the convergence is uniformly in a, has full measure. So, for every ε′ > 0
there exists N , that does not depend of a, such that for every n ≥ N it is verified
that: ∣∣∣∣∣∣ 1n

n−1∑
j=0

log |h(f j(a))| − γ

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1n log

n−1∏
j=0

|h(f j(a))| − γ

∣∣∣∣∣∣ =
= | 1

n
log |hn(a)| − γ| < ε′

which is equivalent to

γ − ε′ < 1

n
log |hn(a)| < γ + ε′

en(γ−ε
′) < |hn(a)| < en(γ+ε

′)
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for every a ∈ A2.
Now, we take ε′ = ε, and we have that for every n ≥ N :

en(γ−ε) < |hn(a)| < en(γ+ε) ⇐⇒ |λ|nen(γ−ε) < |λ|n|hn(a)| < |λ|nen(γ+ε)

for every a ∈ A2. Now, as we have that |λ|eγ+ε < 1, lim
n
|λ|nen(γ+ε) = 0, so we

have that |hn(a)|‖(λB)nx‖ converges also to zero for every (a, x) ∈ A×`p. That
means that the orbit of (a, x) under Pλ is not dense for every (a, x) ∈ A × `p
which contradicts the definition of topological transitivity that we had handled
throughout this section.

Case 2 =⇒ γ ≤ 0

It is completely analogous, taking ε > 0 such that |λ|eγ−ε < 1 and ε′ =
−ε.

2.3.2 Translation Operators
We have introduced in the preliminaries the Birkhoff’s Operators. A general-
ization of the Birkhoff’s Operator are the Translation Operators.

First of all we should point out that the definitions of a skew-product and a
topologically transitive skew-product have a natural generalization if we consider
a Frèchet space X and an operator T on X. In this section X will denote the
space of entire functions H(C) and T : H(C) → H(C) will be the translation
operator, defined by:

T (u(z)) = u(z + 1).

As we have seen in the preliminaries, this kind of operators are hypercyclic.
If we consider a skew-product of a translation operator, the condition for being
topologically transitive is very weak. Before starting the main theorem we
enunciate an important approximation theorem that will be needed:

Theorem 2.3.3 (Mergelyan’s Approximation Theorem). Let K be a compact
subset of the complex plane C such that C \K is connected. Then, every con-
tinuous function f : K → C, such that the restriction f |int(K) is holomorphic,
can be approximated uniformly on K with polynomials

The main result is:

Theorem 2.3.4. Let A be a compact metric space, let f : A→ A be a contin-
uous map, let µ be an ergodic probability measure on A for f giving non-zero
measure to every non-empty open set and let h : A → C be a continuous func-
tion. Let T be the translation operator defined on H(C). Suppose that h is µ-
almost everywhere non-zero. Then the skew-product P (a, u) = (f(a), h(a)T (u))
is topologically transitive.

Proof. As always we want to prove that, given an arbitrary R > 0 and an
arbitrary a, u, δ ∈ A×H(C)× (0,+∞), E(a, u, δ) is dense in A×H(C), where

E(a, u, δ) = {(b, v) ∈ A×H(C) : ∃n ≥ 0 , d(a, fn(b)) < δ and

‖hn(b)Tn(v)− u‖C(D(0,R)) < δ},

where D(0, R) is the closed disk centered in 0 and with radius R and where
‖ · ‖C(K) is the sup-norm on K. So, we take an arbitrary (c, w) ∈ A × H(C)
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and an arbitrary ε, ρ > 0 and we want to find a (b, v) ∈ Bd((c, w), ε) and in
E(a, u, δ). Let Z = {b ∈ A : h(b) = 0}. By hypothesis, h is µ-almost
everywhere non-zero, so µ(Z) = 0. Since f is ergodic and µ(Z) = 0 we have that
A1 = {b ∈ A : ∀n ≥ 1 , hn(b) 6= 0} = {b ∈ A : ∀n ≥ 0 , fn(b) /∈ Z} because if
fn(b) /∈ Z for every n ≥ 0 then h(fn(b)) 6= 0 for every n ≥ 0 so by the definition
of hn(b) we have that hn(b) 6= 0 for every n ≥ 1, which gives the equality between
the two sets. This set has full measure, (µ(A1) = 1). That is because ergodicity
implies by Birkhoff Ergodic Theorem that A = {b ∈ A : 1

n log |hn(b)| → γ}
has full measure. But this equivalent to the fact that hn(b) 6= 0 for every n ≥ 1,
which together with the condition of µ(Z) = 0 gives that the set defined (A1)
has also full measure.

Now, using the Birkhoff’s Ergodic Theorem (1.1.29) we have that we can
find b ∈ A1 and a sequence (nk)k tending to infinity such that d(b, c) < ε and

d(a, fnk(b)) < δ (2.6)

(to see the proof of the existence of that sequence and the way to construct it see
the proof of the main theorem 2.2.2). On the other hand, for k large enough we
have that D(0, R)+nk and D(0, ρ) are disjoint (trivially). As D(0, R)+nk and
D(0, ρ) are compacts with connected complement in C we can use Mergelyan’s
Approximation Theorem to affirm that there exists a function v ∈ H(C) (poly-
nomial) satisfying:

‖v − w‖C(D(0,ρ)) < ε and ‖hnk(b)v − T−nk(u)‖C(D(0,R)+nk)
< δ,

where the last inequality implies

‖hnk(b)Tnk(v)− u‖C(D(0,R)) < δ (2.7)

Joining the inequalities 2.6 and 2.7 we have that (b, v) ∈ E(a, u, δ). Since
‖v − w‖C(D(0,ρ)) < ε and d(b, c) < ε, we have that (b, v) ∈ Bd((c, w), ε) which
completes the proof.

2.3.3 Differentiation Operators
In the preliminaries we have introduced the Maclane’s Operator, which now we
call Differentiation Operators. If we remember, we considered the space of
entire functions H(C) and the operator D : H(C)→ H(C) defined by:

D(u) = u′.

As we have seen in the preliminaries this operator is hypercyclic. If we
consider the skew-product P (a, u) = (f(a), h(a)D(u)) a very weak condition is
require for having that it is topologically transitive:

Theorem 2.3.5. Let A be a compact metric space, let f : A→ A be a continu-
ous map, let µ be an ergodic probability measure on A for f giving non-zero mea-
sure to every non-empty open set and let h : A → C be a continuous function.
Let D be the differentiation operator defined on H(C). Suppose γ :=

∫
A

log |h|dµ

is finite. Then the skew-product P (a, u) = (f(a), h(a)T (u)) is topologically tran-
sitive.
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Proof. Like in the other cases we want to prove that, given an arbitrary R > 0
and an arbitrary a, u, δ ∈ A×H(C)× (0,+∞), E(a, u, δ) is dense in A×H(C),
where

E(a, u, δ) = {(b, v) ∈ A×H(C) : ∃n ≥ 0 , d(a, fn(b)) < δ and

‖hn(b)Tn(v)− u‖C(D(0,R)) < δ}.

So, we take an arbitrary (c, w) ∈ A×H(C) and an arbitrary ε, ρ > 0. We want
to find (b, v) ∈ Bd((c, w), ε)∩E(a, u, δ). As in the precedent theorem, and using
the reasoning followed in 2.2.2 we obtain, by the Birkhoff’s Ergodic Theorem,
that we can find b ∈ A1 and a sequence (nk)k tending to infinity such that
d(b, c) < ε, d(a, fnk(b)) < δ and |hnk(b)| ≥ enk(γ−ε′), where ε′ can be chosen to
be smaller than γ because it comes from the limit of the Birkhoff’s Theorem.

Now, we take a polynomial P and construct the sequence vk = P+(hnk)−1Ink(u),

where I is the integration operator (defined by the expression Iφ(z) =
z∫
0

φ(w)dw).

Besides, (vk)k converges to P as k goes to infinity because lim
k
vk = lim

k
(P +

(hnk)−1Ink(u)) = P+lim
k
(hnk)−1Ink(u) = P+0 = P because |(hnk)−1|‖Ink(u)‖ ≤

e−nk(γ−η/2)
C
nk
K,φ

nk!
, where CK,φ is a constant that only depends on the compact

K and φ. So we can conclude that |(hnk)−1|‖Ink(u)‖ converges to zero and vk
converges to P .

To conclude the proof we just have to point out that taking v = vk for some
k large enough we will have that ‖v−w‖C(D(0,R)) < ε by Mergelyan’s Theorem.
In addition, since d(b, c) < ε we have found (b, v) ∈ Bd((c, w), ε). We also obtain
that ‖hnk(b)Dnk(v)− u‖ < δ because for nk greater than the degree of P ,

‖hnk(b)Dnk(vk)− u‖ = ‖hnk(b)Dnk(P + (hnk)−1Ink(u))− u‖ =
= ‖hnk(b)Dnk(P ) + hnk(b)(hnk)−1Dnk(Ink(u))− u‖
= ‖Dnk(Ink(u))− u‖ < δ

which, together with the inequality obtained before (d(a, fnk(b)) < δ) show that
(b, v) ∈ E(a, u, δ)
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