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Abstract

Future chip multiprocessors (CMPs) will include tens and hundreds of cores organized in

a tile-based design pattern. A built-in on-chip network (NoC) will be devoted to inter-tile

communication. In these systems, a shared memory programming model is appealing

since it simplifies programming efforts. However, a coherence protocol is needed to keep

consistency in the data stored in the different levels of the cache hierarchy. Usually

an invalidation-based protocol is used, where cached copies are invalidated before a

processor writes on a memory block.

In this work we propose a NoC re-organization in which a small and fast control net-

work is dedicated only to messages related to the invalidation process. By doing this,

application traffic is alleviated and traffic overhead is significantly reduced. We explore

different coherency protocols to cope with an efficient mapping of network control mes-

saging, thus optimizing the use of the control network. We address two design points

in coherence protocols. The first one with a full map directory, where a precise list of

the sharers of a block is recorded in the directory, and the second one without directory,

where no list of sharers is maintained by the protocol, as it happens in Hammer protocol.

Experimental evaluation shows significant gains in performance when using the addi-

tional control network. With a low area overhead (less than 2.5%), the control network

reduces NoC traffic and miss latency, thus reducing execution time up to 16%. Simula-

tion results show a reduction of network traffic up to 80% and a reduction of store and

load miss latency up to 70% and 40% respectively.
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Chapter 1

Introduction

Chip multiprocessor (CMP) systems with up to ten cores are common nowadays, and

the trend indicates that the number of cores will increase up to hundreds. In a tile-

based CMP design, each tile includes a core with its cache hierarchy and a switch

connected to the switches located at neighboring tiles, typically forming a 2D mesh on-

chip network (NoC) [1]. Two different programming models can be used, depending on

how cores communicate to each other. If a message passing model is used, the cores

communicate by exchanging messages explicitly generated by the application, while

with a shared memory model cores communicate through shared variables. The shared

memory programming model is easier for programmers as communication is implicit

when accessing variables. However, it requires the use of a cache coherence protocol to

keep data consistency among all levels of caches and main memory, thus keeping track

of which copy of data is valid. The traffic generated in the NoC comes mostly from the

coherence protocol.

Invalidation-based cache coherence protocols keep consistency by invalidating all the

shared copies of a block before a write operation is performed. This way, all the cores

always read the value produced by the last write operation. The performance penalty of

invalidation-based protocols relies in the high write miss latency, induced mostly by the

indirection performed in the coherence protocol. In case of a write miss, a core has to

send a write request to the L2 cache, which will send an invalidation message to each L1

holding a copy of the block. The requestor cannot write until it receives the requested

data block and all the acknowledgements to the invalidation operation. Since inv/ack

1



Chapter 1. Introduction 2

messages are sent through the on-chip network, they have an impact both on the write

miss latency and on the network traffic.

The L2 cache stores the information about the sharers of a block in a data structure,

the directory, which is distributed between the L2 cache banks: each bank have a side

structure including the directory information for the subset of addresses mapped on that

bank. This information includes the state of the block and a bit vector pointing to the

L1 caches which have a copy of the block, also called sharing code [2]. If the number

of bits in this vector is equal to the number of cores, the directory can indicate exactly

which cores have a copy of the block in their L1 cache. This is known as a full map

directory. However, this organization adds an area and energy overhead that does not

scale, since its requirements increase linearly with the number of cores [3]. To reduce the

overhead introduced by the directory, the sharing code can be compressed: in this case

more than one core is mapped to the same bit of the vector. This organization reduces

the size of the directory but increases network traffic: invalidations will be sent both

to the actual sharers and to nodes which are not sharers but are mapped to the same

bits of the sharers. The more the sharing code is reduced, the more directory overhead

is saved and traffic increased. On the other hand, at the extreme design point, we can

eliminate completely the bit vector. In that case we have a Dir0B protocol, where there

is no information about which cache has a copy of a particular memory block. Thus,

a broadcast invalidation operation to all the nodes must be triggered to invalidate the

sharers before a write operation on a shared block. The Hammer protocol employed in

systems built using AMD Opteron processors [4, 5] is the most representative example of

the latter1. We will consider the two extreme design points mentioned above, referring

to them as directory-based protocol if the directory has an exact representation of the

sharers (full-map directory) and as broadcast-based protocol if the directory has no

sharing code.

In our research, we focus on the co-design of the NoC and the coherence protocol,

with the goal of optimization and thus obtaining better performance and less power

consumption. In this work, we focus, as a first step, on a dedicated control network that

collects part of the control messages involved in a coherence operation. In particular, ack

messages are handled through the control network, thus reducing network traffic and

1We use the terms “broadcast-based directory protocol” and “Hammer protocol” interchangeably
along this work.
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lowering the latency of the invalidation process. The directory-based protocol is also

adapted to get the maximum profit from the control network. The target is to reduce

the miss latency of the overall system.

The control network is tightly coupled with the NoC in the sense that a multicast

operation within the NoC configures the control network. The control network, then,

is used to speedup ack messages sent from multiple end nodes to a single end node.

This control network is totally decoupled from the normal flow control and switching

mechanisms typically found in NoCs. In contrast, the control network does not forward

any message as in its simpler implementation it only consists of a single control wire

for each possible destination. In this work we propose two different implementations of

the control network, one being fully asynchronous (but wire demanding) and one being

synchronous with the NoC (and requiring less wiring resources). In addition we apply

the control network to both the full map directory protocol and the Dir0B protocol.

Results demonstrate a speedup factor in performance of up to 8% with a reduction in

NoC traffic of up to 80%.

The rest of this work is organized as follows. In Chapter 2 the basic invalidation-based

and broadcast-based protocols are described. In Chapter 3 we detail the control network

that handles part of the invalidation messaging and we adapt the coherence protocols to

the control network. Then, in Chapter 4 we evaluate the impact of the control network

on the performance of the coherence protocols. Finally, Chapter 5 describes the related

work, and in Chapter 6 we draw the conclusions.





Chapter 2

Basic Coherence Protocols

In this section we shortly describe the basic directory-based and broadcast-based proto-

cols. We assume as the base system a 16-tile CMP system organized in a 4 × 4 layout,

each tile including a switch, a core, its private L1 cache and a shared L2 cache bank. All

the cores share the distributed L2 cache, and each L2 bank acts as home for a subset

of the shared memory address space, meaning that all the requests for blocks of that

subset are sent to that bank. Figure 2.1 shows the organization of the CMP system we

consider in this work.

Figure 2.1: Base 4 × 4 tiled CMP system

Whenever a processor issues a read or a write operation, the private L1 cache is accessed.

In case of a miss, a request is sent to the L2 bank which is the home of the requested

block, which also stores the directory information for that block.

5



Chapter 2. Basic Coherence Protocols 6

2.1 Directory-based Protocol

The full map directory-based protocol uses a sharing code with a number of bits equal

to the number of cores of the system, thus giving an exact information about which

cores have a copy of the block in their private L1 caches. Figures 2.2 and 2.3 show the

four basic cases of block requests.

Figure 2.2: Requests for a private block (Directory protocol)

Figure 2.3: Requests for a shared block (Directory protocol)

Figure 2.2.a shows how a read miss is resolved if the requested block is private (only

one processor has a copy of the block with permission to read and write). The involved

L1 nodes are identified by the tile number (L1-0 is the L1 at tile 0) and the L2 bank

is the home of the requested memory block. Figure 2.2.a also shows the state of each

L1 entry (assuming a MOESI protocol). The requestor (L1-0) sends a GETS message

to the home L2, which forwards the request to the L1 which owns the block (L1-1) and

adds the requestor to the sharer list. The owner (L1-1) sends then a copy of the block

back to the requestor (L1-0). The L1-0 entry is set to S (sharer) state and L1-1 entry

is set to O (owner) state. In case of a write miss (Figure 2.2.b) to a private block, the

requestor (L1-0) sends a GETX message to L2, which forwards the request to the owner

(L1-1), which in turn invalidates its copy and sends the block back to the requestor.
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Then, L1-1 entry state is set to M (modified) and L1-0 entry state is set to I (invalid).

The L2 changes the Owner pointer of the directory entry from L1-1 to L1-0.

Figure 2.3.c shows how a read miss is resolved if the requested block is shared by a

set of processors (each sharer has a copy of the block in its private L1 with read only

permission). The request is forwarded to the L2, which adds the requestor to the sharers

list and sends him a copy of the block. The entry in L1-0 is set to S (shared). In case

of a write miss, Figure 2.3.d, the directory sends the data to the requestor and issues

invalidation messages to the sharers. The sharers, upon the reception of the invalidation

message, send an acknowledgement (ack) message to the requestor, which blocks its

write operation until all acks and the data block have been received. The message sent

by the L2 bank specifies the number of acks the requestor has to wait for. At the end,

the L1-0 entry is set to M (modified) while the sharers set their entry to I (invalid).

Since the full-map directory indicates exactly which cores share or own a block, the

minimum amount of traffic required by the coherence protocol is injected in the network.

The size of each directory entry however grows linearly with the number of nodes, which

makes this solution not suitable for large systems: a CMP with 256 nodes, for instance,

requires a 32-byte directory entry. If we assume 64-byte cache lines, the directory would

increase the overall L2 cache size by 50%.

2.2 Broadcast-based Protocol

The broadcast-based protocol does not use the sharing code, so the directory area over-

head is completely removed but each time an L2 cache bank has to forward a request

or send invalidations to the sharers, it issues a broadcast message which is received by

all cores. Each core in turn must answer to the broadcast message, with the copy of

the block if it is going to send a copy of the requested block to the requestor or with an

ack if it has received the message and performed the operations stated by the coherence

protocol but will not send a copy of the block to the requestor.

So the broadcast-based protocol behaves as the directory-based protocol in case of read

request for a shared block (case c in Figure 2.3) while in all other cases a message is

broadcasted to all cores and the requestor receives a response message from all other
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Figure 2.4: Write request for a shared block (Hammer protocol)

cores. The requestor is allowed to read or write the block once it receives the data and

all the ACKs.

The case of a write request for a shared block in a 4-core system is shown in Figure

2.4. The data block is provided by the L2 cache and the request is broadcasted to all

the L1 caches of the system. All nodes reply to the broadcast by sending an ACK and

invalidating the local copy, if any. L1-0 can write once it receives the data and all the

ACKs.

Figure 2.5: Read request for a private block (Hammer protocol)

Figure 2.5 shows the case of the read request for a private block. This time the L2 cache

just forwards the request to all the L1s without sending the data to the requestor. When

Figure 2.6: Write request for a private block (Hammer)
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the Owner receives the broadcast request, it sends the block to the requestor1. All other

nodes just send an ack to the requestor. A similar behavior is shown in Figure 2.6 for a

write request on a private block.

2.3 Multiple Requests

The L2 home bank acts as synchronization point when multiple requests for the same

block are issued at the same time by different tiles: the cores access the requested block

following the order in which the requests are received at the home bank. Additional

states and control messages must be added to the basic protocol to correctly address

all the possible race conditions caused by the reception of a request while the requested

block is in a transient state. Expecially the transition of a block from a shared to a

private state and vice versa must be handled carefully.

With these two coherence protocols in mind, the directory-based and the broadcast-

based, in the next chapter we describe the NoC support for gathering messages. Notice

that we will provide two different but similar solutions, one for each protocol.

1Additional traffic between the Owner and the L2 to manage the block state change from private to
shared is not shown for simplicity reasons.





Chapter 3

Set-Aside Gather Network

3.1 Overview

To speedup the reception of ack messages we propose a configurable control network with

dedicated logic at every router. In particular, we define a so-called Set-Aside Gather

Network (SAGN) from every core to every core. Thus, in a 16-tile system with a core

in each tile we define 16 SAGNs, each with 15 sources reaching a different and single

destination. Each SAGN consists of a tiny one-bit network spread throughout the NoC

with one AND logic gate on every switch.

Figure 3.1: Set-Aside Gather Network (tile 0)

Figure 3.1 shows a schematic view of the switch logic with the support for one SAGN

network. In particular, SAGN for TILE 0 is shown. The network follows the Y-X

routing algorithm, which follows the X-Y routing assumed for data messages through

11
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the regular NoC but in opposite direction. In each switch the AND gate combines the

different input signals from neighboring switches and from the local L1 cache.

Figure 3.2: Logic at the inputs of the AND gate

Figure 3.2 shows the logic at the inputs of the AND gate. The input signals are con-

figured by a Cx bit (x is the input port the signal is coming from), one per each input

signal, which enables/disables that input signal. If the input signal is disabled (the asso-

ciated configuration bit is set to zero), the logic sets the input to the AND gate to one.

On the contrary, if the input signal is enabled, the input to the AND gate is the input

signal. Notice that these bits are used to build a control tree network ready to allow all

the sharers of a block to acknowledge the requestor. Notice also that these configuration

bits are not needed for a Dir0B coherence protocol since a broadcast action reaches all

the nodes, thus the AND tree does not need to be configured every time. All the nodes

participate in the ACK stage with the requestor. With the directory-based protocol,

however, the configuration bits enable only the inputs of the nodes which will actually

receive the invalidation message and have to send an ack. In both cases, the SAGN is

not flow controlled and does not implement any switching mechanism. Indeed, is a pure

combinational block with no input clocks. Later we propose a synchronous version.

An extra logic is necessary to reset the input signals each time a new invalidation message

is multicasted (in case of directory-based protocol) or broadcasted (in case of hammer

protocol). For the directory-based protocol, the multiplexer allows up to three entries,

”0”, ”1”, and the input signal. When the multicast message arrives to the switch, if the

input port belongs to the AND tree, then the multiplexer is configured to the ”0” signal,

to prevent a too-early notification due to acknowledgements for previous requests. As

the multicast message travels down to the next switch, and configures the AND gate

at that switch, the input signal will be set to zero and will reach the current switch.

In that case, the logic detects the transition of the input signal (through the flip-flop)
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and restores the multiplexer entry to the input signal, thus preventing the output of the

AND gate being set to one too early. Notice that if a multicast message arrives and

an input port is not part of the AND tree, then the multiplexer entry is set to the ”1”

signal. For the broadcast solution, the ”1” input to the multiplexer is not required as

all possible inputs always belong to the AND tree.

Multicast invalidation messages are used to properly set the configuration bits for the

directory-based protocol: when inv messages are sent through the NoC, every switch

configures the SAGN network for the corresponding sender. If a multicast inv message

is forwarded through several output ports, the corresponding SAGN configuration bits

(Cx) for the input signal of the output ports are set. Thus, in a tree branch of the

multicast operation of the inv message, several input signals will be enabled.

The SAGN is a fast built-in network that enables a fast notification to the sender (TILE

0 in the figure) due to its simplicity. Indeed, when an inv message is received at a node,

it simply needs to trigger the signal for the SAGN of the sender. Once all the sharer

nodes receive the multicast message and trigger the SAGN signal, the sender will be

notified through the SAGN within the delay of the AND tree network.

3.2 Detailed Description of a Logic Block

The SAGN logic at each switch is connected to its neighbors’ control logic blocks with

dedicated wires. Figure 3.3 shows the gather network logic at switch 5. Notice that

each subnetwork is made of a single wire, coming from different input ports. The task

of the logic block is simply to AND the corresponding input signals and to distribute

the results through the proper output port, depending on the location of the switch in

the mesh topology and the selected layout.

The logic receives as input 15 control signals from the local core, each of which is

addressed to a different destination node. XL indicates a control signal coming from the

local port and addressed to destination X. Thus, we have from 0L up to 15L signals

(excluding the one with the ID of the local core). In addition, we have up to 20 control

signals coming from either north (N) or south (S) input ports and up to 5 control signals

from either east (E) or west (W ) input ports. Switches at the boundaries of the mesh

have a lower number of input control signals. These signals are then grouped depending
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Figure 3.3: SAGN block at switch 5

on the destination tile and assigned to the corresponding inputs of the AND gate array.

Notice that most input signals will not be required, thus simplifying the array. The

outputs of the AND gates are then distributed over the output ports, depending on the

location of the switch and the layout. Notice that 16 output control signals are generated,

one per destination in the system, 15 of which are sent to neighboring switches and one

to the local node.

The required logic at each switch is small, consisting of 16 AND gates, a set of multiplex-

ers, configuration bits and associated logic. The signal distribution blocks are simply

a rearrangement of the input and output control signals to the appropriate inputs and

outputs of the AND gates.

3.3 Control Signals Distribution

One important aspect of the control network is the floorplan of the wires over the NoC

area. Figure 3.4 shows the number of wires of the SAGN control signals between the

switches. Each switch handles both input and output control signals through all its

ports. For a N ×N mesh NoC, the number of outgoing control signals through all the

output ports of a switch is N2 − 1, in our case 15. Each control signal is a different

one-bit subnetwork addressed to a different destination (N2 − 1 destinations). Notice

that some output ports handle more control signals than others. This is due to the

mapping we have performed for the control signals, following the Y-X layout.
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Figure 3.4: Control signals distribution for the gather network. YX layout

Alternatively, we can design a different mapping strategy, where XY is used instead. In

this case we have a mirror effect on the distribution of wires between horizontal ports

and vertical ports. To better balance the wires, we can use a mixed approach where wires

for half the nodes are mapped YX and wires for the other half of nodes are mapped XY.

The latency through the SAGN does not change as the path follows the same manhattan

distance. Figure 3.5 shows the case where nodes with the underlined ID number follow

the YX mapping and the rest follow XY mapping. In this case we achieve a perfect

distribution of wires, where each bidirectional port handles 10 wires for a 4 × 4 mesh

network. Notice that this mapping cannot be used with directory-based protocol, since

the SAGN must always follow the X-Y routing followed by broadcast messages (but in

opposite direction) for a proper configuration of the (Cx) bits. However, it can be used

for the broadcast-based protocol.

As the system size increases, the number of wires increases, but not the logic complexity

at switches. In practice, for a N×N network, this mapping strategy requires (N2+N)/2

wires per direction and dimension. For a 8 × 8 system, the number of wires per port is

36, well below typical CMP port widths of 256 bits. For a 16 × 16 system, the number

increases up to 136 wires.
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Figure 3.5: Control wire distribution for mixed XY/YX mapping. Gather networks
for odd destinations follow XX routing and gather networks for even destinations follow

XX routing.

3.4 Sequential Implementation of the SAGN

The previous design provides a combinational logic, which is simple and fast. However,

the number of wires dedicated to the SAGN increases with the number of cores, poten-

tially leading to an unacceptable number of wires between switches. Also, the design

can handle only one request per core; to handle multiple requests at the same time it

would be necessary to have more than one dedicated network per core, thus increasing

the number of wires.

Figure 3.6: Sequential SAGN block at switches for a 4 × 4 mesh NoC
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The implementation we describe in this subsection reduces the number of wires to a

logarithmic scale and allows to handle multiple requests to the same tile at the cost of

increased latency: while the combinational SAGN is not bound to the clock frequency

of the switches, this implementation uses sequential logic and has a latency of 1 cycle

per hop (we will discuss latency issues in detail in Chapter 6). As will be shown in the

evaluation section, this is not an issue, since the increased latency of the SAGN will not

affect the performance. On the other hand, the number of wires between switches will

be drastically reduced, providing a scalable solution for large systems (beyond 64 tiles).

Figure 3.6 shows the sequential implementation of the SAGN at each switch. Each port

has its own SAGN decoder and encoder, through which it can receive and send the IDs of

the nodes to which the ack is sent. This reduces the number of wires, since each port will

only have, in the system we considered, 4 input wires and 4 output wires (a reduction

from (N2 +N)/2 to log2(N ×N)). The received IDs are decoded and saved in the input

registers. When all expected acks are received for a node, the node ID is encoded and

transmitted through the proper port. Notice that the AND logic block at each switch

is the same for both implementations. The number of wires in each connection shown

in Figure 3.6 refers to a 4 × 4 system with a mixed XY-YX control signal distribution.

The number of wires connecting the AND logic block with the input and the output

blocks varies from 0 (in case the tile does not have any connection through that specific

direction) to 6 depending on the tile position in the 2D mesh.

To allow multiple requests, a request ID can be transmitted together with the core ID:

this way with log2(N × N)+R bits per port per direction it is possible to handle 2R

requests per core in an N × N system. This means, for instance, that a sequential

SAGN can handle 4 requests per core in a 16 × 16 system using 6 bits per port per

direction, which adds a low overhead to the typical NoC ports of 128 or 256 bits.

The input register has a bit for every possible input control signal for every SAGN. This

means, theoretically needing a register with 5N bits, five input ports and N SAGNs.

However, this is not the case for the XY-YX mapping.

Once all the input signals for a SAGN are received (their corresponding bits at the input

registers are set), the AND gate output signal is set and forwarded to the corresponding

output port. There, an arbiter selects one output signal (notice at the same cycle two

AND gates can be activated for two different SAGNs outputs through the same output
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port). The selected output signal (belonging to a SAGN) is coded and stored in the

output register (behaving as a latch). Notice that once the output signal is forwarded to

the next switch, the reset logic sets to zero all the bits in the input registers belonging

to that SAGN.

3.5 Modified Protocols

The directory-based protocol described in Chapter 3 must be modified to work properly

with the SAGN. From the SAGN description, it can be noted that a tree structure must

be configured between the node that triggers inv messages and the nodes that receive the

inv message. Once the tree is configured, the SAGN collects all the ack messages in a fast

manner. To take benefit of the control network we implement a switch with multicast

support. The node triggering inv messages will send a single multicast message to all the

sharers, following the XY routing. The message is used at every router to configure the

control network bits. Notice from Figure 2.3.d the sender of inv messages differs from

the receiver of ack messages in an invalidation operation. This prevents configuring the

SAGN network in a proper way when the directory-based protocol is used. We need to

adapt the coherence protocol in a manner that the sender of inv messages also receives

all the ack messages. Thus, both stages will follow the same paths through the network

(but in opposite direction1).

Figure 3.7: First alternative: the L2 invalidates the sharers

We propose two alternative designs of the basic directory-based protocol described in

Chapter 2. In the first modified protocol, shown in Figure 3.7, the home L2 node sends

a multicast invalidation message to all the sharers, which send the ack back to the L2

1YX mapping is needed for this case.
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Figure 3.8: Second alternative: the L1 invalidates the sharers

node through the SAGN network. Once the home receives all the acks (the SAGN out-

put is set), it sends an ack message to the requestor. In the second modified protocol,

shown in Figure 3.8, the home L2 does not invalidate the sharers. In contrast, it piggy-

backs the sharers list to the data message sent to the requestor. The requestor, then,

handles the invalidations by sending a multicast inv message. The sharers just notify

the requestor through the SAGN network. Once all ACKs are received, the requestor

unblocks and can issue a new request. In both cases, invalidating memory copies will

take four steps, one more than the basic protocol. However, due to the fast reception

of acknowledgements, both alternative protocols will achieve better performance than

the basic protocol. Notice that the serialization effect of ack messages at destination

is removed when using the control network. For the Dir0B protocol, these changes are

not needed. Indeed, when the L2 home node sends a broadcast request, it includes in

the packet the ID of the node that has to be acknowledged. Thus, the nodes select the

proper SAGN wire.





Chapter 4

Evaluation

In this chapter we provide evaluation results of the gather network. First we provide

results for the implementation of the network. Then, we focus on cycle-accurate perfor-

mance estimations using synthetic memory access traces and real applications.

4.1 Implementation Analysis

In this section we provide an analysis of the overhead of the control network. We have

designed a basic 4-stage pipelined 5-port switch with buffers at the input side and with

wormhole switching. The output of the switch is registered. Each input port has one 4-

flit-wide buffer. Later, we will use virtual channels to obtain performance numbers with

applications. Virtual channels are used to separate different traffic classes (a message will

be routed always through the same VC), thus avoiding the protocol deadlock problem

induced by coherence protocols. Link width and flit size are set to 8 bytes. Stop&Go

flow control protocol and XY routing have been implemented. A round-robin arbiter

according to [6] is used.

The switch has been implemented using the 45nm technology open source Nangate [7] li-

brary with Synopsys DC. Cadence Encounter has been used to perform the Place&Route.

Table 4.1 summarizes the delay and area for each of the modules of the switch1.

1Area numbers in the table are for a single instance of each module, thus some of them are replicated
in the complete switch.

21
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Notice that these values do not take into account the link delay neither the control logic

needed to implement the communication between switches. Table 4.2 shows the whole

network critical path considering the switch delay plus the link delay.

module area (mm2) critical path (ns)

Input port 3.08 × 10−3 0.58

Routing 8.91 × 10−5 0.30

Arbiter 1.09 × 10−3 0.74

Crossbar 4.47 × 10−3 0.43

Table 4.1: Area and delay for the switch modules

4.1.1 Combinational SAGN

An extra module with the combinational SAGN circuit has been added to the switch we

just described. The configuration bits are computed in the routing module. By using

the switch, a 4× 4 and 8× 8 2D mesh networks have been implemented. Two scenarios

are analyzed, a conventional 2D mesh without the control network, and the 2D mesh

with the control network.

Table 4.2 shows the critical path (end to end delay) of the control network analyzed

independently of the rest of the network. To compute the combinational SAGN critical

path, each block must be properly placed next to the switch it is connected to. Then,

on the implementation process some constraints must be forced to the placement&route

tools. First, the highest metallization layers must be used. By doing this, lower metal-

lization layers get free, and hence, other logic as SRAMs could be placed under SAGN

wires. Repeaters are inserted by the own tool in order to fulfil delay constraints imposed

by the designer. The critical path of the control network is fixed by the SAGN logic that

connects the two most physically separate nodes in a chip. Notice also that the latency

of the control network depends on the mesh radix. The table also shows the delay of a

single switch. Two link lengths are analyzed: 1.2 mm and 2.4 mm.

Critical path (ns) 4x4 Network 8x8 Network

link length (mm) 1.2 2.4 1.2 2.4

Control network 1.23 2.20 2.65 4.32

switch delay 1.35 1.75 1.35 1.75

Table 4.2: Control network critical path

For a 4 × 4 network with a link length of 1.2 mm, the control network critical path

is smaller than the delay of a single switch, and hence, the control network is able to
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work at the same operating frequency than the switch (in a switch cycle the control

network is able to notify all the nodes about possible ack messages). In contrast, if the

link length is increased, the control network has a higher critical path. However, only

two cycles are needed for the control network. For the 8×8 network, it can be seen that

the control circuit does not scale as well as the point-to-point communication protocol

of the NoC. However, it can be noticed that the worst case is for a control network with

a delay of 4.32 ns (3 clock cycles when compared to the switch). The area of the switch

is 20.418×10−3 mm2, while the area of the control logic in each switch is 0.28 ×10−3

mm2, being a 1.3% overhead. Notice that when virtual channels will be added the area

overhead will be much lower.

4.1.2 Sequential SAGN

The sequential control logic described in Section 3.4 has also been implemented. This

implementation has a higher area overhead than the combinational implementation,

being basically the same circuit with decoders at the input ports and encoders at the

output ports. The encoders at each output port also include an arbiter in case more

than one ACK signal is generated at the AND logic block in the same cycle. Since the

control logic area varies depending on the tile position, we considered the worst case,

which in a 4 × 4 system with mixed XY/YX mapping is one of the switches located

in the central tiles. These switches indeed are connected with another switch in each

direction and are crossed by more signals than the switches located on the border. The

area of the control logic in these tiles is 0.472×10−3mm2, which is 2.3 % the area of the

switch. The critical path of the control logic in the worst case is 0.52 ns, which is lower

than the critical path of the slower module of the router, which is 0.74 ns for the arbiter,

as shown in Table 4.1. This means at each cycle the control logic can propagate up to

5 ACK signals (one per port). The control logic area is reduced to 0.153 × 10−3mm2

for the switches located at the corners of the 2D mesh, which are connected only in two

directions.
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4.2 Performance Evaluation

4.2.1 Combinational SAGN

We have implemented and evaluated four versions of the directory-based protocol using

the gNoCsim simulation platform. gNoCsim is composed by two main modules: the

memory module which simulates the memory hierarchy and the coherence protocol,

and the network module which performs a cycle-accurate simulation of the NoC. The

simulator is fed by a set of memory access traces, that can be generated by a functional

simulator connected to gNoCsim 2.

The first two versions of the protocol use the basic protocol described in Chapter 2,

but they differ at NoC level. The first version does not use the multicast support

(labelled as basic), while the second version (labelled as mc) uses the multicast support

when sending invalidation messages [8]. The third and fourth versions use the multicast

support to configure the SAGN network for the acknowledgements, and at protocol level

they behave as explained in Chapter 4: the first one invalidates memory copies from the

L2 node (labeled as mc+g L2) and the second one invalidates memory copies from the

L1 node (labeled as mc+g L1). We evaluated the last two versions considering a gather

network capable of delivering the signal in 1 and 2 cycles.

Each tile has two 64KB L1 banks (instruction and data) and a 512KB L2 bank. Tag

access latency is set to 1 and 2 cycles respectively for L1 and L2 cache, while cache

access latency is set to 2 and 4 cycles respectively for L1 and L2 cache.

Four sets of synthetic memory access traces have been generated and fed into the simu-

lator. Each set is made of 200,000 random accesses to 500 different addresses. The sets

differ in the percentage of read and write operations (from 60% read operations to 90%

read operations).

Figure 4.1.a shows the execution time for each set, normalized to the case of the basic

protocol. The multicast support alone (mc) slightly reduces the execution time as inv

messages are sent with a single message and less contention is incurred in the network.

2In this work we have provided full support to the gNoCsim simulator for coherence protocol support
and simple definition of the different protocol variants. This has been a large effort as the coherence
protocols typically exhibit many race conditions that need to be solved with further refinements of the
protocols.
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(a) Normalized execution time (cycles)

(c) Normalized store miss latency

(b) % invalidation messages

(d) Normalized load miss latency

Figure 4.1: Different performance numbers. % of invalidation messages, average store
and load miss latencies

With the alternative protocols and the control network, execution time is further reduced

up to 4%, depending on the set of traces.

Figure 4.1.b shows the percentage of inv messages sent for each set (a multicast message

sends multiple inv messages). As can be seen, the improvement in execution time is

tightly coupled with the percentage of invalidations. The more invalidation messages

are sent, the higher the benefits obtained by the control network. The percentage of

invalidations grows with the percentage of read operations in the traces, since each write

operation has to invalidate more sharers, so the performance improvement due to the

gather network becomes more evident with traces with a high percentage of reads.

Figure 4.1.c shows the average store miss latency normalized to the base case (basic

protocol). Again, the multicast support combined with the control network helps in

lowering the store miss latency up to 20%. In particular, when the L1 nodes send the

invalidation messages (mc+g L1), up to 15% reduction in write miss latency is achieved.

When the L2 nodes take care of invalidations (mc+g L2) an extra reduction is achieved

obtaining up to 20%.

Since the directory-based protocols only use the gather network to collect the acks in

store misses, its effect on the load miss latency is negligible. This effect can be seen

in Figure 4.1.d. When using the alternative protocols, the load miss latency is slightly
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reduced (2%) with respect to the basic protocol. It should be noted also that the latency

of the control network does not affect the results. Execution time, miss load latency,

and miss store latency, are practically the same when the control network has a delay

of one or two cycles.

Optimizing only one case out of the four exposed in Figures 2.2 and 2.3, the impact

of the SAGN in systems which support a directory-based protocol is quite application-

dependent: if the application generates a high percentage of write accesses on widely

shared variables, the SAGN will be effective. To simulate actual applications on our

system, we embedded gMemNoCsim in Graphite simulator [9] and launched various ap-

plications of the SPLASH-2 benchmark suite. Since all applications generated a very low

percentage of write accesses on shared variables (0.4% of total L2 accesses on average),

the effects of the SAGN were quite limited.

The SAGN is more effective if the system implements a broadcast-based protocol, which

generates a higher amount of acknowledgment messages. As explained in Section 2.2, a

broadcast message is issued in all cases except for the case of a read miss on a shared data,

and each node except for the owner of the block must send an acknowledgement to the

requestor, so ack messages are much more common in broadcast-based protocols than in

directory-based. Indeed, the results we obtained running the SPLASH-2 applications on

Graphite with the broadcast-based protocol show that the percentage of acks (indicated

as Coherence Res in Figure 4.2) over the total number of messages is 30% on average,

reaching 43% on Barnes, FFT and Water-nsquared.

Figure 4.2: Normalized injected messages (Hammer protocol)
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We evaluated the broadcast-based protocol with three different configurations: a basic

configuration with no broadcast support and no SAGN (labelled as Hammer), a config-

uration with NoC-level broadcast support (labelled as Hammer BC) and a configuration

with broadcast support and the SAGN (labelled as Hammer BC GN) and compared the

performance of these three configurations with the basic directory protocol.

Figure 4.3: Normalized execution time (cycles)

Figure 4.3 shows the normalized execution time of the SPLASH-2 applications with the

three configurations of Hammer protocol and the basic directory protocol. Without

further support at network level, Hammer performs worse than Directory due to the

amount of traffic generated at each L2 cache access and the serialization of acks at the

requestor node’s input ports. Adding broadcast support helps, but still the performance

of Directory is better than those of Hammer BC. The SAGN further reduces the execu-

tion time, reaching an average execution time for Hammer BC GN which is 8% lower

than Hammer and 3% lower than Directory.

Figure 4.4: Normalized number of injected messages (SAGN signals are not included)
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Network traffic is also drastically reduced. As shown in Figure 4.4, combining NoC

broadcast support and the SAGN the number of injected messages in Hammer is re-

duced up to 60% on average and 80% for some applications. This means that Hammer

BC GN reaches better performance than directory, clearing the area/traffic tradeoff:

typically, directory-based protocols have a high area overhead (due to the sharing code)

but generate low traffic, while broadcast-based protocols have a very low area overhead

and generate much more traffic. The SAGN allows Hammer BC GN to overcome the

performance of Directory with a lower chip area overhead an generating the same amount

of traffic.

Figure 4.5: Normalized store miss latency (Hammer)

Figure 4.6: Normalized load miss latency (Hammer)

The impact of the SAGN on store and load miss latency when using Hammer protocol

is higher than what we saw in Figures 4.1 b) and c) for Directory protocol. As shown in

Figure 4.5, the combined effect of broadcast support and SAGN reduces the store miss

latency of Hammer protocol by 40% on average (and up to more than 60% for some

applications). The impact on load miss latency is lower, although still noticeable: as

shown in Figure 4.6, the load miss latency is reduced by 20% on average, due to the

fact that some read requests are managed by the L2 cache without broadcasting any

message to L1 caches, as explained in Chapter 2.
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Figure 4.7: Normalized execution time with different SAGN delays

Figure 4.7 shows the impact of the SAGN delay on the system performance. We ran

the SPLASH-2 applications on a system with Hammer BC GN and SAGNs with a delay

ranging from 2 to 128 cycles. As shown, the performance is not significantly affected

with delays up to 64 cycles: the average execution time increases by 1% on average.

So far we considered a SAGN with a delay of 2 cycles; as exposed in Chapter 3, this delay

can be achieved with a combinational implementation, while the latency of a sequential

SAGN would be higher (1 cycle per hop). As shown in Figure 4.7, this latency increment

would not affect the performance, thus allowing to use a sequential SAGN. In Subsection

4.2.2 we provide a more detailed evaluation of ACK latencies when a sequential SAGN

is used.

Figure 4.8: Normalized execution time compared to a NoC with an high priority VC
for the ACKs

We conclude the evaluation of combinational SAGN comparing the performance of the

SAGN with those of a system where a dedicated high-priority VC is used to transmit

the ACKs. Figure 4.8 shows the normalized execution time when the SAGN and the
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dedicated VC are used; SAGN has better performance than VC since it completely

relieves the NoC from the large amount of traffic due to the ACKs. Notice that the VC

configuration needs more switch resources contrary to the gather network solution as

implementing buffering for the extra VC is costlier than implementing the logic gates of

the gather network.

4.2.2 Sequential SAGN

In the previous section we assumed a combinational SAGN. Let’s now compare its per-

formance to that of a sequential implementation. As explained in Subsection 3.4, in the

sequential implementation the ACKs are transmitted through the SAGN hop by hop

and cycle by cycle, and the wiring is no more dedicated (in the combinational imple-

mentation each wire is dedicated to a subnetwork) so there could be contention if two

different ACKs must be transmitted through the same output port of an SAGN module

at the same cycle.

Figure 4.9: Normalized execution time with the two implementations of the SAGN

Figure 4.9 shows how the execution time is affected when the sequential SAGN is used.

The increased latency in delivering the ACKs has a very low impact on overall per-

formance: the execution time increases by a 0,15% on average and 0,5% in the worst

case (Barnes an Water-nsq). For some applications no performance degradation can be

noticed.

The increased execution time is due to conflicts in the SAGN modules and to the in-

creased latency of ACKs. Figure 4.10 shows how many conflicts occur at the output

ports of all SAGN modules for each ACK received at the destination node. The per-

centage of conflicts is quite low: on average, 25 conflicts occur during the transmission
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Figure 4.10: Number of conflicts per gather message received at destination node

(a) (b)

(c)

Figure 4.11: Average SAGN latency (sequential implementation)

of 1,000 ACKs. Notice that we are considering the mixed XY-YX mapping of Figure

3.5 to achieve a balanced distribution of ID transmissions through the different output

ports of each SAGN module.

Figure 4.11 shows the average latency of ACKs with the sequential SAGN, measured

in three different ways: Figure 4.11 (a) shows the elapsed time between the triggering

of the first ACK and the reception of all the ACKs; Figure 4.11 (b) shows the elapsed

time between the triggering of the last ACK and the reception of all the ACKs, and

Figure 4.11 (c) shows the elapsed time between the triggering of the ACK by the node

located farther from the requestor and the reception of all the ACKs. Notice that the
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last node to trigger the ACK is not always the one that is located more distant to the

requestor. The latter case therefore is the fittest to be compared to the combinational

SAGN latencies shown in Subsection 4.1, since it represents the latency of the sequential

SAGN in transmitting the ACK when the last signal is triggered. On average, the SAGN

latency is thus increased to 3.2 clock cycles when the sequential implementation is used

in a 4 × 4 cycles.

The moderate latency increment, which is well below the 128 cycles slack shown in

Figure 4.7, and the low number of conflicts at each SAGN module lead to a negligible

performance degration when using the sequential SAGN instead of the combinational

one.
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Related Work

In an isolated design environment, where the NoC and the coherence protocol are de-

signed separately, many optimization opportunities are lost. Cache coherence protocols

have traditionally maintained a firm abstraction of the interconnection network fabric

as a communication medium, thus disregarding the opportunities of optimizing the NoC

at design time to efficiently deal with the coherence operations. More recently, however,

some proposals exploring on-chip network optimizations for cache coherence protocols

have appeared.

Cheng et al. [10] leveraged the heterogeneous interconnects available in the upper metal

layers of a chip multiprocessor, mapping different coherence protocol messages onto

wires of different widths and thicknesses, trading off their latency-bandwidth require-

ments. They achieved a good speedup with the two-level tree interconnect assumed in

the paper but a moderate performance improvement with a 2D torus topology. Subse-

quently, Flores et al. [11] propose to combine a protocol-level technique (called Reply

Partitioning) with the use of a simpler heterogeneous interconnect. Their work however

is focused on directory-based protocols and their proposal has not been evaluated with

the higher traffic generated by a broadcast-based protocol. Eisley et al. [12] propose

in-network cache coherence, an implementation of the cache coherence protocol within

the network based on embedding directories in each switch node that manage and steer

requests towards nearby data copies. This approach enables in-transit optimization of

memory access delay and shows better scalability than full-map directories stored in the

33
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last-level caches; still, this proposal is based on directories, which limit the actual scal-

ability of the system. In [13], it is presented a priority-based NoC, which differentiates

between short control signals and long data messages to achieve a significant reduction

in cache access delay. Additionally, the authors propose to use more efficient multicast

and broadcast schemes instead of multiple unicast messages in order to implement the

invalidation procedure and provide support for synchronization and mutual exclusion.

The paper however does not address the problem of gathering multiple acknowledge-

ments with the same destination node. Walter et al. [14] explore the benefits of adding

a low-latency, customized shared bus as an integral part of the NoC architecture. The

bus is used for some transactions such as broadcast of queries, fast delivery of control

signals, and quick exchange of small data items. More recently, Vantrease et al. [15]

advocate nanophotonic support for building high-performance simple atomic cache co-

herence protocols.

All previous proposals assumed a directory-based coherence protocol, which imposes

a boundary to the scalability of the system due to the area overhead of the direc-

tory. On the other hand, broadcast-based cache coherence protocols can completely

remove the important overhead that the directory structure would entail in a many-core

CMP system. The AMD’s Coherent HyperTransport (TH) [4] implements the Ham-

mer broadcast-based protocol enabling the construction of small-scale multiprocessors.

Subsequently, the HyperTransport Assist [16] developed by AMD for the 12-core AMD

Opteron processor-based system code-named Magny Cours, added a directory cache to

reduce the frequency of broadcasts, and therefore, to enable larger core counts. Also,

the Intel’s QuickPaht Interconnect (QPI) implements two different protocol modes [17].

In one of them (source snoop protocol mode) coherence transactions are broadcasted

and every core must respond to the home with a snoop response that indicates the state

of the block at that core. This mode allows for lower-latency coherence transactions at

the expense of not scaling well. JETTY [18] and Blue Gene/P [19] are two proposals

to filter the broadcast requests that would miss at destination nodes in order to reduce

energy consumption due to cache look-ups. Filtering has also been proposed at source

nodes [20], [21] to save energy and bandwidth. Agarwal et al. proposed to move the

filters into the interconnect [22].

None of the filtering proposals however considered the possibility of a NoC support to
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gather the acknowledgements. Proposals for efficient multicast support in on-chip net-

works have also appeared [23]. Additionally, it has been evaluated the case of using this

kind of support in combination with a cache coherence protocol implementing imprecise

directories (the Hammer protocol could be seen as using an inexact directory), demon-

strating that multicast support is not enough to completely remove the performance

degradation that the inexact sharing codes introduce [24].

Recently Krishna et al. [25] proposed a fabric that performs efficient forking and aggre-

gation of messages. In their proposal ACKs are still transmitted as messages through

the NoC and the switches are in charge to aggregate the ACKs ith the same destination

node, which requires more complexity at the switches compared to the SAGN.
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Conclusions

In this work we presented a dedicated control network that allows fast recollecting of the

acknowledgements to a multicast message sent on a CMP’s on-chip network. We used

this network to optimize the invalidation process of a MOESI invalidation-based cache

coherency protocol. Two variations of the basic protocol have been evaluated, which

differ on the source node of the invalidation messages: the home L2 cache or the L1 cache

that issued the write request. We implemented the control network, which result to have

a low area overhead and to need 2 clock cycles for a 4×4 network. Then, we implemented

and simulated the coherency protocols. Simulation results show that by using the gather

network the average store miss latency is reduced up to 20%, thus reducing the overall

execution time. In addition, we have proposed a sequential implementation of the logic

to reduce wire requirements. The solutions have been adapted to a Hammer protocol

where broadcast operations are needed. Results demonstrate performance benefits of

8% in execution time with a reduction of network traffic up to 80%.

6.1 Current and Future Work

Current efforts aim to use the gather network to speedup the search phase of the home

LLC bank in a system that employs dynamic mapping of the blocks to the LLC banks.

In common systems this mapping is done statically, so when an access misses in the L1

cache the LLC bank to which a request has to be sent is known a priori. In case of

dynamic mapping however, since the home bank may be any of the LLC banks, a search

37
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phase is needed. One way to implement this search phase is to broadcast the request to

all LLC banks and wait for all banks to answer, both with an acknowledgement or with

the requested data. In this case too, the SAGN can be used to speedup the collection

of acknowledgment messages and reduce NoC traffic, enabling efficient implementation

of mapping policies that reduce the hop distance between an L1 requestor and the LLC

home bank.

Other solutions that can be explored are the use of the SAGN to deliver unicast ac-

knowledgements (e.g. writeback acknowledgements that are sent from the LLC to an L1

after a writeback) or to efficiently implement synchronization primitives (e.g. barriers)

at hardware level.

6.2 Publications

The following papers related with this work were submitted and accepted for publication

in different international conferences and journals:

• M. Lodde and J. Flich, ”Memory Hierarchy and Network Co-design through Trace-

Driven Simulation”, Proc. of the 7th International Summer School on Advanced

Computer Architecture and Compilation for High-Performance and Embedded

Systems. July 2012.

• M. Lodde, T. Roca, and J. Flich, Heterogeneous Network Design for Effective

Support of Invalidation-Based Coherency Protocols, in Proc. of the 2012 Inter-

connection Network Architecture: On-Chip, Multi-Chip Workshop, January 2012.

• M. Lodde, J. Flich, and M. Acacio, Heterogeneous noc design for efficient broadcast-

based coherence protocol support, in Proc. of the 6th Intl, Symposium on Networks

on Chip (NOCS), May 2012.

• M. Lodde, T. Roca, and J. Flich, Built-In Fast Gather Control Network for Effi-

cient Support of Coherence Protocols”, to appear in IET Computers and Digital

Techniques INA-OCMC 2012 Special Issue.

In addition, also in national conferences some related papers have been published:
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• M. Lodde and J. Flich, ”Memory Hierarchy and Network Co-design through Trace-

Driven Simulation”, XXII Jornadas de Paralelismo (pages 571-578). Tenerife,

Spain. 7-9 September 2011.

• M. Lodde, J. Flich, M.E. Acacio, ”A NoC-Level Support for Broadcast-Based
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Spain. 19-21 September 2012.





References

[1] Jose Flich and Davide Bertozzi. Designing Network On-Chip Architectures in the

Nanoscale Era. Chapman & Hall, 2010.

[2] D.J. Sorin, M.D. Hill, and D.A. Wood. A Primer on Memory Consistency and

Cache Coherence. Morgan & Claypool Publishers, 2011.

[3] M.M.K. Martin, M.D. Hill, and D.J. Sorin. Why on-chip cache coherence is here

to stay. Duke University Department of ECE Technical Report TR-2011-1, August

2011.

[4] P. Conway and B. Hughes. The amd opteron northbridge architecture. IEEE Micro,

27(2):10–21, March 2007.

[5] J. M. Owen, M.D. Hummel, D.R. Meyer, and J.B. Keller. United states patent:

7069361 - system and method of maintaining coherency in a distributed communi-

cation system. June 2006.

[6] E.S. Shin, III Mooney, V.J., and G.F. Riley. Round-robin arbiter design and gen-

eration. In System Synthesis, 2002. 15th International Symposium on, pages 243

–248, oct. 2002.

[7] The nangate open cell library,45nm freepdk,available at

https://www.si2.org/openeda.si2.org/projects/nangatelib/.

[8] Samuel Rodrigo, Jose Flich, Jose Duato, and Mark Hummel. Efficient unicast

and multicast support for cmps. In Proceedings of the 41st annual IEEE/ACM

International Symposium on Microarchitecture, MICRO 41, pages 364–375, 2008.

41



References 42

[9] J.E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,

J. Eastep, and A. Agarwal. Graphite: A distributed parallel simulator for mul-

ticores. In High Performance Computer Architecture (HPCA), 2010 IEEE 16th

International Symposium on, pages 1 –12, jan. 2010.

[10] Liqun Cheng, Naveen Muralimanohar, Karthik Ramani, Rajeev Balasubramonian,

and John B. Carter. Interconnect-aware coherence protocols for chip multiproces-

sors. SIGARCH Comput. Archit. News, 34(2):339–351, May 2006.

[11] A. Flores, J.L. Aragon, and M.E. Acacio. Heterogeneous interconnects for energy-

efficient message management in cmps. IEEE Transactions on Computers, 59(1):

16–28, January 2010.

[12] Noel Eisley, Li-Shiuan Peh, and Li Shang. In-network cache coherence. In Proceed-

ings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 39, pages 321–332, 2006.

[13] Evgeny Bolotin, Zvika Guz, Israel Cidon, Ran Ginosar, and Avinoam Kolodny. The

power of priority: Noc based distributed cache coherency. In Proceedings of the First

International Symposium on Networks-on-Chip, NOCS ’07, pages 117–126, 2007.

[14] I. Walter, I. Cidon, and A. Kolodny. Benoc: A bus-enhanced network on-chip for

a power efficient cmp. IEEE Computer Architecture Letters, 7(2):61–64, July-Dec

.2008.

[15] D. Vantrease, M. Lipasti, and N. Binkert. Atomic coherence: Leveraging nanopho-

tonics to build race-free cache coherence protocols. In In Proc. of the 17th Inter-

national Symposium on High Performance Computer Architecture, pages 132–143,

February 2011.

[16] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes. Cache

hierarchy and memory subsystem of the amd opteron processor. IEEE Micro, 30

(2):16–29, March/April 2010.

[17] R.A. Maddox, G. Singh, and R.J. Safranek. Weaving high performance multiproces-

sor fabric: Architecture insights into the intel quickpath interconnect. Intel Press,

2009.



References 43

[18] A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary. Jetty: filtering snoops

for reduced energy consumption in smp servers. In High-Performance Computer

Architecture, 2001. HPCA. The Seventh International Symposium on, pages 85 –96,

2001.

[19] V. Salapura, M. Blumrich, and A. Gara. Design and implementation of the blue

gene/p snoop filter. In High Performance Computer Architecture, 2008. HPCA

2008. IEEE 14th International Symposium on, pages 5 –14, feb. 2008.

[20] Jason F. Cantin, Mikko H. Lipasti, and James E. Smith. Improving multiproces-

sor performance with coarse-grain coherence tracking. SIGARCH Comput. Archit.

News, 33(2):246–257, May 2005.

[21] A. Moshovos. Regionscout: exploiting coarse grain sharing in snoop-based coher-

ence. In Computer Architecture, 2005. ISCA ’05. Proceedings. 32nd International

Symposium on, pages 234 – 245, june 2005.

[22] N. Agarwal, Li-Shiuan Peh, and N.K. Jha. In-network coherence filtering: Snoopy

coherence without broadcasts. In Microarchitecture, 2009. MICRO-42. 42nd Annual

IEEE/ACM International Symposium on, pages 232 –243, dec. 2009.

[23] Samuel Rodrigo, Jose Flich, Jose Duato, and Mark Hummel. Efficient unicast

and multicast support for cmps. In Proceedings of the 41st annual IEEE/ACM

International Symposium on Microarchitecture, MICRO 41, pages 364–375, 2008.

[24] A. Ros and M.E. Acacio. Evaluation of low-overhead organizations for the direc-

tory in future many-core cmps. In Proc. of the 4th Workshop on Highly Parallel

Processing on a Chip, pages 87 – 97, September 2010.

[25] Tushar Krishna, Li-Shiuan Peh, Bradford M. Beckmann, and Steven K. Reinhardt.

Towards the ideal on-chip fabric for 1-to-many and many-to-1 communication. In

Proceedings of the 44th Annual IEEE/ACM International Symposium on Microar-

chitecture, MICRO-44 ’11, pages 71–82, 2011.


	Abstract
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	2 Basic Coherence Protocols
	2.1 Directory-based Protocol
	2.2 Broadcast-based Protocol
	2.3 Multiple Requests

	3 Set-Aside Gather Network
	3.1 Overview
	3.2 Detailed Description of a Logic Block
	3.3 Control Signals Distribution
	3.4 Sequential Implementation of the SAGN
	3.5 Modified Protocols

	4 Evaluation
	4.1 Implementation Analysis
	4.1.1 Combinational SAGN
	4.1.2 Sequential SAGN

	4.2 Performance Evaluation
	4.2.1 Combinational SAGN
	4.2.2 Sequential SAGN


	5 Related Work
	6 Conclusions
	6.1 Current and Future Work
	6.2 Publications

	References

