
Slicing Slices

An Incremental Backward Trace
Slicing Methodology for RWL

Computations

Master’s Thesis

Presented by: Julia Sapiña Sanchis

Supervisors: Maŕıa Alpuente Frasnedo

Francisco Frechina Navarro

Valencia – July 10th, 2013.

Abstract

Execution traces are an important source of information for program un-
derstanding and debugging. However, they have as an important drawback
that they are commonly huge and complex, making their manual analysis
unfeasible.

In this master’s thesis, we develop a trace slicing technique for rewriting
logic computations together with its corresponding implementation in the
iJulienne graphical tool. Such technique gives support to the analysis of
complex, textually-large system computations in rewriting logic, which is a
general framework efficiently implemented in the Maude language. Given a
Maude execution trace T and a slicing criterion for the trace (i.e., a piece
of information that we want to observe in the final computation state), we
traverse T from back to front and the backward dependence of the observed
information is incrementally computed at each execution step. At the end
of the traversal, a simplified trace slice is obtained by filtering out all the
irrelevant data that do not impact on the data of interest. By simplifying
the trace, the iJulienne tool, which implements the proposed trace slicing
technique, favors better inspection and debugging activities. iJulienne is
also endowed with a trace querying mechanism that increases flexibility and
reduction power and allows program runs to be examined at the appropriate
level of abstraction.

Keywords: trace slicing, rewriting logic, debugging, Maude.

iii

Resumen

Las trazas de ejecución son una importante fuente de información para el
entendimiento y depuración de los programas. Sin embargo, poseen el im-
portante inconveniente de ser habitualmente enormes y complejas, haciendo
inviable su análisis manual.

En esta tesis de máster se ha desarrollado una técnica de fragmentación
de trazas para computaciones en lógica de reescritura junto con su correspon-
diente implementación en la herramienta gráfica iJulienne. Dicha técnica
da soporte al análisis de extensas y complejas computaciones en lógica de ree-
scritura, que es un marco formal muy general eficientemente implementado
en el lenguaje Maude. Dada una traza de ejecución de Maude T y un criterio
de fragmentación para la traza (es decir, un fragmento de información que se
desea observar en el estado final de la computación), nuestra técnica recorre
T de atrás hacia adelante a la vez que calcula la dependencia hacia atrás de
la información observada de forma incremental en cada paso de ejecución.
Al final del recorrido se obtiene una traza fragmentada simplificada al filtrar
toda la información irrelevante que no afecta a los datos de interés. Al sim-
plificar la traza, la herramienta iJulienne, que implementa la técnica de
fragmentado propuesta, favorece un mejor análisis y depuración de las trazas
manipuladas. iJulienne está además dotada de un mecanismo de consulta
de la traza que incrementa la flexibilidad y poder de reducción y permite
examinar las ejecuciones de programas en el nivel apropiado de abstracción.

Palabras clave: fragmentación de trazas, lógica de reescritura, depu-
ración, Maude.

v

Resum

Les traces d’execució són una important font d’informació per a l’enteniment
i depuració dels programes. No obstant això, posseeixen l’important incon-
venient de ser habitualment enormes i complexes, fent inviable la seua anàlisi
manual.

En aquesta tesi de màster s’ha desenvolupat una tècnica de fragmentació
de traces per computacions en lògica de reescriptura juntament amb la seua
corresponent implementació en l’eina gràfica iJulienne. L’esmentada tècnica
dóna suport a l’anàlisi de complexes i extenses computacions en lògica de ree-
scriptura, que és un marc formal molt general eficientment implementat en el
llenguatge Maude. Donada una traça d’execució de Maude T i un criteri de
fragmentació per la traça (és a dir, un fragment d’informació que es vol obser-
var en l’estat final de la computació), la nostra tècnica es recorre T de darrere
cap endavant al mateix temps que ses calcula la dependència cap enrere de la
informació observada es calcula de forma incremental en cada pas d’execució.
Al final del recorregut s’obté una traça fragmentada simplificada en filtrar
tota la informació irrellevant que no afecta les dades d’interès. En simpli-
ficar la traça, l’eina iJulienne, que implementa la tècnica de fragmentació
proposta, afavoreix una millor anàlisi i depuració de les traces manipulades.
L’eina iJulienne està a més dotada d’un mecanisme de consulta de la traça
que incrementa la flexibilitat i poder de reducció i permet examinar les exe-
cucions de programes en el nivell apropiat d’abstracció.

Paraules clau: fragmentació de traces, lògica de reescriptura, depuració,
Maude.

vii

Contents

Page

Introduction 1

Preliminaries 9

1 Backward Trace Slicing for Conditional Rewrite Theories 15
1.1 Term slices and term slice concretizations 15
1.2 Backward Slicing for Execution Traces 17
1.3 The function slice-step . 20
1.4 Experimental Evaluation . 25

2 Slicing-based Trace Analysis of Rewriting Logic Specifica-
tions with iJulienne 27
2.1 Incremental Trace Slicing . 27
2.2 The iJulienne Online Trace Analyzer 30

2.2.1 Features and Characteristics of iJulienne 30
2.2.2 The System Architecture of iJulienne 31
2.2.3 Trace Querying . 32
2.2.4 Program Slicing . 37

2.3 iJulienne at work . 38
2.3.1 Debugging the Blocks World Example 39
2.3.2 Analyzing a Webmail Application 42

2.4 Experimental Evaluation . 45

Conclusions and future work 49

ix

List of Figures

1 The mod operator . 5

1.1 Backward step slicing function. 20
1.2 Condition processing function. 22

2.1 Backward trace slicing scheme. 28
2.2 Incremental backward trace slicing scheme. 28
2.3 iJulienne architecture . 31
2.4 Dynamic program slice of Example 2.2.4. 38
2.5 BLOCKS-WORLD faulty Maude specification. 39
2.6 Program slice computed w.r.t. the slicing criterion empty,

empty, on(a, b). 41
2.7 Navigation through the trace slice of the Blocks World exam-

ple. 42
2.8 Navigation though the refined trace slice of the Blocks World

example. 43
2.9 Program slice computed w.r.t. the slicing criterion hold(a). . . 44
2.10 Loading the Webmail execution trace. 44
2.11 Querying the Webmail trace w.r.t. B(idA, , ?, , , , , ,) . . . 46
2.12 Webmail trace slice after querying the trace 47

xi

Introduction

As professor Sir Maurice Wilkes, winner of the 2nd ACM A.M. Turing Award
in 1967, recalled in his memoirs [Wil85], it is much more difficult to avoid
making mistakes when programming than might be expected at first. Usu-
ally, programs do not work correctly the first time they are run and they
must be revised in search for errors. It is this process of revising a program
that gave birth to debugging.

A variety of debugging techniques have been developed ever since the pio-
neers of software development first realized of this tendency to make mistakes
when programming. However, in most of these techniques there is usually a
lot more information than the strictly needed to identify and reproduce the
source of error. One may think that the more information we could get about
a problem, the better, yet when the amount of information exceeds a certain
limit it becomes a major drawback by obscuring the concrete information
that cause the error. The consequences of this excess of information may
vary from simple annoyance to the far more troubling inability to perform
the required revision.

To help relieve this problem, Mark Weiser originally introduced in [Wei79,
Wei81, Wei82] the concept of program slicing, which resulted in the develop-
ment of a great variety of techniques based on it thenceforth. Given a slicing
criterion (i.e., a piece of information initially considered relevant), slicing
generally focus on identify all of its dependencies to disclose the most rele-
vant information that may went unnoticed, discarding all the other irrelevant
information in the process. Philosophy underlying slicing techniques can be

1

Introduction 2

applied to different kinds of information (e.g., programs, execution traces,
counter-examples offered by some model-checkers) that can be explored in
many ways (e.g., forward, backward), leading to the different variants of
slicing known nowadays.

The analysis of execution traces plays an important role in many program
analysis approaches. Software systems commonly generate large and com-
plex execution traces, whose analysis (or even simple inspection) is extremely
time-consuming, and in some cases unfeasible to perform by hand. Standard
tracers usually present execution histories that mainly consist of low-level ex-
ecution steps so that the relationship between the executed program and the
execution history is not easy to derive because some key dependencies that
are naturally expressed at the programming language level can be either scat-
tered or omitted in the trace. This is particularly true for those systems that
are specified in Rewriting Logic (RWL) [Mes90b, Mes90a, Mes91], a very gen-
eral logical and semantic framework that is particularly suitable for formal-
izing highly concurrent, complex systems (e.g., biological systems [BBF09]
and Web systems [ABER10, ABR09]). Trace slicing [ABER11, ABFR12a] is
a technique for reducing the size of execution traces by focusing on selected
execution aspects, which makes it suitable for trace analysis and monitor-
ing [CR09].

Rewriting logic is efficiently implemented in the high–performance lan-
guage Maude [CDE+02, CDE+11]. In Maude, the states of a system are
modeled as algebraic entities by using conditional equations, whereas the
system’s behavior is formalized via conditional rewrite rules that describe
state transitions. These transitions are performed modulo equational theories
that may also contain algebraic axioms such as commutativity, associativity
and unity. The fact that RWL theories include both equations and rewrite
rules provides a useful abstraction dial to find the right balance between
abstraction and computational observability.

Execution traces generated by Maude are complex objects to deal with.
Traces typically include thousands of rewrite steps that are obtained by ap-
plying the equations and rules of the considered specification (including all
the internal rewrite steps for evaluating the conditions of such equation-
s/rules). In addition, Maude traces are incomplete because algebraic axiom
applications, which implicitly occur in an equational simplification process
that is hidden within Maude’s matching modulo algorithm, are not recorded
at all in the trace. This provides a very low-level blueprint of program execu-
tion whose manual inspection is frequently unfeasible or, in the best case, is

Introduction 3

an extremely labor-intensive and time-consuming task. Eventually, this im-
plies that when an erroneous intermediate result in the trace is discovered,
it is difficult to determine where the incorrect inference started.

To debug Maude programs, Maude has a tracing facility that allows the
execution sequence to be traced, and is very customizable: it provides some
control over conditions and allows the user to select the statements being
applied at each step. A main difference with the trace slicing methodology
described in [ABFR12a, ABFS13b] is that the tracer of Maude allows the
trace size to be reduced by manually focusing on statements, while slicing
is automatic and focuses on terms. Moreover, since each small rewrite step
that is obtained by applying a single conditional equation, equational axiom
or rule is shown in the trace, the user can easily miss the general view, and
when the user detects an incorrect intermediate result, it is difficult to know
where the incorrect inference started.

The formulation in [ABFR12a] takes into account the precise way in which
Maude mechanizes the conditional rewriting process and revisits all those
rewrite steps backwards in an instrumented, fine-grained way where each
small step corresponds to the application of an equation (conditional equation
or equational axiom) or rule. This allows to slice the input execution trace
with regard to the set of symbols of interest (target symbols) by tracing back
the target symbols along the execution trace so that all data that are not
antecedents of the observed symbols are simply discarded. In this regard,
the trace slices computed by the technique can be very helpful in debugging,
since they only consist of the information that is strictly needed to deliver a
critical part of the result (see discussion in [ABE+11]).

Slicing techniques as varied as they are, have in common the starting
point given by the slicing criterion. Nevertheless, the slicing criterion may
not be clear at the beginning of the slicing process and may need to be refined
in order to discard the maximum irrelevant information possible with respect
to the sought error. To cope with such cases, we have refined in [ABFS13b]
our methodology based on [ABFR12a] by adding incremental capabilities to
the slicing process, allowing the user to refine the slicing criterion at each
step of the trace slicing process or even change it completely at any point.

Introduction 4

Related Work

Tracing techniques have been extensively used in the past in functional de-
bugging [CRW00]. Hat [CRW00] is an interactive debugging system that
enables a computation to be explored backwards, starting from the program
output or an error message (with which the computation aborted). Back-
ward tracing in Hat is carried out by navigating a redex trail (i.e., a graph-
like data structure that records dependencies among function calls), whereas
the tracing technique described in this thesis does not require handling any
supplementary data structure.

In recent years, the debugging and optimization techniques based on
RWL have received growing attention. There exist very few approaches that
address the problem of tracing rewrite sequences in term rewrite systems
[ABER11, BKdV00, FT94, BKdV03], and all of them apply to unconditional
systems. The techniques in [ABER11, BKdV00, BKdV03] rely on a labeling
relation on symbols that allows data content to be traced back within the
computation; this is achieved in [FT94] by formalizing a notion of dynamic
dependence among symbols by means of contexts. In [BKdV00, BKdV03],
non-left linear and collapsing rules are not considered or are dealt using ad-
hoc strategies, while our approach requires no special treatment of such rules.
Furthermore, only [ABER11] describes a tracing methodology for rewrite the-
ories with rules, equations, sorts, and algebraic axioms. However, the only
trace slicing technique that gives support to the analysis of RWL computa-
tions is [ABER11]. Given an execution trace T , [ABER11] generates a trace
slice of T w.r.t. a set of symbols of interest (target symbols) that appear in
a given state of T .

Unfortunately, the technique in [ABER11] is only applicable to uncon-
ditional RWL theories, and hence it cannot be employed when the source
program includes conditional equations and/or rules since it would deliver
incorrect and/or incomplete trace slices. The following example illustrates
why conditions cannot be disregarded by the slicing process, which is what
motivated [ABFR12a, ABFR12b] and gave rise to our last work [ABFS13b].

Example A

Consider the Maude specification of the function _mod_ in Figure 1, which
computes the reminder of the division of two natural numbers, and the as-
sociated execution trace 4 mod 5 → 4. Assume that we are interested in
observing the origins of the target symbol 4 that appears in the final state.

Introduction 5

If we disregard the condition Y > X of the first conditional equation, the
slicing technique of [ABER11] computes the trace slice 4 mod • → 4, which
is not correct since there exists concrete instances of 4 mod • that cannot be
rewritten to 4 using the first rule (e.g., 4 mod 3 9 4).

mod M is inc NAT .

var X : Nat .

var Y : NzNat .

op _mod_ : Nat NzNat -> Nat .

ceq X mod Y = X if Y > X .

ceq X mod Y = (X - Y) mod Y

if Y <= X .

endm

Figure 1: The mod operator

By contrast, the methodology of [ABFR12a, ABFS13b] produces the cor-
rect trace slice 4 mod 5 → 4, since both arguments of mod are required to
prove the rewrite step that introduces the symbol 4 in the final state.

Regarding slicing tools, among the first developed [HKF95] was Spyder
[ADS93], which combined several techniques in order to assist the user in the
debugging task. The slicing part of Spyder [Agr91], which was only capable
to compute backward slices, was based on graph reachability and dependence
graphs algorithms applied on the instrumented version of the original code
being debugged [HKF95].

More recently, a source-level tracer for the functional programming lan-
guage Haskell [HHJW07], has been developed in the Hat system [CRW00],.
Hat grants the user access to exhaustive information about the observed com-
putation by first executing the program to be debugged and storing the result-
ing trace in a file. Then, several slicing-based viewing tools (e.g., Hat-trail,
Hat-explore, Hat-detect) can be used to explore the stored trace. Similarly
to Spyder, this task is carried out by navigating a graph-like, supplementary
data structure.

HaSlicer [RB06] is a prototype of a slicer for functional programs written
also in Haskell that is used for the identification of possible coherent compo-
nents from (functional) monolithic legacy code. Both backward and forward
dependency slicing are covered by HaSlicer, which is proposed as a support
tool for the software architect to manually improve program understanding,

Introduction 6

and automatically discover software components. The latter is particularly
useful as an architecture understanding technique in earlier phases of a re-
engineering process.

Mercury [HCS+96] is a functional logic language that extends Haskell
with logical capabilities and has his own slicing-based debugging tool, the
Mercury declarative debugger [Mac05]. This debugger records an annotated
trace that serves as source for constructing an EDT (evaluation dependence
tree) that is searched by the main slicing algorithm implemented in the tool.

To the best of our knowledge, Julienne [ABFR12b] was the first trace
slicing tool for Maude, which has been greatly improved in the iJulienne
[ABFS13b] system, the new and improved implementation with incremen-
tal slicing capabilities presented in this thesis. In contrast to Spyder and
HaSlicer, iJulienne is based on trace slicing rather than program slicing,
and needs much less storage to perform flow-back analysis, as it requires nei-
ther the construction of data and control dependency graphs nor the creation
and maintenance of the execution history.

Contributions

This master’s thesis developes the first conditional trace slicing technique
for RWL computations [ABFR12a] together with an enhanced trace slicing
methodology called incremental slicing and its corresponding implementation
[ABFS13b]. The proposed methodology is fully general and can be applied for
debugging as well as for optimizing any RWL-based tool that manipulates
conditional RWL computations such as those delivered as counterexample
traces by the Maude model-checker [BM12].

The contributions of this master’s thesis can be summarized as follows:

� We have developed a novel and enhanced incremental trace slicing tech-
nique that we implemented in our tool iJulienne [ABFS13b].

� We present iJulienne, which is the first a slicing-based trace analysis
tool that assists the user in the comprehension and debugging of RWL
theories that are encoded in Maude. iJulienne is built on top of
a trace slicer that implements the backward conditional trace slicing
algorithm described in [ABER11, ABFR12a]. Roughly speaking, the
trace slicing mechanism included in iJulienne rolls back the program
execution (making all the rewrite and equational simplification steps

Introduction 7

explicit) while tracking back only and all data in the trace that are
needed to accomplish the selected slicing criterion, that is, the data
that contribute to producing the set of target symbols that occur in the
observed state of the trace. In other words, the trace slicer takes as
input a Maude execution trace T and a slicing criterion S and yields as
output a trace slice T ? in which the pieces of information that are not
antecedents of the selected target symbols in S are simply discarded
from T .

The core trace slicer included within iJulienne is a totally redesigned
implementation of the slicing technique in [ABER11, ABFR12a] that
supersedes and greatly improves the preliminary system presented in
[ABFR12b]. The original algorithm implemented in [ABFR12b] was
developed under the assumption that the user examines and slices
the entire trace w.r.t. the fixed slicing criterion one time, in a non-
incremental way. In contrast, the slicing criterion in iJulienne can be
dynamically changed, which allows the user a step-wise focus on the
information that the user wants to observe at any rewrite step.

The main features provided by the trace analyzer iJulienne are listed
below.

(a) iJulienne is equipped with an incremental backward trace slicing
algorithm that supports step-wise refinements of the trace slice
and achieves huge reductions in the size of the trace. Starting
from a Maude execution trace T , a slicing criterion S can be
attached to any given state of the trace and the computed trace
slice T ? can be repeatedly refined by applying backward trace
slicing w.r.t. increasingly restrictive versions of S.

(b) The system supports a cogent form of dynamic program slicing
[KL88] as follows. Given a Maude programM and a trace slice T ?
forM, iJulienne is able to infer the minimal fragment ofM (i.e.,
the program slice) that is needed to reproduce T ?. This is done
by uncovering statement dependences among computationally re-
lated parts of the program via backward trace slicing. This feature
greatly facilitates the debugging of faulty Maude programs, since
the user can generate a sequence of increasingly smaller program
slices that gradually shrinks the area that contains the buggy piece
of code.

Introduction 8

(c) iJulienne is endowed with a powerful and intuitive Web user
interface that allows the slicing criteria to be easily defined by
either highlighting the chosen target symbols or by applying a
user-defined filtering pattern. A browsing facility is also provided
that enables forward and backward navigation through the trace
(and the trace slice) and allows the user to examine all the in-
formation that is involved within each state transition (and its
corresponding sliced counterpart) for debugging and comprehen-
sion purposes. The user interface can be tuned to provide distinct
abstract views of the trace that aim at supporting different pro-
gram comprehension levels. For instance, this includes hiding or
displaying the auxiliary transformations that are used by Maude
to handle associative and commutative operators.

Plan of the thesis

Following some preliminaries, the backward slicing technique presented in
[ABFR12a, ABFR12b] is recalled in Chapter 1. In Chapter 2, we present
iJulienne [ABFS13b], our online trace analyzer that implements the pro-
posed slicing technique and we discuss the most relevant technical details
together with some benchmarks that assess the practicality of the tool. Two
different sessions working with the tool are illustrated also in this chapter.
Finally, some conclusions and directions for future work are presented in the
last chapter.

Preliminaries

Let us recall some important notions that are relevant to this work. We
assume some basic knowledge of term rewriting [BKdV03] and Rewriting
Logic [Mes92]. Some familiarity with the Maude language [CDE+11] is also
required.

We consider an order-sorted signature Σ, with a finite poset of sorts (S,<)
that models the usual subsort relation [CDE+11]. We assume an S-sorted
family V = {Vs}s∈S of disjoint variable sets. τ(Σ,V)s and τ(Σ)s are the sets
of terms and ground terms of sort s, respectively. We write τ(Σ,V) and τ(Σ)
for the corresponding term algebras. The set of variables that occur in a
term t is denoted by Var(t). In order to simplify the presentation, we often
disregard sorts when no confusion can arise.

A position w in a term t is represented by a sequence of natural num-
bers that addresses a subterm of t (Λ denotes the empty sequence, i.e., the
root position). By notation w1.w2, we denote the concatenation of positions
(sequences) w1 and w2. Positions are ordered by the prefix ordering, that
is, given the positions w1 and w2, w1 ≤ w2 if there exists a position x such
that w1.x = w2. Given a set of positions P , the prefix closure of P is the
set P̄ = {u | u ≤ p ∧ p ∈ P}. Given a term t, we let Pos(t) denote the set
of positions of t. By t|w, we denote the subterm of t at position w, and by
t[s]w, we denote the result of replacing the subterm t|w by the term s.

A substitution σ is a mapping from variables to terms {X1/t1, . . . , Xn/tn}
such thatXiσ = ti for i = 1, . . . , n (withXi 6= xj if i 6= j), andXσ = X for all
other variables X. Given a substitution σ = {X1/t1, . . . , Xn/tn}, the domain

9

Preliminaries 10

of σ is the set Dom(σ) = {X1, . . . , Xn}. For any substitution σ and set of
variables V , σ |̀V denotes the substitution obtained from σ by restricting its
domain to V (i.e., σ |̀V (X) = Xσ if X ∈ V , otherwise σ |̀V (X) = X). Given
two terms s and t, a substitution σ is a matcher of t in s, if sσ = t. By
matchs(t), we denote the function that returns a matcher of t in s if such a
matcher exists, otherwise matchs(t) returns fail.

An equational condition b is an equation t = t′ with t, t′ ∈ τ(Σ,V).
This includes both, ordinary equations and abbreviated boolean equations
b = true, with b ∈ τ(Σ,V) of sort Bool. A matching condition is a pair p := e
with e, p ∈ τ(Σ,V). A rewrite expression is a pair e⇒ p, with e, p ∈ τ(Σ,V).

A conditional equation is an expression of the form λ = ρ if C, where
λ, σ ∈ τ(Σ,V), and C is a (possibly empty) sequence c1 ∧ . . . ∧ cn, where
each ci is either an equational condition, or a matching condition. When
the condition C is empty, we simply write λ = ρ. A conditional equation
λ = ρ if c1 ∧ . . . ∧ cn is admissible, iff (i) Var(ρ) ⊆ Var(λ) ∪

⋃n
i=1 Var(ci),

and (ii) for each ci, Var(ci) ⊆ Var(λ) ∪
⋃i−1
j=1 Var(cj) if ci is an equational

condition, and Var(e) ⊆ Var(λ) ∪
⋃i−1
j=1 Var(cj) if ci is a matching condition

p := e.
A conditional rule is an expression of the form λ→ ρ if C, where λ, σ ∈

τ(Σ,V), and C is a (possibly empty) sequence c1 ∧ . . . ∧ cn, where each ci
is an equational condition, a matching condition, or a rewrite expression.
When the condition C is empty, we simply write λ → ρ. A conditional
rule λ → ρ if c1 ∧ . . . ∧ cn is admissible iff it fulfils the exact analogous of
the admissibility constraints (i) and (ii) for the equational conditions and
the matching conditions, plus the following additional constraint: for each
rewrite expression ci in C of the form e⇒ p, Var(e) ⊆ Var(λ)∪

⋃i−1
j=1 Var(cj).

The set of variables that occur in a (conditional) rule/equation r is de-
noted by Var(r). Note that admissible equations and rules can contain
extra-variables (i.e., variables that appear in the right-hand side or in the
condition of a rule/equation but do not occur in the corresponding left-hand
side). The admissibility requirements ensure that all the extra-variables will
become instantiated whenever an admissible rule/equation is applied.

Preliminaries 11

Conditional Rewriting Modulo Equational The-

ories

An order-sorted equational theory is a pair E = (Σ,∆ ∪ B), where Σ is an
order-sorted signature, ∆ is a collection of (oriented) admissible, conditional
equations, and B is a collection of unconditional equational axioms (e.g.,
associativity, commutativity, and unity) that can be associated with any
binary operator of Σ.

The equational theory E induces a congruence relation on the term al-
gebra T (Σ,V), which is denoted by =E. A conditional rewrite theory (or
simply, rewrite theory) is a triple R = (Σ,∆ ∪ B,R), where (Σ,∆ ∪ B) is
an order-sorted equational theory, and R is a set of admissible conditional
rules1.

Example B
The following Maude rewrite theory defines a simple banking system. It

includes three conditional rules: credit, debit, and transfer.

mod BANK is inc INT .

sorts Account Msg State Id .

subsorts Account Msg < State .

var Id Id1 Id2 : Id .

var bal bal1 bal2 newBal newBal1 newBal2 M : Nat .

op empty-state : -> State .

op _;_ : State State -> State [assoc comm id: empty-state] .

op <_|_> : Id Nat -> Account [ctor] .

ops credit debit : Id Nat -> Msg [ctor] .

op transfer : Id Id Nat -> Msg [ctor] .

crl [credit] : <Id|bal>;credit(Id,M) => <Id|newBal>

if newBal := bal + M .

crl [debit] : <Id|bal>;debit(Id,M) => <Id|newBal>

if bal >= M /\ newBal := bal - M .

crl [transfer] : <Id1|bal1>;<Id2|bal2>;transfer(Id1,Id2,M) =>

<Id1|newBal1>;<Id2|newBal2>

if <Id1|bal1>;debit(Id1,M) => <Id1|newBal1>

/\ <Id2|bal2>;credit(Id2,M) => <Id2|newBal2> .

endm

1Equational specifications in Maude can be theories in membership equational logic,
which may include conditional membership axioms not addressed in this paper.

Preliminaries 12

The rule credit contains a matching condition newBal := bal + M. The
rule debit contains an equational condition bal >= M and a matching con-
dition newBal := bal - M. Finally, the rule transfer has a rule condi-
tion that contains two rewrite expressions: <Id1|bal1> ; debit(Id1,M) =>

<Id1|newBal1> and <Id2|bal2> ; credit(Id2,M) => <Id2|newBal2>.

Given a conditional rewrite theory (Σ, E,R), with E = ∆ ∪ B, the con-
ditional rewriting modulo E relation (in symbols, →R/E) can be defined
by lifting the usual conditional rewrite relation on terms [Klo92] to the E-
congruence classes [t]E on the term algebra τ(Σ,V) that are induced by
=E [BM06], that is, [t]E is the class of all terms that are equal to t modulo E.
Unfortunately,→R/E is in general undecidable, since a rewrite step t→R/E t

′

involves searching through the possibly infinite equivalence classes [t]E and
[t′]E.

The conditional slicing technique formalized in this work is formulated by
considering the precise way in which Maude proves the conditional rewrit-
ing steps (see Section 5.2 in [CDE+11]). Actually, the Maude interpreter
implements conditional rewriting modulo E by means of two much simpler
relations, namely →∆,B and →R,B, that allow rules and equations to be in-
termixed in the rewriting process by simply using an algorithm of matching
modulo B. We define →R∪∆,B as →R,B ∪ →∆,B. Roughly speaking, the
relation →∆,B uses the equations of ∆ (oriented from left to right) as sim-
plification rules: thus, for any term t, by repeatedly applying the equations
as simplification rules, we eventually reach a term t ↓∆ to which no further
equations can be applied. The term t ↓∆ is called a canonical form of t
w.r.t. ∆. On the other hand, the relation →R,B implements rewriting with
the rules of R, which might be non-terminating and non-confluent, whereas
∆ is required to be terminating and Church-Rosser modulo B in order to
guarantee the existence and unicity (modulo B) of a canonical form w.r.t. ∆
for any term [CDE+11].

Formally, →R,B and →∆,B are defined as follows. Given a rewrite rule
r = (λ → ρ if C) ∈ R (resp., an equation e = (λ = ρ if C) ∈ ∆), a

substitution σ, a term t, and a position w of t, t
r,σ,w→R,B t

′ (resp., t
e,σ,w→∆,B t

′)
iff λσ =B t|w, t′ = t[ρσ]w, and C evaluates to true w.r.t σ. When no confusion

can arise, we simply write t →R,B t′ (resp. t→∆,Bt
′) instead of t

r,σ,w→R,B t′

(resp. t
e,σ,w→∆,B t

′).
Note that the evaluation of a condition C is typically a recursive process,

Preliminaries 13

since it may involve further (conditional) rewrites in order to normalize C
to true. Specifically, an equational condition e evaluates to true w.r.t. σ
if eσ ↓∆=B true; a matching equation p := t evaluates to true w.r.t. σ if
pσ =B tσ↓∆; a rewrite expression t ⇒ p evaluates to true w.r.t. σ if there
exists a rewrite sequence tσ →∗R∪∆,B u, such that u =B pσ2. Although
rewrite expressions and matching/equational conditions can be intermixed
in any order, we assume that their satisfaction is attempted sequentially
from left to right, as in Maude.

Under appropriate conditions on the rewrite theory, a rewrite step modulo
E on a term t can be implemented without loss of completeness by applying
the following rewrite strategy [DM10]:

(i) reduce t w.r.t. →∆,B until the canonical form t ↓∆ is reached;

(ii) rewrite t ↓∆ w.r.t. →R,B.

An execution trace T in the rewrite theory (Σ,∆ ∪ B,R) is a rewrite
sequence s0 →∗∆,B s0↓∆→R,B s1 →∗∆,B s1↓∆ . . . that interleaves→∆,B rewrite
steps and →R,B steps following the strategy mentioned above.

Given an execution trace T , it is always possible to expand T in an
instrumented trace T ′ in which every application of the matching modulo
B algorithm is mimicked by the explicit application of a suitable equational
axiom, which is also oriented as a rewrite rule [ABER11]. This way, any given
instrumented execution trace consists of a sequence of (standard) rewrites
using the conditional equations (→∆), conditional rules (→R), and axioms
(→B).

Example C

Consider the rewrite theory in Example B together with the following ex-
ecution trace T : credit(A,2+3);<A|10>→∆,B credit(A,5);<A|10>→R,B

<A|15>. Thus, the corresponding instrumented execution trace is given by ex-
panding the commutative “step” applied to the term credit(A,2+3);<A|10>

using the implicit rule (X; Y → Y; X) in B that models the commutativity
axiom for the (juxtaposition) operator ; : credit(A,2+3);<A|10> →∆

credit(A,5);<A|10>→B <A|10>;credit(A,5)→R<A|15>

2Technically, to properly evaluate a rewrite expression t ⇒ p or a matching condition
p := t, the term p is required to be a ∆-pattern —i.e., a term p such that, for every
substitution σ, if xσ is a canonical form w.r.t. ∆ for every x ∈ Dom(σ), then pσ is also a
canonical form w.r.t. ∆.

Preliminaries 14

Also, typically hidden inside the B-matching algorithms, some transfor-
mations allow terms that contain operators that obey associative-commutative
axioms to be rewritten by first producing a single representative of their AC
congruence class [ABER11]. For example, consider a binary AC operator f
together with the standard lexicographic ordering over symbols. Given the
B-equivalence f(b, f(f(b, a), c)) =B f(f(b, c), f(a, b)), we can represent it
by using the “internal sequence” of transformations f(b, f(f(b, a), c))→∗flatB
f(a, b, b, c) →∗unflatB

f(f(b, c), f(a, b)), where the first one corresponds to a
flattening transformation sequence that obtains the AC canonical form, while
the second one corresponds to the inverse, unflattening one.

In the sequel, we assume all execution traces are instrumented as ex-
plained above. By abuse of notation, we frequently denote the rewrite rela-
tions→∆,→R,→B by→. Also, by→∗ (resp. →+), we denote the transitive
and reflexive (resp. transitive) closure of the relation →∆ ∪ →R ∪ →B.

1
Backward Trace Slicing for Conditional

Rewrite Theories

In this chapter, we recall the backward conditional slicing algorithm for RWL
computations of [ABFR12a]. The algorithm is formalized by means of a
transition system that traverses the execution traces from back to front. The
transition system is given by a single inference rule that relies on a backward
rewrite step slicing procedure that is based on substitution refinement.

This chapter is organized as follows. Section 1.1, introduces the notions of
term slice and term slice concretization. Section 1.2 describes the backbone
of the backward trace slicing technique for RWL computation traces. Sec-
tion 1.3 formalizes the slicing algorithm for single execution steps and finally,
Section 1.4 reports the experimental evaluation of the slicing technique.

1.1 Term slices and term slice concretizations

A term slice of a term t is a term abstraction that disregards part of the
information in t, that is, the irrelevant data in t are simply replaced by
special •-variables, denoted by •i, with i = 0, 1, 2, . . ., which are generated
by calling the auxiliary function fresh•1. More formally, a term slice is defined
as follows.

1Each invocation of fresh• returns a (fresh) variable •i, which is distinct from any
previously generated variable •j .

15

Backward Trace Slicing for Conditional Rewrite Theories 16

Definition 1.1.1 (term slice) Let t ∈ τ(Σ,V) be a term, and let P be a set
of positions s.t. P ⊆ Pos(t). A term slice of t w.r.t. P is defined as follows:

slice(t, P) = rslice(t, P,Λ), where

rslice(t, P, p) =


f(rslice(t1, P, p.1), .., rslice(tn, P, p.n))

if t=f(t1, .., tn) and p ∈ P̄
x if t=x and x ∈ V and p ∈ P̄
fresh• otherwise

When P is understood, a term slice of t w.r.t. P is simply denoted by t•.

Roughly speaking, a term slice t w.r.t. a set of positions P includes all
symbols of t that occur within the paths from the root to any position in
P , while each maximal subterm t|p, with p 6∈ P , is abstracted by means of a
•-variable.

Given a term slice t•, a meaningful position p of t• is a position p ∈
Pos(t•) such that t•|p 6= •i, for some i = 0, 1, The set that contains all

the meaningful positions of t• is denoted by MPos(t•). Symbols that occur
at meaningful positions are called meaningful symbols.

Example 1.1.2

Let t = d(f(g(a, h(b)), c), a) be a term, and let P = {1.1, 1.2} be a set
of positions of t. By applying Definition 1.1.1, we get the term slice t•

= slice(t, P) = d(f(g(•1, •2), y), •3) and the set of meaningful positions
MPos(t•) = {Λ, 1, 1.1, 1.2}.

To particularize a term slice, •-variables must be instantiated with data
that satisfy a given boolean condition called compatibility condition. Term
slice concretization is formally defined as follows.

Definition 1.1.3 (term slice concretization) Let t, t′ ∈ τ(Σ,V) be two
terms. Let t• be a term slice of t and let B• be a boolean condition. We
say that t′ is a concretization of t• that is compatible with B• (in symbols
t• ∝B• t′), if (i) there exists a substitution σ such that t•σ = t′, and (ii) B•σ
evaluates to true.

Example 1.1.4

Let t• = •1 + •2 + •2 and B• = (•1 > 6 ∧ •2 ≤ 7). Then, 10 + 2 + 2 is a
concretization of t• that is compatible with B•, while 4 + 2 + 2 is not.

Backward Trace Slicing for Conditional Rewrite Theories 17

In the following, a backward trace slicing technique is formulated. Given
an execution trace T : s0 →∗ sn and a term slice s•n of sn, this algorithm
generates the sliced counterpart T • : s•0 →∗ s•n of T that only encodes the
information required to reproduce (the meaningful symbols of) the term slice
s•n. Additionally, the algorithm returns a companion compatibility condition
B• that guarantees the correctness of the generated trace slice.

1.2 Backward Slicing for Execution Traces

Consider an execution trace T : s0 →∗ sn. A trace slice T • of T is defined
w.r.t. a slicing criterion — i.e., a set of positions Osn ⊆ Pos(sn) that refer to
those symbols of sn that we want to observe. Basically, the trace slice T • of
T is obtained by removing all the information from T that is not required to
produce the term slice s•n = slice(sn,Osn). A trace slice is formally defined
as follows.

Definition 1.2.1 Let R = (Σ,∆ ∪ B,R) be a conditional rewrite theory,

and let T : s0
r1,σ1,w1→ s1

r2,σ2,w2→ . . .
rn,σn,wn→ sn be an execution trace in R.

Let Osn be a slicing criterion for T . A trace slice of T w.r.t. Osn is a pair
[s•0 → s•1 → . . .→ s•n, B

•], where

1. s•i is a term slice of si, for i = 0, . . . , n, and B• is a boolean condition;

2. s•n = slice(sn,Osn);

3. for every term s′0 such that s•0 ∝B
•
s′0, there exists an execution trace

s′0→s′1→ . . .→sn in R such that

i) s′i → s′i+1 is either the rewrite step s′i
ri+1,σ

′
i+1,wi+1→ s′i+1 or s′i = s′i+1,

i = 0, . . . , n− 1;

ii) s•i ∝B
•
s′i, i = 1, . . . , n.

Note that Point 3 of Definition 1.2.1 ensures that the rules involved in the
sliced steps of T • can be applied again, at the corresponding positions, to ev-
ery concrete trace T ′ that can be obtained by instantiating all the •-variables
in s•0 with arbitrary terms.

The following example illustrates the slicing of an execution trace.

Backward Trace Slicing for Conditional Rewrite Theories 18

Example 1.2.2

Consider the Maude specification of Example B together with the following
execution trace T :

(<a|30>;debit(a,5));credit(a,3)
debit→ <a|25>;credit(a,3)

credit→ <a|28>

Let <a|•1> be a term slice of <a|28> generated with the slicing criterion {1}
—i.e., <a|•1>=slice(<a|28>, {1}). Then, the trace slice for T is [T •, •8 ≥ •9]
where T • is as follows:

(<a|•8 >;debit(a, •9));credit(a| •4)
debit→ <a| •3 >;credit(a, •4)

credit→ <a| •1 >

Note that T • needs to be endowed with the compatibility condition •8 ≥ •9

in order to ensure the applicability of the debit rule. In other words, any
instance s•σ of <a|•8>;debit(a,•9) can be rewritten by the debit rule only
if •8σ ≥ •9σ.

Informally, given a slicing criterion Osn for the execution trace T = s0 →∗
sn, at each rewrite step si−1 → si, i = n, . . . , 1, our technique inductively
computes the association between the meaningful information of si and the
meaningful information in si−1. For each such rewrite step, the conditions
of the applied rule are recursively processed in order to ascertain from si
the meaningful information in si−1, together with the accumulated condition
B•i . The technique proceeds backwards, from the final term sn to the initial
term s0. A simplified trace is obtained where each si is replaced by the
corresponding term slice s•i .

We define a transition system (Conf , •→) [Plo04] where Conf is a set of
configurations and •→ is the transition relation that implements the back-
ward trace slicing algorithm. Configurations are formally defined as follows.

Definition 1.2.3 A configuration, written as 〈T , S•, B•〉, consists of three
components:

– the execution trace T : s0 →∗ si−1 → si to be sliced;
– the term slice s•i , that records the computed term slice of si
– a boolean condition B•.

The transition system (Conf , •→) is defined as follows.

Definition 1.2.4 Let R = (Σ,∆∪B,R) be a rewrite theory, let T = U →∗
W be an execution trace in R, and let V → W be a rewrite step. Let B•W

Backward Trace Slicing for Conditional Rewrite Theories 19

and B•V be two boolean conditions, and W • be a term slice of W . Then, the
transition relation •→⊆ Conf × Conf is the smallest relation that satisfies
the following rule:

(V •, B•V) = slice-step(V → W, W •, B•W)

〈U →∗ V → W, W •, B•W 〉•→ 〈U →∗ V, V •, B•V 〉

Roughly speaking, the relation •→ transforms a configuration 〈U →∗
V → W, W •, B•W 〉 into a configuration 〈U →∗ V, V •, B•V 〉 by calling the
function slice-step(V → W, W •, B•W) of Section 1.3, which returns a rewrite
step slice for V → W . More precisely, slice-step computes a suitable term
slice V • of V and a boolean condition B•V that updates the compatibility
condition specified by B•W .

The initial configuration 〈s0 →∗ sn, slice(sn,Osn), true〉 is transformed
until a terminal configuration 〈s0, s

•
0, B

•
0〉 is reached. Then, the computed

trace slice is obtained by replacing each term si by the corresponding term
slice s•i , i = 0, . . . , n, in the original execution trace s0 →∗ sn. The algorithm
additionally returns the accumulated compatibility condition B•0 attained in
the terminal configuration.

More formally, the backward trace slicing of an execution trace w.r.t. a
slicing criterion is implemented by the function backward-slicing defined as
follows.

Definition 1.2.5 (Backward trace slicing algorithm) Let R = (Σ,∆∪
B,R) be a rewrite theory, and let T : s0 →∗ sn be an execution trace in R.
Let Osn be a slicing criterion for T . Then, the function backward-slicing is
computed as follows:

backward-slicing(s0 →∗ sn,Osn) = [s•0 →∗ s•n, B•0]

iff there exists a transition sequence in (Conf , •→)

〈s0 →∗ sn, s•n, true〉•→ 〈s0 →∗ sn−1, s
•
n−1, B

•
n−1〉•→∗ 〈s0, s

•
0, B

•
0〉

where s•n = slice(sn, Osn)

In the following, we formulate the auxiliary procedure for the slicing of
conditional rewrite steps.

Backward Trace Slicing for Conditional Rewrite Theories 20

1.3 The function slice-step

The function slice-step, which is outlined in Figure 1.1, takes as input three
parameters, namely, a rewrite step µ : s

r,σ,w→ t (with r = λ→ ρ if C2), a term
slice t• of t, and a compatibility condition B•prev; and delivers the term slice
s• and a new compatibility condition B•. Within the algorithm slice-step, we
use an auxiliary operator 〈|σ1, σ2|〉 that refines (overrides) a substitution σ1

with a substitution σ2, where both σ1 and σ2 may contain •-variables. The
main idea behind 〈| , |〉 is that, for the slicing of the step µ, all variables in the
applied rewrite rule r are näıvely assumed to be initially bound to irrelevant
data •, and the bindings are incrementally refined as we (partially) solve the
conditions of r.

function slice-step(s
r,σ,w→ t, t•, B•prev)

1. if w 6∈ MPos(t•)
2. then
3. s• = t•

4. B• = B•prev
5. else
6. θ = {x/fresh• | x ∈ V ar(r)}
7. ρ• = slice(ρ,MPos(t•|w))

8. ψρ = 〈|θ,matchρ•θ(t•|w)|〉
9. for i = n downto 1 do
10. (ψi, B

•
i) = process-condition(ci, σ,

〈|ψρ, ψn...ψi+1|〉)
11. od
12. s• = t•[λ〈|ψρ, ψn...ψ1|〉]w
13. B• = (B•prev ∧B•n... ∧B•1)(ψ1ψ2 . . . ψn)
14.fi
15. return (s•, B•)

Figure 1.1: Backward step slicing function.

2Since equations and axioms are both interpreted as rewrite rules in our formulation,
we often abuse the notation λ→ ρ if C to denote rules as well as (oriented) equations and
axioms.

Backward Trace Slicing for Conditional Rewrite Theories 21

Definition 1.3.1 (refinement) Let σ1 and σ2 be two substitutions. The re-
finement of σ1 w.r.t. σ2 is defined by the operator 〈| , |〉 as follows: 〈|σ1, σ2|〉 =
σ|̀Dom(σ1), where

xσ =


xσ2 if x ∈ Dom(σ1) ∩Dom(σ2)
xσ1σ2 if x ∈ Dom(σ1) \Dom(σ2) ∧ σ2 6= fail
xσ1 otherwise

Note that 〈|σ1, σ2|〉 differs from the (standard) instantiation of σ1 with σ2.
We write 〈|σ1, . . . , σn|〉 as a compact denotation for 〈|〈| . . . 〈|σ1, σ2|〉, . . . , σn−1|〉,
σn|〉.

Example 1.3.2

Let σ1 = {x/•1, y/•2} and σ2 = {x/a, •2 /g(•3), z/5} be two substitutions.
Thus, 〈|σ1, σ2|〉 = {x/a, y/g(•3)}.

Roughly speaking, the function slice-step works as follows. When the
rewrite step µ occurs at a position w that is not a meaningful position of t•

(in symbols, w 6∈ MPos(t•)), trivially µ does not contribute to producing
the meaningful symbols of t•. Therefore, the function returns s• = t•, with
the input compatibility condition B•prev.

Example 1.3.3

Consider the Maude specification of Example B and the following rewrite step

µ: (<a|30>;debit(a,5));credit(a,3)
debit→ <a|25>;credit(a,3). Let

•1; credit(a, 3) be a term slice of <a|25>;credit(a,3). Since the rewrite
step µ occurs at position 1 6 ıMPos(•1; credit(a, 3)), the term <a|25> intro-
duced by µ in <a|25>;credit(a,3) is completely ignored in •1; credit(a, 3).
Hence, the computed term slice for (<a|30>;debit(a,5)); credit(a,3) is
the very same •1; credit(a, 3).

On the other hand, when w ∈ MPos(t•), the computation of s• and
B• involves a more in-depth analysis of the rewrite step, which is based on
an inductive refinement process that is obtained by recursively processing
the conditions of the applied rule. More specifically, we initially define the
substitution θ = {x/fresh• | x ∈ V ar(r)} that binds each variable in r to
a fresh •-variable. This corresponds to assuming that all the information in
µ, which is introduced by the substitution σ, can be marked as irrelevant.
Then, θ is incrementally refined using the following two-step procedure.

Backward Trace Slicing for Conditional Rewrite Theories 22

function process-condition(c, σ, θ)
1. case c of
2. (p := t) ∨ (t⇒ p) :
3. if (tσ = pσ)
4. then return ({}, true) fi
5. Q =MPos(pθ)
6. [t• →∗ p•, B•] =

backward-slicing(tσ →∗ pσ, Q)
7. t•′ = slice(t,MPos(t•))
8. ψ = matcht•′θ(t

•)
9. e :
10. ψ = { }
12. B• = eθ
12. end case
13. return (ψ, B•)

Figure 1.2: Condition processing function.

Step 1. We compute the matcher matchρθ(t
•
|w), and then generate the refine-

ment ψρ of θ w.r.t. matchρθ(t
•
|w) (in symbols, ψρ = 〈|θ,matchρθ(t

•
|w)|〉).

Roughly speaking, the refinement ψρ updates the bindings of θ with
the meaningful information extracted from t•|w.

Example 1.3.4

Consider the rewrite theory in Example B together with the following

rewrite step µdebit : <a|30>;debit(a,5)
debit→ <a|25> that involves the

application of the debit rule whose right-hand side is
ρdebit =<Id|newBal>. Let t• =<a|•1> be a term slice of <a|25>. Then,
the initially ascertained substitution for µ is θ={Id/•2, bal/•3, M/•4,
newBal/•5}, and matchρdebitθ(t

•) = match<•2|•5>(<a|•1>) = {•2/a,
•5/•1}. Thus, the substitution ψρdebit = 〈|θ, ψρdebit|〉 = {Id/a, bal/•3,
M/•4, newBal/•1}. That is, ψρdebit refines θ by replacing the uninformed
binding Id/•2, with Id/a.

Step 2. Let Cσ = c1σ ∧ . . . ∧ cnσ be the instance of the condition in the
rule r that enables the rewrite step µ. Each (sub)condition ciσ, i =

Backward Trace Slicing for Conditional Rewrite Theories 23

1, . . . , n is processed, in reversed evaluation order, i.e., from cnσ to c1σ,
by using the auxiliary function process-condition given in Figure 1.2
that generates a pair (ψi, B

•
i) such that ψi is used to further refine

the partially ascertained substitution 〈|ψρ, ψn, . . . , ψi+1|〉 computed by
incrementally analyzing conditions cnσ, cn−1σ . . . , ci+1σ, and B•i is a
boolean condition that is derived from the analysis of the condition ci.

When the whole Cσ has been processed, we get the refinement 〈|ψρ, ψn, . . . , ψ1|〉,
which basically encodes all the instantiations required to construct the term
slice s• from t•. More specifically, s• is obtained from t• by replacing the
subterm t•|w with the left-hand side λ of r instantiated with 〈|ψρ, ψn, . . . , ψ1|〉.
Furthermore, B• is built by collecting all the boolean compatibility conditions
B•i delivered by process-condition and instantiating them with the composi-
tion of the computed refinements ψ1 . . . ψn. It is worth noting that process-
condition handles rewrite expressions, equational conditions, and matching
conditions differently. More specifically, the pair (ψi, Bi) that is returned
after processing each condition ci is computed as follows.

– Matching conditions. Let c be a matching condition with the form p :=
m in the condition of rule r. During the execution of the step µ :
s

r,σ,w→ t, recall that c is evaluated as follows: first, mσ is reduced
to its canonical form mσ ↓∆, and then the condition mσ ↓∆=B pσ is
checked. Therefore, the analysis of the matching condition p := m
during the slicing process of µ implies slicing the (internal) execution
trace Tint = mσ →∗ pσ, which is done by recursively invoking the
function backward-slicing for execution trace slicing with respect to the
meaningful positions of the term slice pθ of p, where θ is a refinement
that records the meaningful information computed so far. That is,
[m• →∗ p•, B•] = backward-slicing(mσ →∗ pσ, MPos(pθ)). The
result delivered by the function backward-slicing is a trace slice m• →∗
p• with compatibility condition B•.

In order to deliver the final outcome for the matching condition p :=
m, first the substitution ψ = matchmθ(m

•) is computed, which is the
substitution needed to refine θ, is computed, and then the pair (ψ, B•)
is returned.

Example 1.3.5

Consider the the rewrite step µdebit of Example 1.3.4 together with
the refined substitution θ = {Id/a, bal/•3, M/•4, newBal/•1}. We

Backward Trace Slicing for Conditional Rewrite Theories 24

process the condition newBal := bal - M of debit by considering the
internal execution trace Tint = 30− 5→ 25 3. By invoking the function
backward-slicing, the trace slice result is [•6 → •6, true]. The final
outcome is given by match•7−•8(•6), that is fail. Thus, we conclude
that θ does not need any further refinement.

– Rewrite expressions. The case when c is a rewrite expression t ⇒ p is
handled similarly to the case of a matching equation p := t, with the
difference that t can be reduced by using the rules of R in addition to
the equations and axioms.

– Equational conditions. During the execution of the rewrite step µ :
s
r,σ,w→ t, the instance eσ of an equational condition e in the condition

of the rule r is just fulfilled or falsified, but it does not bring any in-
stantiation into the output term t. Therefore, when processing eσ, no
meaningful information to further refine the partially ascertained sub-
stitution θ must be added. However, the equational condition e must
be recorded in order to compute the compatibility condition B• for the
considered conditional rewrite step. In other words, after processing an
equational condition e, we deliver the tuple (ψ, B•), with ψ = { } and
B• = eθ. Note that the condition e is instantiated with the updated
substitution θ, in order to transfer only the meaningful information of
eσ computed so far in e.

Example 1.3.6

Consider the refined substitution given in Example 1.3.5
θ = {Id/a, bal/•3, M/•4, newBal/•1} together with the rewrite step
µdebit of Example 1.3.4 that involves the application of the debit

rule. After processing the condition bal >= M of debit, we deliver
B• = (•3 >= •4).

Correctness of our conditional slicing technique is established by the fol-
lowing theorem. The proof can be found in [ABFR12c].

3Note that the trace 30-5→25 involves an application of the Maude built-in opera-
tor “-”. Given a built-in operator op, in order to handle the reduction a op b→ c as an
ordinary rewrite step, we add the rule a op b⇒ c to the considered rewrite theory.

Backward Trace Slicing for Conditional Rewrite Theories 25

Theorem 1.3.7 (correctness) Let R be a rewrite theory. Let T : s0
r1,σ1,w1→

...
rn,σn,wn→ sn be an execution trace in the rewrite theory R, with n > 0, and

let Osn be a slicing criterion for T . Then, the pair [s•0 → ... → s•n, B
•
0]

computed by backward-slicing(T , Osn) is a trace slice for T .

1.4 Experimental Evaluation

The conditional slicing methodology presented so far has been implemented
in Julienne, a prototype tool written in Maude first described in [ABFR12b]
and publicly available at http://safe-tools.dsic.upv.es/julienne/. The
tool takes in input a slicing criterion and a Maude execution trace, which
is a term of sort Trace (generated by means of the the Maude meta-level
operator metaSearchPath), and delivers the corresponding trace slice. The
prototype have been tested on rather large execution traces, such as the
counterexamples generated by the model checker for Web applications Web-
TLR [ABER10]. In our experiments, we have considered a Webmail applica-
tion together with four LTLR properties that have been refuted by Web-TLR.
For each refuted property, Web-TLR has produced the corresponding coun-
terexample in the form of a huge, textual execution trace Ti, i = 1, ..., 4, in
the range 10− 100Kb that has been used to feed our slicer.

Example Original Slicing Sliced %
trace trace size criterion trace size reduction

Web-TLR.T1 19114
Web-TLR.T1.O1 3982 79.17%
Web-TLR.T1.O2 3091 83.83%

Web-TLR.T2 22018
Web-TLR.T2.O1 2984 86.45%
Web-TLR.T2.O2 2508 88.61%

Web-TLR.T3 38983
Web-TLR.T3.O1 2045 94.75%
Web-TLR.T3.O2 2778 92.87%

Web-TLR.T4 69491
Web-TLR.T4.O1 8493 87.78%
Web-TLR.T4.O2 5034 92.76%

Table 1.1: Backward trace slicing benchmarks.

Table 1.1 shows the size of the original counterexample trace and that of
the computed trace slice, both measured as the length of the corresponding
string, w.r.t. two slicing criteria, that are detailed in the tool website. The

http://safe-tools.dsic.upv.es/julienne/

Backward Trace Slicing for Conditional Rewrite Theories 26

considered criteria allow one to monitor the messages exchanged by a specific
Web browser and the Webmail server, as well as to isolate the changes on
the data structures of the two interacting entities. The %reduction column in
Table 1.1 refers to the percentage of reduction achieved. The results we have
obtained are very encouraging, and show an impressive reduction rate (up
to ∼ 95%) in reasonable time (max. 0.9s on a Linux box equipped with an
Intel Core 2 Duo 2.26GHz and 4Gb of RAM memory). Actually, sometimes
the trace slices are small enough to be easily inspected by the users, who
can restrict their attention to the part of the computation that they want to
observe.

2
Slicing-based Trace Analysis of Rewriting

Logic Specifications with iJulienne

In this chapter, we present an incremental slicing methodology specially suit-
able for the analysis of rewriting logic computations together with its imple-
mentation in the iJulienne tool. This methodology is a new extended
version of the original slicing technique first proposed in [ABFR12a].

This chapter is organized as follows. Section 2.1 gives the intuition of
our incremental backward trace slicing methodology. Section 2.2 presents
iJulienne, the slicing-based trace analyzer implementing this new method-
ology. Section 2.3 shows two different working sessions with iJulienne and
finally, Section 2.4 reports some experiments that assess the practicality of
our methodology.

2.1 Incremental Trace Slicing

The original trace slicing technique of [ABFR12a] intuitively works as shown
in Figure 2.1. Given a starting slicing criterion (i.e., a piece of relevant
information that we want to observe in the final computation state), the
trace is traversed from back to front and the backward dependence of the
observed information is incrementally computed at each execution step.

The information computed at each step is surely relevant with respect
to the slicing criterion. However, this information may not be relevant with
respect to the source of error we want to discover, as it may contain extra
irrelevant information in this regard. Many factors can influence this excess of

27

Slicing-based Trace Analysis of RWL Specifications with iJulienne 28

Figure 2.1: Backward trace slicing scheme.

Figure 2.2: Incremental backward trace slicing scheme.

information: an erroneous or overly general slicing criterion, the structure of
the data dependence itself, the length of the trace (as the computed relevant
information tends to grow at each execution step), etc.

In order to reduce to the minimum the excess of irrelevant information
with respect to the source of error and therefore achieve better reduction
rates, we propose to refine the slicing criterion at each execution step by
means of the auxiliary, interactive function refine, which takes as input a
slicing criterion and returns an equal or more restrictive one.

The proposal, which is informally depicted in Figure 2.2, works as follows.
Given an execution trace T : s0 →∗ sn and a slicing criterion Osn ⊆ Pos(sn),
which refers to those symbols of sn that we want to observe, the main differ-
ence between the proposed incremental slicing methodology and the original
backward slicing technique is that a refined version of the slicing criterion is
established after each execution of the slice-step function.

Consider the configuration given in Definition 1.2.3 and the transition
system (Conf , •→) given in Definition 1.2.4. In order to endow incremental
capabilities to the original backward trace slicing technique, we modify the
slicing calculus as follows.

Slicing-based Trace Analysis of RWL Specifications with iJulienne 29

Definition 2.1.1 Let R = (Σ,∆∪B,R) be a rewrite theory, let T = U →∗
W be an execution trace in R, and let V → W be a rewrite step. Let B•W and
B•V be two boolean conditions, and let W • be a term slice of W . Then, the
transition relation •→⊆ Conf × Conf is the smallest relation that satisfies
the following rule:

(V •, B•V) = slice-step(V → W, W •′, B•W)

∧ W •′ = slice(W, refine(MPos(W •)))

〈U →∗ V → W, W •, B•W 〉•→ 〈U →∗ V, V •, B•V 〉

Roughly speaking, the relation •→ transforms a configuration 〈U →∗
V → W, W •, B•W 〉 into a configuration 〈U →∗ V, V •, B•V 〉 by calling the
function slice-step(V → W, W •′, B•W) of Section 1.3, which returns a rewrite
step slice for V → W , and by allowing the user to refine the meaningful sym-
bols of W • to calculate W •′ as the slice(W, refine(MPos(W •))). More
precisely, slice-step computes a suitable term slice V • of V and a compatibil-
ity condition BV that updates the compatibility condition specified by BW ,
and refine computes a refined slicing criterion, which is used to slice W and
therefore obtain the new slicing criterion as the meaningful positions of W •′.

In the same way as the original definition, the initial configuration 〈s0 →∗
sn, slice(sn,Osn), true〉 is transformed until a terminal configuration 〈s0, s

•
0,

B•0〉 is reached. Then, the computed trace slice is obtained by replacing each
term si by the corresponding term slice s•i , i = 0, . . . , n, in the original exe-
cution trace s0 →∗ sn. The algorithm additionally returns the accumulated
compatibility condition B•0 attained in the terminal configuration.

More formally, the incremental backward trace slicing of an execution
trace with respect to a slicing criterion is implemented by the function
incremental-backward-slicing, defined as follows.

Definition 2.1.2 (Incremental backward trace slicing algorithm) Let
R = (Σ,∆ ∪ B,R) be a rewrite theory, and let T : s0 →∗ sn be an execu-
tion trace in R. Let Osn be a slicing criterion for T . Then, the function
incremental-backward-slicing is computed as follows:

incremental-backward-slicing(s0 →∗ sn,Osn) = [s•0 →∗ s•n, B•0]

iff there exists a transition sequence in (Conf , •→)

〈s0 →∗ sn, s•n, true〉•→ 〈s0 →∗ sn−1, s
•
n−1, B

•
n−1〉•→∗ 〈s0, s

•
0, B

•
0〉

where s•n = slice(sn, Osn)

Slicing-based Trace Analysis of RWL Specifications with iJulienne 30

2.2 The iJulienne Online Trace Analyzer

In this section we present iJulienne, the online trace analyzer that im-
plements the incremental backward trace slicing methodology presented so
far.

2.2.1 Features and Characteristics of iJulienne

The iJulienne online trace analyzer provides the means for the user to
perform exhaustive analyses of Maude execution traces, also including a trace
generation facility. The main features iJulienne offers to perform such
analyses are summarized as follows:

i) Trace generation capabilities by providing an initial and final state of
the desired trace, either in source-level or meta-level representation.

ii) Ability to perform an exhaustive analysis of each rule or equation appli-
cation via navigating the states slider and obtaining useful information
related to each transition, that includes the rule or equation applied, the
computed substitution and the position where they were applied.

iii) Integration of a simple but highly effective querying language to perform
elaborated queries in search for relevant patterns in the entire trace.

iv) Highly customizable incremental backward trace slicing feature, which
allows the user to, either refine the current slicing criterion, or specify a
completely new one in any state of the trace.

v) Supports a cogent form of Dynamic Program Slicing, eliding irrelevant
operators, rules and equations from the provided Maude program with
respect to a previously performed trace slice.

By combining all these features, the user can highly reduce the time
and effort required to perform comprehensive analyses of Maude execution
traces, which is particularly suitable as programs and traces grow in size and
complexity.

Slicing-based Trace Analysis of RWL Specifications with iJulienne 31

Trace Analyzer

Maude Slicer

Trace Slicer

Program Slicer

IT-Builder

Q
u

e
ry

 H
a
n

d
le

r

P
re

tt
y-

P
ri

n
te

r

Instrum. Trace

Trace

Q
u
e
ry

 /
 S

.
C

ri
te

ri
o
n

(T
ra

ce
 S

lic
e
,

P
ro

g
ra

m
 S

lic
e
)

(Trace Slice, S. Criterion)

Figure 2.3: iJulienne architecture

2.2.2 The System Architecture of iJulienne

The iJulienne system is written in Maude and consists of about 250 Maude
function definitions (approximately 1.7K lines of source code). It is a stand-
alone application (which can be invoked as a Full Maude command or used
online through a Java Web service) that allows the analysis of general rewrite
theories that may contain (conditional) rules and equations, built-in opera-
tors, and algebraic axioms.

The user interface of iJulienne is based on the AJAX technology, which
allows the Maude engine to be used through the WWW. The tool is publicly
available at http://safe-tools.dsic.upv.es/iJulienne. Its architecture,
which is depicted in Figure 2.3, consists of four main modules named IT-
Builder, Maude Slicer, Query Handler, and Pretty-Printer.

The IT-Builder is a pre-processor that obtains a suitable, instrumented
trace meta-representation where all internal algebraic axiom applications are
made explicit.

The Maude Slicer module provides incremental trace slicing and dy-
namic program slicing facilities. Both of these techniques are developed by
using Maude reflection and meta-level functionality. On one hand, the Trace

http://safe-tools.dsic.upv.es/iJulienne

Slicing-based Trace Analysis of RWL Specifications with iJulienne 32

Slicer implements a greatly enhanced, incremental extension of the condi-
tional backward trace slicing algorithm of [ABER11, ABFR12a] in which the
slicing criteria can be repeatedly refined and the corresponding trace slices
are automatically obtained by simply discarding the pieces of information
affected by the updates. Thanks to incrementality, both trace slicing and
analysis and debugging times are significantly reduced. On the other hand,
the companion Program Slicer can be used to discard the program equations
and rules that are not responsible for producing the set of target symbols in
the observed trace state. Rather than simply glueing together the program
equations and rules that are used in the simplified trace, it just delivers the
minimal program fragment that is proved to influence the observed result.
In other words, not only are the unused program data and rules removed but
the data and rules that are used in sub-computations that are irrelevant to
the criterion of interest are also removed.

The way in which the slicing criteria are defined has been greatly improved
in iJulienne. Besides supporting mouse click events that can select any
information piece in the state, a Query handling facility is included that
allows huge execution traces to be queried by simply providing a filtering
pattern (the query) that specifies a set of symbols to monitor and also selects
those states that match the pattern. A pattern language with wild cards ?
and is used to identify (resp. discard) the relevant (resp. irrelevant) data
inside the states.

Finally, the Pretty-Printer delivers a more readable representation of
the trace (transformed back to sort String) that aims to favor better inspec-
tion and debugging within the Maude formal environment. Moreover, it
provides the user with an advanced view where the irrelevant information
can be displayed or hidden, depending on the interest of the user. This can
also be done by automatically downgrading the color of those parts of the
trace that contain sub-terms that are rooted by relevant symbols but that
only have irrelevant children.

2.2.3 Trace Querying

Execution traces (and in particular Maude execution traces) commonly con-
sist of a high number of huge and complex states. In this regard, the pos-
sibility of querying about the trace in order to properly analyze their con-
tained information is a must-have feature for any practical debugging tool.
iJulienne offers this possibility by implementing a querying mechanism

Slicing-based Trace Analysis of RWL Specifications with iJulienne 33

based on a simple but highly effective pattern-matching filtering language
that is particularly useful for both trace analysis and program debugging by
allowing the trace to be queried and the slicing criterion to be fined incre-
mentally.

One of the most relevant characteristics about our querying language is
the use of two symbols as wild-cards, namely ? and , that are associated
with the actions of identification and discarding of information respectively.
By using these wild-cards, the language is endowed with the proper flexibility
to generate complex search patterns with relatively simple syntax. However,
the use of wild-card symbols suffers a serious implementation problem when
applied to partially order sorted systems like Maude, because wild-cards must
be later converted into variables whose sort (type) needs to be inferred.

A connected component (kind in Maude) is a set of sorts that are directly
or indirectly related in the sub-sort ordering [CDE+11]. To properly infer the
sort of each wild-card in Maude and any similar system, we must first obtain
the information about all the connected components created by the partially
ordered relation established in the declaration of sorts of the program whose
trace is to be analyzed. Then, we must inspect each connected component
and perform the necessary actions to ensure that all of them have exactly
one top sort, namely by creating new sorts and establishing sub-sort relations
for those connected components with more than one top sort. Finally, by
creating one constant per wild-card and connected component top sort in
the considered Maude program, the system parser is able to infer the proper
sort by simple reading the pattern holding the wild-cards and matching our
wild-card variables to the newly created program constants. Example 2.2.1
shows how iJulienne, modifies1 a Maude program to properly infer the
corresponding sorts of the proposed querying language wild-cards.

Example 2.2.1
The following Maude program defines a Maude specification for the minmax
function.

mod MINMAX is

inc INT .

sorts NeList List Pair .

subsorts Nat < List .

op nil : -> List [ctor] .

1These operations are performed by iJulienne in a transparent manner to the user.

Slicing-based Trace Analysis of RWL Specifications with iJulienne 34

op _;_ : List List -> List [ctor assoc] .

op PAIR : Nat Nat -> Pair .

op 1st : Pair -> Nat .

op 2nd : Pair -> Nat .

op Max : Nat Nat -> Nat .

op Min : Nat Nat -> Nat .

op minmax : List -> Pair .

op Maxl : List -> Nat .

var N X Y : Nat .

var L : List .

var P : Pair .

crl [Max1] : Max(X,Y) => X if X >= Y .

crl [Max2] : Max(X,Y) => Y if X < Y .

crl [Min1] : Min(X,Y) => Y if X > Y .

crl [Min2] : Min(X,Y) => X if X <= Y .

rl [1st] : 1st(PAIR(X , Y)) => X .

rl [2nd] : 2nd(PAIR(X , Y)) => Y .

rl [minmax1] : minmax(N) => PAIR(N,N) .

rl [minmax2] : minmax(N ; L) =>

PAIR(Min(N,1st(minmax(L))) , Max(N,2nd(minmax(L)))) .

rl [MaxL] : Maxl(L) => 1st(minmax(L)) .

endm

The procedure that iJulienne runs in order to prepare the program for
properly inferring the corresponding sorts is as follows.

First, we obtain the connected components for the MINMAX program in
the following way:

rewrite in iJulienne : getKinds(upModule(’MINMAX, true)) .

rewrites: 3 in 7635026678ms cpu (7ms real) (0 rewrites/second)

result NeKindSet: ’‘[Bool‘] ; ’‘[NeList‘] ; ’‘[Pair‘] ; ’‘[List‘,Int‘]

We can observe that the partial order resulting from the declaration of
sorts and subsorts in the MINMAX program identifies four connected compo-
nents, three of them having only one top sort, namely Bool, NeList and
Pair. However, the fourth connected component we retrieve has both List

and Int as top sorts. In order to properly infer the type of a variable for this

Slicing-based Trace Analysis of RWL Specifications with iJulienne 35

connected component, iJulienne must create an artificial super-top and
declare both List and Int sub-sorts of the recently created super-top.

This is easily achieved by adding the following declarations to the original
MINMAX program:

sort JV2TOP0 .

subsorts List Int < JV2TOP0 .

The final step to achieve the automatic and transparent inferring of sorts
is to create the set of constants that will match our wild-card variables by
adding the following operators2 to the MINMAX program:

op JV2VAR : -> Bool .

op JV2BOT : -> Bool .

op JV2VAR : -> JV2TOP0 .

op JV2BOT : -> JV2TOP0 .

op JV2VAR : -> NeList .

op JV2BOT : -> NeList .

op JV2VAR : -> Pair .

op JV2BOT : -> Pair .

At this point, our querying language syntax is fully integrated in the
MINMAX program, allowing the user to perform a huge variety of queries to
easily analyze any trace obtained by running the original program.

The versatility of our querying language is pictured in Example 2.2.2.
In addition, Section 2.3 explains how to perform queries directly in the
iJulienne tool.

Example 2.2.2
Consider the Maude specification of Example A together with the following
initial program state:

< Alice | 50 > ; < Bob | 20 > ; < Charlie | 20 > ; < Daisy | 20 > ;

credit(Alice,10) ; credit(Daisy,40) ; debit(Charlie,50) ; debit(Daisy,5) ;

transfer(Alice,Charlie,15) ; transfer(Alice,Daisy,20) ;

transfer(Bob,Charlie,4)

2JV2VAR and JV2BOT are two iJulienne reserved words that correspond to the ?

and wild-cards respectively.

Slicing-based Trace Analysis of RWL Specifications with iJulienne 36

If we want to identify the amounts of money transferred by Alice to an-
other user, we should query the state with the pattern transfer(Alice, ,?),
which discards the information related to the receiver and identifies the
amounts transferred by Alice. After launching the query, we will identify
that Alice has two transfer operations pending, with quantities 15 and 20.

Consider now that we want to identify the names of the clients whose
balance is 20. Then, we must launch a query using the pattern < ? | 20 >,
which will identify Bob, Charlie and Daisy as the clients that match the
given criterion.

Finally, consider that we want to search for the pattern Charlie in order
to identify in how many operations is Charlie involved (including its own
balance declaration). As a result, the term Charlie will be identified in the
following operations: < Charlie | 20 >, transfer(Alice,Charlie,15),
transfer(Bob,Charlie,4) and debit(Charlie,50).

At this point, one final source of eventual problems has to be addressed,
namely ambiguity. Querying patterns may be as ambiguous as programs,
specially when making use of wild-cards. In order to disambiguate patterns,
the querying language implemented in iJulienne offers the possibility of
either automatically infer the proper sort of each wild-card as explained pre-
viously, or let the user specify the sort in the same manner that dictates the
syntax of Maude, that is, by concatenating wild-card and sort by means of the
: character (e.g., ?:Nat) or, in the case of a constant, by wrapping them in
parentheses and concatenating the sort by means of a dot (e.g., (cnt).Nat).
Example 2.2.3 shows how the disambiguation of a pattern provides widely
different querying results.

Example 2.2.3

Consider the MINMAX program of Example 2.2.1 and the following state:

PAIR(Min(4,1st(PAIR(Min(7,1st(minmax(0))),Max(7,2nd(minmax(0)))

))),Max(4,2nd(minmax(7 ; 0))))

Consider we want to identify those values appearing as single minmax pa-
rameters. Then, we may want to perform a query to search for the pattern
minmax(?). However, as minmax can hold either a single Nat or a List (of
Nat) terms, we discover that the original pattern is somehow ambiguous,
as it identifies two appearances of minmax(0) and one of minmax(7 ; 0).

Slicing-based Trace Analysis of RWL Specifications with iJulienne 37

Nevertheless, if we take advantage of the disambiguation facilities that are
provided in iJulienne, we may want to perform a query using the pat-
tern minmax(?:Nat), which will indeed recover only the two appearances of
minmax(0) we wanted to identify, as they are the only terms that match the
disambiguated query.

2.2.4 Program Slicing

Additionally to the backward trace slicing capabilities, iJulienne offers the
possibility to perform a cogent form of dynamic program slicing.

A first, näıve approach to compute a dynamic program slice based on
an execution trace would be to add to the program slice all and only those
rules/equations that have been applied within the trace. After that, for every
rule or equation in the slice, add the operators and variables appearing in
them. Finally, for every operator and variable in the slice, we would add the
corresponding sorts and sub-sorts. However, this approach is trivial and can
be easily improved when we work with trace slices. The difference between a
program slice based on execution traces and program a slice based on trace
slices is the possibility to consider where the rule or equation was applied.
In particular, only rules/equations applied in relevant positions have to be
added to the program slice. Example 2.2.4 shows how iJulienne computes
efficiently a program slice.

Example 2.2.4
Consider the rewrite theory of Example B together with the following trace
and its corresponding trace slice.

Step RuleName Execution trace Sliced trace

1 'Start

< Alice | 50 > ; < Bob | 20 > ; < Charlie | 20 > ; < Daisy | 2

0 > ; credit(Alice,10) ; credit(Daisy,40) ; debit(Charlie,50) ;

debit(Daisy,5) ; transfer(Alice,Charlie,15) ; transfer(Alice,Dai

sy,20) ; transfer(Bob,Charlie,4)

< Alice | * > ; * ; * ; * ; credit(Alice,*) ; * ; * ; * ; * ; * ; *

3 credit

< Bob | 20 > ; < Charlie | 20 > ; < Daisy | 20 > ; credit(Dai

sy,40) ; debit(Charlie,50) ; debit(Daisy,5) ; transfer(Alice,Ch

arlie,15) ; transfer(Alice,Daisy,20) ; transfer(Bob,Charlie,4) ;

 < Alice | 60 >

* ; * ; * ; * ; * ; * ; * ; * ; * ; < Alice | * >

6 credit

< Alice | 60 > ; < Bob | 20 > ; < Charlie | 20 > ; debit(Charl

ie,50) ; debit(Daisy,5) ; transfer(Alice,Charlie,15) ; transfer(

Alice,Daisy,20) ; transfer(Bob,Charlie,4) ; < Daisy | 60 >

< Alice | * > ; * ; * ; * ; * ; * ; * ; * ; *

9 debit

< Alice | 60 > ; < Bob | 20 > ; < Daisy | 60 > ; debit(Daisy,

5) ; transfer(Alice,Charlie,15) ; transfer(Alice,Daisy,20) ; tra

nsfer(Bob,Charlie,4) ; < Charlie | - 30 >

< Alice | * > ; * ; * ; * ; * ; * ; * ; *

12 debit

< Alice | 60 > ; < Bob | 20 > ; < Charlie | - 30 > ; transfer(

Alice,Charlie,15) ; transfer(Alice,Daisy,20) ; transfer(Bob,Ch

arlie,4) ; < Daisy | 55 >

< Alice | * > ; * ; * ; * ; * ; * ; *

Slicing-based Trace Analysis of RWL Specifications with iJulienne 38

mod BANK_ERR is inc INT .
sorts Account Msg State Id .
subsorts Account Msg < State .
var Id Id1 Id2 : Id .
var bal bal1 bal2 newBal newBal1 newBal2 M : Int .
op empty-state : -> State .

op Alice : -> Id .

op Bob : -> Id .
op Charlie : -> Id .
op Daisy : -> Id .
op _;_ : State State -> State [assoc comm] .
op <_|_> : Id Int -> Account [ctor] .
ops credit debit : Id Int -> Msg [ctor] .
op transfer : Id Id Int -> Msg [ctor] .

crl [credit] : credit(Id, M) ; < Id | bal > => < Id | newBal >
if newBal := bal + M .

crl [debit] : debit(Id, M) ; < Id | bal > => < Id | newBal >
if newBal := bal - M .

crl [transfer] : transfer(Id1, Id2, M) ; < Id1 | bal1 > ; < Id2 | bal2 > => < Id1 | newBal1 > ; < Id2 | newBal2 >
if debit(Id1, M) ; < Id1 | bal1 > => < Id1 | newBal1 >
/\ credit(Id2, M) ; < Id2 | bal2 > => < Id2 | newBal2 > .

endm

Figure 2.4: Dynamic program slice of Example 2.2.4.

The näıve program slicing methodology sketched above would point as
relevant all the rules/equations3 applied along the trace (i.e., credit in steps
3 and 6 and debit in steps 9 and 12), and thus compute the corresponding
program slice by calculating all the dependence previously explained.

In contrast, our dynamic program slicing based on trace slices considers as
relevant only the information derived from those rules/equations applied at
the relevant positions of our trace slice (i.e., credit in step 3), and therefore
safely ignores the debit rule as well as the application of rule credit in step
6, which would point Daisy as relevant if taken into account, whereas in no
way it is related to the relevant information of our trace slice. The resulting
program slice is depicted in Figure 2.4.

2.3 iJulienne at work

To illustrate how iJulienne works in practice, we show two typical anal-
ysis sessions that illustrate how iJulienne works in practice. In the first
session, a simple planning system is debugged by intensively exploiting trace
and program slicing, while the second session highlights iJulienne analysis

3Flattening and unflattening transformation are not considered for this task.

Slicing-based Trace Analysis of RWL Specifications with iJulienne 39

mod BLOCKS-WORLD is inc INT .

sorts Block Prop State .

subsort Prop < State .

ops a b c : -> Block .

op table : Block -> Prop . *** block is on the table

op on : Block Block -> Prop . *** first block is on the second block

op clear : Block -> Prop . *** block is clear

op hold : Block -> Prop . *** robot arm holds the block

op empty : -> Prop . *** robot arm is empty

op _&_ : State State -> State [assoc comm] .

op size : Block -> Nat .

vars X Y : Block .

eq [sizeA] : size(a) = 1 .

eq [sizeB] : size(b) = 2 .

eq [sizeC] : size(c) = 3 .

rl [pickup] : clear(X) & table(X) => hold(X) .

rl [putdown] : hold(X) => empty & clear(X) & table(X) .

rl [unstack] : empty & clear(X) & on(X,Y) => hold(X) & clear(Y) .

crl [stack] : hold(X) & clear(Y) => empty & clear(X) & on(X,Y) if size(X) < size(Y) .

endm

Figure 2.5: BLOCKS-WORLD faulty Maude specification.

capabilities on a real-size Maude specification that encodes a Webmail appli-
cation. The considered examples (together with several others) are available
at [iJu12] and the described analysis and debugging sessions can be repro-
duced by accessing iJulienne through its online Web interface.

2.3.1 Debugging the Blocks World Example

Blocks World is one of the most famous planning problems in artificial intel-
ligence. We assume that there are some blocks, placed on a table, that can
be moved by means of a robot arm; the goal of the robot arm is to produce
one or more vertical stacks of blocks. In our specification, which is shown in
the Maude module BLOCKS-WORLD of Figure 2.5, we define a Blocks World
system with three different kinds of blocks that are defined by means of the
operators a, b, and c of sort Block. Different blocks have different sizes that
are described by using the unary operator size. We also consider some oper-
ators that formalize block and robot arm properties whose intuitive meanings
are given in the accompanying program comments.

The states of the system are modeled by means of associative and com-
mutative lists of properties of the form prop1&prop2& . . .&propn, which

Slicing-based Trace Analysis of RWL Specifications with iJulienne 40

describe any possible configuration of the blocks on the table as well as the
status of the robot arm.

The system behavior is formalized by four, simple rewrite rules that con-
trol the robot arm. Specifically, the pickup rule describes how the robot
arm grabs a block from the table, while the putdown rule corresponds to the
inverse move. The stack and unstack rules respectively allow the robot arm
to drop one block on top of another block and to remove a block from the
top of a stack. Note that the conditional stack rule forbids a given block B1
from being piled onto a block B2 if the size of B1 is greater than the size of
B2.

Barely perceptible, the Maude specification of Figure 2.5 fails to provide
a correct Blocks World implementation. By using the BLOCKS-WORLD mod-
ule, it is indeed possible to derive system states that represent erroneous
configurations. For instance, the initial state

si = empty & clear(a) & table(a) & clear(b) & table(b) & clear(c) & table(c)

describes a simple configuration where the robot arm is empty and there are
three blocks a, b, and c on the table. It can be rewritten in 7 steps to the
state
sf = empty & empty & table(b) & table(c) & clear(a) & clear(c) & on(a,b)

that clearly indicates a system anomaly, since it shows the existence of two
empty robot arms!

To find the cause of this wrong behavior, we feed iJulienne with the
faulty rewrite sequence T = si →∗ sf, and we initially slice T w.r.t. the
slicing criterion that observes the two anomalous occurrences of the empty

property and the stack on(a, b) in State sf. This task can be easily performed
in iJulienne by first highlighting the terms that we want to observe in State
sf with the mouse pointer and then starting the slicing process. iJulienne
yields a trace slice that simplifies the original trace by recording only those
data that are strictly needed to produce the considered slicing criterion. Also,
it automatically computes the corresponding program slice, which consists
of the equations defining the size operator together with the pickup and
stack rules (see Figure 2.6). This allows us to deduce that the malfunction is
located in one or more rules and equations that are included in the program
slice.

The generated trace slice is then browsed backwards using the iJulienne’s
navigation facility in search of a possible explanation for the wrong behav-

Slicing-based Trace Analysis of RWL Specifications with iJulienne 41

Slicing-based Trace Analysis of
Rewriting Logic Specifications with iiJULIENNE

María Alpuente, Demis Ballis, Francisco Frechina and Julia Sapiña

[Abstract] [Examples] [Download] [Benchmarks] [i JULIENNE Online Trace Analyzer]

Program Slice

mod BLOCKS-WORLD is inc INT .
 sorts Block Prop State .
 subsort Prop < State .
 ops a b c : -> Block .
 op table : Block -> Prop . *** block is on the table
 op on : Block Block -> Prop . *** block A is on block B
 op clear : Block -> Prop . *** block is clear
 op hold : Block -> Prop . *** robot arm holds the block
 op empty : -> Prop . *** robot arm is empty
 op _&_ : State State -> State [assoc comm] .
 op size : Block -> Nat .
 vars X Y : Block .

 eq [sizeA] : size(a) = 1 .
 eq [sizeB] : size(b) = 2 .
 eq [sizeC] : size(c) = 3 .

 rl [pickup] : clear(X) & table(X) => hold(X) .
 rl [putdown] : hold(X) => empty & clear(X) & table(X) .
 rl [unstack] : empty & clear(X) & on(X,Y) => hold(X) & clear(Y) .
 crl [stack] : hold(X) & clear(Y) => empty & clear(X) & on(X,Y) if size(X) < size(Y) .
endm

Figure 2.6: Program slice computed w.r.t. the slicing criterion empty, empty,
on(a, b).

ior. During this phase, we focus our attention on State 3 (Figure 2.7), which
is inconsistent since it models a robot arm that is holding block a and is
empty at the same time. Therefore, we decide to further refine the trace
slice by incrementally applying backward trace slicing to State 3 w.r.t. the
slicing criterion hold(a). This way we achieve a supplementary reduction of
the previous trace slice in which we can easily observe that hold(a) only
depends on the clear(a) and table(a) properties (see Figure 2.8). Fur-
thermore, the computed program slice includes the single pickup rule (see
Figure 2.9). Thus, we can conclude that:

1. the malfunction is certainly located in the pickup rule (since the com-
puted program slice only contains that rule);

2. the pickup rule does not depend on the status of the robot arm (this
is witnessed by the fact that hold(a) only relies on the clear(a) and
table(a) properties);

3. by 1 and 2, we can deduce that the pickup rule is incorrect, as it never
checks the emptiness of the robot arm before grasping a block.

A possible fix of the detected error consists in including the empty prop-
erty in the left-hand side of the pickup rule, which enforces the robot arm

Slicing-based Trace Analysis of RWL Specifications with iJulienne 42

Slicing-based Trace Analysis of
Rewriting Logic Specifications with iiJULIENNE

María Alpuente, Demis Ballis, Francisco Frechina and Julia Sapiña

[Abstract] [Examples] [Download] [Benchmarks] [i JULIENNE Online Trace Analyzer]

Trace Analysis Phase

You can mark the relevant data by either: 1) highlighting the symbols in the chosen state, or 2) querying the trace and selecting one of the resulting

matching states (the relevant data will be automatically inferred).

 Show advanced view Hide irrelevant data

These are the states of your Trace: States 2-3 of 7 #state

These are the states of your Trace Slice:

empty & clear(b) & clear(c) & table(b) & table(c) & clear(a) &

table(a)

empty & clear(b) & clear(c) & table(b) & table(c) & hold(a)

empty & * & * & * & clear(a) & clear(b) & table(a) empty & * & * & * & clear(b) & hold(a)

Write the pattern for querying the trace !!

Figure 2.7: Navigation through the trace slice of the Blocks World example.

to always be idle before picking up a block. The corrected version of the rule
is hence as follows:

rl [pickup] : empty & clear(X) & table(X) => hold(X) .

2.3.2 Analyzing a Webmail Application

In this section, we reproduce a typical trace analysis session with iJulienne
that operates on a Maude specification of a realistic Webmail application
that consists of 10 rewrite rules and 134 equations. The specification mod-
els both server-side aspects (e.g., Web script evaluations, database interac-
tions) and browser-side features (e.g., forward/backward navigation, Web
page refreshing, window/tab openings). The Web application behavior is
formalized by using rewrite rules of the form [label] : WebState⇒ WebState,
where WebState is a triple that we represent with the following operator
|| || : (Browsers×Message× Server)→ WebState that can be interpreted as

a system shot that captures the current configuration of the active browsers
(i.e., the browsers currently using the Webmail application) together with
the channel through which the browsers and the server communicate via
message-passing. An execution trace specifies a sequence of WebState tran-
sitions that represents a possible execution of the Webmail application.

The session starts by loading the Maude Webmail specification, together
with the execution trace to be analyzed, into the iJulienne trace analyzer.

Slicing-based Trace Analysis of RWL Specifications with iJulienne 43

Slicing-based Trace Analysis of
Rewriting Logic Specifications with iiJULIENNE

María Alpuente, Demis Ballis, Francisco Frechina and Julia Sapiña

[Abstract] [Examples] [Download] [Benchmarks] [i JULIENNE Online Trace Analyzer]

Trace Analysis Phase

You can mark the relevant data by either: 1) highlighting the symbols in the chosen state, or 2) querying the trace and selecting one of the resulting

matching states (the relevant data will be automatically inferred).

 Show advanced view Hide irrelevant data

These are the states of your Trace: States 2-3 of 3 #state

These are the states of your Trace Slice:

empty & clear(b) & clear(c) & table(b) & table(c) & clear(a) &

table(a)

empty & clear(b) & clear(c) & table(b) & table(c) & hold(a)

* & clear(a) & table(a) * & hold(a)

Write the pattern for querying the trace !!

Figure 2.8: Navigation though the refined trace slice of the Blocks World
example.

The trace can be directly pasted in the input form or uploaded from a trace
file that was written off-line. It can also be dynamically computed by the
system (using Maude meta-search capabilities) by introducing the initial and
final states of the trace. In Figure 2.10, we directly fed iJulienne with an
execution trace that represents a counter-example that was automatically
generated by the Maude LTLR model-checker. The considered trace consists
of 97 states, each of which has about 5.000 characters.

The aim of our analysis is to extract the navigation path of a possible
malicious user idA within the Web application from the execution trace. This
is particularly hard to perform by hand since the trace is extremely large and
system states contain a huge amount of data.

Therefore, we decide to slice the trace with iJulienne in order to isolate
only the Web interactions related to user idA, getting rid of all the remaining
unrelated information. To this end, we define the query B(idA, , ?, , , , , ,),
which allows us to select all states in the trace that contain a browser data
structure that is associated with user idA. Note that only the third argument
of the browser data structure, which corresponds to the Web page displayed
on the browser, is declared relevant in the query (i.e., it is marked by the
card ?). Indeed, we are interested in tracking only the Web pages visited
by the user idA. The remaining information (such as script evaluation, and
Web interactions with other users) is not pinpointed and, hence, will be sys-
tematically removed by the slicing tool (and replaced by the symbol ∗) which

Slicing-based Trace Analysis of RWL Specifications with iJulienne 44

Slicing-based Trace Analysis of
Rewriting Logic Specifications with iiJULIENNE

María Alpuente, Demis Ballis, Francisco Frechina and Julia Sapiña

[Abstract] [Examples] [Download] [Benchmarks] [i JULIENNE Online Trace Analyzer]

Program Slice

mod BLOCKS-WORLD is inc INT .
 sorts Block Prop State .
 subsort Prop < State .
 ops a b c : -> Block .
 op table : Block -> Prop . *** block is on the table
 op on : Block Block -> Prop . *** block A is on block B
 op clear : Block -> Prop . *** block is clear
 op hold : Block -> Prop . *** robot arm holds the block
 op empty : -> Prop . *** robot arm is empty
 op _&_ : State State -> State [assoc comm] .
 op size : Block -> Nat .
 vars X Y : Block .

 eq [sizeA] : size(a) = 1 .
 eq [sizeB] : size(b) = 2 .
 eq [sizeC] : size(c) = 3 .

 rl [pickup] : clear(X) & table(X) => hold(X) .
 rl [putdown] : hold(X) => empty & clear(X) & table(X) .
 rl [unstack] : empty & clear(X) & on(X,Y) => hold(X) & clear(Y) .
 crl [stack] : hold(X) & clear(Y) => empty & clear(X) & on(X,Y) if size(X) < size(Y) .
endm

Figure 2.9: Program slice computed w.r.t. the slicing criterion hold(a).

Slicing-based Trace Analysis of
Rewriting Logic Specifications with iiJULIENNE

María Alpuente, Demis Ballis, Francisco Frechina and Julia Sapiña

[Abstract] [Examples] [Download] [Benchmarks] [i JULIENNE Online Trace Analyzer]

Execution trace

Enter the execution trace by providing either: 1) a term of sort Trace (output by Maude), or 2) the first and last state of the trace (to be automatically

reconstructed).

Maude term of sort Trace:

{'`[_`]_`[_`]`[_`]['B['idA.Id,'idw1.Id,''noPage.Qid,'_?_[''Welcome.Qid,'query-empty.Query],
 'session-empty.Session,'_:_['_/_[''idEmail.Qid,'"email2".String],'_/_[''pass.Qid,'"secretAlice".String],
 '_/_[''user.Qid,'"alice".String]],'mes-empty.Message,'history-empty.History,'s_['0.Zero]],
 'bra-empty.BrowserActions,'mes-empty.Message,'S['_:_['`(_`,_`,`{_`}`,`{_`}`)[''Admin-Logout.Qid,'updateDB[
 's`(_`)['"adminPage".String],'s`(_`)['"free".String]],'`(_=>_`)['TRUE.Condition,''Home.Qid],
 'nav-empty.Navigation],'`(_`,_`,`{_`}`,`{_`}`)[''Administration.Qid,'_;_['_:=_[''adminPage.Qid,'selectDB[
 's`(_`)['"adminPage".String]]],'if_then_else_fi['_=_[''adminPage.Qid,'s`(_`)['"free".String]],'_;_[
 'updateDB['s`(_`)['"adminPage".String],'getSession['s`(_`)['"user".String]]],'setSession['s`(_`)[
 '"adminPage".String],'s`(_`)['"free".String]]],'setSession['s`(_`)['"adminPage".String],'s`(_`)[
 '"busy".String]]]],'`(_=>_`)['_'==_['s`(_`)['"adminPage".String],'s`(_`)['"busy".String]],''Home.Qid],
 '`(_->_`)['TRUE.Condition,'_?_[''Admin-Logout.Qid,'query-empty.Query]]],'`(_`,_`,`{_`}`,`{_`}`)[
 ''Change-account.Qid,'skip.Script,'cont-empty.Continuation,'`(_->_`)['TRUE.Condition,'_?_[''Home.Qid,'_:_[
 '_'=_[''newPass.Qid,'"".String],'_'=_[''newUser.Qid,'"".String]]]]],'`(_`,_`,`{_`}`,`{_`}`)[
 ''Email-list.Qid,'_;_['_:=_[''u.Qid,'getSession['s`(_`)['"user".String]]],'_:=_[''es.Qid,'selectDB['_'._[
 ''u.Qid,'s`(_`)['"-email".String]]]],'setSession['s`(_`)['"idEmails-found".String],''es.Qid]],
 'cont-empty.Continuation,'_:_['`(_->_`)['TRUE.Condition,'_?_[''Home.Qid,'query-empty.Query]],'`(_->_`)[
 'TRUE.Condition,'_?_[''View-email.Qid,'_'=_[''idEmail.Qid,'"".String]]]]],'`(_`,_`,`{_`}`,`{_`}`)[
 ''Home.Qid,'_;_['_:=_[''login.Qid,'getSession['s`(_`)['"login".String]]],'if_then_fi['_=_[''login.Qid,
 'null.Value],'_;_['_:=_[''u.Qid,'getQuery[''user.Qid]],'_:=_[''p.Qid,'getQuery[''pass.Qid]],'_:=_[''p1.Qid,
 'selectDB[''u.Qid]],'if_then_else_fi['_=_[''p.Qid,''p1.Qid],'_;_['_:=_[''r.Qid,'selectDB['_'._[''u.Qid,
 's`(_`)['"-role".String]]]],'setSession['s`(_`)['"user".String],''u.Qid],'setSession['s`(_`)[
 '"role".String],''r.Qid],'setSession['s`(_`)['"login".String],'s`(_`)['"ok".String]]],'setSession['s`(_`)[
 '"login".String],'s`(_`)['"no".String]]]]]],'_:_['`(_=>_`)['_'==_['s`(_`)['"changeLogin".String],'s`(_`)[
 '"no".String]],''Change-account.Qid],'`(_=>_`)['_'==_['s`(_`)['"login".String],'s`(_`)['"no".String]],
 ''Welcome.Qid],'`(_=>_`)['_'==_['s`(_`)['"login".String],'s`(_`)['"ok".String]],''Home.Qid]],'_:_['`(_->_`)[
 'TRUE.Condition,'_?_[''Change-account.Qid,'query-empty.Query]],'`(_->_`)['TRUE.Condition,'_?_[
 ''Email-list.Qid,'query-empty.Query]],'`(_->_`)['TRUE.Condition,'_?_[''Logout.Qid,'query-empty.Query]],
 '`(_->_`)['_'==_['s`(_`)['"role".String],'s`(_`)['"admin".String]],'_?_[''Administration.Qid,
 'query-empty.Query]]]],'`(_`,_`,`{_`}`,`{_`}`)[''Logout.Qid,'clearSession.Script,'`(_=>_`)['TRUE.Condition,
 ''Welcome.Qid],'nav-empty.Navigation],'`(_`,_`,`{_`}`,`{_`}`)[''View-email.Qid,'_;_['_:=_[''u.Qid,
 'getSession['s`(_`)['"user".String]]],'_:=_[''id.Qid,'getQuery[''idEmail.Qid]],'_:=_[''e.Qid,'selectDB[
 ''id.Qid]],'setSession['s`(_`)['"text-email".String],''e.Qid]],'cont-empty.Continuation,'_:_['`(_->_`)[
 'TRUE.Condition,'_?_[''Email-list.Qid,'query-empty.Query]],'`(_->_`)['TRUE.Condition,'_?_[''Home.Qid,
 'query-empty.Query]]]],'`(_`,_`,`{_`}`,`{_`}`)[''Welcome.Qid,'skip.Script,'cont-empty.Continuation,
 '`(_->_`)['TRUE.Condition,'_?_[''Home.Qid,'_:_['_'=_[''pass.Qid,'"".String],'_'=_[''user.Qid,
 '"".String]]]]]],'us`(_`,_`)['idA.Id,'session-empty.Session],'mes-empty.Message,
 'readymes-empty.ReadyMessage,'__['`(_;_`)['s`(_`)['"adminPage".String],'s`(_`)['"free".String]],'`(_;_`)[
 's`(_`)['"alice".String],'s`(_`)['"secretAlice".String]],'`(_;_`)['s`(_`)['"alice-email".String],'s`(_`)[
 '"email1".String]],'`(_;_`)['s`(_`)['"alice-role".String],'s`(_`)['"admin".String]],'`(_;_`)['s`(_`)[
 '"bob".String],'s`(_`)['"secretBob".String]],'`(_;_`)['s`(_`)['"bob-email".String],'s`(_`)[
 '"email2".String]],'`(_;_`)['s`(_`)['"bob-role".String],'s`(_`)['"admin".String]],'`(_;_`)['s`(_`)[
 '"email1".String],'s`(_`)['"text email one".String]],'`(_;_`)['s`(_`)['"email2".String],'s`(_`)[
 '"text email two".String]]]]],'WebState,rl '`[_`]_`[_`]`[_`]['_:_['brs:Browser,'B['id:Id,'idw:Id,'np:Qid,
 '_:_['urls:URL,'_?_['np1:Qid,'q1:Query]],'ss:Session,'z:Sigma,'lms:Message,'h:History,'idlm:Nat]],
 'ba:BrowserActions,'ms:Message,'sv:Server] => '`[_`]_`[_`]`[_`]['_:_['brs:Browser,'B['id:Id,'idw:Id,
 ''PageNameEmpty.Qid,'url-empty.URL,'ss:Session,'z:Sigma,'m['id:Id,'idw:Id,'_?_['np1:Qid,'sigma['z:Sigma,
 'q1:Query]],'idlm:Nat],'h:History,'idlm:Nat]],'ba:BrowserActions,'_:_['ms:Message,'m['id:Id,'idw:Id,'_?_[
 'np1:Qid,'sigma['z:Sigma,'q1:Query]],'idlm:Nat]],'sv:Server] [label('ReqIni)] .}
{'`[_`]_`[_`]`[_`]['B['idA.Id,'idw1.Id,''PageNameEmpty.Qid,'url-empty.URL,'session-empty.Session,'_:_['_/_[
 ''idEmail.Qid,'"email2".String],'_/_[''pass.Qid,'"secretAlice".String],'_/_[''user.Qid,'"alice".String]],'m[
 'idA.Id,'idw1.Id,'_?_[''Welcome.Qid,'query-empty.Query],'s_['0.Zero]],'history-empty.History,'s_['0.Zero]],
 'bra-empty.BrowserActions,'m['idA.Id,'idw1.Id,'_?_[''Welcome.Qid,'query-empty.Query],'s_['0.Zero]],'S['_:_[
 '`(_`,_`,`{_`}`,`{_`}`)[''Admin-Logout.Qid,'updateDB['s`(_`)['"adminPage".String],'s`(_`)['"free".String]],
 '`(_=>_`)['TRUE.Condition,''Home.Qid],'nav-empty.Navigation],'`(_`,_`,`{_`}`,`{_`}`)[''Administration.Qid,
 '_;_['_:=_[''adminPage.Qid,'selectDB['s`(_`)['"adminPage".String]]],'if_then_else_fi['_=_[''adminPage.Qid,
 's`(_`)['"free".String]],'_;_['updateDB['s`(_`)['"adminPage".String],'getSession['s`(_`)['"user".String]]],
 'setSession['s`(_`)['"adminPage".String],'s`(_`)['"free".String]]],'setSession['s`(_`)['"adminPage".String],
 's`(_`)['"busy".String]]]],'`(_=>_`)['_'==_['s`(_`)['"adminPage".String],'s`(_`)['"busy".String]],
 ''Home.Qid],'`(_->_`)['TRUE.Condition,'_?_[''Admin-Logout.Qid,'query-empty.Query]]],'`(_`,_`,`{_`}`,`{_`}`)[
 ''Change-account.Qid,'skip.Script,'cont-empty.Continuation,'`(_->_`)['TRUE.Condition,'_?_[''Home.Qid,'_:_[
 '_'=_[''newPass.Qid,'"".String],'_'=_[''newUser.Qid,'"".String]]]]],'`(_`,_`,`{_`}`,`{_`}`)[
 ''Email-list.Qid,'_;_['_:=_[''u.Qid,'getSession['s`(_`)['"user".String]]],'_:=_[''es.Qid,'selectDB['_'._[
 ''u.Qid,'s`(_`)['"-email".String]]]],'setSession['s`(_`)['"idEmails-found".String],''es.Qid]],
 'cont-empty.Continuation,'_:_['`(_->_`)['TRUE.Condition,'_?_[''Home.Qid,'query-empty.Query]],'`(_->_`)[
 'TRUE.Condition,'_?_[''View-email.Qid,'_'=_[''idEmail.Qid,'"".String]]]]],'`(_`,_`,`{_`}`,`{_`}`)[
 ''Home.Qid,'_;_['_:=_[''login.Qid,'getSession['s`(_`)['"login".String]]],'if_then_fi['_=_[''login.Qid,
 'null.Value],'_;_['_:=_[''u.Qid,'getQuery[''user.Qid]],'_:=_[''p.Qid,'getQuery[''pass.Qid]],'_:=_[''p1.Qid,
 'selectDB[''u.Qid]],'if_then_else_fi['_=_[''p.Qid,''p1.Qid],'_;_['_:=_[''r.Qid,'selectDB['_'._[''u.Qid,
 's`(_`)['"-role".String]]]],'setSession['s`(_`)['"user".String],''u.Qid],'setSession['s`(_`)[
 '"role".String],''r.Qid],'setSession['s`(_`)['"login".String],'s`(_`)['"ok".String]]],'setSession['s`(_`)[
 '"login".String],'s`(_`)['"no".String]]]]]],'_:_['`(_=>_`)['_'==_['s`(_`)['"changeLogin".String],'s`(_`)[
 '"no".String]],''Change-account.Qid],'`(_=>_`)['_'==_['s`(_`)['"login".String],'s`(_`)['"no".String]],
 ''Welcome.Qid],'`(_=>_`)['_'==_['s`(_`)['"login".String],'s`(_`)['"ok".String]],''Home.Qid]],'_:_['`(_->_`)[

Figure 2.10: Loading the Webmail execution trace.

facilitates comprehension. By running the query, iJulienne computes the
outcome shown in Figure 2.11, which delivers the states that satisfy the

Slicing-based Trace Analysis of RWL Specifications with iJulienne 45

query. More concretely, the first 20 states of the trace do match the query,
while the remaining 77 states do not include any Web interaction with the
user idA and thus do not need to be inspected.

Now, since we are interested in observing the whole navigation history
of user idA, we select the last state in the trace that matches the query,
namely State 20, and we apply backward trace slicing on that state in order
to generate a simplified view of the first 20 states of the trace. Note that the
slicing criterion is automatically computed by iJulienne by extracting the
data matching the query from State 20 (specifically, the target symbols B,
idA, and the current browser Web page Welcome).

After pressing the Run button, we get a browsable trace slice (see Fig-
ure 2.12) where each state of the trace slice is purged of the irrelevant data
w.r.t. the slicing criterion, and all the rewrite steps that do not affect the ob-
served data are marked as irrelevant and are simply removed from the slice,
which further reduces its size. The reduction rate achieved w.r.t. the original
trace reaches an impressive 91%; Specially, 88 of the 97 states were found
to be redundant with regard to the selected slicing criterion. This makes
the trace slice easy to analyze by hand. Actually, by navigating through the
trace slice, it can be immediately observed that the malicious user idA visits
the Login page, succeeds to log onto the Webmail system and enters the
Webmail Welcome page.

2.4 Experimental Evaluation

In order to properly assess the maturity and effectiveness of iJulienne,
we have carried out some experiments by testing iJulienne on rather large
execution traces, such as the counter-examples delivered by the Maude LTLR
model-checker [CDH+07] and several other case studies that are available at
the iJulienne Web site [iJu12]. More precisely, we have considered:

� two runs of a fault-tolerant client-server communication protocol (FTCP)
specified in Maude that aim at extracting information related to a
specific server and client in a scenario that involves multiple servers
and clients.

� two execution traces generated by Maude-NPA [EMM09], which is an
RWL-based analysis tool for cryptographic protocols that takes into

Slicing-based Trace Analysis of RWL Specifications with iJulienne 46

Slicing-based Trace Analysis of
Rewriting Logic Specifications with iiJULIENNE

María Alpuente, Demis Ballis, Francisco Frechina and Julia Sapiña

[Abstract] [Examples] [Download] [Benchmarks] [i JULIENNE Online Trace Analyzer]

Trace Analysis Phase

You can mark the relevant data by either: 1) highlighting the symbols in the chosen state, or 2) querying the trace and selecting one of the resulting

matching states (the relevant data will be automatically inferred).

 Show advanced view

These are the states of your Trace: States 19-20 of 20 #state

[br-empty : B(idA,idw1,'Welcome, 'Home ? 'pass '= "" : 'user
'= "" ,session-empty, 'idEmail / "email2" : 'pass / "secretAl
ice" : 'user / "alice" ,m(idA,idw1, 'Welcome ? query-empty ,1
),history-empty,1)] bra-empty [mes-empty][S(('Admin-Logo
ut , updateDB(s("adminPage"),s("free")) ,{ (TRUE => 'Hom
e) },{ nav-empty }) : ('Administration , 'adminPage := sele
ctDB(s("adminPage")) ; if 'adminPage = s("free") then upd
ateDB(s("adminPage"),getSession(s("user"))) ; setSession(
s("adminPage"),s("free")) else setSession(s("adminPage"
),s("busy")) fi ,{ (s("adminPage") '== s("busy") => 'H
ome) },{ (TRUE -> 'Admin-Logout ? query-empty) }) : ('Cha
nge-account , skip ,{ cont-empty },{ (TRUE -> 'Home ? 'newPa
ss '= "" : 'newUser '= "") }) : ('Email-list , 'u := getSes
sion(s("user")) ; 'es := selectDB('u '. s("-email")) ;
setSession(s("idEmails-found"),'es) ,{ cont-empty },{ (TRU
E -> 'Home ? query-empty) : (TRUE -> 'View-email ? 'idEmail
'= "") }) : ('Home , 'login := getSession(s("login")) ; i
f 'login = null then 'u := getQuery('user) ; 'p := getQuery('
pass) ; 'p1 := selectDB('u) ; if 'p = 'p1 then 'r := selectDB
('u '. s("-role")) ; setSession(s("user"),'u) ; setSess
ion(s("role"),'r) ; setSession(s("login"),s("ok")) else

[B(idA,idw1,'Welcome, 'Home ? 'pass '= "" : 'user '= "" ,ses
sion-empty, 'idEmail / "email2" : 'pass / "secretAlice" : 'us
er / "alice" ,m(idA,idw1, 'Welcome ? query-empty ,1),history-
empty,1)] bra-empty [mes-empty][S(('Admin-Logout , updat
eDB(s("adminPage"),s("free")) ,{ (TRUE => 'Home) },{ na
v-empty }) : ('Administration , 'adminPage := selectDB(s("a
dminPage")) ; if 'adminPage = s("free") then updateDB(s("
adminPage"),getSession(s("user"))) ; setSession(s("adminP
age"),s("free")) else setSession(s("adminPage"),s("busy
")) fi ,{ (s("adminPage") '== s("busy") => 'Home) },{
(TRUE -> 'Admin-Logout ? query-empty) }) : ('Change-accoun
t , skip ,{ cont-empty },{ (TRUE -> 'Home ? 'newPass '= "" :
'newUser '= "") }) : ('Email-list , 'u := getSession(s("us
er")) ; 'es := selectDB('u '. s("-email")) ; setSession(
s("idEmails-found"),'es) ,{ cont-empty },{ (TRUE -> 'Home
? query-empty) : (TRUE -> 'View-email ? 'idEmail '= "") })
: ('Home , 'login := getSession(s("login")) ; if 'login =
null then 'u := getQuery('user) ; 'p := getQuery('pass) ; 'p1
:= selectDB('u) ; if 'p = 'p1 then 'r := selectDB('u '. s("
-role")) ; setSession(s("user"),'u) ; setSession(s("role
"),'r) ; setSession(s("login"),s("ok")) else setSession(

B(idA,_:Id,?:Qid,_:URL,_:Session,_:Sigma,_:Message,_:History,_:Nat) !!

[B(idA,idw1,'Welcome, 'Home ? 'pass '= "" : 'user '= "" ,session-empty, 'idEmail / "email2" : 'pass / "secre
tAlice" : 'user / "alice" ,m(idA,idw1, 'Welcome ? query-empty ,1),history-empty,1)] bra-empty [mes-empty][
S(('Admin-Logout , updateDB(s("adminPage"),s("free")) ,{ (TRUE => 'Home) },{ nav-empty }) : ('Adminis
tration , 'adminPage := selectDB(s("adminPage")) ; if 'adminPage = s("free") then updateDB(s("adminPage"
),getSession(s("user"))) ; setSession(s("adminPage"),s("free")) else setSession(s("adminPage"),s("bu
sy")) fi ,{ (s("adminPage") '== s("busy") => 'Home) },{ (TRUE -> 'Admin-Logout ? query-empty) }) : (
'Change-account , skip ,{ cont-empty },{ (TRUE -> 'Home ? 'newPass '= "" : 'newUser '= "") }) : ('Email-li
st , 'u := getSession(s("user")) ; 'es := selectDB('u '. s("-email")) ; setSession(s("idEmails-found"
),'es) ,{ cont-empty },{ (TRUE -> 'Home ? query-empty) : (TRUE -> 'View-email ? 'idEmail '= "") }) : ('H
ome , 'login := getSession(s("login")) ; if 'login = null then 'u := getQuery('user) ; 'p := getQuery('pass
) ; 'p1 := selectDB('u) ; if 'p = 'p1 then 'r := selectDB('u '. s("-role")) ; setSession(s("user"),'u)
; setSession(s("role"),'r) ; setSession(s("login"),s("ok")) else setSession(s("login"),s("no")) fi
fi ,{ (s("changeLogin") '== s("no") => 'Change-account) : (s("login") '== s("no") => 'Welcome) :
(s("login") '== s("ok") => 'Home) },{ (TRUE -> 'Change-account ? query-empty) : (TRUE -> 'Email-list
? query-empty) : (TRUE -> 'Logout ? query-empty) : (s("role") '== s("admin") -> 'Administration ? que
ry-empty) }) : ('Logout , clearSession ,{ (TRUE => 'Welcome) },{ nav-empty }) : ('View-email , 'u := get
Session(s("user")) ; 'id := getQuery('idEmail) ; 'e := selectDB('id) ; setSession(s("text-email"),'e) ,{
cont-empty },{ (TRUE -> 'Email-list ? query-empty) : (TRUE -> 'Home ? query-empty) }) : ('Welcome , skip
,{ cont-empty },{ (TRUE -> 'Home ? 'pass '= "" : 'user '= "") }),us(idA , session-empty),mes-empty,readym
es-empty,(s("adminPage") ; s("free")) (s("alice") ; s("secretAlice")) (s("alice-email") ; s("
email1")) (s("alice-role") ; s("admin")) (s("bob") ; s("secretBob")) (s("bob-email") ; s("e
mail2")) (s("bob-role") ; s("admin")) (s("email1") ; s("text email one")) (s("email2") ; s(
"text email two")))]

States matching the query B(idA,_,?,_,_,_,_,_,_) :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

Set your data of interest in the selected state:

Figure 2.11: Querying the Webmail trace w.r.t. B(idA, , ?, , , , , ,)

account many of the algebraic properties of cryptosystems. These in-
clude the cancellation of encryption and decryption, Abelian groups
(including exclusive-or), exponentiation, and homomorphic encryption.
The considered traces model two instances of a well-known, man-in-
the-middle attack to the Needham-Schroeder network authentication
protocol where we select the intruder’s actions and knowledge while
discarding all the remaining information in the protocol session.

� two counter-examples produced by model-checking a real-size Webmail
application specified in Web-TLR [ABER11]. The slicing criteria al-
lowed several critical data to be isolated and inspected (e.g., the navi-
gation of a malicious user), the messages exchanged by a specific Web
browser with the Webmail server, and session data of interest (e.g.,
cookies).

Slicing-based Trace Analysis of RWL Specifications with iJulienne 47

Slicing-based Trace Analysis of
Rewriting Logic Specifications with iiJULIENNE

María Alpuente, Demis Ballis, Francisco Frechina and Julia Sapiña

[Abstract] [Examples] [Download] [Benchmarks] [i JULIENNE Online Trace Analyzer]

Trace Analysis Phase

You can mark the relevant data by either: 1) highlighting the symbols in the chosen state, or 2) querying the trace and selecting one of the resulting

matching states (the relevant data will be automatically inferred).

 Show advanced view Hide irrelevant data

These are the states of your Trace: States 19-20 of 20 #state

These are the states of your Trace Slice:

[br-empty : B(idA,idw1,'Welcome, 'Home ? 'pass '= "" : 'user
'= "" ,session-empty, 'idEmail / "email2" : 'pass / "secretAl
ice" : 'user / "alice" ,m(idA,idw1, 'Welcome ? query-empty ,1
),history-empty,1)] bra-empty [mes-empty][S(('Admin-Logo
ut , updateDB(s("adminPage"),s("free")) ,{ (TRUE => 'Hom
e) },{ nav-empty }) : ('Administration , 'adminPage := sele
ctDB(s("adminPage")) ; if 'adminPage = s("free") then upd
ateDB(s("adminPage"),getSession(s("user"))) ; setSession(
s("adminPage"),s("free")) else setSession(s("adminPage"
),s("busy")) fi ,{ (s("adminPage") '== s("busy") => 'H
ome) },{ (TRUE -> 'Admin-Logout ? query-empty) }) : ('Cha
nge-account , skip ,{ cont-empty },{ (TRUE -> 'Home ? 'newPa
ss '= "" : 'newUser '= "") }) : ('Email-list , 'u := getSes
sion(s("user")) ; 'es := selectDB('u '. s("-email")) ;
setSession(s("idEmails-found"),'es) ,{ cont-empty },{ (TRU
E -> 'Home ? query-empty) : (TRUE -> 'View-email ? 'idEmail
'= "") }) : ('Home , 'login := getSession(s("login")) ; i
f 'login = null then 'u := getQuery('user) ; 'p := getQuery('
pass) ; 'p1 := selectDB('u) ; if 'p = 'p1 then 'r := selectDB
('u '. s("-role")) ; setSession(s("user"),'u) ; setSess
ion(s("role"),'r) ; setSession(s("login"),s("ok")) else

[B(idA,idw1,'Welcome, 'Home ? 'pass '= "" : 'user '= "" ,ses
sion-empty, 'idEmail / "email2" : 'pass / "secretAlice" : 'us
er / "alice" ,m(idA,idw1, 'Welcome ? query-empty ,1),history-
empty,1)] bra-empty [mes-empty][S(('Admin-Logout , updat
eDB(s("adminPage"),s("free")) ,{ (TRUE => 'Home) },{ na
v-empty }) : ('Administration , 'adminPage := selectDB(s("a
dminPage")) ; if 'adminPage = s("free") then updateDB(s("
adminPage"),getSession(s("user"))) ; setSession(s("adminP
age"),s("free")) else setSession(s("adminPage"),s("busy
")) fi ,{ (s("adminPage") '== s("busy") => 'Home) },{
(TRUE -> 'Admin-Logout ? query-empty) }) : ('Change-accoun
t , skip ,{ cont-empty },{ (TRUE -> 'Home ? 'newPass '= "" :
'newUser '= "") }) : ('Email-list , 'u := getSession(s("us
er")) ; 'es := selectDB('u '. s("-email")) ; setSession(
s("idEmails-found"),'es) ,{ cont-empty },{ (TRUE -> 'Home
? query-empty) : (TRUE -> 'View-email ? 'idEmail '= "") })
: ('Home , 'login := getSession(s("login")) ; if 'login =
null then 'u := getQuery('user) ; 'p := getQuery('pass) ; 'p1
:= selectDB('u) ; if 'p = 'p1 then 'r := selectDB('u '. s("
-role")) ; setSession(s("user"),'u) ; setSession(s("role
"),'r) ; setSession(s("login"),s("ok")) else setSession(

[B(idA,*,'Welcome,*,*,*,*,*,*)] * [*][*] [B(idA,*,'Welcome,*,*,*,*,*,*)] * [*][*]

 B(idA, _,?, _, _, _, _, _, _) !!

Figure 2.12: Webmail trace slice after querying the trace

Example Original Slicing Sliced % % reduction by
trace trace size criterion trace size reduction changing criterion

FTCP.T1 2054
FTCP.T1.O1 294 85.69% 97.89%
FTCP.T1.O2 316 84.62% 97.30%

FTCP.T2 1286
FTCP.T2.O1 135 89.40% 98.11%
FTCP.T2.O2 97 92.46% 99.01%

Maude-NPA.T1 21265
Maude-NPA.T1.O1 2249 89.42% 98.12%
Maude-NPA.T1.O2 2261 89.36% 98.03%

Maude-NPA.T2 34681
Maude-NPA.T2.O1 3015 91.30% 99.08%
Maude-NPA.T2.O2 3192 90.79% 98.84%

Web-TLR.T1 38983
Web-TLR.T1.O1 2045 94.75% 99.28%
Web-TLR.T1.O2 2778 92.87% 99.14%

Web-TLR.T2 69491
Web-TLR.T2.O1 8493 87.78% 97.99%
Web-TLR.T2.O2 5034 92.76% 99.05%

% reduction average 90.10% 98.49%

Table 2.1: Incremental slicing benchmarks.

Slicing-based Trace Analysis of RWL Specifications with iJulienne 48

The results of our experiments are shown in Table 2.1. The execution
traces for the considered cases consist of sequences of 10–1000 states, each of
which contains from 60 to 5000 characters. In all the experiments, not only do
the trace slices that we obtained show impressive reduction rates (ranging
from ∼79% to ∼98%), but we were also even able to strikingly improve
these rates by an average of 8.5% (ranging from ∼97% to ∼99%) by using
incremental slicing. In most cases, the delivered trace slices were cleaned
enough to be easily analyzed, and we noted an increase in the effectiveness
of the analysis processes. With regard to the scalability and time required
to perform the analyses, iJulienne is extremely time efficient; the elapsed
times are small even for very complex traces and scale linearly. For example,
running the analyzer for a 20Kb trace w.r.t. a Maude specification with about
150 rules and equations (with AC rewrites) took less than 1 second (480.000
rewrites per second on standard hardware, 2.26GHz Intel Core 2 Duo with
4Gb of RAM memory).

Conclusions and future work

We have developed a new, incremental backward trace slicing methodology
[ABFS13b] by extending the backward trace slicing technique for conditional
rewriting logic specifications described in [ABFR12a]. Our methodology can
highly improve the already impressive reduction rates achieved by the original
technique while preserving its demonstrated efficiency when dealing with
huge and complex execution traces such as those generated by the Maude
LTL model checker [EMS02, EMS03].

We have implemented our methodology in iJulienne [iJu12], which is
the first slicing-based, incremental trace analysis tool for rewriting logic that
greatly reduces the size of the computation traces and can make their analysis
feasible even for complex, real-size applications. Our tool conveys an incre-
mental slicing approach where the user can refine the slicing criteria and
then the extra irrelevant contents (i.e., the differences between the slices)
are automatically done away with. iJulienne is also endowed with useful
debugging features such as trace querying and program slicing, which serve
as a suitable tandem for the slicing-based analysis task. In addition, it is
important to note that our trace analyzer does not remove any information
that is relevant, independently of the skills of the user.

Our ongoing research on trace slicing for rewriting logic computations
focuses on exploring the forward approach in the new tool Anima [Ani13], an
online stepper for Maude programs that implements a novel, parametrized
technique for the inspection of rewriting logic computations described in
[ABFS13a].

49

Bibliography 50

Finally, as future work, we plan to explore other challenging applications
of our trace slicing methodology, such as runtime verification [BFF+10] which
is concerned with monitoring and analysis of system executions. Consider a
programming language L which is given a RWL executable semantics. Then
one can use the semantics as an interpreter to execute L programs (given
as terms) directly within the semantics of their programming language as in
[FCMR04], and hence Maude can be used to trace such executions. Then, by
querying the trace slice w.r.t. a reference specification, runtime verification
might be semantically grounded in our setting while it is commonly off-hacked
in more traditional approaches by means of program instrumentation.

Bibliography

[ABE+11] M. Alpuente, D. Ballis, J. Espert, F. Frechina, and D. Romero.
Debugging of Web Applications with WEB-TLR. In Proc.
of 7th International Workshop on Automated Specification and
Verification of Web Systems (WWV 2011), volume 61 of Elec-
tronic Proceedings in Theoretical Computer Science (EPTCS),
pages 66–80. Open Publishing Association, 2011.

[ABER10] M. Alpuente, D. Ballis, J. Espert, and D. Romero. Model-
checking Web Applications with Web-TLR. In Proc. of 8th In-
ternational Symposium on Automated Technology for Verifica-
tion and Analysis (ATVA 2010), volume 6252 of Lecture Notes
in Computer Science (LNCS), pages 341–346. Springer-Verlag,
2010.

[ABER11] M. Alpuente, D. Ballis, J. Espert, and D. Romero. Backward
Trace Slicing for Rewriting Logic Theories. In Proc. of 23rd In-
ternational Conference on Automated Deduction (CADE 2011),
volume 6803 of Lecture Notes in Computer Science (LNCS),
pages 34–48. Springer-Verlag, 2011.

[ABFR12a] M. Alpuente, D. Ballis, F. Frechina, and D. Romero. Backward
Trace Slicing for Conditional Rewrite Theories. In Proc. of the
18th International Conference on Logic for Programming, Ar-
tificial Intelligence and Reasoning (LPAR 2012), volume 7180

51

Bibliography 52

of Lecture Notes in Computer Science (LNCS), pages 62–76.
Springer-Verlag, 2012.

[ABFR12b] M. Alpuente, D. Ballis, F. Frechina, and D. Romero. Julienne:
A Trace Slicer for Conditional Rewrite Theories. In Proc. of the
18th International Symposium on Formal Methods (FM 2012),
volume 7436 of Lecture Notes in Computer Science (LNCS),
pages 28–32. Springer-Verlag, 2012.

[ABFR12c] M. Alpuente, D. Ballis, F. Frechina, and D. Romero. Using Con-
ditional Trace Slicing for Improving Maude Programs. Science
of Computer Programming, 2012. Under second revision.

[ABFS13a] M. Alpuente, D. Ballis, F. Frechina, and J. Sapiña. Parametric
Exploration of Rewriting Logic Computations. In Proc. of the
5th International Symposium on Symbolic Computation in Soft-
ware Science (SCSS 2013), volume 15 of EasyChair Proceedings
in Computing (EPiC), pages 4–18. EasyChair, 2013.

[ABFS13b] M. Alpuente, D. Ballis, F. Frechina, and J. Sapiña. Slicing-
Based Trace Analysis of Rewriting Logic Specifications with
iJulienne. In Proc. of the 22nd European Symposium on Pro-
gramming (ESOP 2013), volume 7792 of Lecture Notes in Com-
puter Science (LNCS), pages 121–124. Springer-Verlag, 2013.

[ABR09] M. Alpuente, D. Ballis, and D. Romero. Specification and Veri-
fication of Web Applications in Rewriting Logic. In Proc. of the
16th International Symposium on Formal Methods (FM 2009),
volume 5850 of Lecture Notes in Computer Science (LNCS),
pages 790–805. Springer-Verlag, 2009.

[ADS93] H. Agrawal, R. A. DeMillo, and E. H. Spafford. Debugging
with Dynamic Slicing and Backtracking. Software Practice and
Experience, 23(6):589–616, 1993.

[Agr91] H. Agrawal. Towards Automatic Debugging of Computer Pro-
grams. PhD thesis, Purdue University, West Lafayette, IN 47907,
September 1991. Ph. D. Thesis.

[Ani13] The anima web site, 2013. Available at: http://safe-tools.

dsic.upv.es/anima/.

http://safe-tools.dsic.upv.es/anima/
http://safe-tools.dsic.upv.es/anima/

Bibliography 53

[BBF09] M. Baggi, D. Ballis, and M. Falaschi. Quantitative Pathway
Logic for Computational Biology. In Proc. of the 7th Interna-
tional Conference on Computational Methods in Systems Biol-
ogy (CMSB 2009), volume 5688 of Lecture Notes in Computer
Science (LNCS), pages 68–82. Springer-Verlag, 2009.

[BFF+10] H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee,
G. J. Pace, G. Rosu, O. Sokolsky, and N. Tillmann, editors.
Proc. of the 1st International Conference on Runtime Verifi-
cation (RV 2010), volume 6418 of Lecture Notes in Computer
Science (LNCS). Springer-Verlag, 2010.

[BKdV00] I. Bethke, J. W. Klop, and R. de Vrijer. Descendants and Origins
in Term Rewriting. Information and Computation, 159(1–2):59–
124, 2000.

[BKdV03] M. Bezem, J. W. Klop, and R. de Vrijer. Term Rewriting Sys-
tems (TeReSe). Cambridge University Press, Cambridge, UK,
2003.

[BM06] R. Bruni and J. Meseguer. Semantic Foundations for Generalized
Rewrite Theories. Theoretical Computer Science (TCS), 360(1–
3):386–414, 2006.

[BM12] K. Bae and J. Meseguer. A Rewriting-Based Model Checker for
the Linear Temporal Logic of Rewriting. In Proc. of the 9th
International Workshop on Rule-Based Programming (RULE
2008), volume 290 of Electronic Notes in Theoretical Com-
puter Science (ENTCS), pages 19–36. Elsevier Science Publish-
ers Ltd., 2012.

[CDE+02] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet,
J. Meseguer, and J. F. Quesada. Maude: Specification and Pro-
gramming in Rewriting Logic. Theoretical Computer Science
(TCS), 285(2):187–243, 2002.

[CDE+11] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet,
J. Meseguer, and C. Talcott. Maude Manual (Version 2.6).
Technical report, SRI International Computer Science Lab-
oratory, 2011. Available at: http://maude.cs.uiuc.edu/

maude2-manual/.

http://maude.cs.uiuc.edu/maude2-manual/
http://maude.cs.uiuc.edu/maude2-manual/

Bibliography 54

[CDH+07] M. Clavel, F. Durán, J. Hendrix, S. Lucas, J. Meseguer, and
P. C. Ölveczky. The Maude Formal Tool Environment. In
Proc. of the 2nd Algebra and Coalgebra in Computer Science
(CALCO 2007), volume 4624 of Lecture Notes in Computer Sci-
ence (LNCS), pages 173–178. Springer-Verlag, 2007.

[CR09] F. Chen and G. Rosu. Parametric Trace Slicing and Monitor-
ing. In Proc. of the 15th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS 2009), volume 5505 of Lecture Notes in Computer Sci-
ence (LNCS), pages 246–261. Springer-Verlag, 2009.

[CRW00] O. Chitil, C. Runciman, and M. Wallace. Freja, Hat and Hood
- A Comparative Evaluation of Three Systems for Tracing and
Debugging Lazy Functional Programs. In Proc. of the 12th Inter-
national Workshop on Implementation of Functional Languages
(IFL 2000), volume 2011 of Lecture Notes in Computer Science
(LNCS), pages 176–193. Springer-Verlag, 2000.

[DM10] F. Durán and J. Meseguer. A Maude Coherence Checker Tool
for Conditional Order-Sorted Rewrite Theories. In Proc. of the
8th International Workshop on Rewriting Logic and Its Applica-
tions (WRLA 2010), volume 6381 of Lecture Notes in Computer
Science (LNCS), pages 86–103. Springer-Verlag, 2010.

[EMM09] S. Escobar, C. Meadows, and J. Meseguer. Maude-NPA:
Cryptographic Protocol Analysis Modulo Equational Proper-
ties. In Foundations of Security Analysis and Design V (FOSAD
2007/2008/2009 Tutorial Lectures), volume 5705 of Lecture
Notes in Computer Science (LNCS), pages 1–50. Springer-
Verlag, 2009.

[EMS02] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude
LTL Model Checker. In Proc. of the 4th International Work-
shop on Rewriting Logic and its Applications (WRLA 2002),
volume 71 of Electronic Notes in Theoretical Computer Sci-
ence (ENTCS), pages 162–187. Elsevier Science Publishers Ltd.,
2002.

Bibliography 55

[EMS03] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude
LTL Model Checker and Its Implementation. In Proc. of the
10th International SPIN Workshop (SPIN 2003), volume 2648
of Lecture Notes in Computer Science (LNCS), pages 230–234.
Springer-Verlag, 2003.

[FCMR04] A. Farzan, F. Chen, J. Meseguer, and G. Rosu. Formal Analysis
of Java Programs in JavaFAN. In Proc. of the 16th International
Conference on Computer Aided Verification (CAV 2004), vol-
ume 3114 of Lecture Notes in Computer Science (LNCS), pages
501–505. Springer-Verlag, 2004.

[FT94] J. Field and F. Tip. Dynamic Dependence in Term rewriting
Systems and its Application to Program Slicing. In Proc. of the
6th International Symposium on Programming Language Imple-
mentation and Logic Programming (PLILP 1994), volume 844
of Lecture Notes in Computer Science (LNCS), pages 415–431.
Springer-Verlag, 1994.

[HCS+96] F. Henderson, T. Conway, Z. Somogyi, D. Jeffery, P. Schachte,
S. Taylor, and C. Speirs. The Mercury Language Reference Man-
ual. Technical report, University Of Melbourne, 1996.

[HHJW07] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler. A History
of Haskell: Being Lazy with Class. In Proc. of the 3rd ACM
SIGPLAN Conference on History of Programming Languages,
HOPL III, pages 12–1–12–55. ACM, 2007.

[HKF95] T. Hoffner, M. Kamkar, and P. Fritzson. Evaluation of Program
Slicing Tools. In AADEBUG, pages 51–69, 1995.

[iJu12] The ijulienne web site, 2012. Available at: http://

safe-tools.dsic.upv.es/iJulienne/.

[KL88] B. Korel and J. Laski. Dynamic Program Slicing. Inf. Process.
Lett., 29(3):155–163, 1988.

[Klo92] J.W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gab-
bay, and T. Maibaum, editors, Handbook of Logic in Computer
Science, volume I, pages 1–112. Oxford University Press, 1992.

http://safe-tools.dsic.upv.es/iJulienne/
http://safe-tools.dsic.upv.es/iJulienne/

Bibliography 56

[Mac05] I. D. MacLarty. Practical Declarative Debugging of Mercury Pro-
grams. PhD thesis, University of Melbourne, 2005. Ph. D. The-
sis.

[Mes90a] J. Meseguer. A Logical Theory of Concurrent Objects. In
Proc. of the Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications / European Conference on
Object-Oriented Programming (OOPSLA/ECOOP 1990), pages
101–115. ACM, 1990.

[Mes90b] J. Meseguer. Conditional Rewriting Logic: Deduction, Models
and Concurrency. In Proc. of the 2nd International Conditional
and Typed Rewriting Systems Workshop (CTRS 1990), volume
516 of Lecture Notes in Computer Science (LNCS), pages 64–91.
Springer-Verlag, 1990.

[Mes91] J. Meseguer. Rewriting as a Unified Model of Concurrency.
SIGPLAN OOPS Messenger, 2(2):86–88, 1991.

[Mes92] J. Meseguer. Conditional Rewriting Logic as a Unified Model of
Concurrency. Theoretical Computer Science (TCS), 96(1):73–
155, 1992.

[Plo04] G. D. Plotkin. A Structural Approach to Operational Seman-
tics. Journal of Logic and Algebraic Programming, 60–61:17–139,
2004.

[RB06] N. F. Rodrigues and L. Soares Barbosa. Component Identifica-
tion Through Program Slicing. Electronic Notes in Theoretical
Computer Science (ENTCS), 160:291–304, 2006.

[Wei79] M. Weiser. Program Slices: Formal, Psychological, and Practi-
cal Investigations of an Automatic Program Abstraction Method.
PhD thesis, University of Michigan, Ann Arbor, MI, USA, 1979.
AAI8007856.

[Wei81] M. Weiser. Program Slicing. In Proc. of the 5th International
Conference on Software (ICSE 1981), pages 439–449. IEEE
Computer Society Press, 1981.

Bibliography 57

[Wei82] M. Weiser. Programmers Use Slices when Debugging. Commu-
nications of the ACM, 25(7):446–452, July 1982.

[Wil85] M. Wilkes. Memoirs of a Computer Pioneer. MIT Press Series
in the History of Computing. Cambridge, MA: The MIT Press,
1985.

	Introduction
	Preliminaries
	Backward Trace Slicing for Conditional Rewrite Theories
	Term slices and term slice concretizations
	Backward Slicing for Execution Traces
	The function slice-step
	Experimental Evaluation

	Slicing-based Trace Analysis of Rewriting Logic Specifications with iJulienne
	Incremental Trace Slicing
	The iJulienne Online Trace Analyzer
	Features and Characteristics of iJulienne
	The System Architecture of iJulienne
	Trace Querying
	Program Slicing

	iJulienne at work
	Debugging the Blocks World Example
	Analyzing a Webmail Application

	Experimental Evaluation

	Conclusions and future work

