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Abstract

This paper presents a general approach to automatically compile e-learning models to planning,

allowing us to easily generate plans, in the form of learning designs, by using existing domain-

independent planners. The idea is to compile, first, a course defined in a standard e-learning

language into a planning domain, and, second, a file containing students learning information

into a planning problem. We provide a common compilation and extend it to three particular

approaches that cover a full spectrum of planning paradigms, which increases the possibilities

of using current planners: i) hierarchical, ii) including PDDL actions with conditional effects,

and iii) including PDDL durative actions. The learning designs are automatically generated from

the plans and can be uploaded, and subsequently executed, by learning management platforms.

We also provide an extensive analysis of the e-learning metadata specification required for

planning, and the pros and cons on the knowledge engineering procedures used in each of the

three compilations. Finally, we include some qualitative and quantitative experimentation of the

compilations in several domain-independent planners to measure its scalability and applicability.

1 Introduction

E-learning is becoming a high-impact innovative topic as it offers a promising way to facilitate

and enhance the learning process by combining learning objects (LOs), typically any sort of

digital resource, to create flexible courses. This flexibility and the availability of automatic tools

to create learning routes allows e-learning experts to focus on content authoring, and relieves

them of the burden of manually composing standard documents, such as learning designs, that

fit the needs of each student in a course.

Creating tailored routes of LOs, according to student profile preferences and/or pedagogical

theories, is a subject which has been studied in depth in the Planning & Scheduling (P&S)

community within the last years (Castillo, et al. 2010, Mohan, et al. 2003, Kontopoulos,

et al. 2008, Ullrich & Melis 2009). Generating these routes depends on many elements: LOs

prerequisites/outcomes, LOs duration, available resources, and even collaboration and interaction

between tutors and students, which make the problem very interesting from the P&S perspective.

However, acquiring information from educational domains to represent it as a planning domain

is not a straightforward task because pedagogical theories are usually hard to model in practice.

The main reasons for this are: i) there exist essential elements (e.g. soft and hard requirements

among LOs, deadlines, strong interaction between LOs or students, etc.) for the success of the

learning process, but are not thoroughly modelled in traditional e-learning settings; ii) people

give different meanings and uses to the standards specifications, mainly in terms of the relations
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among LOs, given that standards provide some flexibility on how to represent knowledge; and iii)

there is a great variety of planning paradigms which support different aspects of expressiveness. In

this paper we explicitly address these drawbacks by providing an exhaustive mapping to interpret

LO-metadata in terms of AI planning, which can be easily extended to support more complex

features, not usually modelled in e-learning, and can be applied in different planning paradigms.

Leaving the complex pedagogical decisions aside, in this paper we propose an alternative to

previous work that focuses on solving these three difficulties. We extend the work in (Garrido,

et al. 2009), presenting a knowledge engineering approach to compile information about course

content and learners, subject to e-learning standards (IMSMD 2003, IMSLD 2003, SCORM 2004),

and translating this information into a planning domain and problem. The planning instances

are used to automatically generate plans, customised routes of LOs, that are translated into an

IMS-LD standard document (IMSLD 2003). In essence, this paper contributes with:

• An automated translation of e-learning templates into a general compilation, further extended

with three different PDDL (Planning Domain Definition Language (Fox & Long 2003))

versions: i) hierarchical, ii) PDDL-conditional, and iii) PDDL-temporal. This allows us to

use our compilations in virtually any current planner.

• An effective use of planning technology to generate learning designs that best suit students

learning goals. Planners focus on finding the adequate LOs combination for students

adaptation, thus promoting a more personalised access to the LOs.

• A translator that parses the resulting plans and generates the IMS-LD standard document

to be uploaded to Learning Management Systems (LMSs), thus closing the e-learning cycle.

This paper is structured as follows. Section 2 introduces some related work on courseware

generation using planning techniques, some basic description on e-learning standards and

motivates our work. Section 3 analyses how to model learning designs in planning, and presents the

compilation of e-learning standards into planning domains and problems. Experimental results,

by using different planners, are detailed in section 4. Finally, section 5 concludes the paper and

addresses some future work.

2 Combining E-learning and AI planning. Motivation

There are many approaches in the adaptive hypermedia community that combine instructional

knowledge and planning techniques to deal with the automation of courseware generation. Some

of them introduce HTN planners to represent pedagogical objectives to find a tailored course

structure, such as (Méndez, et al. 2005) and (Sicilia, et al. 2006), which provides a theoretical

proposal. To our knowledge, the former does not integrate its results in an e-learning platform,

whereas the latter only provides LOM translations for HTN planning. The approach in (Ullrich &

Melis 2009) is complete and has been put into practice specially for retrieving LOs from external

repositories. Basically, it takes a LOM subset to be integrated into a particular ontology with

additional LO information by means of a specific intelligent tutoring system, thus making it

incompatible with other learning systems. According to (Ullrich & Melis 2009), they can map the

final plan into IMS-CP or SCORM but not the IMS-LD model itself and they do not use standards

in the definition of the student profile. Others use state-based planners that implement metrics

to measure the adaptation to a specific learning style (Boticario & Santos 2007, Limongelli,

et al. 2008), but without taking into consideration other profile features and different learning

styles theories. Finally, others incorporate machine learning techniques to assist content providers

when constructing LOs that comply with an ontology, concerning objectives and prerequisites,

as can be seen in (Camacho, et al. 2007, Kontopoulos et al. 2008) with CAMOU and PASER,

respectively, but again, they do not use e-learning standards and usually focus on a particular

planner. Despite the relative success of these approaches, they are usually limited to a specifically

designed ontology and planning paradigm. Our main motivation (and contribution) is to overcome

such limitations.
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Figure 1 Overview of our entire system.

First, our approach is entirely based on well-known e-learning standards, and

not on particular or ad-hoc ontologies. We use the IMS standard specification

(http://www.imsglobal.org) supported by major LMSs such as Moodle (http://moodle.org)

and dotLRN (http://dotlrn.org), which includes:

• IMS-MD to describe LOs and their relations (see example in Figure 2);

• IMS-LIP to model the student profile (see example in Table 2 below); and

• IMS-LD to sequence the LOs according to the students profiles (see section 3.4).

Second, we use a pedagogical theory based upon learning styles, but other adaptation criteria

(see (Essalmi, et al. 2010)) can be easily modelled as well. Hence, our approach provides the basis

for education experts to easily experiment with different learning theories. The overall idea is to

make the contents authoring easier and more adequate. As shown in Figure 1, the teachers design,

from scratch or by reusing LO collections, an e-learning course. The course designer may use our

authoring tool (see (Garrido et al. 2009)) to enrich the LO metadata by visually adding/deleting

relations, or even associating resources and costs to the LOs. This is not thoroughly modelled

in traditional e-learning settings, but it makes the use of planning techniques more flexible;

obviously, the enrichment of the metadata in our tool is entirely optional. The information about

the course is profile-independent, so it is valid for students with different learning styles. Once the

personal characteristics, background and preferences of the students are modelled, our translation

system automatically generates the planning domain and problem files according to three different

planning paradigms.

Third, our approach is appropriate for most of the existing planners, acting as domain-

independent solvers. This is a clear advantage as we are not restricted to one particular solver.

Once the solver generates a plan, as a LO route per student, it is subsequently compiled as an

IMS standard learning design (IMS-LD). Finally, the result is uploaded to a LMS, which manages

the administration, display, tracking and navigation of the contents of the learning design, thus

closing the cycle with standards.

3 Compiling E-Learning Models for Planning

In our compilation we consider the repository of LOs as the planning domain, whereas the

relevant students characteristics and interests represent the planning problem. On the other

hand, the learning design represents the solution plan. In all cases, domain, problem and plan,
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the information required for the compilation is fully automated by extracting the metadata

specifications from the e-learning standards.

3.1 Metadata for Planning Domains

A learning design is defined by a set of LOs, which are usually encoded as XML schemata (see

Figure 2). For example, in a course for learning Discrete-Maths, there may be a task for learning

Boolean-Algebra. And there could be several LOs to accomplish it, such as playing a visual

presentation, reading the introduction text from a textbook, or solving an exercise. Although it

may be enough for the student to use only one of these objects to accomplish the task, it is still

possible to use more than one, thus improving the overall utility (reward) of the learning process.

And this usually depends on how the LOs are described by their metadata set:

• LOs are more or less appropriate to students depending on their learning styles. We use two

well-known theories to determine and classify students, the Felder learning style1 (Felder

1996), and the Honey-Alonso one2 (Alonso & Honey 2002), but any other can be used to

describe new ordering rules or utilities. Thus, we use the representation of the pedagogical

knowledge as defined in the metadata.

• LOs have dependency relations among them. For instance, before learning about

Discrete-Maths, the student should have some knowledge on Boolean-Algebra. We support

four types of relations that include hierarchical structures and content ordering relations. The

hierarchical structures use the IsPartOf relation, which represents a hierarchical aggregation

of LOs. Additionally, there are three types of causal dependencies, Requires, IsBasedOn and

References. We interpret the first two relations as hard preconditions. In the case of the

Required elements, all of them (conjunctively) have to be completed before initiating a new

LO: if ’A Requires B’ and ’A Requires C’, both B and C need to be finished before doing A. In

the case of the IsBasedOn elements, at least one of them (disjunctively) has to be completed:

if ’A IsBasedOn B’ and ’A IsBasedOn C’, only B or C must be completed before initiating

A. On the other hand, the course designer might also recommend (soft requirement) other

previous LOs by using the References relation.

• Each LO takes a standard time (duration) to fulfill, namely typical learning time. However,

only primitive LOs have duration, as the duration of aggregations is derived from their set

of aggregated LOs (e.g. Discrete-Maths in Figure 2).

• Each LO belongs to a learning resource type, such as a lecture, narrative text, diagram,

etc. This does not seem to be very relevant for planning, but according to education

experts the learning resource type highly interacts, positive or negatively, with the student

profile. For instance, a lecture is very recommendable for Felder verbal students but not

for visual ones; and just the opposite holds for a diagram. Or LOs can be displayed in

different orders; e.g. for a Honey-Alonso pragmatic student, an experiment must be displayed

before a narrative text, but for a theoretical student this order must be inverted. The main

inconvenient here is that these resource types combine constructivist and traditional didactic

approaches (Ullrich 2008). That is, some describe the format of a resource, but others cover

the instructional type, which represents different dimensions —there is a mix of pedagogical

and technical/presentation information. Therefore, the learning resource type may fail in

representing a sufficiently precise compilation if, for instance, a lecture contains an image or

diagram, or an experiment is described as a text. This may become problematic, but we rely

our technical compilation on the resource type, and delegate its significance entirely to the

LO designer, who is the real expert in pedagogic matters.

1Felder learning styles comprise four dimensions: perception (sensitive/intuitive), processing (ac-
tive/reflective), input (visual/verbal) and understanding (sequential/global).
2This learning styles theory considers four styles that can be parallelized; for instance pragmatic/active
and reflexive/theoretical can be taken as two styles.
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<general>
<identifier>Discrete-Maths</identifier>
<title>
<langstring xml:lang="en">Discrete-Maths</langstring>

</title>
<language>es</language></general>

<educational>
<difficulty>
<value>
<langstring xml:lang="en">easy</langstring>

</value></difficulty>
<typicallearningtime>
<datetime>0</datetime>

</typicallearningtime></educational>
<relation>

<kind>
<value>
<langstring xml:lang="en">Requires</langstring>

</value></kind>
<resource>
<catalogentry>
<langstring xml:lang="en">Algorithms</langstring>

</catalogentry></resource></relation>
<relation>

<kind>
<value>
<langstring xml:lang="en">Requires</langstring>

</value></kind>
<resource>
<catalogentry>
<langstring xml:lang="en">Boolean-Algebra</langstring>

</catalogentry></resource></relation>

<general>
<identifier>Basic-Algorithms</identifier>
<title>
<langstring xml:lang="en">Basic-Algorithms</langstring>

</title>
<language>es</language>
<coverage>
<langstring xml:lang="en">Mandatory</langstring>

</coverage></general>
<educational>

<learningresourcetype>
<value>
<langstring xml:lang="x-none">Narrative Text</langstring>

</value> </learningresourcetype>
<difficulty>
<value>
<langstring xml:lang="x-none">very easy</langstring>

</value> </difficulty>
<typicallearningtime>
<datetime>9</datetime>

</typicallearningtime></educational>
<relation>

<kind><value>
<langstring xml:lang="x-none">IsPartOf</langstring>

</value></kind>
<resource>
<catalogentry>
<langstring xml:lang="en">Algorithms</langstring>

</catalogentry></resource></relation>

Figure 2 Two LOs of an XML course. Irrelevant information has been ignored.

3.2 Planning Domain Compilation

The general algorithm to compile a planning domain is to iterate all over the LOs and generate

one action (or operator) per LO. This generation relies on a closed world assumption, and if new

LOs are to be used the domain must be recompiled. But note that only the LOs that are affected

by the changes need to be recompiled. For instance, assuming a domain of 10 LOs which is

extended with 2 new LOs that only affect (i.e. are related to) 1 of the original LOs, we only need

to recompile and add 2+1=3 LOs. That is, although the LO repositories may change frequently,

in most cases the already generated domains may remain valid and we only need to add the

new LOs. This compilation is very quick, as each action only consists of five entries —name,

parameters, duration, preconditions and effects— which are automatically extracted from the

values of the LO metadata specification according to the mapping of Table 1:

• The name needs to be unique, which is not particularly hard to generate, because two actions

cannot have the same name.

• The use of a parameterized student facilitates the application of this action to different

students, and makes the definition of preconditions/effects more flexible.

• The action duration is calculated to model either a durative action, e.g. as defined in level 3 of

PDDL2.1 (Fox & Long 2003), or as a numeric-valued fluent for metric planning optimisation.

• The preconditions support all the dependency relations, according to the semantics of

conjunctive (Requires) and disjunctive (IsBasedOn) preconditions. A precondition (not

(action-name done ?s)) is used to avoid planning the same action more than once. Further,

other educational requirements, such as the intended role of the student or the difficulty of

the LO, can be easily modelled.

• The effects encode the fact of attaining the outcome of the LO, i.e. having the action done.

They also include a reward to offer a full support for LO adaptation to the students. This is

achieved in two ways. First, modelling both the learning resource type of each LO and the

student learning style, based on Felder classification, Honey-Alonso or any other classification.

Using recommendation tables, such as (Baldiris, et al. 2008), we know how good (value LRT )
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LO metadata item → PDDL action entry
general/{identifier or title} action-name, which may be a real, fictitious,

primitive or an aggregation action (also known
as task in HTN)

- :parameters (?s - student), to model the
student

if the LO is a primitive LO then
educational/typicallearningtime

else {aggregation of LOs}
sum of the educational/typicallearningtime

given by its IsPartOf LOs

:duration for temporal planners, or
:effect (increase (total time ?s) value)

managed as an artificial fluent effect for
temporal and non-temporal metric planners

dependency relations:
type of relation:

switch (relation/kind/value)
case (Requires): conjunctive (and) precondition
case (IsBasedOn): disjunctive (or) precondition

the related LO: relation/resource/catalogentry

:precondition

(and (not (action-name done ?s)), and
if conjunctive precondition: (and ...

else-if disjunctive precondition: (or ...

for each catalogentry value:
(action-value done ?s), which creates a
particular ordering (also required in HTN)

... other optional preconditions for profile
adaptation taken from educational item)

increase a reward (utility expression) or creating a
particular ordering (useful in HTN) due to:

profile adaptation:
educational/learningresourcetype/value

additional adaptation by using a metric reward:
if relation/kind/value is References

:effect

(and (action-name done ?s) ..., to model
that the action has been done, and
(increase (reward ?s) value LRT)

(increase (reward ?s) value References)
... other optional rewards and/or costs)

Table 1 General LO metadata mapping to PDDL actions. Irrelevant information has been ignored.

a given LO is for a learning style. Second, the References dependency relation also may

increase the reward by a given value LRT when the student satisfies that recommendation.

Again, this value can be particularised to each learning style. Optionally, the compilation can

include numeric expressions or resource costs, as are common in P&S, and even a particular

sequencing used to assist hierarchical decomposition.

This mapping is very general in terms of the planning concepts. Although it comprises many

features, such as durations, conjunctive and disjunctive preconditions, propositional and numeric-

valued representations, etc., it does not define other such as hierarchical structures. On the other

side, there are currently several planning paradigms, and planners. Thus, we instantiate this

general algorithm to provide specialised compilations for different planning paradigms. More

particularly, we started with an extension of our general compilation to a hierarchical compilation,

and then we added two approaches for PDDL compilations. The first one based on conditional

effects, named conditional compilation, that encodes in one operator all the profile adaptation

options. Again, as many planners do not support conditional effects, we provide an additional

compilation where all operators are grounded, hierarchies are simulated by means of dummy

actions and actions can be durative (temporal compilation). It is important to note that we

are not proposing three different planning systems, but three compilations aiming at covering

practically the full spectrum of planning paradigms that exist today.

3.2.1 Hierarchical Domain Compilation
This compilation extends the general compilation with the following features:

• It is based on an extended version of PDDL for HTN planning (Castillo, et al. 2006),

which includes a hierarchical representation of tasks and methods within a related temporal

framework that allows us to specify goal deadlines, temporal landmarking between actions,

and a constraint propagation engine for exploiting the causal structure of plans.
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1-(:task Algorithms 2-(:durative-action Boolean-Algebra-Simulation1

:parameters (?s - student) :parameters (?s - student)

(:method theoretical-learning-style :duration (= ?duration 25)

:precondition (style ?s theoretical) :condition (not

:tasks ((OR_Complexity ?s) (Boolean-Algebra-Simulation1_done ?s))

(Basic-Algorithms ?s))) :effect (and

(:method pragmatic-learning-style (Boolean-Algebra-Simulation1_done ?s)

:precondition (style ?s pragmatic) (profile-dependent effects...)))

:tasks ((Basic-Algorithms ?s )

(OR_Complexity ?s))))

3-(:task OR_Boolean-Algebra-Simulation 4-(:task OR_Complexity

:parameters (?s - student) :parameters (?s - student)

(:method or1 (:method yes

:precondition() :precondition (Available ?s much)

:tasks (Boolean-Algebra-Simulation1 ?s)) :tasks ((Complexity ?s)))

(:method or2 (:method no

:precondition() :precondition()

:tasks (Boolean-Algebra-Simulation2 ?s))) :tasks()))

Figure 3 Example of tasks and methods decomposition in the Hierarchical compilation.

• The profile adaptation is extended to offer different sequences of LOs according to the learning

resource type of the LO, particularly when there is no Requires relation between LOs that

are part of a task, as in Figure 3-1. This sequence is currently designed for the Honey-Alonso

theory, but it can be easily adapted to other theories or pedagogical desires.

• The IsPartOf relation defined in the LO metadata is used to generate aggregation tasks or

primitive tasks, i.e. durative actions.

• The hierarchical structure is generated according to the dependency relations. If aggregated

actions are completely ordered by means of a Requires relation, a unique method is generated.

When there is an IsBasedOn relation with two or more actions, an auxiliary task must

be created with as many methods as actions related to this LO. The associated actions

have preconditions, but not their corresponding methods (see Figure 3-2,3). Finally, when

a References relation appears, an auxiliary task is created that includes two methods: one

empty with no preconditions, and another with a precondition on the student availability, as

in Figure 3-4.

3.2.2 PDDL-Conditional Domain Compilation
This compilation extends the general compilation with the following features:

• It includes a full support for planning with conditional effects, which compress in just one

operator all the effects that depend on the student learning style. For instance, in Figure 4-1

there are four conditional effects that depend on the values active, reflective, intuitive and

verbal. This way, the operator encodes different effects or branches according to the student

—the values of the rewards are computed and normalised, by giving a numeric priority,

according to the work presented in (Baldiris et al. 2008), but can be easily adapted to other

pedagogical preferences. Particularly, this example corresponds to a LO whose learning source

type is Narrative Text, the total time is 9 and without Requires relations.

• The dependency relations (see Table 1) are generated according to the general semantics,

but now a LO with an IsBasedOn relation generates a fictitious action, because the student

only needs to follow one of the actions in the or-condition (see Figure 4-2). Thus, the

corresponding LO has two IsBasedOn relations (Boolean-Algebra-Simulation1 and Boolean-

Algebra-Simulation2) and four Requires relations (Algorithms, Logic-and-Sets, Minimization-

of-Circuits and Logic-Gates).
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1-(:action Basic-Algorithms 2-(:action OR-fictitious-Boolean-Algebra

:parameters (?s - student) :parameters (?s - student)

:precondition (and :precondition (and

(not (Basic-Algorithms_done ?s))) (not (Boolean-Algebra_done ?s))

:effect (Algorithms_done ?s)

(and (Basic-Algorithms_done ?s) (Logic-and-Sets_done ?s)

(increase (total_time ?s) 9) (Minimization-of-Circuits_done ?s)

(increase (reward ?s) 5) (Logic-Gates_done ?s)

(when (active ?s strong) (or

(increase (reward ?s) 20)) (Boolean-Algebra-Simulation1_done ?s)

(when (reflective ?s strong) (Boolean-Algebra-Simulation2_done ?s)))

(increase (reward ?s) 40)) :effect (and (Boolean-Algebra_done ?s)))

(when (intuitive ?s strong)

(increase (reward ?s) 40))

(when (verbal ?s strong)

(increase (reward ?s) 40))))

Figure 4 Example of actions in the PDDL-Conditional domain. The first action comes from a LO
which learning source type is ’Narrative Text’ (the conditional effects model the reward for each Felder
dimension for this type), whereas the second uses an IsBasedOn relation.

• It represents thresholds for each student, such as (time threshold ?s) or

(reward threshold ?s). The former represents the total time the student devotes to

the course, whereas the latter models the utility of the course for the student. This allows

us to easily model rich constraints, such as (< (total time ?s) (time threshold ?s)).

3.2.3 PDDL-Temporal Domain Compilation
This compilation extends the general compilation with the following features:

• All actions are grounded according to the information of the students given in the problem

(see Figure 5). The instantiation is done according to a matching process with the student

profile. For instance, if we want to restrict a LO to be used only by a visual learning style, and

we have two students, with visual and verbal styles, respectively, the action is only generated

for the first student. The domains are now larger because we include all the applicable actions,

rather than a single operator with conditional effects. But, on the contrary, it generates valid

domains for planners that do not support such conditionality.

• It uses an entire numeric representation, which increases the expressiveness of the model and

allows us to include metric resources and cost to model more flexible metrics, as traditionally

used in P&S optimisation.

• It generates both level 3 of PDDL2.1 durative actions and non-durative actions, where time

is modelled by means of the artificial fluent total time.

• It simulates IsPartOf hierarchical structures under a flat model of PDDL actions. All actions

in an aggregation are enveloped within two dummy actions Start/End representing the

beginning/ending of the aggregation (see Figure 5-1,2). Start contains the preconditions

of the aggregation action and End its effects. On the other hand, the actions generated for all

the aggregated actions have that Start as precondition (Figure 5-3). Obviously, both Start

and End have duration 0.

3.3 Problems Compilation

Once the domain is generated, we compile the planning problem. The IMS-LIP standard

(http://www.imsglobal.org/profiles) to access the student information is too wide, so we

extract the relevant characteristics and compile them into a planning problem. The proposal
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1-(:durative-action Start_Discrete-Maths_Std1 2-(:durative-action End_Discrete-Maths_Std1
:parameters () :parameters ()
:duration (= ?duration 0) :duration (= ?duration 0)
:condition (and :condition (and
(at start (= (Start_Discrete-Maths_Std1_done) 0)) (at start (= (End_Discrete-Maths_Std1_done) 0))
(at start (= (Algorithms_Std1_done) 1))) (at start (= (Start_Discrete-Maths_Std1_done) 1))
(at start (= (Boolean-Algebra_Std1_done) 1))) all ’aggregated_actions’_Std1_done’ must be 1)

:effect (and :effect (and
(at end (increase (Start_Discrete-Maths_Std1_done) 1)) (at end (increase (End_Discrete-Maths_Std1_done) 1))
(at end (increase (Discrete-Maths_Std1_done) 1)) increase other numeric expressions))

3-(:durative-action Basic-Algorithms_Std1
:parameters ()
:duration (= ?duration 9)
:condition (and (at start (= (Basic-Algorithms_Std1_done) 0))

(at start (= (Start_Algorithms_Std1_done) 1)))
:effect (and (at end (increase (Basic-Algorithms_Std1_done) 1))

(at end (increase (reward_Std1) 40))
increase other numeric expressions or resource_costs))

Figure 5 Durative actions for student Std1 generated for the two LOs of Figure 2 according to the
PDDL-Temporal compilation. We assume in our problem that Std1 is verbal. Since the learning resource
type of Basic-Algorithms is ’Narrative Text’ (see Figure 2) and the student is verbal this means a
reward in the learning process of 40. The values of all the rewards are given by the educational experts.

IMS-LIP → Planning problem
identification/name/contentype/referential/indexid :objects student-name, checking its uniqueness
accessibility/preference/typename/typevalue/

Learner_Style_Processing/prefcode/profile-type.value
:inits (profile-type student-name value)
e.g. :inits (reflective student1 strong)

goal/typename/typevalue/course-name/contentype/temporal/
typename/time_threshold/temporalfield/value

:inits (= (time threshold student-name) value)
:goals (= (course-name done student-name))
e.g. :inits (= (time threshold student1) 3800)
e.g. :goals (course-name done student1)

activity/typename/typevalue/task/learningactivityref/
text/object-name

:objects object-name
:inits (known student-name object-name)
e.g. :objects graph theory
e.g. :inits (known student1 graph theory)

accessibility/language/typename/typevalue/lang-value

:inits (language level lang-value
student-name high)
e.g. :inits (language level English student1
high)

competency/contentype/referential/indexid/performance-level/
description/short/value

:inits (performance level student-name high)
e.g. :inits (performance level student1 high)

Table 2 IMS-LIP mapping to a problem compilation. Irrelevant information has been ignored.

is valid for our three approaches, although the translation differs slightly for the temporal

compilation, where the problem is (interactively) generated together with the domain because of

the grounded approach (Garrido et al. 2009).

The planning problem includes propositions to represent the objects, the initial state, the goals

and the metric to optimise. The objects represent the students information for the learning design

and their previous knowledge. The initial state represents the students profile, the initial values

of the fluents, the language of the course, and some other information (e.g. student performance,

special equipment, availability, etc.). The goal is to pass the entire course or a part of it. Table 2

shows the mapping to automatically translate an IMS-LIP structure into a planning problem.

The first column represents the IMS-LIP entry and the second one the corresponding item in

the planning problem. As can be seen, the problem compilation is simpler than the domain

compilation, as it basically consists in generating the initial values and goals for the objects.

3.4 Plans compilation

After compiling the planning domain and problem, we run a domain-independent planner to

find a plan. The quality of the plan itself depends on the planner quality; some planners are

optimal and return the best solution, but others return just one solution. Consequently, the

domain/problem compilation has not a relevant impact in that quality. In this compilation, we

translate the plan into the e-learning standard IMS-LD. Each plan represents the learning design
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as a route of LOs that best suits the student, which will be later displayed in a LMS. Since

current LMSs support different languages, we have implemented translators for two of the most

common systems: IMS-LD for dotLRN, and Moodle templates. In the first case, we create a zip

file that contains the input resources (LOs) as well as the learning design as an XML file. Our

algorithm compiles the next six items in the XML file:

• Goals, which are taken from the goals of the planning problem, usually the effects of the final

action of any domain.

• Prerequisites, which are taken from the initial conditions on previous knowledge that is

required to follow this course. They are the links to LOs or objectives of other courses, which

allow us to perform multiple course planning in the future.

• Roles. In this case, the only role is the student for whom the learning design is generated.

• Activities, which are taken from the plan. Iterating for each action, an IMS-LD activity entry

is generated, which also includes a link to the corresponding LO. Obviously, all fictitious

actions used during planning are now omitted.

• Activity structure, which relates to the plan itself and its route of actions. Given that the

IMS-LD standard allows other control structures, such as conditional plans with branches,

in the future we will study how to generate conditional plans and the impact it has on the

fact that students may execute different alternatives.

• Resources. For each LO in the input IMS-MD, a resource, that can or not be used in the

plan, is defined.

The second translator compiles the plan into a Moodle template that describes an XML file

which is related to the course previously implemented in Moodle. The compilation algorithm is

straightforward, as the XML document simply contains the student identifier and an enumeration

of the LOs to be executed. The sequence in which LOs appear in the document corresponds to

the particular ordering for each student, which helps the student explore and navigate through

the course.

3.5 Approaches Comparison

Table 3 shows the differences between the three compilations from a knowledge engineering

perspective based on several characteristics. Although the underlying semantics in the three

compilations is the same, each compilation adapts more naturally to each learning language.

More specifically, the Hierarchical compilation adapts better to the Moodle format in terms of

domain and problem, whereas the Conditional one adapts better to the IMS-MD standard. This

is because of the nature of the Moodle courses, which usually focus more on the inner structure

of the course, rather than IMS-MD, which focuses more on the definition of particular LOs and

leaves apart somewhat the relations between LOs. On the other hand, the Temporal compilation

accepts both formats, as it manages both hierarchical and flat structures. The planning goals,

deadlines (time limit devoted to the course) and prerequisites (student previous knowledge for

the course) are defined in the IMS-LIP for the Hierarchical and Conditional approaches, whereas

the Temporal compilation uses the data defined in the problem. The row Dependency relations

considers the types of relations supported by the different approaches. Students profiles refer to the

styles that are currently supported but this can be easily extended. Soft preconditions refer to the

fact that the learning design can contain LOs that, without being mandatory, provide some benefit

to the student. This is possible through the methods in the Hierarchical approach and through

the precondition (< (total time ?s) (time threshold ?s)), which allows the Conditional

representation to include more LOs than strictly necessary. Time management represents how

the approaches deal with time. The row Metrics means whether the approach can manage quality

metrics or not. The row Planner represents the planner required to solve the problems modelled by

each compilation. The last row shows how the plans, which the corresponding planner generates,

comply with Moodle and IMS-LD.
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Characteristic Hierarchical PDDL-Conditional PDDL-Temporal
Domain definition Moodle IMS-MD Both
Problem definition Moodle and IMS-LIP IMS-LIP Interactively
Goal definition IMS-LIP LO in MD and IMS-LIP Problem
Deadline definition IMS-LIP IMS-LIP Problem
Prerequisite definition IMS-LIP IMS-LIP Problem
Dependency relations All IsBasedOn All

Requires
Students profile Honey-Alonso Felder Both
Soft preconditions Tasks and methods Domain Domain (using References)
Time management Durative actions Fluent Both
Metric No Yes Yes
Planner siadex Conditional effects Temporal

Metrics Metrics
Plan compilation Moodle/IMS-LD Moodle/IMS-LD Moodle/ISM-LD

Table 3 Comparison of the three compilations.

In summary, the Hierarchical compilation permits modelling many e-learning features, but only

the planner siadex (Castillo et al. 2006) supports them, and it does not support quality metrics

yet. The other compilations use PDDL and deal with optimisation metrics, such as maximising

the learning reward. However, most state-of-the-art planners cannot maximise metrics, so a metric

for maximising the total utility that the LOs report to the student cannot be always used and

represents an important challenge for existing planners. From a pedagogical side, it is not easy

(nor possible) to transform the metric for maximising the reward into a metric for minimising

its inverse, due to how rewards are computed in this domain. In particular, we use a mapping

defined in (Baldiris et al. 2008) that contains information on whether the learning resource type

is good, very good or indifferent for each learning style. But we cannot assert anything about the

inverse. For instance, it is untrue that if a lecture is very good for a reflective student it has to be

very bad for a non-reflective student. So, it is unclear which values to assign to those cases not

covered in (Baldiris et al. 2008).

The main conclusion is that there is not clearly a best approach. In some cases, the hierarchical

compilation shows more natural (particularly when there are many IsPartOf relations); in others,

the conditional compilation is very appealing to model and subsume all alternative branches that

students may follow; and in other cases, the temporal compilation shows more expressive, because

of its simulation of hierarchical structures and use of a complete numeric representation.

4 Experimental Results

In this section, we perform a quantitative and qualitative evaluation. From a quantitative

perspective, we are interested in technical experiments to assess the correctness of the compilation

schemas from a planning perspective. Thus, we have run some experiments with four courses

defined in IMS-MD. The first one is a complete AI course containing LOs for covering all the

typical tasks, such as reading a subject, practising, programming, performing exams, etc. Each

task includes from one to six optional ones with different degrees of adequacy to the learning styles.

The course has 172 LOs, 32 of them representing common tasks and 14 hierarchical aggregations.

This course contains enough LOs for testing the planning complexity and for covering realistic-size

courses. The other courses, Representation, Planning and Search, are subsets of this.

After compiling the IMS-MD course following the three approaches, we have defined the

corresponding planning problems. All the compilation processes finished in a few seconds. We

have used one planner for each compilation: siadex for the hierarchical domain, cbp (Fuentetaja,

et al. 2009) for the Conditional domain, and lrnplanner (Garrido & Onaind́ıa 2010) for the

Temporal domain. We have also analysed the applicability of many state-of-the-art planners

that participated in the ICAPS planning competitions (http://ipc.icaps-conference.org),

but they do not support all the domain requirements at the same time, i.e. conditional effects,

or and negative preconditions, fluents and cost metrics. Therefore, we have used these three

planners because they support all the domain requirements for each compilation and are sound
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(all their generated plans are valid). siadex is a knowledge-based HTN planner with temporal

features. cbp includes the original algorithms of metric-ff, and it also implements new heuristics

and algorithms to better deal with cost metrics —the original metric-ff could not solve all

the tested problems. lrnplanner deals with durative actions and metrics. We also tried to

solve the durative problems with mips-xxl but it has scalability problems due to the numeric

representation; all the information is encoded as numeric functions and current planners have

problems with this kind of reasoning.

First, we performed some experiments to analyse the scalability of the approaches. We

considered problems with 1, 2, 4, 8, 16, 32 and 64 students and measured the running time

for solving the problems. For the longest course (AI course), the time to solve the problems

ranged: in the Hierarchical approach from 0.04s for 1 student up to 97.41s for the 64 students;

in the Conditional one from 0.47s to 455.94s; and in the Temporal one from 0.07s to 37.29s. The

execution time for the other domains were proportional to the course size and number of students

(we do not show detailed results for lack of space). This means that all the approaches can cope

well with a reasonable number of students. The size of the plans ranged progressively: in the

Hierarchical approach from 86, 172 (86*2), 258 (86*3). . . 5504 (86*64) actions for 1, 2, 3. . . 64

students, respectively; in the Conditional one 78, 156 (78*2). . . 4992 (78*64) actions; and in the

Temporal one from 66 to 4224 (66*64) actions.

Second, we performed other experiments to test the quality of the plans, i.e. e-learning designs.

Obviously, quality depends on the pedagogical theory used and how it is defined by the education

experts. In our approach, the Hierarchical domain is based on the order in which the LOs are

presented to each student, while the Conditional and Temporal domains are based on the utility

(reward) theory mentioned above. There are very specific courses with evaluations based on a

student satisfaction-oriented perspective (Castillo et al. 2010). But our tested courses are more

generally designed and use a theory that implies the planner should find a plan that maximises

the total reward without exceeding the total time the student can devote to the course. That

is, the solution plan must contain as many LOs that fit the particular student profile as the

time constraint allows. For example, the plan for an active student should contain LOs that the

recommendation table in (Baldiris et al. 2008) suggests for active students. However, as current

state-of-the-art planners cannot maximise metrics, we have transformed the reward maximisation

into a penalty minimisation metric. As mentioned before, there is not an exact transformation

of metric for maximising the reward into a metric for minimising its inverse, so we use an

approximation. The recommendation table contains information on whether the learning resource

type is good, very good or indifferent for each learning style. We use a penalty PDDL-fluent that

increases in two units each time the plan includes an indifferent action, in one unit when it

includes a good action, and there is not penalty for very good actions, but this can be easily

modified to other values. This way, we guide the planner to include very good actions in the plan,

i.e. actions that provide greater reward to the student. We vary the domain and the student

profile, and measure: i) the size, i.e. number of LOs in the solution plan, ii) the total time and

penalty of the learning design, and iii) the differences between plans. For these differences, we

take the first plan (the one for the active student) as the base plan and count the number of

LOs in the other plans that are not included in it as a measure of adaptation to students. The

bigger the difference is, the more actions are found for that particular type of student that are not

suggested in the baseline. In the Hierarchical approach the differences are the number of LOs that

are presented to the student in a different order than the base plan. We consider problems with

the four profiles in the Honey-Alonso taxonomy, i.e. active, reflexive, theoretical and pragmatic,

which correspond to the active, reflective, intuitive and sensitive ones in the Felder taxonomy,

respectively. Table 4 shows the results. The rows represent the planning problems: student profile

(P: 1-active, 2-theoretical/intuitive, 3-pragmatic/sensitive, and 4-reflective) and courses (the first

4 rows correspond to the Representation course, the following 4 rows to the Planning course,

the following rows to the Search course and the last ones to the complete AI course). Columns
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represent: number of LOs in the plan (LOs), total time (Ti) of the course, penalty (Pe) and number

of differences (Di). The Conditional approach uses an additional reward threshold; a plan is valid

only if the total reward is equal or greater than this threshold, which poses the question of setting

the initial reward threshold value. We have initially set it to zero and executed the planner. The

reward obtained in the solution plan is the threshold value used in the experiments. As the base

case we used the solution returned by cbp without using any metric nor reward threshold. The

total time thresholds (maximum time the student can devote to the course) were bigger enough,

i.e. there were not time constraints.

Base Case PDDL-Conditional PDDL-Temporal HTN-PDDL
P LOs Ti Pe Di LOs Ti Pe Di LOs Ti Pe Di LOs Ti Di
1 15 650 10 29 825 6 20 755 7 14 650
2 15 650 7 0 30 935 10 7 20 815 10 2 14 650 0
3 15 650 16 0 28 735 11 1 20 755 11 0 14 650
4 15 650 7 0 30 845 10 6 20 755 11 0 14 650 0
1 13 510 7 26 715 1 12 570 1 13 600
2 13 510 4 0 18 660 3 10 12 420 3 3 13 600 13
3 13 510 10 0 27 625 2 2 12 570 12 0 13 600
4 13 510 4 0 18 720 4 8 12 510 4 2 13 600 13
1 40 1430 29 49 1785 17 40 1730 12 44 1620
2 40 1430 14 0 51 1685 14 11 40 1430 14 9 44 1620 31
3 40 1430 34 0 46 1455 19 10 40 1620 14 4 44 1620
4 40 1430 17 0 48 1595 15 10 40 1430 17 9 44 1620 31
1 66 2530 45 81 2925 22 66 2655 26 86 3290
2 66 2530 28 0 87 2845 27 23 66 2335 29 14 86 3290 55
3 66 2530 59 0 80 2595 34 11 66 2705 37 2 86 3290
4 66 2530 32 0 84 2815 30 18 66 2215 38 14 86 3290 55

Table 4 Experimental results for the adaptation of plans. Running time was less than 0.2s in all cases.

The results show that the plans generated with the Conditional and Temporal approaches

better adapt to the student profile. Even though there are fewer LOs in the base plans than in

the others, the penalty is nearly always greater. That means that our approaches find learning

designs with a higher number of LOs, i.e. the student has more possibilities to better learn the

course, and most of them are very good for its profile. The Hierarchical approach also shows

adaptation to the student profile according to the theory it is based on: it only distinguishes two

kinds of students, pragmatic and theoretical ones (the active style is considered as pragmatic and

reflective as theoretical). The plans generated for both kind of students contain several actions

in different order, but the first domain is too simple to appreciate this difference.

Finally, in order to verify that the e-learning designs obtained by applying the proposed

methodology are valid, i.e. correctly specified, we have compiled the plans into the e-learning

standard IMS-LD and we have correctly uploaded the resulting XML files to the learning dotLRN

(www.dotlrn.org) and RELOAD (http://www.reload.ac.uk) platforms.

On the other hand, a thorough qualitative evaluation of the approaches is difficult, as it

involves the collaboration of educational researchers for a correct definition of the courses and for

a comprehensive testing with real students. The work presented in (Castillo et al. 2010) reports

some preliminary experiments in this direction for the Hierarchical compilation. The main result

here is that it is not easy to measure the goodness of our approach via the students grades/scores,

as following a learning design does not necessarily mean achieving a better grade. Therefore, we

have designed a brief questionnaire to evaluate the quality of the learning designs, i.e. plans for

the whole AI course detailed above, and their adequacy to the students profiles from the lecturer

perspective. Table 5 shows the results of this evaluation by nine lecturers of AI courses, in terms

of the three different compilations and two different learning styles. In particular, the first three

rows (questions) refer to the votes for the plans obtained for active/pragmatic students, whereas

the following three are for the reflective/theoretical ones. In general, the experts agree (though

not very strongly) with the designs given by the three compilations in terms of their form, size and

adaptation to the students. The main reason why there were not more strongly agree answers

was that we had loosened too much the constraints (relations) among LOs, thus allowing the



14 a. garrido et al.

planners to generate plans with non-standard orders in the sequence of activities. Even so, the

generated orders were correct with respect to the initial LOs. Also, an additional test with respect

to the compilation with the most coherent and consistent sequence of LOs shows that one lecturer

prefers the conditional compilation, three the temporal conditional and five the HTN one, as it

seems more natural. Finally, and according to the lecturers opinion, it is extremely hard to design

(and evaluate) an adequate learning design to each profile, but they agree with the usefulness of

applying planning technology to help their labor.

Strongly disagree Disagree Neutral Agree Strongly agree
Question C T H C T H C T H C T H C T H
Q1 2 1 2 3 4 4 4 4 1 1 1
Q2 2 1 4 5 5 2 2 4 1 1
Q3 1 1 7 7 5 1 4 1
Q1 2 2 2 4 4 4 2 4 1 1 1
Q2 1 3 6 4 5 1 2 4 1
Q3 1 1 1 7 6 3 1 6 1

Q1. The number of LOs is appropriate for the course
Q2. The duration of the LOs sequence is appropriate
Q3. The adaptation of contents to the students learning style is appropriate

Table 5 Questionnaire for a qualitative evaluation of learning designs by nine lecturers. C, T and H
stand for PDDL-Conditional, PDDL-Temporal and HTN-PDDL compilations, respectively.

5 Conclusions and Future Work

This paper has contributed with both a general and three instantiated approaches for automatic

compilations that interpret and translate e-learning models to planning. A course definition is

represented as a planning domain, the student learning information as a planning problem for

that domain and the learning design as the plan generated by a domain-independent planner.

Our three different compilations of planning domains and problems allow current planners to

automatically generate valid learning designs. Our experimental results have raised challenges

and shown scalability limitations in some cases. Also, a complete analysis of our compilations has

allowed us to detect three important drawbacks that show semantic gaps between the pedagogical

decisions and the automated translations. First, instructional designs are complex to model;

they tend to be theory-independent and do not capture the pedagogical knowledge required to

generate a course. Second, e-learning languages are usually too generic and try to cover too

many aspects, making the implementation of general and suitable translators for all LMSs very

difficult and, in some cases, slightly imprecise (e.g. the learning resource types). Third, despite the

expressive power of e-learning languages, there are still some aspects that cannot be represented

and are essential in P&S. For example, the definition of the resources involved in the tasks,

their costs, the temporal constraints on availability and how these resources are to be managed

are important lacks in e-learning languages. In other words, e-learning standards still miss some

information for pedagogically interesting planning. Analogously, a more flexible approach for

requiring/achieving the learning outcomes is also missing. For instance, the execution of a task

may result in a higher effect in one student than in another, depending on the student learning

style. Informally, two students do not learn the same with the same task, and the definition of

this type of conditional effects should be available in the e-learning standards. We have solved

this problem by implementing pedagogical suggestions into the compilers. But all in all, our

compilations show very appropriate for integrating e-learning standards and AI planning, while

also providing the strong foundations to be extended to other particular education theories.

In the future, we intend to overcome the previous drawbacks by addressing three parallel lines.

Firstly, coming up with more expressive models of actions for planning e-learning activities, thus

augmenting the semantics of the model, which will increase the opportunities to: i) deal with

complex course composition, and ii) validate and resolve courses with similar but incommensurate

LOs. Secondly, extending our system to assist the course designer in making sure that the



Automatic compilation of e-learning to planning 15

same naming conventions are used by adopting a standard or common ontology, as proposed

in (Kontopoulos et al. 2008), thus avoiding unsolvable situations (e.g. having a LO requiring

knowledge on planners and a student knowing about planning systems). Thirdly, working on the

actual execution of courses and the dynamic planning adaptation of courses with respect to the

real behavior of students.
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