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Atrial fibrillation (AF) is the most common supraventricular arrhythmia in clinical practice, thus, being the subject of intensive
research both in medicine and engineering. Wavelet Entropy (WE) is a measure of the disorder degree of a specific phenomena
in both time and frequency domains, allowing to reveal underlying dynamical processes out of sight for other methods. The
present work introduces two different WE applications to the electrocardiogram (ECG) of patients in AF. The first application
predicts the spontaneous termination of paroxysmal AF (PAF), whereas the second one deals with the electrical cardioversion
(ECV) outcome in persistent AF patients. In both applications, WE was used with the objective of assessing the atrial fibrillatory
( f ) waves organization. Structural changes into the f waves reflect the atrial activity organization variation, and this fact can be
used to predict AF progression. To this respect, results in the prediction of PAF termination regarding sensitivity, specificity, and
accuracy were 95.38%, 91.67%, and 93.60%, respectively. On the other hand, for ECV outcome prediction, 85.24% sensitivity,
81.82% specificity, and 84.05% accuracy were obtained. These results turn WE as the highest single predictor of spontaneous PAF
termination and ECV outcome, thus being a promising tool to characterize non-invasive AF signals.

1. Introduction

Atrial fibrillation (AF) is the most common cardiac arrhyth-
mia, affecting almost 5% of the population older than
69 years of age and 8% of the population older than 80
years [1]. Although this arrhythmia itself does not represent
a life-threatening condition, it predisposes to thrombus
formation within the atria. As a consequence, AF increases
mortality, stroke, and thromboembolism risks and reduces
considerably the patients’ quality of life [1]. Different AF
subtypes can be specified depending on its usual evolution
[2]. Paroxysmal atrial fibrillation (PAF) used to be the first
one. In this stage, the arrhythmia terminates spontaneously
without the need of medical intervention. The next stage is
persistent AF, which requires pharmacological or electrical
cardioversion (ECV) to allow its termination. Finally, the last
stage is permanent AF, in which the termination is impossible
or is not recommended, mainly, because of two reasons. On

the one hand, the very low probability of AF reversion and,
on the other hand, the high risks associated to the procedure
[1].

Although the mechanism of AF is still unclear, it occurs
when the electrical impulses in the atria degenerate from
their usual organized pattern into a rapid chaotic pattern [1].
Thus, AF is associated with multiple meandering activation
waves propagating randomly throughout the atria [3, 4].
The wavefronts fractionation, as they propagate, results in
self-perpetuating independent wavelets, called reentries. The
number of simultaneous reentries depends on refractory
period, mass and conduction velocity of the atria [1].
This multiple wavelet hypothesis implies that the likelihood
spontaneous AF termination is inversely related to the
number of circulating wavelets in the atria [4]. Thus, self-
sustained AF is associated with more circulating wavelets
than nonsustained AF. In fact, previous works have suggested
greater AF recurrence likelihood after ECV [5] and catheter
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ablation [6] in persistent AF patients with higher number of
propagating reentries.

Even with this uncompleted understanding of AF mech-
anisms, several authors have demonstrated that a strict cor-
relation between AF organization, defined as how repetitive
is the AF signal pattern, and the number of wavefronts
wandering the atrial tissue exists [3, 5]. Thereby, given that
structural changes into surface fibrillatory ( f ) waves reflect
the intraatrial activity organization variation [7], the aim
of this work is to prospect the combination of Wavelet
transform (WT) and entropy to predict organization-related
events in AF from the surface ECG. In this sense, WT is
a useful tool for the analysis of transients, aperiodicities,
and other nonstationary signal features where subtle changes
in signal morphology may be highlighted over different
time-frequency scales [8]. Hence, given that entropy can be
considered as a measure of the disorder degree of a signal [9],
the application of entropy to the wavelet coefficients, referred
to as Wavelet Entropy (WE) [10], would be a successful
noninvasive estimator of f waves organization.

From a clinical point of view, the assessment of AF
organization from the standard ECG is very interesting, since
this recording can be easily and cheaply obtained and avoids
the risks associated to invasive procedures [11]. On the other
hand, given that about 18% of PAF patients degenerate into
persistent AF in less than 4 years [12], the early prediction
of AF maintenance is crucial. Thus, appropriate intervention
may terminate the arrhythmia and prevent AF perpetuation.
In contrast, the prediction of PAF termination could avoid
unnecessary therapy, reduce the associated clinical costs,
and improve the patient’s quality of life. On the other
hand, although ECV is a well-established strategy of AF
therapy [13], arrhythmia recurrence is common during
the first year after the procedure, even when the patients
are under pharmacological therapy [13]. Therefore, the
ECV success prediction could improve candidate selection
for the procedure, thus reducing risks for the patient
and costs for the healthcare provider. Overall, these two
organization-dependent scenarios have been investigated,
and WE diagnostic ability in the prediction of spontaneous
PAF termination and ECV outcome in persistent AF patients
have been analyzed.

2. Materials

Two databases have been employed in the present study. First,
a set of PAF recordings were analyzed to predict spontaneous
termination of AF, and, secondly, a set of persistent AF
recordings were studied to predict ECV outcome. The next
subsections give additional details on these databases.

2.1. Paroxysmal AF Database. Fifty Holter recordings of 30
seconds in length and two leads (II and V1) available in
Physionet [14] were analyzed. The database included 26 non-
terminating PAF episodes (group N), which were observed
to continue in AF for, at least, one hour following the end of
the excerpt, and 24 PAF episodes terminating immediately
after the end of the extracted segment (group T). These

signals were digitized at a sampling rate of 128 Hz and 16-
bit resolution. Nonetheless, they were upsampled to 1024 Hz
in order to allow better alignment for QRST complex
subtraction, such as Bollmann et al. suggested [15]. This
processing step is needed to extract the AA from the surface
ECG, as will be next detailed in Section 3.1.

2.2. Persistent AF Database. Sixty-three patients (20 men
and 43 women, mean age 73.4 ± 9.0 years) with persistent
AF lasting more than 30 days, referred to the Cardiology
Department of the General University Hospital Consortium
of Valencia (Spain) for ECV, were selected. They were
followed during four weeks after ECV procedure. A standard
12-lead ECG was acquired for each patient during the whole
procedure. The signals were digitized at a sampling rate
of 1024 Hz and a resolution of 16 bits using a TEPA EKG
Master USB recording system. A segment of 30 seconds in
length preceding the cardioversion was extracted from each
recording for the analysis. All the patients provided written
informed consent for the study, which was approved by the
human ethics committee of the hospital.

After the ECV, 22 patients (34.93%) maintained NSR
during the first month. On the contrary, in 31 patients
(49.20%), NSR duration was lower than 1 month and
the remaining 10 (15.78%) relapsed to AF immediately
after ECV. These 41 patients constituted the group of
AF recurrence. All patients were under drug treatment
with amiodarone. The median arrhythmia duration was 10
months (range 1–47), and echocardiography demonstrated
a mean left atrium diameter (LAD) of 45.82 ± 6.93 mm.
Furthermore, 20.63% of the patients presented underlying
heart disease. No significative differences were found in
the aforementioned clinical parameters between the patients
who maintained NSR and those others who relapsed to AF.

3. Methods

3.1. Data Preprocessing. In both databases, lead V1 was
chosen for the analysis because previous works have shown
that AA is dominant in this lead [11]. This signal was
preprocessed using forward/backward highpass filtering with
0.5 Hz cut-off frequency to remove baseline wander. Next,
lowpass filtering with 70 Hz cut-off frequency was applied
to reduce high frequency noise. Finally, notch filtering at
50 Hz was applied to remove powerline interference [16].
In addition, a reliable analysis of the AA from the surface
ECG requires that ventricular activity has been cancelled
previously [15]. Although a variety of different techniques
exist for this purpose, an adaptive singular value QRST
cancellation template was applied [17].

3.2. Wavelet Transform. From a mathematical perspective,
the wavelet is a smooth and quickly vanishing oscillating
function with good localization in both time and frequency.
A wavelet family Ψa,b(t) is the set of elementary functions
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generated by dilations and translations of a unique admis-
sible mother wavelet Ψ(t) [8], that is:

Ψa,b(t) = |a|−(1/2)Ψ
(
t − b

a

)
, (1)

where a, b ∈ �, a /= 0 are the scale and translation
parameters, respectively, and t is the time. As a increases,
the wavelet becomes narrower. Thus, one has a unique
analytic pattern and its replications at different scales and
with variable time localization.

The Discrete Wavelet Transform (DWT) is the sampled
version of the Continuous Wavelet Transform (CWT) in a
dyadic grid employing orthonormal wavelet basis functions
[8]. Hence, the parameters a and b are sampled using a
logarithmic discretization of the a scale (a = 2m), and this, in
turn, is linked to the steps size taken between the b locations.
To link b to a, each location b, which is proportional to the
a scale, is moved in discrete steps (b = n · 2m). Thus, the
discretized mother wavelet is

Ψm,n(k) = 2−(m/2)Ψ(2−mk − n), (2)

with m and n being the new scale and translation discrete
parameters, respectively, and k the discrete time instant.
Hence, the wavelet decomposition of the AA signal, xAA(k),
can be defined as its correlation with the chosen wavelet
family Ψm,n(k) for each m and n, that is:

Cm(n) =
∑
k

xAA(k) ·Ψm,n(k). (3)

The decomposition results in wavelet coefficients C, which
depend on scale and position. In fact, a vector of wavelet
coefficients Cm is obtained for each analyzed discrete scale m.
The information stored in the wavelet coefficients vectors is
not repeated elsewhere and allows the complete regeneration
of the original signal without redundancy, because the used
discretization of the mother wavelet employs orthonormal
basis functions [8].

3.3. Wavelet Entropy. The entropy of a random variable
reflects the degree of disorder that the variable possesses. The
more uncertain the variable is, the greater its entropy [9].
Entropy, H , for a discrete random variable X is defined as

H(X) = −
∑
i

P(X = ai) logP(X = ai), (4)

where ai are the possible values of X . The conventional
definition of entropy is described in terms of the temporal
distribution of signal energy in a given time window. The
distribution of energy in a specified number of data values
intervals is described in terms of the probabilities in signal
space {pi}, where pi is the probability that X = ai [9].

In an orthonormal basis the concept of energy is linked
with the usual notions derived from the Fourier theory [10].
Then, the relative energy of the wavelet coefficients at each
scale m can be expressed as

Em =
∑

i |Cm(i)|2∑N
m=1

∑
i |Cm(i)|2 , (5)

with N being the number of wavelet decomposition levels.
Clearly

∑N
m=1 Em = 1 and the distribution {Em} can be

considered as a time-scale density, which is a suitable tool
for detecting and characterizing specific phenomena in time
and frequency domains [10]. Therefore, WE can be defined
as

WE = −
N∑
n=1

Em log(Em), (6)

being a measure of the degree of order/disorder of the
signal, so it can provide useful information about the
underlying dynamical process associated with the signal
[10]. To this respect, for a very organized signal, such as
a periodic monofrequency signal, WE provides a very low
value near zero, given that its wavelet decomposition shows
a relative wavelet energy near one for the level containing
the representative frequency of the signal and a very limited
relative energy for the remaining wavelet levels. In contrast, a
very disorganized signal, such as those generated by a totally
random process, has a wavelet representation with significant
contributions from all the frequency bands, thus providing a
high WE value near its maximum.

The application of WE to the AA signal requires the
appropriate selection of the number of decomposition levels
and a mother wavelet function. In this sense, a seven-level
decomposition was chosen, given that the seventh scale
resulted in a good match to the AA frequency bands of
interest [18], that is, 4–8 Hz, and it has provided successful
outcomes in previous works dealing with AF [19, 20].
Regarding the wavelet family selection, there are no estab-
lished rules for the choice of wavelet functions. A cautious
and still exploratory approach is to test different wavelet
families and then to compare their efficiency in the specific
problem [21]. Unfortunately, on each electrocardiographic
application where the WT has been used, a different wavelet
family was chosen [22]. In this study, several orthogonal
wavelet families were tested, because only in an orthogonal
basis any signal can be uniquely decomposed, and the
decomposition can be inverted without losing information
[8].

3.4. Statistical Analysis. In order to evaluate WE diagnostic
ability from each considered AF scenario, a stratified 2-
fold cross-validation was used. Thus, the database was
first partitioned into 2 equally sized folds. Subsequently, 2
iterations of training and validation were performed, such
that with each iteration a fold of the data was held out for
validation while the other was used for learning. From each
learning set, optimum WE threshold was computed making
use of a receiver operating characteristic (ROC) curve. It
was created by plotting the fraction of true positives out of
positives (sensitivity) versus the fraction of false positives out
of the negatives (1-specificity) at various threshold settings.
The threshold value providing the highest percentage of
patients correctly classified, that is, accuracy, was selected
as optimum WE threshold. This value was thereafter used
to compute sensibility, specificity, and accuracy from the
corresponding validation set. It is worth noting that data was
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Table 1: Mean and standard deviation of WE values for nonterminating and terminating PAF groups, statistical significance (P value),
sensitivity, specificity, and accuracy for each studied wavelet family. These values were computed and averaged for the 10 analyzed learning
sets.

Wavelet family (Order) Group N Group T P value Sensitivity Specificity Accuracy

Haar 0.231 ± 0.012 0.441 ± 0.018 <0.001 96.15% 93.75% 95%

Daubechies (5) 0.252 ± 0.021 0.520 ± 0.029 <0.001 96.15% 93.75% 95%

Coiflet (3) 0.211 ± 0.019 0.487 ± 0.014 <0.001 96.15% 93.75% 95%

Biorthogonal (4.4) 0.231 ± 0.022 0.452 ± 0.029 <0.001 96.15% 93.75% 95%

Reverse biorthogonal (4.4) 0.290 ± 0.041 0.522 ± 0.035 <0.001 96.15% 93.75% 95%

Symlets (5) 0.250 ± 0.023 0.524 ± 0.028 <0.001 96.15% 93.75% 95%

Table 2: Mean and standard deviation of WE values for patients relapsing to AF and maintaining NSR during the first month following
cardioversion, statistical significance (P value), sensitivity, specificity, and accuracy for each studied wavelet family. These values were
computed and averaged for the 10 analyzed learning sets.

Wavelet family (Order) ECVs relapsing to AF ECVs maintaining NSR P value Sensitivity Specificity Accuracy

Haar 0.627 ± 0.021 0.512 ± 0.025 <0.001 87.74% 79.09% 84.75%

Daubechies (5) 0.642 ± 0.029 0.521 ± 0.034 <0.001 87.74% 79.09% 84.75%

Coiflet (3) 0.612 ± 0.013 0.502 ± 0.020 <0.001 87.74% 79.09% 84.75%

Biorthogonal (4.4) 0.625 ± 0.023 0.508 ± 0.018 <0.001 87.74% 79.09% 84.75%

Reverse Biorthogonal (4.4) 0.651 ± 0.044 0.549 ± 0.038 <0.001 87.74% 79.09% 84.75%

Symlets (5) 0.630 ± 0.031 0.528 ± 0.033 <0.001 87.74% 79.09% 84.75%

stratified prior to being split into 2 folds. Stratification is the
process of rearranging the data as to ensure each fold is a
good representative of the whole.

On the other hand, for both learning and valida-
tion sets, significant differences between terminating and
nonterminating PAF episodes and between patients who
resulted in NSR and relapsed to AF were evaluated making
use of Student’s t-test. All the groups had a normal and
homoscedastic distribution as the Shapiro-Wilk and Levene
tests proved, respectively. A two-tailed value of statistical
significant P < 0.05 was considered statistically significant.
Finally, note that all the ECG preprocessing, WE, and
statistical tests were computed under MATLAB 7.12 (The
MathWorks Inc., Natick, Massachusetts, USA) on a personal
computer.

4. Results

As the number of episodes considered for each database was
not notably large, a stratified 2-fold cross-validation was run
five times for each considered AF scenario, 10 learning and
10 validation sets thus being analyzed. Therefore, sensitivity,
specificity, and accuracy values that will be presented in
the next subsections were averaged for the corresponding
10 folds. It has to be noted that, for the prediction of
spontaneous PAF termination, sensitivity was considered as
the proportion of nonterminating PAF episodes correctly
discerned, whereas specificity represented the percentage
of terminating episodes properly identified. Similarly, for
the ECV outcome analysis, sensitivity was the proportion
of patients relapsing to AF appropriately classified, and
specificity was the percentage of patients resulting in NSR
accurately predicted after ECV.

4.1. Learning Sets. All the different functions from Haar,
Daubechies, Coiflet, Biorthogonal, Reverse Biorthogonal,
and Symlet wavelet families were tested from all the con-
sidered learning sets for both paroxysmal and persistent AF
databases. All the functions coming from the same wavelet
family provided similar statistical significance values, and
the same sensitivity, specificity, and accuracy were noticed
for each analyzed learning set. Thus, only the function that
presented the lower P value is included for each wavelet
family in Tables 1 and 2, which present averaged WE, sen-
sitivity, specificity, and accuracy values for PAF termination
and ECV result predictions, respectively. As can also be
appreciated in these tables, all the wavelet families reached
the same discriminant ability for each analyzed scenario.
Moreover, the same patients were incorrectly classified by
all the families for every learning set. Consequently, any
wavelet family could be used indistinctly. Nonetheless, both
for PAF termination and ECV result predictions, the highest
statistical differences between patient groups were noticed
for the biorthogonal wavelet family of order (4,4), such
as in previous works [19, 20]. Thus, considering that only
one wavelet function is required to compute WE, the
aforementioned biorthogonal family was selected.

4.2. Validation Sets. For PAF termination prediction, ROC
curves from the learning sets provided optimum WE
discrimination thresholds between 0.26 and 0.33. With
these thresholds, sensitivity, specificity, and accuracy mean
values for the validation sets were 95.38%, 91.67%, and
93.60%, respectively. As for learning sets, nonterminating
PAF episodes presented higher WE values (0.452 ± 0.018,
in average) than the terminating ones (0.231 ± 0.013, in
average), both PAF groups being statistically distinguishable
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Figure 1: (a) ROC curve constructed from a specific learning set of the PAF patients. The WE value providing the highest accuracy was
selected as optimum threshold, which has been marked with symbol •. (b) Classification into terminating and nonterminating PAF episodes
for the corresponding validation set making use of the WE threshold obtained from the previous ROC curve.
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Figure 2: Typical ECG interval together with its extracted AA signal for (a) a terminating (WE = 0.189) and (b) other nonterminating (WE
= 0.452) PAF episodes.

for the 10 analyzed cases (P < 0.001). As an example, Figure 1
shows the ROC curve computed from a specific learning set
and classification into terminating and nonterminating PAF
episodes for the corresponding validation set. Moreover, with
the aim of illustrating the f waves disorder degree quantified
by WE, Figure 2 presents a 10-second-length ECG interval
together with its extracted AA signal for a typical terminating
PAF episode and other nonterminating ones.

Regarding ECV outcome prediction, ROC curves from
the learning sets provided optimum thresholds between 0.51
and 0.57, with which sensitivity, specificity, and accuracy
values, averaged for the corresponding validation sets, of
85.24%, 81.82%, and 84.05% were noticed. To this respect,
Figure 3 displays ROC curve obtained from a specific
learning set and the performance classification for the
corresponding validation set. As in this figure, the patients
relapsing to AF presented higher WE values (0.635 ± 0.026,
in average) than those resulting in NSR after one month
(0.508±0.022, in average), considering all the validation sets.
In addition, statistical significance was lower than 0.001 for

all the studies cases. Finally, Figure 4 displays a 10-second-
length ECG signal together with its extracted AA signal for
a typical patient maintaining NSR and other relapsing to AF
during the first month after cardioversion. Note that more
irregular f waves than for paroxysmal AF patients (Figure 2)
can be appreciated.

5. Discussion

To date, several single predictors of spontaneous PAF
termination and ECV result have been proposed from the
surface ECG analysis in time and frequency domains. From
the time point of view, the application of a nonlinear
regularity index as sample entropy (SampEn) to the main
atrial wave (MAW), that is, the fundamental waveform of
the AA signal, to estimate noninvasively AF organization has
provided a diagnostic ability of 90% in PAF termination
prediction [23] and approximately 80% in ECV outcome
prediction [24]. The amplitude of f waves has also proved
its ability to predict ECV outcome with an accuracy near
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Figure 3: (a) ROC curve constructed from a specific learning set of the persistent AF patients. The WE value providing the highest accuracy
was selected as optimum threshold, which has been marked with symbol •. (b) Classification into ECV patients resulting in NSR and
relapsing to AF for the corresponding validation set making use of the WE threshold obtained from previous ROC curve.
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Figure 4: Typical ECG interval together with its extracted AA signal for (a) a patient who maintained NSR (WE = 0.511) and (b) others
relapsing to AF (WE = 0.633) during the first month after cardioversion.

80% [25]. Regarding the frequency domain, most works
have analyzed the dominant atrial frequency (DAF) of the
AA signal, providing a diagnostic ability in PAF termination
prediction between 86% and 90%, depending on the used
methodology [26, 27]. In contrast, conflicting outcomes
have been obtained when the DAF was applied to ECV
outcome prediction [28]. Some authors [29] suggested
that the confounding effect of antiarrhythmic drug therapy
could explain the differences among these results; however,
this aspect still remains unclear [28]. Anyway, outcomes
reported in the present work outperform all the single
predictors published in previous works, given that the
discriminant ability of WE was 94% in the prediction of PAF
termination and 84% in the prediction of ECV outcome,
respectively. A possible justification for this finding could be
that wavelet analysis can capture AA signal characteristics
from both time and frequency domains with high precision
[8]. In fact, WE also surpassed the results provided by

single predictors based on the application of different time-
frequency transforms to both analyzed AF scenarios [27,
30].

In the literature, single parameter combinations and
advanced classification tools have also been proposed to
predict AF events from the surface ECG. Thus, regarding
PAF termination prediction, DAF has been combined with
other parameters to improve its diagnostic accuracy. To
this respect, Petrutiu et al. [31] studied the AA peak
frequency power evolution within the last two seconds before
spontaneous PAF termination, reaching thus an accuracy
of 93.33%. The same classification result was reported by
combining SampEn and WT [19]. In that work, SampEn was
applied to the wavelet coefficient vector containing the DAF
and its reconstruction to the time domain, providing two dif-
ferent and independent classifications, which were combined
as a function of the DAF. A slightly higher result (accuracy of
96.67%) was reached by Sun and Wang [32] making use of
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a multilayer perceptron neural network to combine 11 fea-
tures extracted from the ECG recurrence plot quantification.
With regard to ECV outcome prediction, Watson et al. [33]
examined a variety of wavelet transform-based statistical
markers, which obtained a sensitivity of 88% and specificity
of 100% by means of a nonparametric classification system.
Žohar et al. [34] developed a nondeterministic model with
several parameters as inputs for predicting NSR maintenance
after ECV, providing a diagnostic accuracy of 84%. As for
PAF termination prediction, the AA signal organization esti-
mation both in time and wavelet domains through SampEn
provided a sensitivity of 95% and specificity of 93% [20].
However, remark that in this study only patients reverting
back to NSR in only one attempt of ECV were analyzed and,
therefore, with AA signals notably organized [24]. Finally,
recent works have reported that the combination of f waves
amplitude with the DAF [25] or SampEn [24] computed
from the MAW reached a discriminant ability of 86 and 90%,
respectively.

As a consequence, it can be asserted that only complex
combinations of single predictors can improve the WE classi-
fication result. Thereby, WE can be considered as a promising
single estimator of PAF termination and ECV outcome, with
the additional advantage of a simpler implementation to
work in real-time. To this respect, DWT can be computed
efficiently with a pyramid filter bank algorithm [8], thus
allowing its implementation in real-time [35]. In contrast,
the classical algorithm proposed in the literature for SampEn
computation requires a high execution time, which is not
fast enough for online applications [36]. Although faster
alternatives for SampEn computation have been recently
proposed [36], their ability to be implemented in a real-
time environment has not been proved yet. In addition,
accuracy of these new algorithms has not been validated
by comparison with the classical SampEn definition. On
the other hand, it has to be remarked that the complex
combination of multiple parameters or the use of advanced
classification techniques, such as in [32] or in [33], turns
difficult a direct and clear clinical interpretation of the
results. In this sense, possible clinical meaning of each
parameter is blurred within the classification approach.
Nonetheless, remark that a simple combination of WE
with other parameters could be interesting to improve its
diagnostic ability. Successful predictors previously presented,
such as the DAF or the f waves amplitude, together with
new features computed from the wavelet coefficients could
be considered for this purpose. However, further studies
would be required in this line, given that only a relevant
improvement can be reached through the use of metrics
providing complementary information to WE.

On the other hand, terminating PAF episodes presented
lower WE values than nonterminating ones, see Figure 1,
suggesting more structured and regular f waves in patients
with immediate spontaneous reversion to NSR. This find-
ing is in agreement with the decrease in the number of
reentries prior to NSR restoration observed in previous
invasive studies, where AF termination was achieved by using
different therapies [3, 6]. This decrease in the number of

reentries produces simpler wavefronts into the atrial tissue,
and irregular f waves evolve to regular P waves [11]. With
respect to ECV, patients who relapsed to AF presented
higher WE values than those who remained in NSR; see
Figure 3. This finding, suggesting more organized AA signals
in effective cardioversions one month after the procedure,
agrees with observations obtained from previous works,
such as (i) the higher the AA organization, the higher the
success rate in AF cardioversion [5], (ii) the higher the AA
organization, the lower the energy required for successful
cardioversion [37], and (iii) PAF requires less energy for
cardioversion than persistent AF [38]. These observations
highlight the fact that, when a higher number of reentries are
wandering throughout the atrial tissue, a lower probability of
successful ECV is obtained. One possible explanation could
be that a low degree of AA organization might result in
an increased mass of atrial myocardium that is not fully
excitable [37]. Furthermore, other interesting observation
is that all the PAF patients showed lower WE values than
those with persistent AF undergoing ECV, suggesting more
irregular and non-structured f waves in persistent than in
paroxysmal AF. This finding agrees with the results reported
through invasive studies in humans [39] and dogs [40],
which showed that persistent AF presents a higher degree of
disorganized activity in the atria than PAF.

From a noninvasive point of view, results obtained with
WE also were in agreement with those provided by previous
works in which f waves organization was estimated. To
this respect, the independent application of SampEn to
the MAW and to the wavelet coefficient vector containing
the DAF showed more regular f waves for terminating
PAF episodes than for nonterminating ones [19] and for
patients who maintained NSR than for those relapsing to
AF after ECV [20]. However, the diagnostic accuracy of
these two independent estimates of f waves regularity was
below WE, being around 90% and 80% for PAF termination
and ECV outcome prediction, respectively. Nonetheless, it is
noteworthy that the WE philosophy is completely different
to the idea previously developed, in which only the wavelet
coefficients vector regularity for a scale was considered
[19, 20]. In contrast, the relative energy carried by the
wavelet coefficients vector in all the decomposition levels is
considered for the computation of WE.

Furthermore, it has to be remarked that, for a specific
wavelet scale, its corresponding vector contains the correla-
tion coefficients between the scaled mother wavelet and the
consecutive and nonoverlapping signal segments. Hence, it
is plausible to consider that the relative energy of each scale
remains without notable alterations, although the mother
wavelet would change. In this respect, results provided by
all the tested wavelet families can be considered as coherent.
Nonetheless, as in previous works [19, 20], the biorthogonal
wavelet family provided the highest statistical differences
between groups, which could be due to the lowest phase
distortion produced by the filters of this family [8].

Finally, some limitations merit consideration. First, the
analysis was developed with a limited number of patients. A
larger sample, allowing a more rigorous statistical study, is



8 Computational and Mathematical Methods in Medicine

required to provide improved confidence in the robustness
of the developed approach. To this respect, wider databases
containing nonterminating and spontaneously terminating
PAF episodes after different time epochs (ten minutes, half
an hour, an hour, ten hours, etc.) and patients who resulted
in NSR and relapsed to AF after 3, 6, and 12 months
following ECV would be needed. Second, the persistent
AF database only included suitable ECV patients following
the standard clinical criteria; therefore, it is unknown how
WE will behave in patients with adverse clinical predictors,
like atrial dilatation, and so forth, which, by default, are
excluded from ECV procedures. Finally, only lead V1 was
analyzed rejecting the possible information contained in the
remaining leads. However, for this type of studies, lead V1

seems to be the most suitable lead. In this respect, significant
correlations between the information in lead V1, such as the
DAF or SampEn, and invasive atrial electrograms have been
reported [7].

6. Conclusions

The present work has demonstrated that WE is able to
evaluate f waves organization from the surface ECG. WE
has proved to be the highest single predictor of spontaneous
PAF termination and ECV outcome published to date.
Nonetheless, although complex and advanced combinations
of other parameters measured from the ECG can improve its
diagnostic ability, the application of WE has two interesting
advantages: a clear clinical interpretation of the results and
the possibility of working in a real-time environment. This
parameter may lead towards the development of improved
therapeutic interventions for the treatment of paroxysmal
and persistent AF, since useless procedures could be avoided
and the consequent risk for AF patients could be minimized.
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