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Liangping Li∗,a, Haiyan Zhoua, J. Jaime Gómez-Hernándeza, Harrie-Jan Hendricks Franssenb
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Abstract

Real-time data from on-line sensors offer the possibility to update environmental simulation models in real-

time. Information from on-line sensors concerning contaminant concentrations in groundwater allow for

the real-time characterization and control of a contaminant plume. In this paper it is proposed to use the

CPU-efficient Ensemble Kalman Filter (EnKF) method, a data assimilation algorithm, for jointly updating

the flow and transport parameters (hydraulic conductivity and porosity) and state variables (piezometric

head and concentration) of a groundwater flow and contaminant transport problem. A synthetic experiment

is used to demonstrate the capability of the EnKF to estimate hydraulic conductivity and porosity by

assimilating dynamic head and multiple concentration data in a transient flow and transport model. In this

work the worth of hydraulic conductivity, porosity, piezometric head, and concentration data is analyzed

in the context of aquifer characterization and prediction uncertainty reduction. The results indicate that

the characterization of the hydraulic conductivity and porosity fields is continuously improved as more data

are assimilated. Also, groundwater flow and mass transport predictions are improved as more and different

types of data are assimilated. The beneficial impact of accounting for multiple concentration data is patent.

Key words: Data assimilation; stochastic transport; ensemble Kalman filter; multiple concentration data;

hydraulic conductivity and porosity; heterogeneity

1. Introduction1

During the last several decades numerical simulation is routinely utilized to evaluate the groundwater2

resources and predict the fate of contaminant plumes. The adequate characterization of spatially distributed3

hydrogeological parameters like hydraulic conductivity and porosity plays an important role in groundwater4
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flow and transport simulations. However, due to the scarcity of measurements in combination with the large5

spatial heterogeneity it is not trivial how to characterize the spatial distribution of the mentioned parameters,6

and, consequently, groundwater flow and transport predictions call for an uncertainty assessment. Inverse7

modeling is often used to reduce model uncertainty by jointly conditioning on hard data (e.g., hydraulic8

conductivity and porosity) and indirect data (e.g., the observed state information, such as piezometric heads,9

concentrations and temperatures) to characterize the spatial variation of hydrogeological parameters. The10

issue of how to condition on the direct measurements has been extensively investigated in the geostatistical11

literature (e.g., Journel, 1974; Gómez-Hernández and Srivastava, 1990; Strebelle, 2002). Likewise, inverse12

modeling, i.e., conditioning to indirect data, has been reviewed in the literature (e.g., Yeh, 1986; McLaughlin13

and Townley, 1996; Zimmerman et al., 1998; Carrera et al., 2005; Hendricks Franssen et al., 2009). Commonly,14

inverse methods define an objective function that includes the mismatch between calculated and observed15

state values, as well as the perturbation of the initial parameter estimates. This objective function is16

minimized by an optimization approach. Examples are the self-calibration method (Sahuquillo et al., 1992;17

Gómez-Hernández et al., 1997; Capilla et al., 1999; Wen et al., 2002; Hendricks Franssen et al., 2003), the18

pilot point method (Ramarao et al., 1995; LaVenue et al., 1995; Alcolea et al., 2006), the Markov chain19

Monte Carlo method (Oliver et al., 1997), and the gradual deformation method (Hu, 2000; Capilla and20

Llopis-Albert, 2009).21

Albeit the abundant literature on inverse conditioning of conductivities to piezometric head, only a few22

works have paid attention on jointly conditioning on head and concentration data to improve the characteri-23

zation of multiple hydrogeological parameters. Medina and Carrera (1996) extended the maximum likelihood24

approach (Carrera and Neuman, 1986) to condition on concentration data for a better characterization of25

zoned hydraulic conductivity maps. The main shortcoming of this approach is that the small-scale hetero-26

geneity is ignored due to the estimation of hydraulic conductivity for larger zones. Hendricks Franssen et al.27

(1999) calibrated both hydraulic conductivity and storativity by conditioning to transient head data using28

the self-calibration method (Gómez-Hernández et al., 1997). More recently, Hendricks Franssen et al. (2003)29

further extended the self-calibration method to calibrate hydraulic conductivity by conditioning on piezo-30

metric head and concentration data. Huang et al. (2004) also employed the self-calibration method to jointly31

identify hydraulic conductivity and sorption partitioning coefficient by conditioning on tracer breakthrough32

data. Fu and Gómez-Hernández (2009) employed the block Markov chain Monte Carlo method to calibrate33

conductivity by jointly conditioning to head and travel time data. Llopis-Albert and Capilla (2009) utilized34

the gradual deformation method to estimate the conductivity by incorporating head, concentration and travel35
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time data. Schwede and Cirpka (2009) used the quasi-linear geostatistical approach of Kitanidis (1995) to36

estimate conductivity by conditioning on steady-state concentration measurements. Barnhart et al. (2010)37

employed PEST (Doherty, 2004), a model-independent nonlinear parameter estimation program, to calibrate38

hydraulic conductivity by conditioning to concentration data collected from wireless sensor networks. These39

approaches are able to generate multiple equally-likely parameter fields conditional to static and dynamic40

measurements, thus capable of depicting small-scale variability of hydraulic conductivity. However, the main41

shortcoming of those methods is that they are CPU-intensive; these methods require running the forward42

model multiple times during the iterative optimization process of each realization.43

The Ensemble Kalman Filter (EnKF) (Burgers et al., 1998; Evensen, 2003), based on the sequential44

Bayesian updating rule, can be used to obtain results similar to those obtained by Monte-Carlo (MC)45

type inverse methods but with reduced CPU time (see section 2.2), and it is also flexible to incorporate46

multiple sources of uncertainty. Hendricks Franssen and Kinzelbach (2009) carried out a synthetic exercise47

and demonstrated that EnKF needs around a factor of 80 less CPU time than the self-calibration method48

to attain similar results. The EnKF can also handle data from on-line sensors that become available in49

real-time and assimilate them into an on-line model. The traditional inverse methods are not well suited to50

assimilate information that becomes available in real-time. EnKF provides an ensemble of updated stochastic51

realizations which can be used for uncertainty analysis.52

The EnKF is increasingly applied, in atmospheric sciences, land-atmosphere interaction, petroleum en-53

gineering and hydrogeology (e.g. Anderson, 2001; Reichle et al., 2002; Wen and Chen, 2005; Chen and54

Zhang, 2006; Nowak, 2009; Hendricks Franssen et al., 2011; Zhou et al., 2011b). In atmospheric sciences55

or land surface models in general only the model states are updated, whereas in petroleum engineering and56

hydrogeology both system parameters and state variables are commonly addressed (Naevdal et al., 2005).57

The EnKF has been successfully applied to assimilate dynamic piezometric head data to improve model58

predictions (e.g., Chen and Zhang, 2006; Hendricks Franssen and Kinzelbach, 2008; Sun et al., 2009; Li59

et al., 2011c; Zhou et al., 2011a). With regard to assimilating concentration data, Huang et al. (2008)60

conducted a synthetic experiment and calibrated hydraulic conductivity fields by assimilating piezometric61

head and concentration data. In their experiment, flow was at steady-state. Liu et al. (2008) estimated62

multiple parameters (i.e., hydraulic conductivity, dispersivities, mobile/immobile porosities) by assimilating63

piezometric head and concentration data in the steady-state flow model for the MADE site. It is worth to64

note that they used constant values as the prior estimates for the mentioned parameters, and perturbed65

the parameters, by assimilating observation data via EnKF, to yield heterogeneous fields. Our aim is to66
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quantify the uncertainty of parameters and states starting with heterogeneous fields by conditioning on the67

direct measurements. Schöniger et al. (2011) assimilated normal-score transformed concentration data to68

calibrate hydraulic conductivities. They concluded that the improvement by the normal-score transformation69

(as compared with the classical EnKF, which uses untransformed data) is limited because after univariate70

normal transformation of the state variable, the concentration distribution is far from multi-Gaussian.71

In comparison with the effort devoted to characterize the spatial variability of hydraulic conductivity by72

conditioning state information, less attention has been paid to identifying the spatial variability of porosity,73

probably due to its relatively small spatial variability ranging from 0.1 to 0.55 in unconsolidated granular74

aquifers (Freeze and Cherry, 1979). Additionally, various authors (e.g., Hassan, 2001; Riva et al., 2008;75

Hu et al., 2009; Jiang et al., 2010) have demonstrated (both in synthetic examples and real aquifers) the76

significance of accounting for the heterogeneity of porosity on predictions of solute movement.77

We will demonstrate the capability of the EnKF to jointly map the hydraulic conductivity and porosity78

fields by assimilating dynamic piezometric head and multiple concentration data. Few studies have considered79

the conditioning with help of both multiple concentration data and dynamic piezometric head data to80

characterize unknown parameters. Also, to the best of our knowledge, this is the first work proposing the81

joint estimation of spatially distributed hydraulic conductivity and porosity fields in hydrogeology.82

The remaining of this paper is organized as follows. We first summarize in section 2 the mathematical83

framework of the EnKF and discuss the jointly mapping of hydraulic conductivity and porosity by assimilat-84

ing multiple concentration data. In section 3, a synthetic example is used to demonstrate the effectiveness85

of the EnKF. The paper ends with summary and conclusions in section 4.86

2. Data Assimilation with the EnKF87

First, the flow and transport equations (i.e, the transfer functions) will be presented, and then the88

algorithm of EnKF is introduced with emphasis on the assimilation of concentration data.89

2.1. Flow and Transport Equations90

The well known flow equation of an incompressible or slightly compressible fluid in saturated porous91

media can be expressed by combining Darcy’s Law and the continuity equation (Bear, 1972; Freeze and92

Cherry, 1979):93

∇·(K∇h
)

= S
∂h

∂t
+ W (1)
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where K is the hydraulic conductivity [LT−1] (which, without loss of generality, will be considered as a94

scalar at the characterization scale), h is the piezometric head [L ]; W represents sources or sinks [L3T−1];95

S is the specific storage coefficient [L−1]; t is the time [T ]; ∇· = (∂/∂x + ∂/∂y + ∂/∂z) is the divergence96

operator of a vector field, and ∇ = (∂/∂x, ∂/∂y, ∂/∂z)T is the gradient operator of a scalar field.97

Solute transport with linear equilibrium adsorption is governed by the following differential equation98

(Bear, 1972; Freeze and Cherry, 1979):99

φR
∂c

∂t
= ∇(φD · ∇c)−∇qc (2)

where c is solute concentration of solute in the water phase [ML−3]; φ is the porosity [dimensionless]; D100

is the local hydrodynamic dispersion coefficient tensor [L2T−1], with eigenvalues associated with principal101

axes parallel and perpendicular to the direction of flow, defined as DI = αL|q| + Dm, DII = αT |q| + Dm,102

DIII = αT |q|+Dm (αL and αT are respectively the longitudinal and transverse pore-scale dispersivity; Dm103

is the molecular diffusion coefficient set to zero in this study, and q is the Darcy velocity given by q = −K∇h104

[LT−1] ); R is retardation factor expressed by R = 1 + ρbKd/φ (ρb is the bulk density of soil; Kd is the105

distribution coefficient).106

2.2. Ensemble Kalman Filter107

Extensive descriptions of EnKF and its algorithm can be found in Burgers et al. (1998) and Evensen108

(2003). Here, we mainly focus on the use of EnKF with updating both parameters (i.e., hydraulic conductivity109

and porosity) and states (i.e., piezometric head and concentration). It involves a forecast step and an analysis110

step, after the generation of the initial ensemble of hydraulic conductivity and porosity realizations.111

• Step 1: Forecast model. The flow equation (1) or transport equation (2) is solved, i.e.,112

Yk = f(Xk−1,Yk−1), (3)

where Yk is the state of the system (piezometric heads and/or concentration data) at time step113

tk, f represents the groundwater flow and transport model (including boundary conditions, external114

stresses, and known parameters), and Xk−1 denotes the model parameters (hydraulic conductivity115
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and/or porosity) after the latests update at time tk−1. Specifically, X and Y are expressed as:116





Case A : X =
[
lnK

]T
Y =

[
h
]T

, if only h data are available.

Case B : X =
[
lnK, φ

]T
Y =

[
c
]T

, if only c data are available.

Case C : X =
[
lnK, φ

]T
Y =

[
h, c

]T
, if h and c data are available.

(4)

• Step 2: Analysis step. Using the observed dynamic piezometric head and concentration data, the117

model parameters are updated as follows:118

1. Build the joint vector Ψk, which includes the parameters (X) and the forecasted state values (Y).119

This vector can be split into as many members as there are realizations in the ensemble, with120

Ψk,j =




X

Y




k,j

, (5)

being the jth ensemble member of the augmented state vector at time tk.121

As an example, if the number of discretization blocks in the domain is Nk and we are in case C,122

i.e., updating both lnK and φ using both h and c data, the dimension of vector Ψk will be 4×Nk.123

2. The joint vector is updated, realization by realization, by assimilating the observations (Yobs
k ):124

Ψa
k,j = Ψf

k,j + Gk

(
Yobs

k,j + ε−HΨf
k,j

)
, (6)

where the superscripts a and f denote analysis and forecast, respectively; ε is a random observation125

error vector; H is a linear operator that interpolates the forecasted heads to the measurement126

locations, and, in our case, is composed of 0′s and 1′s since we assume that measurements are127

taken at block centers. Therefore, equation (6) can be expressed as:128

Ψa
k,j = Ψf

k,j + Gk

(
Yobs

k,j + ε−Yf
k,j

)
, (7)

where the Kalman gain Gk is given by:129

Gk = Pf
kH

T
(
HPf

kH
T + Rk

)−1

, (8)

where Rk is the measurement error covariance matrix, and Pf
k contains the covariances between130
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the different components of the state vector. Pf
k can be estimated from the ensemble of forecasted131

results as:132

Pf
k ≈ E

[(
Ψf

k,j −Ψ
f

k,j

)(
Ψf

k,j −Ψ
f

k,j

)T
]

(9)

≈
Ne∑

j=1

(
Ψf

k,j −Ψ
f

k,j

)(
Ψf

k,j −Ψ
f

k,j

)T

Ne
,

where Ne is the number of realizations in the ensemble, and the overbar denotes average over the133

ensemble.134

In the implementation of the algorithm, it is not necessary to calculate explicitly the full covariance135

matrix Pf
k (of dimensions (4 × Nk) × (4 × Nk) for case C). The matrix H is very sparse, and,136

consquently, the matrices Pf
kH

T and HPf
kH

T can be computed directly at a strongly reduced137

CPU cost.138

• Step 3: Loop back. The updated states become the current states and the forecast-analysis loop is139

started again.140

When the number of observation locations used in the assimilation step is not very large, the computa-141

tional cost of calculating the covariances is limited. The main cost is related with the forward simulations142

for each of the stochastic realizations.143

During the updating step, the forecasted state variables may have no physical meaning, e.g., negative144

concentrations. In our case, we remove negative values resetting them to zero. We have checked that when145

this may happen at locations far from the concentration plume and always with small values. This approach146

follows the one by Gu and Oliver (2006), who had a similar problem when dealing with water saturation in147

a reservoir characterization exercise.148

The algorithm is implemented in the C software EnKF3D which is used in conjunction with finite-149

difference program MODFLOW (Harbaugh et al., 2000), to solve the confined transient flow equation (1),150

and the solute transport code MT3DMS (Zheng et al., 1999). MT3DMS uses a third-order total-variation-151

diminishing (TVD) solution scheme, to solve the transport equation (2).152

3. Synthetic Example153

In this section, a synthetic example will be presented to demonstrate the capability of the EnKF to154

calibrate the hydraulic conductivities and porosities by assimilating piezometric head and concentration155
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data. The resulting ensemble of realizations will be used also for uncertainty characterization; in a real-156

world case study, uncertainty may stem both from the conceptual model (e.g., the boundary conditions,157

aquifer geometry) and from the parameters. Here, we only consider the uncertainty due to the heterogeneity158

of hydraulic conductivity and porosity, no conceptual uncertainty is considered.159

3.1. Experiment Setup160

3.1.1. Reference Field161

The reference conductivity and porosity fields are generated using the code GCOSIM3D (Gómez-Hernández162

and Journel, 1993) over a domain of 250 m × 250 m × 1 m, which is discretized into grid cells of size 5 m163

by 5 m by 1 m (see Figure 1A and 1C). Here, we assume that the two variables are independent of each164

other. The parameters of each random function are listed in Table 1. From these reference realizations165

nine conductivity and nine porosity data are sampled for conditioning purposes. The locations are shown in166

Figure 1B and 1D.167

It is assumed that the sampled data have the same support as the grid cell. If the data support would be168

much smaller than the grid cell size, the additional problem of upscaling must be considered for generating169

the parameter realizations conditional to the direct measured data (e.g., Li et al., 2011a; Zhou et al., 2010;170

Li et al., 2011b).171

The aquifer is assumed to be confined with impermeable boundaries on south and north, prescribed172

head values on the western boundary and constant flow rate on the eastern boundary (see Figure 2). The173

prescribed head value is 0 m along the western boundary. The total flow rate through the eastern boundary174

is -25 m3/d, distributed uniformly along the boundary. The initial head value is 0 m over the entire domain.175

The total simulation time is 500 days, and this period is discretized into 100 time steps following a geometric176

sequence of ration 1.05. Specific storage is assumed constant with a value of 0.003 m−1. The simulated177

dynamic piezometric heads at the observation wells #1 to #9 in Figure 2 are sampled and will be used as178

assimilating data. The simulated heads at the wells #10 and #11 will be used as validation data.179

The boundary conditions for the transport model are no-mass flux boundaries on the western, northern,180

and southern borders of the model. The eastern border is a specified advective mass flux boundary, acting181

as a line of sinks taking mass out of the aquifer (see Figure 2).182

The code MODFLOW (Harbaugh et al., 2000) is used to solve the transient groundwater flow equation183

for the reference field and the pore velocities across the grid cell interfaces are calculated using the porosities184

in Figure 1C. This velocity field is used as input for solving the solute transport problem with help of the185

8



MT3DMS code (Zheng et al., 1999). We only consider advection and dispersion as transport mechanisms186

with αL = 1.0 m and αT = 0.1 m. Conservative solute is uniformly placed over a line transverse to the187

groundwater flow at time t = 0 (see Figure 2). The source concentration is 900 ppm. To avoid the boundary188

effect as described by Naff et al. (1998), the contaminant source is separated 20 m from the western boundary189

and 50 m from the northern and southern boundaries. The plume snapshots at 300, 400 and 500 days will190

be used here to compare the EnKF solutions with the reference plume maps (see Figures 3A, 3C and 3E).191

The concentration is measured at 63 wells, uniformly distributed over the domain (see Figure 2). These192

measured multiple concentration data (see Figures 3B, 3D, 3F) will serve as assimilating data.193

3.1.2. Scenario Studies194

Six simulation scenarios are considered for which different types of measurement data are assimilated195

(see Table 2). Scenario 1 (S1) is an unconditional case. In Scenario 2 (S2) geostatistical simulation (Gómez-196

Hernández and Journel, 1993) is used in order to condition on the nine measured hydraulic conductivities197

and the nine porosities shown in Figures 1B and 1D, repsectively. For S1 and S2, 500 realizations of hydraulic198

conductivity and porosity are generated using the same random functions as for the reference fields. Flow199

and transport are calculated for each of the 500 lnK -φ realization couples, without conditioning to head or200

concentration data.201

For scenario 3 (S3) dynamic piezometric head data are used to update the geostatistical realizations202

conditioned on hydraulic conductivity and porosity data of scenario S2. Piezometric head data from wells203

#1 to #9 are sequentially assimilated for the first 60 time steps (approximately 67.7 days).204

In scenarios 4, 5 and 6 (S4, S5, S6) concentration data are assimilated by EnKF, in addition to hydraulic205

conductivity data and piezometric head data. S4 uses concentration data at 400 days, S5 uses concentration206

data at 300 and 400 days, and S6 uses concentration data at 300, 400 and 500 days.207

The piezometric head and concentration data are sampled from the reference simulations without error.208

However, during the assimilation process it is considered that the data might contain measurement errors209

and therefore a diagonal error covariance matrix was used, with all non-zero terms equal to 0.0025 m2 for210

head data and 0.0025 ppm2 for concentration data. We note, in practice, the errors for the heads and211

concentration data would be not the same, and the observation errors would change with the time. From an212

operational point of view, it is straightforward to integrate them into the assimilation procedure.213

3.2. Assessment Measures214

The results for the six scenarios will be analyzed with the help of two metrics:215

9



1. The average absolute bias (AAB) is a measure of accuracy defined as follows:216

AAB(X) =
1

Nb

Nb∑

i=1

1
Ne

Ne∑
r=1

|Xi,r −Xref,i| (10)

where Xi is, either the logconductivity lnK, porosity φ, hydraulic head h or concentration c, at location217

i, Xi,r represents its value for realization r, Xref,i is the reference value at location i, Nb is number of218

nodes, and Ne is the number of realizations in the ensemble (500, in this case).219

2. The ensemble spread (AESP ) represents the estimated uncertainty defined as follows:220

AESP (X) =

(
1

Nb

Nb∑

i=1

σ2
Xi

)1/2

, (11)

where σ2
Xi

is the ensemble variance at location i.221

The smaller the values for AAB and AESP , the better the prediction of variable X.222

3.3. Data Assimilation Results223

3.3.1. Hydraulic Conductivities and Porosities224

Figures 4 and 5 show the ensemble mean and variance of the 500 logconductivity realizations for all225

six scenarios. Figures 6 and 7 show the ensemble mean and variance of the 500 porosity realizations and226

scenarios. The ensemble mean is used to check whether the main patterns of variability of the parameter227

are captured. In contrast to the individual realization showing distinctive patterns of high and low values,228

the ensemble means are smoothed representations of the spatial variability of the parameters. The ensemble229

variance illustrates how conditioning reduces the differences between the realizations.230

In scenario 1, with no conditional data, the ensemble mean and variance of lnK and φ are very close to231

the prior mean and variance. In scenario 2, using 9 conditioning hydraulic conductivities and porosities, the232

overall spatial patterns are captured, resulting in typical kriging maps. The ensemble variance maps show233

the typical bull-eye look of kriging maps, with zero variance at the sample locations and increasing variance234

away from them. The dynamic piezometric head data included in S3 help to capture better the main patterns235

of hydraulic conductivity with a further reduction of the variance. S4, S5 and S6 also include concentration236

data for conditioning. The ensemble mean maps better delineate the main patterns of variability, and at the237

same time, unlike previous scenarios with strongly smoothed representations of lnK, also show some degree238

of the small-scale variability. The characterization of the main patterns of lnK improves quite remarkable239
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with the conditioning of concentration data. For the scenario that uses the largest amount of conditioning240

data (S6), the patterns in the left upper corner of the area are identified very well, whereas this is not the241

case if only hydraulic conductivity, porosity and piezometric heads are used for conditioning. The role of242

concentration data on the characterization of porosity is also observable. The main patterns of porosity243

are clearer than without conditioning, and closer to the reference distribution. As expected, the ensemble244

variance, both for lnK and φ, reduces further in S6 as compared with the other scenarios.245

From a more quantitative point of view, the calculated two metrics (see Table 3) lead to similar con-246

clusions. When the measured hydraulic conductivity, porosity, piezometric head and multiple concentration247

data are all used for conditioning (S6), the average absolute bias and the ensemble spread have the smallest248

values. More precisely, when conditioning to lnK, the AAB(lnK) decreases 14% (S2 vs. S1), if we further249

condition to piezometric head, AAB(lnK) further decreases a 10% (S3 vs. S2), and there is an additional250

reduction of a 7% when conditioning to concentrations (S6 vs. S3). Likewise AESP (lnK) goes down 12%251

from S1 to S2, an additional 16% from S2 to S3 and 14% more from S3 to S6. Similar results can be observed252

when analyzing the evolution of AAB(φ) and AESP (φ). The AAB(φ) shows an 18% reduction as a conse-253

quence of conditioning to measured φ (S2 vs. S1), and 7% additional reduction related with conditioning to254

concentration data (S6 vs. S2) and AESP (φ) shows a 15% reduction as a consequence of conditioning to255

measured φ (S2 vs. S1), and 9% additional reduction related with conditioning to concentration data (S6256

vs. S2).257

From these results, we can conclude that: (1) The direct measured hard data play the most important258

role to reduce the absolute bias of parameters; (2) The indirect measured head and concentration data reduce259

both the absolute bias and ensemble spread; (3) The best characterization of the aquifer in terms of lnK260

and φ is achieved by combining all the data.261

3.3.2. Piezometric Heads Reproduction262

Figure 8 shows the piezometric head evolution at well #2 and #10 for scenarios S1, S2, S3 and S6.263

Recall that the piezometric head data continuously collected from well #1 to #9 are used for conditioning,264

while wells #10 and #11 are for validation. Figure 8 shows that for S1 uncertainty is largest and that265

the uncertainty is reduced for increasing amounts of conditioning data. For S2 the uncertainty is still266

considerable, but if piezometric head data are used for conditioning (S3) the conditional well #2 has a good267

head reproduction and the control well #10, also shows a large reduction of spread. The measured head268

data play a critical role to reduce the uncertainty of predicted heads. The concentration data do not result269

in a further improvement of the characterization of hydraulic head since the dynamic heads are already270
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reproduced very well in S3.271

Table 4 shows the metrics regarding the piezometric head characterization at time t = 67.7 days (i.e., the272

60th time step). The introduction of measured hydraulic conductivities attains around 27% reductions both273

for the AAB(h) and AESP (h). An additional 66% reduction of AAB(h) and 73% reduction of AESP (h)274

is achieved by conditioning to head data. The reductions of AAB(h) and AESP (h) almost can be ignored275

when concentration data are used for conditioning in S4, S5 and S6.276

The main conclusions are: (1) of all the data, the measured piezometric head data are most informative277

for improving head predictions and reducing the prediction uncertainty; (2) the impact of concentration data278

for characterizing piezometric head is very small.279

3.3.3. Concentrations Reproduction280

Figure 9 to 12 show the ensemble mean and variance of 500 concentration realizations at time 300 and281

500 days resulting from the transport simulation for all the six scenarios.282

These ensemble mean maps of concentration for scenario 1 show that even though each realization283

will have a non-Gaussian plume similar to those in the reference, the random location of high and low284

concentrations makes that the ensemble mean maps of plume show a Gaussian shape. Introducing the285

hydraulic conductivity data (S2) rectifies the plume but still does not reproduce the reference. The ensemble286

mean of the plume is further rectified when the conductivity, porosity and head data are jointly used for287

conditioning (S3). The reproduction of piezometric heads is very good in S3, but the limited improvement288

of the plume characterization indicates the importance of further conditioning on concentration data. The289

results for scenarios S4 and S6 show that conditioning remarkably improves the characterization of the plume.290

Conditioning to concentration data at t = 300 days (S4) also improves strongly the prediction for 500 days291

(although the concentration data sampled at t = 500 days are not used for conditioning in scenario S4).292

For scenarios S5 and S6 the additional concentration data from t = 400 and 500 days improve further the293

characterization of the plume so that they are very close to the reference plumes.294

The ensemble variance maps of the concentration fields show that the ensemble variance decreases away295

from the barycenter of the plume and is close to zero outside of the plume. The ensemble variance of296

concentration decreases continuously if more data are used for conditioning.297

Table 5 shows the AAB and AESP values for the concentrations at three times. Conditioning to298

hydraulic conductivity and porosity data (S2) results in an average AAB reduction of 15% (compared with299

S1) and AESP reduces around 5%. Additional conditioning to piezometric head data (S3), results on300

average in an additional 5% reduction of AAB and an AESP reduction of around 7%. Further conditioning301
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to concentration data (S4, S5 and S6), yields prominent reduction of AAB and AESP (on average 19% and302

20%, respectively).303

We can see from the results: (1) concentration data is the type of data to most reduce the absolute bias304

and uncertainty of predicted concentration; (2) the direct measured data and indirect head data also have an305

important impact on the predicted concentrations; (3) when all the data are considered, the concentration306

fields are best characterized.307

3.4. Reactive Transport Prediction Analysis308

In this subsection, a reactive transport prediction experiment is conducted with modified flow bound-309

ary conditions using the conductivity and porosity obtained in the data assimilation exercise to further310

demonstrate the robustness of EnKF.311

The flow and transport configurations are the same as before but the flow is at steady-state. The eastern312

constant flow rate boundary condition is replaced with the constant head boundary condition (h = −15 m)313

and the solute mass is subject to sorption. Besides advection and dispersion also sorption according to a314

reversible linear equilibrium isotherm is considered with ρb = 1.81 g/cm3 and Kd = 0.52 cm3/g ( similar to315

the values reported in the Borden aquifer (Mackay et al., 1986; Burr et al., 1994)). The reactive tracer is316

also released near the western boundary (see Figure 2) with the same total initial concentration. The plume317

snapshot at time t = 500 days (see Figure 13) is used to evaluate the worth of the different data.318

MODFLOW and MT3DMS are employed to solve the flow equation (1) and reactive transport equation319

(2), respectively.320

Figure 14 shows the ensemble mean and variance of predicted concentration fields at t = 500 days for321

the fields estimated from the scenarios S2, S3 and S6. It clearly shows that the predicted plume is close to322

the reference when multiple types of information are used for conditioning. Besides, the ensemble variance323

is the smallest for S6.324

4. Conclusion325

We have presented and demonstrated the Ensemble Kalman Filter, a data assimilation algorithm, to326

jointly estimate hydraulic conductivity and porosity by assimilating dynamic piezometric head and multiple327

concentration data in a hydrogeological stochastic model. Some of the attractive features of EnKF are the328

capability of assimilating data in real-time, CPU efficiency, ease of implementation without need of an adjoint329

model and the flexibility with regard to accounting for multiple sources of uncertainty jointly.330
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We have used a synthetic example (1) to demonstrate the potential EnKF has to condition in a CPU331

efficient way to concentration data and (2) to analyze the worth of data for the characterization of aquifer332

parameters and states (with a special focus on solute concentrations). We have found that the head data333

have a distinctive impact to reduce the uncertainty of predicted piezometric head, but only a limited influ-334

ence for improving the characterization of concentration distributions. Additional conditioning to multiple335

concentration data was shown to improve strongly the predicted solute plume and also the characterization336

of hydraulic conductivity and porosity.337
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Gómez-Hernández, J. J., Sahuquillo, A., Capilla, J. E., 1997. Stochastic simulation of transmissivity fields376

conditional to both transmissivity and piezometric data, 1, Theory. Journal of Hydrology 203 (1–4), 162–377

174.378
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Figure 1: (A) Reference lnK field, (B) Conditioning lnK data, (C) Reference porosity(φ) field, (D) Conditioning porosity(φ)
data.
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Figure 3: Reference concentration fields at time 300(A), 400(C) and 500(E) days. Conditioning concentration data at time 300
(B), 400 (D), and 500 (F) days.
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Figure 4: Ensemble average logconductivity fields for the different scenarios.
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Figure 6: Ensemble average porosity fields for the different scenarios.
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Figure 7: Ensemble porosity variance fields for the different scenarios.

27



Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

100 200 300 400 500
-7

-6

-5

-4

-3

-2

-1

0
S1: Well # 2

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

100 200 300 400 500
-4

-3

-2

-1

0
S1: Well # 10

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

100 200 300 400 500
-7

-6

-5

-4

-3

-2

-1

0
S2: Well # 2

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

100 200 300 400 500
-4

-3

-2

-1

0
S2: Well # 10

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

100 200 300 400 500
-7

-6

-5

-4

-3

-2

-1

0
S3: Well # 2

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

100 200 300 400 500
-4

-3

-2

-1

0
S3: Well # 10

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

100 200 300 400 500
-7

-6

-5

-4

-3

-2

-1

0
S6: Well # 2

Time [day]

P
ie

zo
m

et
ric

H
ea

d
[m

]

100 200 300 400 500
-4

-3

-2

-1

0
S6: Well # 10

Figure 8: Piezometric head time series for the reference field (black) and simulated ones (gray lines) for the S1,S2,S3 and S6
scenarios at the conditioning well W2 (left column) and verification well W10 (right column).
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Figure 9: Ensemble average concentration fields at t = 300 day for the different scenarios.
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Figure 10: Ensemble variance of concentration fields at t = 300 day for the different scenarios.
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Figure 11: Ensemble average concentration fields at t = 500 day for the different scenarios.
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Figure 12: Ensemble variance of concentration fields at t = 500 day for the different scenarios.
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Figure 13: The reference concentration field at t = 500 days for the reactive transport prediction experiment.
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Figure 14: Ensemble mean and variance of concentration fields at t = 500 day for the S2,S3 and S6.
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Table 1: Parameters of the random functions for modeling the spatial distributions of lnK and porosity

Mean Variance Variogram type λx [m] λy [m] rotation angle β
lnK -5 1 exponential 180 60 45◦

φ 0.3 0.0036 exponential 240 60 45◦

β denotes the rotation angle of one clockwise rotation of positive y axis.

Table 2: Definition of scenarios based on the different sets of conditioning data.

Scenario S1 S2 S3 S4 S5 S6
Hydraulic conductivities (K ) No Yes Yes Yes Yes Yes
Porosity (φ) No Yes Yes Yes Yes Yes
Dynamic piezometric heads (h) No No Yes Yes Yes Yes
Concentrations (t = 300 day) No No No Yes Yes Yes
Concentrations (t = 400 day) No No No No Yes Yes
Concentrations (t = 500 day) No No No No No Yes

Table 3: Bias and spread of lnK and porosity for the different scenarios.

Scenario S1 S2 S3 S4 S5 S6
AAB(lnK) 1.112 0.949 0.852 0.816 0.796 0.790
AESP (lnK) 1.001 0.874 0.728 0.680 0.650 0.624
AAB(φ) 0.072 0.059 - 0.057 0.056 0.055
AESP (φ) 0.060 0.051 - 0.049 0.047 0.046

Table 4: Bias and spread of predicted piezometric heads at time t = 67.7 days for the different scenarios.

Scenario S1 S2 S3 S4 S5 S6
AAB(ht=67.7) 0.690 0.503 0.169 0.170 0.179 0.179
AESP (ht=67.7) 0.901 0.649 0.175 0.172 0.169 0.162

Table 5: Bias and spread of predicted concentrations at time t = 300, t = 400, t = 500 days for the different scenarios.

Scenario S1 S2 S3 S4 S5 S6
AAB(ct=300) 0.493 0.402 0.384 0.318 0.252 0.225
AESP (ct=300) 0.781 0.703 0.652 0.496 0.400 0.337
AAB(ct=400) 0.506 0.422 0.403 0.331 0.249 0.209
AESP (ct=400) 0.710 0.662 0.613 0.470 0.371 0.300
AAB(ct=500) 0.452 0.393 0.374 0.303 0.226 0.176
AESP (ct=500) 0.634 0.624 0.577 0.457 0.358 0.274
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