

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1007/s10489-014-0540-2

http://hdl.handle.net/10251/46104

Springer Verlag (Germany)

Torreño Lerma, A.; Onaindia De La Rivaherrera, E.; Sapena Vercher, O. (2014). FMAP:
Distributed Cooperative Multi-Agent Planning. Applied Intelligence. 41(2):606-626.
doi:10.1007/s10489-014-0540-2.

Noname manuscript No.
(will be inserted by the editor)

FMAP: Distributed Cooperative Multi-Agent
Planning

Alejandro Torreño · Eva Onaindia ·
Óscar Sapena

Received: date / Accepted: date

Abstract This paper proposes FMAP (Forward Multi-Agent Planning), a fully-
distributed multi-agent planning method that integrates planning and coordina-
tion. Although FMAP is specifically aimed at solving problems that require coop-
eration among agents, the flexibility of the domain-independent planning model
allows FMAP to tackle multi-agent planning tasks of any type. In FMAP, agents
jointly explore the plan space by building up refinement plans through a com-
plete and flexible forward-chaining partial-order planner. The search is guided by
hDTG, a novel heuristic function that is based on the concepts of Domain Tran-
sition Graph and frontier state and is optimized to evaluate plans in distributed
environments. Agents in FMAP apply an advanced privacy model that allows
them to adequately keep private information while communicating only the data
of the refinement plans that is relevant to each of the participating agents. Ex-
perimental results show that FMAP is a general-purpose approach that efficiently
solves tightly-coupled domains that have specialized agents and cooperative goals
as well as loosely-coupled problems. Specifically, the empirical evaluation shows
that FMAP outperforms current MAP systems at solving complex planning tasks
that are adapted from the International Planning Competition benchmarks.

Keywords Distributed Algorithms · Multi-Agent Planning · Heuristic Planning ·
Privacy

Alejandro Torreño
Departamento de Sistemas Informáticos y Computación
Universtitat Politècnica de València
Camino de Vera, s/n, 46022, Valencia, Spain
E-mail: atorreno@dsic.upv.es

Eva Onaind́ıa
E-mail: onaindia@dsic.upv.es

Óscar Sapena
E-mail: osapena@dsic.upv.es

Manuscript
Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/apin/viewRCResults.aspx?pdf=1&docID=3162&rev=2&fileID=62243&msid={2BCF6848-38DF-492F-A30E-A5964F9AB50C}

2 Alejandro Torreño et al.

1 Introduction

Multi-agent planning (MAP) introduces a social approach to planning by which
multiple intelligent entities work together to solve planning tasks that they are not
able to solve by themselves, or to at least accomplish them better by cooperating
[40]. MAP places the focus on the collective effort of multiple agents to accomplish
tasks by combining their knowledge and capabilities.

The complexity of solving a MAP task directly depends on its typology. In
order to illustrate the features of a MAP task, let us introduce a brief application
example.

Example 1 Consider the transportation task in Fig. 1, which involves three differ-
ent agents. There are two transport agencies (ta1 and ta2), each of which has a
truck (t1 and t2, respectively). The two agencies work in two different geographical
areas, ga1 and ga2, respectively. The third agent is a factory, f , which is placed in
the area ga2. To manufacture products, factory f requires raw materials (rm) that
are gathered from area ga1. In this task, ta1 and ta2 have the same capabilities,
but they act in different areas; i.e., they are spatially distributed agents. Addi-
tionally, the factory agent f is functionally different from ta1 and ta2. The goal
of this task is for f to manufacture a set of final products. In order to carry out
the task, ta1 will send its truck t1 to load the raw materials rm located in l2 and
then transport them to a storage facility (sf) that is placed in the intersection of
both geographical areas. Then, ta2 will complete the delivery by using its truck t2
to transport the materials from sf to f , which will in turn manufacture the final
products. Therefore, this task involves three specialized agents that are spatially
and functionally distributed which must cooperate to accomplish a common goal.

Example 1 emphasizes most of the key elements of a MAP task. First, the
spatial and/or functional distribution of planning agents gives rise to specialized
agents that have different knowledge and capabilities. In turn, this information
distribution stresses the issue of privacy, which is one of the basic aspects that
should be considered in multi-agent applications [33].

Since the three parties involved in Example 1 are specialized in different func-
tional or geographical areas of the task, most of the information managed by fac-
tory f is not relevant for the transport agencies and vice-versa. The same occurs
with the transport agencies ta1 and ta2. Additionally, agents may not be willing to
share the sensitive information of their internal procedures with the others. For in-
stance, ta1 and ta2 are cooperating in this particular delivery task, but they might
be potential competitors since they work in the same business sector. Therefore,
agents in a MAP context want to minimize the information they share with each
other, either for strategic reasons or simply because it is not relevant for the rest
of the agents in order to address the planning task.

Besides the need for computational or information distribution, privacy is also
one of the reasons to adopt a multi-agent approach. This aspect, however, has
been traditionally relegated in MAP, particularly by the planning community [21].
While some approaches define a basic notion of privacy [2,25], others allow agents
to share detailed parts of their plans or do not take private information into account
at all [22].

The complexity of a MAP task is often described by means of its coupling
level [4], which is measured as the number of interactions that arise among agents

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FMAP: Distributed Cooperative Multi-Agent Planning 3

f

l4

l3l1

l2
sf

ga1 ga2

t2

t1

rm

Fig. 1 Example of a transportation task

during the resolution of a MAP task. According to this parameter, MAP tasks
can be classified into loosely-coupled tasks (which present few interactions among
agents) and tightly-coupled tasks (which involve many interactions among agents).
The coupling level, however, does not take into consideration one key aspect of
MAP tasks: the presence of cooperative goals; i.e., goals that cannot be solved
individually by any agent since they require the cooperation of specialized agents.
Example 1 illustrates a tightly-coupled task with one such goal since none of the
agents can achieve the manufacturing of the final products by itself. Instead, they
must make use of their specialized capabilities and interact with each other to
deliver the raw materials and manufacture the final products.

In this paper, we present FMAP (Forward MAP), which is a domain-independent
MAP system that is designed to cope with a great variety of planning tasks of dif-
ferent complexity and coupling level. FMAP is a fully distributed method that
interleaves planning and coordination by following a cooperative refinement plan-
ning approach. This search scheme allows us to efficiently coordinate agents’ ac-
tions in any type of planning task (either loosely-coupled or tightly-coupled) as
well as to handle cooperative goals.

FMAP relies on a theoretical model which defines a more sophisticated notion
of privacy than most of the existing MAP systems. Instead of using a single set of
private data, FMAP allows agents to declare the information they will share with
each other. For instance, the transport agency ta2 in Example 1 will share with
factory f information that is likely to be different from the information shared
with agent ta1. Our system enhances privacy by minimizing the information that
agents need to disclose. FMAP is a complete and reliable planning system that
has proven to be very competitive when compared to other state-of-the-art MAP
systems. The experimental results will show that FMAP is particularly effective
for solving tightly-coupled MAP problems with cooperative goals.

This article is organized as follows: section 2 presents some related work on
multi-agent planning, with an emphasis on issues like the coupling level of planning
tasks, privacy, or cooperative goals. Section 3 formalizes the notion of a MAP task;
section 4 describes the main components of FMAP, the search procedure, and the
DTG-based heuristic function; finally, section 5 provides a thorough experimental
evaluation of FMAP and section 6 concludes the paper.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Alejandro Torreño et al.

2 Related work

In the literature, there are two main approaches for solving MAP tasks like the
one described in Example 1. Centralized MAP involves using an intermediary
agent that has complete knowledge of the task. The distributed or decentralized
approach spreads the planning responsability among agents, which are in charge
of interacting with each other to coordinate their local solutions, if necessary [28,
18]. The adoption of a centralized approach is aimed at improving the planner
performance by taking advantage of the inherent structure of the MAP tasks
[22,8]. Centralized approaches assume a single planning entity that has complete
knowledge of the task, which is rather unrealistic if the parties involved in the
task have sensitive private information that they are not willing to disclose [32]. In
Example 1, the three agents involved in the task want to protect the information
regarding their internal processes and business strategies, so a centralized setting
is not an acceptable solution.

We then focus on fully distributed MAP, that is, the problem of coordinating
agents in a shared environment where information is distributed. The distributed
MAP setting involves two main tasks: the planning of local solutions and the coor-
dination of the agents’ plans into a global solution. Coordination can be performed
at one or various stages of the distributed resolution of a MAP task. Some tech-
niques are used for problems in which agents build local plans for the individual
goals that they have been assigned. MAP is about coordinating the local plans of
agents so as to mutually benefit by avoiding the duplication of effort. In this case,
the goal is not to build a joint plan among entities that are functionally or spa-
tially distributed but rather to apply plan merging to coordinate the local plans
of multiple agents that are capable of achieving the problem goals by themselves
[7].

There is a large body of work on plan-merging techniques. The work in [7]
introduces a distributed coordination framework based on partial-order planning
that addresses the interactions that emerge between the agents’ local plans. This
framework, however, does not consider privacy. The proposal in [36] is based on
the iterative revision of the agents’ local plans. Agents in this model cooperate by
mutually adapting their local plans, with a focus on improving their common or in-
dividual benefit. This approach also ignores privacy and agents are assumed to be
fully cooperative. The approach in [39] uses multi-agent plan repair to solve incon-
sistencies among the agents’ local plans while maintaining privacy. µ-SATPLAN
[9] extends a satisfiability-based planner to coordinate the agents’ local plans by
studying positive and negative interactions among them.

Plan-merging techniques are not very well suited for coping with tightly-coupled
tasks as they may introduce exponentially many ordering constraints in problems
that require great coordination effort [7]. In general, plan merging is not an effec-
tive method for attaining cooperative goals since this resolution scheme generally
assumes that each agent is able to solve a subset of the task’s goals by itself.
However, some approaches use plan merging to coordinate local plans of special-
ized agents. In this case, the effort is placed on discovering the interaction points
among agents through the public information that they share. For instance, Plan-
ning First [25] introduces a cooperative MAP approach for loosely-coupled tasks,
in which specialized agents carry out planning individually through a state-based
planner. The resulting local plans are then coordinated by solving a distributed

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FMAP: Distributed Cooperative Multi-Agent Planning 5

Constraint Satisfaction Problem (CSP) [16]. This combination of CSP and plan-
ning to solve MAP tasks was originally introduced by the MA-STRIPS framework
[4].

Another major research trend in MAP interleaves planning and coordination,
providing a more unified vision of cooperative MAP. One of the first approaches
to domain-independent MAP is the Generalized Partial Global Planning (GPGP)
framework [23]. Agents in GPGP have a partial view of the world and communicate
their local plans to the rest of the agents, which in turn merge this information into
their own partial global plan in order to improve it. Approaches to continual plan-
ning (interleaving planning and execution in a world undergoing continual change),
assume there is uncertainty in the world state and therefore agents do not have a
complete view of the world [5]. Specifically in [5], agents have a limited knowledge
of the environment and limited capabilities, but the authors do not explicitly deal
with a functional distribution among agents or cooperative goals. TFPOP is a fully
centralized approach that combines temporal and forward-chaining partial-order
planning to solve loosely-coupled MAP tasks [22]. The Best-Response Planning
algorithm departs from an initial joint plan that is built through the Planning
First MAP system [25] and iteratively improves the quality of this initial plan by
applying cost optimal planning [17]. Agents can only access the public informa-
tion of the other agents’ plans thereby preserving privacy, and they optimize their
plans with the aim to converge to a Nash equilibrium regarding their preferences.
MAP-POP is a fully distributed method that effectively maintains the agents’ pri-
vacy [38,37]. Agents in MAP-POP perform an incomplete partial-order planning
search to progressively develop and coordinate a joint plan until its completion.

Finally, MAPR is a recent planner that performs goal allocation to each agent
[2]. Agents iteratively solve the assigned goals by extending the plan of the previous
agent. In this approach, agents work under limited knowledge of the environment
by obfuscating the private information in their plans. MAPR is particularly effec-
tive for loosely-coupled problems, but it cannot deal with tasks that feature spe-
cialized agents and cooperative goals since it assumes that each goal is achieved by
a single agent. Section 5 will show a comparative performance evaluation between
MAPR and FMAP, our proposed approach.

3 MAP task formalization

Agents in FMAP work with limited knowledge of the planning task by assuming
that information that is not represented in an agent’s model is unknown to the
agent. The states of the world are modeled through a finite set of state variables,
V, each of which is associated to a finite domain, Dv, of mutually exclusive values
that refer to the objects in the world. Assigning a value d to a variable v ∈ V
generates a fluent. A positive fluent is a tuple 〈v, d〉, which indicates that the
variable v takes the value d. A negative fluent is of the form 〈v,¬d〉, indicating
that v does not take the value d. A state S is a set of positive and negative fluents.

An action is a tuple α = 〈PRE(α), EFF (α)〉, where PRE(α) is a finite set
of fluents that represents the preconditions of α, and EFF (α) is a finite set of
positive and negative variable assignments that model the effects of α. Executing
an action α in a world state S leads to a new world state S′ as a result of applying
EFF (α) over S. An effect of the form (v = d) assigns the value d to the variable

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Alejandro Torreño et al.

v, i.e., it adds the fluent 〈v, d〉 to S′ as well as adding a set of fluents 〈v,¬d′〉
for each other value d′ in the variable domain in order to have a consistent state
representation. Additionally, any fluent in S of the form 〈v,¬d〉 or 〈v, d′′〉, d′′ 6= d,
is removed in state S′. This latter modification removes any fluent that contradicts
〈v, d〉. On the other hand, an assignment (v 6= d) adds the fluent 〈v,¬d〉 to S′ and
removes 〈v, d〉 from S′, if such a fluent exists in S.

For instance, let us suppose that the transportation task in Example 1 includes
a variable pos-rm that describes the position of the raw materials rm, which can be
any of the locations in the task. Let S be a state that includes a fluent 〈pos-rm, l2〉,
which indicates that rm is placed in its initial location (see Fig. 1). Agent ta1
performs an action to load rm into its truck t1, which includes an effect of the
form (pos-rm = t1). The application of this action results in a new world state
S′ that will include a fluent 〈pos-rm, t1〉 and fluents of the form 〈pos-rm,¬l〉 for
each other location l 6= t1; the fluent 〈pos-rm, l2〉 will no longer be in S′.

Definition 1 A MAP task is defined as a tuple TMAP = 〈AG,V,I,G,A〉. AG =
{1, . . . , n} is a finite non-empty set of agents. V =

⋃
i∈AG V

i, where Vi is the set of

state variables known to an agent i. I =
⋃

i∈AG I
i is a set of fluents that defines

the initial state of TMAP . Since specialized agents are allowed, they may only know
a subset of I. Given two agents i and j, Ii ∩Ij may or may not be ∅; in any case,
the initial states of the agents never contradict each other. G is the set of goals of
TMAP , i.e., the values of the state variables that agents have to achieve in order
to accomplish TMAP . Finally, A =

⋃
i∈AG A

i is the set of planning actions of the

agents. Ai and Aj of two specialized agents i and j will typically be two disjoint
sets since the agents have their own different capabilities; otherwise, Ai and Aj

may overlap. A includes two fictitious actions αi and αf that do not belong to
the action set of any particular agent: αi represents the initial state of TMAP , i.e.,
PRE(αi) = ∅ and EFF (αi) = I, while αf represents the global goals of TMAP ,
i.e., PRE(αf) = G, and EFF (αf) = ∅.

As discussed in Example 1, our model considers specialized agents that can be
functionally and/or spatially distributed. This specialization defines the local view
that each agent has of the MAP task. Local views are a typical characteristic of
multi-agent systems and other distributed systems. For instance, distributed CSPs
use local views, such that agents only receive information about the constraints in
which they are involved [16,41]. Next, we define the information of an agent i on
a planning task TMAP .

The view of an agent i on a MAP task TMAP is defined as T i
MAP = 〈Vi,Ai, Ii,G〉.

Vi is the set of state variables known to agent i; Ai ⊆ A is the set of its capabilities
(planning actions); Ii is the subset of fluents of the initial state I that are visible
to agent i; and G is the set of global goals of TMAP . Since agents in FMAP are fully
cooperative, they are all aware of the global goals of the task. Obviously, because
of specialization, a particular agent may not understand the goals as specified in
G; defining G as global goals implies that all agents contribute to the achievement
of G, either directly (achieving a g ∈ G) or indirectly (introducing actions whose
effects help other agents achieve g).

The state variables of an agent i are determined by the view the agent has on
the initial state, Ii, the planning actions it can perform, Ai, and the set of goals

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FMAP: Distributed Cooperative Multi-Agent Planning 7

of TMAP . This also affects the domain Dv of a variable v. We define Di
v ⊆ Dv as

the set of values of the variable v that are known to agent i.
Consider again the pos-rm variable in Example 1. The domain of pos-rm con-

tains all the locations in the transportation task, including the factory f , the
storage facility sf , and the trucks; that is, Dpos-rm = {l1, l2, l3, l4, f, sf, t1, t2}.
However, agents ta1 and ta2 have local knowledge about the domain of pos-rm
because some of the values of such variable refer to objects of TMAP that are
unknown to them. Hence, ta1 will manage Dta1

pos-rm = {l1, l2, sf, t1}, while ta2 will
manage Dta2

pos-rm = {l3, l4, sf, f, t2}.
Agents in FMAP interact with each other by sharing information about their

state variables. For each pair of agents i and j, the public information they share
is defined as Vij = Vji = Vi ∩ Vj . Additionally, some of the values in the domain
of a variable can also be public to both agents. The set of values of a variable v
that are public to a pair of agents i and j is defined as Dij

v = Di
v ∩ Dj

v.
As Example 1 indicates, the pos-rm variable is public to agents ta1 and ta2.

The values that are public to both agents are defined as the intersection of the
values that are known to each of them, Dta1 ta2

pos-rm = {sf}. This way, the only public
location of rm for agents ta1 and ta2 is the storage facility sf , which is precisely
the intersection between the two geographical areas. Hence, if agent ta1 places rm
in sf , it will inform ta2 accordingly, and vice versa. This allows agents ta1 and ta2
to work together while minimizing the information they share with each other.

Our MAP model is a multi-agent refinement planning framework, which is a
general method based on the refinement of the set of all possible plans. The inter-
nal reasoning of agents in FMAP is configured as a Partial-Order Planning (POP)
search procedure. Other local search strategies are applicable, as long as agents
build partial-order plans. The following concepts and definitions are standard terms
from the POP paradigm [12], which have been adapted to state variables. Addi-
tionally, definitions also account for the multi-agent nature of the planning task
and the local views of the task by the agents.

Definition 2 A partial-order plan or partial plan is a tuple Π = 〈∆,OR, CL〉.
∆ = {α|α ∈ A} is the set of actions in Π. OR is a finite set of ordering constraints

(≺) on ∆. CL is a finite set of causal links of the form α
〈v,d〉→ β or α

〈v,¬d〉→ β,

where α and β are actions in ∆. A causal link α
〈v,d〉→ β enforces precondition

〈v, d〉 ∈ PRE(β) through an effect (v = d) ∈ EFF (α) [12]. Similarly, a causal

link α
〈v,¬d〉→ β enforces 〈v,¬d〉 ∈ PRE(β) through an effect (v 6= d) ∈ EFF (α) or

(v = d′) ∈ EFF (α), d′ 6= d.

An empty partial plan is defined as Π0 = 〈∆0, OR0, CL0〉, where OR0 and
CL0 are empty sets, and ∆0 contains only the fictitious initial action αi. A partial
plan Π for a task TMAP will always contain αi.

The introduction of new actions in a partial plan may trigger the appearance
of flaws. There are two types of flaws in a partial plan: preconditions that are not
yet solved (or supported) through a causal link, and threats. A threat over a causal

link α
〈v,d〉→ β is caused by an action γ that is not ordered w.r.t. α or β and might

potentially modify the value of v [12] ((v 6= d) ∈ EFF (γ) or (v = d′) ∈ EFF (γ),
d′ 6= d), making the causal link unsafe. Threats are addressed by introducing either

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Alejandro Torreño et al.

an ordering constraint γ ≺ α (this is called demotion because the causal link is
posted after the threatening action) or an ordering β ≺ γ (this is called promotion
because the causal link is placed before the threatening action) [12].

A flaw-free plan is a threat-free partial plan in which the preconditions of all
the actions are supported through causal links.

Planning agents in FMAP cooperate to solve MAP tasks by progressively re-
fining an initially empty plan Π until a solution is reached. The definition of
refinement plan is closely related to the internal forward-chaining partial-order
planning search performed by the agents. Refinement planning is a technique that
is widely used by many planners, specifically in anytime planning, where a first
initial solution is progressively refined until the deliberation time expires [31]. We
define a refinement plan as follows:

Definition 3 A refinement plan Πr = 〈∆r, ORr, CLr〉 over a partial plan
Π = 〈∆, OR, CL〉 is a flaw-free partial plan that extends Π, i.e., ∆ ⊂ ∆r,
OR ⊂ ORr and CL ⊂ CLr. Πr introduces a new action α ∈ ∆r in Π, resulting
in ∆r = ∆ ∪ α. All the preconditions in PRE(α) are linked to existing actions
in Π through causal links; i.e., all preconditions are supported: ∀p ∈ PRE(α), ∃
β

p→ α ∈ CLr, where β ∈ ∆.

Refinement plans in FMAP include actions that can be executed in parallel by
different agents. Some MAP models consider that two parallel or non-sequential
actions are mutually consistent if neither of them modifies the value of a state
variable that the other relies on or affects [5]. We also consider that the precon-
ditions of two mutually consistent actions have to be consistent [3]. Hence, two
non-sequential actions α ∈ Ai and β ∈ Aj are mutually consistent if none of the
following conditions hold:

– ∃(v = d) ∈ EFF (α) and ∃(〈v, d′〉 ∈ PRE(β) ∨ 〈v,¬d〉 ∈ PRE(β)), where
v ∈ Vij , d ∈ Dij

v , d′ ∈ Dj
v and d 6= d′, or vice versa; that is, the effects of α

and the preconditions of β (or vice versa) do not contradict each other under
the specified conditions.

– ∃(v = d) ∈ EFF (α) and ∃((v = d′) ∈ EFF (β) ∨ (v 6= d) ∈ EFF (β)), where
v ∈ Vij , d ∈ Dij

v , d′ ∈ Dj
v and d 6= d′, or vice versa; that is, the effects of α and

the effects of β (or vice versa) do not contradict each other under the specified
conditions.

– ∃〈v, d〉 ∈ PRE(α) and ∃(〈v, d′〉 ∈ PRE(β) ∨ 〈v,¬d〉 ∈ PRE(β)), where
v ∈ Vij , d ∈ Dij

v , d′ ∈ Dj
v and d 6= d′, or vice versa; that is, the preconditions

of α and the preconditions of β (or vice versa) do not contradict each other
under the specified conditions.

Agents address parallelism by the resolution of threats over the causal links of
the plan. Thus, consistency between any two non-sequential actions introduced by
different agents is always guaranteed as refinement plans are flaw-free plans.

Finally, a solution plan for TMAP is a refinement plan Π = 〈∆, OR, CL〉 that
addresses all the global goals G of TMAP . A solution plan includes the fictitious
final action αf and ensures that all its preconditions (note that PRE(αf) = G) are

satisfied; that is, ∀g ∈ PRE(αf), ∃ β g→ αf ∈ CL, β ∈ ∆, which is the necessary
condition to guarantee that Π solves TMAP .

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FMAP: Distributed Cooperative Multi-Agent Planning 9

3.1 Privacy in partial plans

Every time an agent i refines a partial plan by introducing a new action α ∈ Ai, it
communicates the resulting refinement plan to the rest of the agents in TMAP . As
stated above, the information that is public to a pair of agents is defined according
to the common state variables and domain values. In order to preserve privacy,
agent i will only communicate to agent j the fluents in action α whose variables
are common to both agents. The information of a refinement plan Π that agent j
receives from agent i configures its view of that plan, viewj(Π). More specifically,
given two agents i and j and a fluent 〈v, d〉, where v ∈ Vi and d ∈ Di

v (equivalently
for a negative fluent 〈v,¬d〉), we distinguish the three following cases:

– Public fluent: if v ∈ Vij and d ∈ Dij
v , the fluent 〈v, d〉 is public to both i and

j, and thus agent i will send agent j all the causal links, preconditions, and
effects regarding 〈v, d〉.

– Private fluent to agent i: if v 6∈ Vij , the fluent 〈v, d〉 is private to agent
i w.r.t. agent j, and thus agent i will occlude the preconditions and effects

regarding 〈v, d〉 to agent j. Causal links of the form α
〈v,d〉→ β will be sent to

agent j as ordering constraints α ≺ β.
– Partially private fluent to agent i: if v ∈ Vij but d 6∈ Dij

v , the fluent 〈v, d〉
is partially private to agent i w.r.t. agent j. Instead of 〈v, d〉, agent i will send
agent j a fluent 〈v,⊥〉, where ⊥ is the undefined value. Hence, preconditions of
the form 〈v, d〉 will be sent as 〈v,⊥〉, effects of the form (v = d) will be replaced

by (v =⊥), and causal links α
〈v,d〉→ β will adopt the form α

〈v,⊥〉→ β.

If an agent j receives a fluent 〈v,⊥〉,⊥ is interpreted as follows: ∀d ∈ Dj
v, 〈v,¬d〉.

That is, ⊥ indicates that v is not assigned any of the values known to agent j (Dj
v).

This mechanism is used to inform an agent that a resource is no longer available in
its influence area. For instance, suppose that agent ta2 in Example 1 acquires the
raw material rm from sf by loading it into its truck t2. Agent ta2 communicates
to ta1 that rm is no longer in sf , but agent ta1 does not know about the truck
t2. To solve this issue, ta2 sends ta1 the fluent 〈pos-rm,⊥〉, meaning that the
resource rm is no longer available in the geographical area of agent ta1. Conse-
quently, ta1 is now aware that rm is not located in any of its accessible positions
Dta1

pos-rm = {l1, l2, sf, t1}.
Fig. 2 shows the view that the transport agents ta1 and ta2 in Example 1

have of a simple refinement plan Πr. In this plan, agent ta1 drives the truck t1
from l1 to l2 and loads rm into t1. As shown in Fig. 2a, viewta1(Πr) contains all
the information of both actions in the plan since agent ta1 has introduced them.
Agent ta2, however, does not know about the truck t1, and hence the variable
pos-t1, which models the position of t1, is private to ta1 w.r.t. ta2. This way,
all the preconditions and effects related to the fluents 〈pos-t1, l1〉 and 〈pos-t1, l2〉
are occluded in viewta2(Πr) (see Fig. 2b). Additionally, the causal links regarding
these two fluents are replaced by ordering constraints in viewta2(Πr). On the other
hand, the variable pos-rm is public to both agents, but the load action refers to the
locations t1 and l2, which are not in Dta2

pos-rm. Therefore, fluents 〈pos-rm, l2〉 and
〈pos-rm, t1〉 are partially private to agent ta1 w.r.t. ta2. This way, in viewta2(Πr),
the precondition 〈pos-rm, l2〉 and the effect (pos-rm = t1) of the load action are

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Alejandro Torreño et al.

!"#$%&'()*+,!"#$%&'()*',-i -f
./

#.0)&')12)+01345)&')*')*+

6/

!"#$%&'()*',

7"#$%&'8*+/

!"#$%&'()*+,
!"#$%12()*+,

7"#$%128&'/

!"#$%12()*+,

-i -f-1-0
!"#$%12()⊥,

7"#$%128)⊥/

!"#$%12()⊥,

Fig. 2 A refinement plan Πr as viewed by: a) agent ta1 b) agent ta2

replaced by 〈pos-rm,⊥〉 and (pos-rm =⊥), respectively. The fluent 〈pos-rm, l2〉 is

also replaced by 〈pos-rm,⊥〉 in the causal link αi
〈pos-rm,l2〉→ load t1 rm l2.

3.2 MAP definition language

There is a large body of work on planning task specification languages. Since plan-
ning has been traditionally regarded as a centralized problem, the most popular
definition languages, such as the different versions of PDDL (the Planning Domain
Definition Language1), are designed to model single-agent planning tasks. MAP
introduces a set of requirements that are not present in single-agent planning, such
as privacy or specialized agents, which motivate the development of specification
languages for multi-agent planning.

There are many different approaches to MAP as described in section 2. MA-
STRIPS [4], which was designed as a minimalistic extension to STRIPS [10], is
one of the most common MAP languages. It allows defining a set of agents and as-
sociating the planning actions they can execute. FMAP presents several advanced
features that motivated the definition of our own PDDL-based specification lan-
guage (the language syntax is detailed in [38]) rather than using MA-STRIPS.

Since the world states in FMAP are modeled through state variables instead
of predicates, our MAP language is based on PDDL3.1 [20], the latest version of
PDDL. Unlike its predecessors, which model planning tasks through predicates,
PDDL3.1 incorporates state variables that map to a finite domain of objects of
the task.

In a single-agent language, the user specifies the domain of the task (planning
operators, types of objects, and functions) and the problem to be solved (objects of
the task, initial state, and goals). In FMAP, we write a domain and a problem file
for each agent, which define the typology of the agent, and the agent’s local view
of the MAP task, respectively. The domain files keep the structure of a regular
PDDL3.1 domain file. The problem files, however, are extended with an additional
:shared-data section, which specifies the information that an agent can share with
each of the other participating agents in the task.

1 http://en.wikipedia.org/wiki/Planning_Domain_Definition_Language

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://en.wikipedia.org/wiki/Planning_Domain_Definition_Language

FMAP: Distributed Cooperative Multi-Agent Planning 11

!i !f"0

!i !f"00 #$%&'(
)*(+*(+,

!i !f"01 #$%&'(
)*(+*(-. !i !f"02 #$%&'(

),(+/(-.

!i !f"03 #$%&'(
),(+/(.

)0*
)0,

Fig. 3 FMAP multi-agent search tree example

4 FMAP refinement planning procedure

FMAP is based on a cooperative refinement planning procedure in which agents
jointly explore a multi-agent, plan-space search tree. A multi-agent search tree is
one in which the partial plans of the nodes are built with the contributions of one
or more agents.

Fig. 3 shows the first level of the multi-agent search tree that would be gen-
erated for the transportation task of Example 1. At this level, agents ta1 and
ta2 each propose two refinement plans, specifically the plans to move their trucks
within their geographical areas. In each of these refinement plans, the agent adds
one action and the corresponding orderings and causal links. Agent f does not
contribute here with any refinement plan because the initial empty plan Π0 does
not have the necessary supporting information for f to insert any of its actions.
In a subsequent iteration (expansion of the next tree node), agents can in turn
create new refinement plans. For instance, if node Π00 in Fig. 3 is selected next
for expansion, the three agents in the problem (ta1, ta2, or f) will try to create
refinement plans over Π00 by adding one of their actions and supporting it through
the necessary causal links and orderings.

Agents keep a copy of the multi-agent search tree, storing the local view they
have of each of the plans in the tree nodes. Given a node Π in the multi-agent
search tree, an agent i maintains viewi(Π) in its copy of the tree.

FMAP applies a multi-agent A* search that iteratively explores the multi-
agent tree. One iteration of FMAP involves the following: 1) agents select one of
the unexplored leaf nodes of the tree for expansion; 2) agents expand the selected
plan by generating all the refinement plans over this node; and 3) agents evaluate
the resulting successor nodes and communicate the results to the rest of the agents.
Instead of using a broadcast control framework, FMAP uses democratic leadership,
in which a coordinator role is scheduled among the agents. One of the agents
adopts the role of coordinator at each iteration, thus leading the procedure in
one iteration (initially, the coordinator role is randomly assigned to one of the
participating agents). More specifically, a FMAP iteration is as follows:

– Base plan selection: Among all the open nodes (unexplored leaf nodes) of
the multi-agent search tree, the coordinator agent selects the most promising
plan, Πb, as the base plan to refine in the current iteration. Πb is selected
according to the evaluation of the open nodes (details on the node evaluation
and selection are presented in section 4.3). In the initial iteration, the base
plan is the empty plan Π0.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Alejandro Torreño et al.

– Refinement plan generation: Agents expand Πb and generate its successor
nodes. A successor node is a refinement plan over Πb that an agent generates
individually through its embedded forward-chaining partial-order planner (see
subsection 4.1).

– Refinement plan evaluation: Each agent i evaluates its refinement plans
Πr by applying a classical A* evaluation function (f(Πr) = g(viewi(Πr)) +
h(viewi(Πr))). The expression g(viewi(Πr)) stands for the number of actions
of Πr. Since agents view all the actions of the plans (but not necessarily all their
preconditions and effects), g(viewi(Πr)) is equivalent to g(Πr). h(viewi(Πr))
applies our DTG-based heuristic (see subsection 4.3) to estimate the cost of
reaching a solution plan from Πr.

– Refinement plan communication: Each agent communicates its refinement
plans to the rest of the agents. The information that an agent i communicates
about its plan Πr to the rest of the agents depends on the level of privacy
specified with each of them. Along with the refinement plan Πr, agent i com-
municates the result of the evaluation of Πr, f(Πr).

Once the iteration is completed, the leadership is handed to another agent,
which adopts the coordinator role, and a new iteration starts. The next coordinator
agent selects the open node Π that minimizes f(Π) as the new base plan Πb,
and then, agents proceed to expand it. This iterative process carries on until Πb

becomes a solution plan that supports the final action αf , or when all the open
nodes have been visited, in which case, the agents will have explored the complete
search space without finding a solution for the MAP task TMAP .

A refinement plan Π is evaluated only by the agent that generates it. The agent
communicates Π along with f(Π) to the rest of the agents. Therefore, the decision
on the next base plan is not affected by the agent that plays the coordinator role
since all of the agents manage the same f(Π) value for every open node Π.

In the example depicted in Fig. 3, agent ta1 evaluates its refinement plans,
Π00 and Π01, and communicates them along with f(Π00) and f(Π01) to agents
ta2 and f ; likewise, ta2 with ta1 and f . In this first level of the tree, agents ta1
and ta2 have a complete view of the refinement plans, that they have generated
since these plans only contain an action that they themselves introduced. However,
when ta1 and ta2 communicate their plans to each other, they will only send the
fluents according to the level of privacy defined between them, as described in
subsection 3.1. This way, ta1 will send viewta2(Π00) and viewta2(Π01) to agent
ta2, and viewf (Π00) and viewf (Π01) to agent f .

The following subsections analyze the key elements of FMAP, that is, the
search algorithm that agents use for the generation of the refinement plans and
the heuristic function they use for plan evaluation. We also include a subsection
that addresses the completeness and correctness of the algorithm as well as a
subsection that describes the limitations of FMAP.

4.1 Forward-Chaining Partial-Order Planning

Agents in FMAP use an embedded flexible forward-chaining POP system to gen-
erate the refinement plans; this will be referred to as FLEX in the remainder
of the paper. Similarly to other approaches, FLEX explores the potential of for-
ward search to support partial-order planning. OPTIC [1], for instance, combines

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FMAP: Distributed Cooperative Multi-Agent Planning 13

!i !f"#$%&'
()'*+',-

"#$%&'
()'*)'*+

!i !f"#$%&'
()'*+',-

"#$%&'
()'*)'*+

*./"'()'
#0'*+

!i !f"#$%&'
()'*+',-

"#$%&'
()'*)'*+ FS *./"'()'

#0'*+
"#$%&'
()',-'*+/1

21

3001

Fig. 4 Loading rm in plan Π001: a) inserting actions from a frontier state b) inserting actions
using FLEX

partial-order structures with information on the frontier state of the plan. Infor-
mally speaking, the frontier state of the partial plan of a tree node is the re-
sulting state after executing the actions in such a plan. Given a refinement plan
Π = 〈∆,OR, CL〉, we define its frontier state FS(Π) as the set of fluents 〈v, d〉
achieved by actions α ∈ ∆ | 〈v, d〉 ∈ EFF (α), such that any action α′ ∈ ∆ that
modifies the value of the variable v (〈v, d′〉 ∈ EFF (α′) | d 6= d′) is not reachable
from α by following the orderings and causal links in Π.

The only actions that OPTIC adds to a plan are those whose preconditions
hold in the frontier state. This behaviour forces OPTIC to some early commit-
ments; however, this does not sacrifice completeness, because search can backtrack.
Also, TFPOP [22] applies a centralized forward-chaining POP for multiple agents,
keeping a sequential execution thread per agent.

The aforementioned approaches only permit introducing actions that are appli-
cable in the frontier state of the plan. In contrast, FLEX allows inserting actions
at any position of the plan without assuming that any action in the plan has
already been executed. This is a more flexible approach that is also more compli-
ant with the least-commitment principle that typically guides backward-chaining
POP. Fig. 4 shows the advantages of our flexible search strategy. Consider the
refinement plan Π001, which is the result of a refinement of agent ta1 on plan
Π00 (see Fig. 3) after including the action (drive t1 l1 sf). This is not the best
course of action for taking the raw material rm to the factory f as ta1 should
load rm into t1 before moving to sf . The frontier state FS(Π001) reflects the
state of the world after executing the plan Π001, in which the truck t1 would be
at sf . Planners like OPTIC would only introduce actions that are applicable in
the frontier state FS(Π001). In this example, OPTIC would first insert the action
(drive t1 sf l2) to move the truck t1 back to l2 in order to be able to apply the
action (load t1 rm l2) (see Fig. 4a). FLEX, however, is able to introduce actions
at any position in the plan, so the load action can be directly placed between both
drive actions, thus minimizing the length of the plan (see Fig. 4b).

Algorithm 1 summarizes the FLEX procedure invoked by an agent i to generate
refinement plans, and Fig. 5 shows how agent ta1 in Example 1 uses the FLEX
algorithm to refine plan Π00 in Fig. 3. The first operation of an agent i that
executes FLEX is to check whether the fictitious final action αf is supportable
in Πb, that is, if a solution plan can be obtained from Πb. If so, the agent will
generate a set of solution plans that covers all the possible ways to support the
preconditions of αf through causal links.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Alejandro Torreño et al.

Algorithm 1: FLEX search algorithm for an agent i

RP i ← ∅
if potentiallySupportable(αf , view

i(Πb)) then
return solutionP lans

CandidateActions← ∅
forall the α ∈ Ai do
if potentiallySupportable(α, viewi(Πb)) then
CandidateActions← CandidateActions ∪ α

forall the α ∈ CandidateActions do
Plans← {viewi(Πb)}
repeat

Select and extract Πs ∈ Plans
F laws(Πs)← unsupportedPrecs(α,Πs) ∪ Threats(Πs)
if Flaws(Πs) = ∅ then
RP i ← RP i ∪Πs

else
Select and extract Φ ∈ Flaws(Πs)
Plans← Plans ∪ solveF law(Πs, Φ)

until Plans = ∅
return RP i

If a solution plan is not found, agent i analyzes all its planning actions Ai and
estimates if they are supportable in Πb. Given an action α ∈ Ai, the function
potentiallySupportable(α,Πb) checks if ∀〈v, d〉 ∈ PRE(α), ∃β ∈ ∆(Πb) | (v =
d) ∈ EFF (β), i.e., the agent estimates that α is supportable if for every precon-
dition of α there is a matching effect among the actions of Πb.

Fig. 5 shows an example of potentially supportable actions. Agent ta1 evaluates
all the actions in Ata and finds five candidate actions. In αi, the initial state of
Π00, the truck t1 is at location l1. Consequently, ta1 considers (drive t1 l1 sf)
and (drive t1 l1 l2) as potential candidate actions for its refinements. Note that
action (drive t1 l1 l2) is already included in plan Π00. Actions (drive t1 l2 sf),
(drive t1 l2 l1), and (load t1 rm l2) are also classified as candidates since they are
applicable after the action (drive t1 l1 l2), which is already in plan Π00.

It is possible to introduce an action multiple times in a plan; for instance, a
truck may need to travel back and forth between two different locations several
times. For this reason, ta1 again considers (drive t1 l1 l2) as a candidate action
when refining Π00, even if this action is already included in Π00. By estimating
potentially supportable actions in any position of the plan, FLEX follows the least
commitment principle and does not leave out any potential refinement plan.

The potentiallySupportable procedure is an estimate because it does not ac-
tually check the possible flaws that arise when supporting an action. Hence, an
agent analyzes the alternatives that support each candidate action α by generat-
ing a POP search tree for that particular action (repeat loop in Algorithm 1). All
the leaf nodes of the tree (stored in the Plans list in Algorithm 1) are explored,
thereby covering all the possible ways to introduce α in Πb.

As in backward-chaining POP, FLEX introduces the action α in Πb by sup-
porting its preconditions through causal links and solving the threats that arise
during the search. The set of flaw-free plans obtained from this search are stored
in RP i as valid refinement plans of agent i over Πb. This procedure is carried

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FMAP: Distributed Cooperative Multi-Agent Planning 15

!"#$
Potentially

Supportable
Actions

Estimate

load t1
rm l2

drive
t1 l2 sf

drive
t1 l2 l1

drive
t1 l1 sf

Leaf nodes
(Refinement plans)

Candidate Actions ⊆ !"#$

Independent POP
trees for each action

%i %fdrive
t1 l1 l2&00

&000 &001 &002

drive
t1 l1 l2

Base plan

Fig. 5 FLEX algorithm as applied by agent ta1 over plan Π00

out for each candidate action. Completeness is guaranteed since all the possible
refinement plans over a given base plan are generated by the agents involved in
TMAP .

Fig. 5 shows that, for every candidate action, ta1 performs an independent POP
search aimed at supporting the action. Actions (load t1 rm l2), (drive t1 l2 sf),
and (drive t1 l2 l1) lead to three different refinement plans over Π00: {Π000,
Π001, Π002}. These plans will then be inserted into ta1’s copy of the multi-agent
search tree. Agent ta1 will also send the information of these plans to agents ta2
and f according to the level of privacy defined with each one. ta2 and f also store
the received plans in their copies of the tree.

Candidate action (drive t1 l1 sf) does not produce valid refinement plans
because it causes an unsolvable threat. This is because truck t1 cannot simultane-
ously move to two different locations from l1, which causes a conflict between the
existing action (drive t1 l1 l2) ∈ ∆(Π00) and (drive t1 l1 sf). Similarly, action
(drive t1 l1 l2) does not yield any valid refinements. The resulting plan would
have two actions (drive t1 l1 l2) in parallel, both of which are linked to αi, which
causes an unsolvable threat because t1 cannot perform two identical drive actions
in parallel.

4.2 Completeness and Soundness

As explained in the previous section, agents refine the base plan concurrently by
analyzing all of the possible ways to support their actions in the base plan. Since
this operation is done by every agent and for all their actions, we can conclude
FMAP is a complete procedure that explores the whole search space.

As for soundness, a partial-order plan is sound if it is a flaw-free plan. The
FLEX algorithm addresses inconsistencies among actions in a partial plan by de-
tecting and solving threats.

When an agent i introduces an action α in a base plan Π, FLEX studies the
threats that α causes in the causal links of Π and the threats that the actions of Π
may cause in the causal links that support the preconditions of α. In both cases,
i is able to detect all threats whatever its view of the plan is, viewi(Π). That is,
FMAP soundness is guaranteed regardless of the level of privacy defined between
agents.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 Alejandro Torreño et al.

With regard to the threats caused by the effects of a new action, privacy may
prevent the agent from viewing some of the causal links of the plan. Suppose that
agent i introduces an action αt with an effect (v = d′) in plan Π. Additionally,

there is a causal link in Π of the form cl = α0
〈v,d〉→ α1 introduced by an agent j;

as cl is not ordered with respect to αt, this situation generates a threat. According
to viewi(Π), agent i may find one of the following situations:

– If 〈v, d〉 is public to i and j, then cl is in viewi(Π), and thus the threat between
cl and αt will be correctly detected and solved by promoting or demoting αt.

– If 〈v, d〉 is private to j w.r.t. i, then αt cannot contain an effect (v = d′) because
v 6∈ Vi. Therefore, the threat described above can never occur in Π.

– If 〈v, d〉 is partially private to j w.r.t. i, then cl = α0
〈v,d〉→ α1 will be seen as

cl = α0
〈v,⊥〉→ α1 in viewi(Π). Since ⊥6= d, agent i will be able to detect and

address the threat between αt and cl.

Consequently, an agent can always detect the arising threats when it adds a
new action, αt, in the plan. Now, we should study whether the potential threats
caused by actions in Π on the causal links that support the action αt are correctly

detected by agent i. Suppose that there is a causal link cl′ = β
〈v′,e〉→ αt, and an

action γ with an effect (v′ = e′) which is not ordered with respect to αt. Again,
agent i may find itself in three different scenarios according to its view of (v′ = e′):

– If (v′ = e′) is public to i and j, the threat between cl′ and γ will be correctly
detected by i.

– If (v′ = e′) is private to j w.r.t. i, then none of the variables in PRE(αt) are
related to v′ because v′ 6∈ Vi. Thus, this threat will never arise in Π.

– If (v′ = e′) is partially private to j w.r.t. i, (v′ = e′) will be seen as (v′ =⊥) in
viewi(Π). Since ⊥6= e, the threat between γ and cl′ will be correctly detected
by agent i.

Note that privacy does not prevent agents from detecting and solving threats
nor does it affect the complexity of the process. If the fluent is public or partially
private, the agent that is refining the plan will be able to detect the threat because
it either sees the value of the variable or sees ⊥, and both contradict the value of
the variable in the causal link. If the fluent is private, then there is no such threat.
This proves that FMAP is sound.

4.3 DTG-based Heuristic Function

The last aspect of FMAP to analyze is how agents evaluate the refinement plans.
FMAP guides the search through a domain-independent heuristic function, as
most planning systems do [30]. It uses the information provided by the frontier
states to perform the heuristic evaluation of the plans contained in the tree nodes.

According to the definition shown in section 4.1, the frontier state of a plan
Π, FS(Π), can be easily computed as the finite set of fluents that results from
executing the actions of the planΠ in I, the initial state of TMAP . Since refinement
plans are not sequential plans, the actions in ∆ have to be linearized in order
to compute the frontier state. The linearization of a refinement plan Π involves

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FMAP: Distributed Cooperative Multi-Agent Planning 17

fl1
sf

ga1 ga2
t1

rm

Fig. 6 Reduced transport example task

pos-rm

<pos-t1, f>
f<pos-t1, f>t1

<pos-t1, l1>
l1 <pos-t1, l1>

sf
<pos-t1, sf> <pos-t1, sf>

<pos-t1, l1>

l1
<pos-t1, l1>

<pos-t1, f>

<pos-t1, f>

pos-rm (agent ta1) pos-rm (agent ta2)

ta2

ta2

⊥t1

f

ta1

ta1⊥ t1

sf<pos-t1, sf>

<pos-t1, sf>
sf <pos-t1, sf>

<pos-t1, sf>

Fig. 7 Centralized and distributed DTG of the variable 〈pos-rm〉

establishing a total order among the actions in ∆. Given two actions α ∈ ∆ and
β ∈ ∆, if α ≺ β ∈ OR or β ≺ α ∈ OR, we keep this ordering constraint in the
linearized plan. If α and β are non-sequential actions, we establish a total ordering
among them. Since plans returned by FLEX are free of conflicts, it is irrelevant
how non-sequential actions are ordered.

Frontier states allow us to make use of state-based heuristics such as hFF ,
the relaxed planning graph (RPG) heuristic of FF [15]. However, the distributed
approach and the privacy model of FMAP makes the application of hFF inade-
quate to guide the search. Since none of the agents has knowledge that is complete
enough to build an RPG by itself, using hFF to estimate the quality of a refine-
ment plan involves agents building a distributed RPG [42]. This is a costly process
that requires many communications among agents to coordinate which each other,
and it has to be repeated for the evaluation of each refinement plan. Therefore, the
predictable high computational cost of the application of hFF led us to discard
this choice and opt for designing a heuristic that is based on Domain Transition
Graphs (DTGs) [14].

A DTG is a directed graph that shows the ways in which a variable can change
its value [14]. Each transition is labeled with the necessary conditions for this to
happen; i.e., the preconditions that are common to all the actions that induce the
transition. Since DTGs are independent of the state of the plan, recalculations are
avoided during the planning process.

Privacy is kept in DTGs through the use of the undefined value ⊥. This value is
represented in a DTG like the rest of the values of the variables, the only difference
being that transitions from/to ⊥ are labeled with the agents that induce them.

Consider a reduced version of Example 1 that is depicted in Fig. 6. In this
example, both transport agents ta1 and ta2 can use truck t1 within their geo-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 Alejandro Torreño et al.

graphical areas ga1 and ga2, respectively. Fig. 7 shows the DTG of the variable
〈pos-rm〉. In a single-agent task (upper diagram) all the information is available
in the DTG. However, in the multi-agent task (bottom diagrams), agent ta1 does
not know the location of rm if ta2 transports it to f , while ta2 does not know the
initial placement of rm, since location l1 lies outside ta2’s geographical area, ga2.
In order to evaluate the cost of achieving 〈pos-rm, f〉 from the initial state, ta1 will
first check its DTG, thus obtaining the cost of loading rm in t1. As shown in Fig.
7, the transition between values t1 and ⊥ is labeled with agent ta2. Therefore, ta1
will ask ta2 for the cost of the path between values t1 and f to complete the calcu-
lation. Communications are required to evaluate multi-agent plans, but DTGs are
more efficient than RPGs because they remain constant during planning, so agents
can minimize the overhead by memorizing paths and distances between values.

For a given plan Π, our DTG-based heuristic function (hDTG in the following)
returns the number of actions of a relaxed plan between the frontier state FS(Π)
and the set of goals of TMAP , G. hDTG performs a backward search introducing the
actions that support the goals in G into the relaxed plan until all their preconditions
are supported. Hence, the underlying principle of hDTG is similar to hFF , except
for the fact that DTGs are used instead of RPGs to build the relaxed plan.

The hDTG evaluation of a plan Π begins by calculating the frontier state
FS(Π). Next, an iterative procedure is performed to build the relaxed plan. This
procedure manages a list of fluents, openGoals, initially set to G. The process iter-
atively extracts a fluent from openGoals and supports it through the introduction
of an action in the relaxed plan. The preconditions of such an action are then
included in the openGoals list. For each variable v ∈ V, the procedure manages a
list of values, V aluesv, which is initialized to the value of v in the frontier state
FS(Π). For each action added to the relaxed plan that has an effect (v = d′), d′

will be stored in V aluesv. An iteration of the hDTG evaluation process executes
the following stages:

– Open goal selection: From the openGoals set, the procedure extracts the
fluent 〈v, dg〉 ∈ openG that requires the largest number of value transitions to
be supported.

– DTG path computation: For every value d0 in V aluesv, this stage calculates
the shortest sequence of value transitions in v’s DTG from d0 to dg. Each path
is computed by applying Dijkstra’s algorithm between the nodes d0 and dg in
the DTG associated to variable v. The path with the minimum length is stored
as minPath = ((d0, d1), (d1, d2), . . . , (dg−1, dg)).

– Relaxed plan construction: For each value transition (di, di+1) ∈ minPath,
the minimum-cost action αmin that produces such a transition is introduced in
the relaxed plan; that is, 〈v, di〉 ∈ PRE(αmin) and (v = di+1) ∈ EFF (αmin).
The cost of an action is computed as the sum of the minimum number of
value transitions required to support its preconditions. The unsupported pre-
conditions of αmin are stored in openGoals, so they will be supported in the
subsequent iterations. For each effect (v′ = d′) ∈ EFF (αmin), the value d′

is stored in V aluesv′ , so d′ can be used in the following iterations to support
other openGoals.

The iterative evaluation procedure carries on until all the open goals have been
supported, that is, openGoals = ∅, and hDTG returns the number of actions in
the relaxed plan.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FMAP: Distributed Cooperative Multi-Agent Planning 19

4.4 Limitations of FMAP

In this section, we present some limitations of FMAP that are worth discussing.
FMAP builds upon the POP paradigm, so it can handle plans with parallel actions
and only enforces an ordering when strictly necessary. FMAP, however, does not
yet explicitly manage time constraints nor durative actions. A POP-based planner
can easily be extended to incorporate time because the application of the least-
commitment principle provides a high degree of execution flexibility. Additionally,
POP is independent of the assumption that actions must be instantaneous or
have the same duration and allows actions of arbitrary duration and different
types of temporal constraints to be defined as long as the conditions under which
actions interfere are well defined [34]. In short, POP represents a natural and very
appropriate way to include and handle time in a planning framework.

FLEX involves the construction of a POP tree for each potentially supportable
action (see Fig. 5). This procedure is more costly than the operations required by
a standard planner to refine a plan. However, the search trees are independent
of each other, which makes it possible to implement FLEX by using multiple
execution threads. Parallelization improves the performance of FLEX and the
ability of FMAP to scale up. Section 5 provides more insight into the FLEX
implementation.

Currently, FMAP is limited to cooperative goals, which means that all the
goals are defined as global objectives to all the participating agents (see section
3). Nevertheless, as a future work, we are considering an extension of FMAP to
support self-interested agents with local goals.

FMAP is a general procedure aimed at solving any kind of MAP task. In partic-
ular, solving tightly-coupled tasks requires a great amount of coordination. Multi-
agent coordination in distributed systems where agents must cooperate is always
a major issue. This dependency on coordination makes FMAP a communication-
reliant approach. Agents not only have to communicate the refinement plans that
they build at each iteration, but they also have to communicate during the heuris-
tic evaluation of the refinement plans in order to maintain privacy (see subsection
4.3). The usage of a coordinator agent effectively reduces the need for communi-
cation. The experimental results will show that FMAP can effectively tackle large
problem instances (see section 5). Nevertheless, reducing communication overhead
while keeping the ability to solve any kind of task remains an ongoing research
topic that we plan to consider for future developments.

Privacy management is another issue that potentially worsens the performance
of FMAP. In section 3.1, we defined a mechanism to detect and address threats
in partial plans, even when agents do not have a complete view of such plans.
Privacy does not add extra complexity to FLEX since agents manage the undefined
value ⊥ as any other value in the domain of a variable. It does, however, make
the refinement-plan communication stage more complex because, when an agent
i sends viewj(Π) to an agent j, this implies that i must previously adapt the
information of Π according to the privacy rules defined w.r.t. to j.

Privacy also affects the heuristic evaluation of the plans in terms of quality.
Since a refinement plan is only evaluated by the agent that generates it and this
evaluation is influenced by the agent’s view of the plan, the result may not be as
accurate as if the agent had had a complete view of the plan. Empirical results,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 Alejandro Torreño et al.

however, will show that, even with these limitations, our heuristic function provides
good performance in a wide variety of planning domains (see section 5).

5 Experimental results

In order to assess the performance of FMAP, we ran experimental tests with some
of the benchmark problems from the International Planning Competitions2 (IPC).
More precisely, we adapted the STRIPS problem suites of 10 different domains
from the latest IPC editions to a MAP context. The tests compare FMAP with
two different state-of-the-art MAP systems: MAPR [2] and MAP-POP [37]. We
excluded Planning First [25] from the comparison because it is outperformed by
MAP-POP [37].

This section is organized as follows: first, we provide some information on the
FMAP implementation and experimental setup. Then, we present the features
of the tested domains and we analyze the MAP adaptation performed for each
domain. Next, we show a comparative analysis between FMAP and the aforemen-
tioned planners, MAPR [2] and MAP-POP [37]. Then, we perform a scalability
analysis of FMAP and MAPR. Finally, we summarize and discuss the results ob-
tained by FMAP and how they compare to the other two planners.

5.1 FMAP implementation and experimental setup

Most multi-agent applications nowadays make use of middleware multi-agent plat-
forms that provide them with the communication services required by the agents
[27]. The entire code of FMAP is implemented in Java and builds upon the Ma-
gentix2 platform3 [35]. Magentix2 provides a set of libraries to define the agents’
behavior, along with the communication resources required by the agents. Magen-
tix2 agents communicate by means of the FIPA Agent Communication Language
[26]. Messaging is carried out through the Apache QPid broker4, which is a critical
component for FMAP agents.

FMAP is optimized to take full advantage of the CPU execution threads. The
FLEX procedure, which generates refinement plans over a given base plan, develops
a POP search tree for each potentially supportable action of the agent’s domain.
As the POP trees are completely independent from each other, the processes for
building the trees run in parallel for each agent.

Agents synchronize their activities at the end of the refinement plan generation
stage. Consequently, FMAP assigns the same number of execution threads to each
agent so that they all spend a similar amount of time to complete the FLEX
procedure (note that if we allocate extra threads to a subset of the agents, they
would still have to wait for the slowest agent to synchronize). FLEX builds as many
POP search trees in parallel as execution threads agents have been allocated. The
hDTG heuristic is implemented in a similar way. An agent can simultaneously
evaluate as many plans as execution threads it has been allocated.

2 http://ipc.icaps-conference.org/
3 http://www.gti-ia.upv.es/sma/tools/magentix2
4 http://qpid.apache.org/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://ipc.icaps-conference.org/
http://www.gti-ia.upv.es/sma/tools/magentix2
http://qpid.apache.org/

FMAP: Distributed Cooperative Multi-Agent Planning 21

Domain Typology IPC Agents Cooperative goals
Applicability

MAPR
FMAP

MAP-POP

Blocksworld Loosely-coupled ’98 robot No 3 3
Driverlog Loosely-coupled ’02 driver No 3 3
Rovers Loosely-coupled ’06 rover No 3 3
Satellite Loosely-coupled ’04 satellite No 3 3
Zenotravel Loosely-coupled ’02 aircraft No 3 3

Depots Tightly-coupled ’02 depot/truck Yes 7 3
Elevators Tightly-coupled ’11 fast-elevator/slow-elevator Yes 7 3
Logistics Tightly-coupled ’00 airplane/truck Yes 7 3
Openstacks Tightly-coupled ’11 manager/manufacturer Yes 7 3
Woodworking Tightly-coupled ’11 machine Yes 7 3

Table 1 Features of the MAP domains

All the experimental tests were performed on a single machine with a quad-
core Intel Core i7 processor and 8 GB RAM (1.5 GB RAM available for the Java
VM). The CPU used in the experimentation has eight available execution threads,
which are distributed as follows: in tasks that involve two agents, FMAP allocates
four execution threads per agent; in tasks with three or four agents, each agent
has two available execution threads; finally, in tasks involving five or more agents,
each agent has a single execution thread at its disposal. For instance, the three
agents in Example 1 would get two different execution threads in this particular
machine. Hence, in the FLEX example depicted in Fig. 5, agent ta1 would be able
to study two candidate actions simultaneously, thus reducing the execution time
of the overall procedure.

5.2 Planning domain taxonomy

The benchmark used for the experiments includes 10 different domains of the IPCs
that are suitable for a multi-agent adaptation. The IPC benchmarks come from
(potential) real-world applications of planning, and they have become the de facto
mechanism for assessing the performance of single-agent planning systems. The
elevators domain, for instance, is inspired by a real problem of Schindler Lifts
Ltd. [19]; the satellite domain is motivated by a NASA space application [24]; the
rovers domain deals with the decision of daily planning activities of Mars rovers [6];
and the openstacks domain is based on the minimum maximum simultaneous open
stacks combinatorial optimization problem. Hence, all the domains from the IPCs
resemble practical scenarios and they are modeled to keep, as much as possible,
both their structure and complexity. In MAP, there is not a standardized collection
of planning domains available. Instead, MAP approaches adapt some well-known
IPC domains to a multi-agent context, namely the satellite, rovers, and logistics
domains [2,25,37].

Converting planning domains into a multi-agent version is not always possible
due to the domain characteristics. While some IPC domains have a straightforward
multi-agent decomposition, others are inherently single-agent. We developed a

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22 Alejandro Torreño et al.

domain-dependent tool to automatically translate the original STRIPS tasks into
our PDDL-based MAP language.

The columns in Table 1 describe the main features of the 10 MAP domains
that are included in the benchmark. Typology indicates whether the MAP tasks of
the domain are loosely-coupled or tightly-coupled. IPC shows the last edition of
the IPC in which the domain was included. Agents indicates the types of object
used to define the agents. Cooperative goals indicates the presence or absence of
these goals in the tasks of each domain. Finally, Applicability shows the MAP
systems that are capable of coping with each domain.

In order to come up with a well-balanced benchmark, we put the emphasis
on the presence (or absence) of specialized agents and cooperative goals. Besides
the adaptation to a multi-agent context, the 10 selected domains are a good rep-
resentative sample of loosely-coupled domains with non-specialized agents and
tightly-coupled domains with cooperative goals.

Privacy in each domain is defined according to the nature of the problem and
the type of agents involved, while maintaining a correlation and identification with
the objects in a real-world problem.

5.2.1 Loosely-coupled domains

The five loosely-coupled domains presented in Table 1 are: Blocksworld, Driverlog,
Rovers, Satellite, and Zenotravel. The prime characteristic of these domains is that
agents have the same planning capabilities (operators) such that each task goal can
be individually solved by a single agent. That is, tasks can be addressed without
cooperation among agents. Next, we provide some insight into the features of these
domains and the MAP adaptations.

Satellite [24]. This domain offers a straightforward multi-agent decomposition
[25,37]. The MAP domain features one agent per satellite. The resulting MAP
tasks are almost decoupled as each satellite can attain a subset of the task goals
(even all the goals in some cases) without interacting with any other agent. The
number of agents in the tasks of this domain vary from 1 to 12. The location, orien-
tation, and instruments of a satellite are private to the agent, only the information
on the images taken by the satellites is defined as public.

Rovers [24]. Like the Satellite domain, Rovers also offers a straightforward
decomposition [25,37]. The MAP domain features one agent per rover. Rovers
collect samples of soil and rock and hardly interact with each other except when
a soil or rock sample is collected by an agent, and so it is no longer available to
the rest of the agents. The number of agents ranges from 1 to 8 rovers per task.
As in the Satellite domain, only the information related to the collected samples
is defined as public.

Blocksworld. The MAP version of this domain introduces a set of robot agents
(four agents per task), each having an arm to arrange blocks. Unlike the original
domain, the MAP version of Blocksworld allows handling more than one block at
a time. All the information in this domain is considered to be public.

Driverlog [24]. In this MAP domain, the agents are the drivers of the problem,
ranging between 2 and 8 agents per task. Driver agents are in charge of driving the
available trucks and delivering the packages to the different destinations. All the
information in the domain (status of drivers, trucks, and packages) is publicized
by the driver agents.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FMAP: Distributed Cooperative Multi-Agent Planning 23

Zenotravel [24]. This domain defines one agent per aircraft. The simplest tasks
include one agent and the most complex ones up to five agents. Aircraft can directly
transport passengers to any city in the task. As in the Blocksworld and Driverlog
domains, all the information concerning the situation of the passengers and the
current location of each aircraft is publicly available to all the participating agents.

5.2.2 Tightly-coupled domains

We also analyzed five additional domains that feature specialized agents with dif-
ferent planning capabilities: Depots, Elevators, Logistics, Openstacks and Wood-
working. The features of these domains give rise to complex, tightly-coupled tasks
that require interactions or commitments [13] among agents in order to be solved.

Depots [24]. This domain includes two different types of specialized agents,
depots and trucks, that must cooperate in order to solve most of the goals of the
tasks. This domain, which is the most complex one in our MAP benchmark, leads
to tightly-coupled MAP tasks with many dependences among agents. Depots tasks
contain a large number of participating agents, ranging from 5 to 12 agents. Only
the location of packages and trucks is defined as public information.

Elevators. Each agent in this domain can be a slow-elevator or a fast-elevator.
Operators in the STRIPS domain are basically the same for both types of elevators
since the differences between them only affect the action costs. Elevator agents,
however, are still specialized because the floors they can access are limited. This
leads to tasks that require cooperation to fulfill some of the goals. For instance,
an elevator may not be able to take a passenger to a certain floor, so it will stop
at an intermediate floor so that the passenger can board another elevator that
goes to that floor. Tasks include from 3 to 5 agents. Agents share the information
regarding the location of the different passengers.

Logistics. This domain presents two different types of specialized agents: air-
planes and trucks. The delivery of some of the packages involves the cooperation
of several truck and airplane agents (similarly to the example task introduced in
this article). Tasks feature from 3 to 10 different agents. Information regarding the
position of the packages is defined as public.

Openstacks [11]. This MAP domain includes two specialized agents in all of
the tasks; the manager is in charge of handling the orders, and the manufacturer
controls the different stacks and manufactures the products. Both agents depend
on each other to perform their activities, thus resulting in tightly-coupled MAP
tasks with inherently cooperative goals. Most of the information regarding the
different orders and products is public since both agents need it to interact with
each other.

Woodworking. This domain features four different types of specialized agents
(a planer, a saw, a grinder and a varnisher) that represent the machines in a pro-
duction chain. In most cases, the output of one machine constitutes the input of
the following one, so Woodworking agents have to cooperate to fulfill the different
goals. All the tasks include four agents (a machine of each type). All the informa-
tion on the status of the different wood pieces is publicized since agents require
this information in order to operate.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24 Alejandro Torreño et al.

Domain Tasks Common
FMAP MAPR

Solved Actions Makespan Time Solved Actions Makespan Time

Blocksworld 34 19 19 17,79 13,68 86,17 34 1,27x 1,20x 0,04x
Driverlog 20 15 15 24,64 13,93 42,02 18 1,19x 1,53x 0,06x
Rovers 20 19 19 32,63 14,95 53,82 20 0,97x 0,85x 0,05x
Satellite 20 15 16 27,27 16,47 177,65 18 1,14x 1,03x 0,03x
Zenotravel 20 18 18 25,50 13,94 180,62 20 1,24x 1,32x 0,02x

Table 2 Comparison between FMAP and MAPR

5.3 FMAP vs. MAPR comparison

This subsection compares the experimental results of FMAP and MAPR [2].
MAPR is implemented in Lisp and uses LAMA [29] as the underlying planning
system, without using a middleware platform for multi-agent systems. Each ex-
periment is limited to 30 minutes.

Table 2 shows the comparative results for FMAP and MAPR. The Solved
columns refer to the number of tasks solved by each approach. The average number
of actions, makespan (plan duration), and search time consider only the tasks
solved by both FMAP and MAPR (the Common column shows the number of
tasks solved by both planners). Actions, makespan, and time values in MAPR are
relative to the results obtained with FMAP. The values nx in Table 3 indicate ”n
times as much as the FMAP result”. Therefore, an Actions or Makespan value
that is higher than 1x is a better result for FMAP and a value lower than 1x is a
worse result for FMAP. However, a Time value higher than 1x indicates a better
result for FMAP.

Of the most recent MAP systems, MAPR is one that offers excellent perfor-
mance in comparison to other state-of-the-art MAP approaches [2]. However, as
reflected in Table 1, MAPR is only compatible with the loosely-coupled domains
in the benchmark. This limitation is due to the planning approach of MAPR.
Specifically, MAPR applies a goal allocation procedure, decomposing the MAP
task into subtasks and giving each agent a subset of the task goals to solve. Each
agent subtask is solved with the single-agent planner LAMA [29] such that the
resulting subplans are progressively combined into a global solution. This makes
MAPR an incomplete planning approach that is limited to loosely-coupled tasks
without cooperative goals. That is, MAPR is built under the assumption that each
goal must be addressed by at least one of the agents in isolation [2].

Whereas the communication overhead is relatively high in FMAP (to a large
extent, this is due to the use of the Magentix MAS platform), agents in MAPR
do not need to communicate during the plan construction because each agent
addresses its allocated subgoals by itself. This setup has a rather positive impact
on the execution times and the number of problems solved (coverage). As expected,
Table 2 shows that execution times in MAPR are much lower than FMAP. With
respect to coverage, MAPR solves 110 out of 114 loosely-coupled tasks (roughly
96% of the tasks), while FMAP solves 87 of such tasks (76%).

However, in most domains, FMAP comes up with better quality plans than
MAPR, taking into account the number of actions as well as the makespan. MAPR
is limited by the order in which agents solve their subtasks. The first agent that
computes a subplan cannot take advantage of the potential synergies that may

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FMAP: Distributed Cooperative Multi-Agent Planning 25

Plane3
Plane1

board person3
plane3 city2

fly plane3 city0
city2

fly plane3 city2
city1

board person1
plane3 city1

debark person3
plane3 city2

fly plane3 city1
city0

debark person1
plane3 city0

zoom
plane1 city0

city3
fly plane1
city3 city4

board
person6

plane1 city4
fly plane1
city4 city2

debark
person6

plane1 city2
fly plane1
city2 city3

fly plane3 city0
city2

fly plane1
city0 city2

board person3
plane3 city2

fly plane1
city2 city4

fly plane3 city2
city4

fly plane1
city4 city3

board person6
plane3 city4

fly plane3 city4
city2

debark person6
plane3 city2

refuel plane3
city2

fly plane3 city2
city1

debark person3
plane3 city1

refuel plane3
city2

board person1
plane3 city1

fly plane3 city1
city0

debark person1
plane3 city0

9876543210
FM

AP
M

AP
R

Fig. 8 Zenotravel task 8 solution plan as obtained by FMAP (upper plan) and MAPR (lower
plan)

arise from other agents’ actions; the second agent has only the information of the
first agent’s subplan, and so on. Additionally, the allocation of goals to each agent
may lead to poorly balanced plans. Although FMAP is a more time-consuming
approach, it avoids these limitations because agents work together to build the
plan action by action. Thus, FMAP provides agents with a global view of the plan
at each point of the construction process, while agents in MAPR keep a local view
of the plan at hand.

The Driverlog domain, while being loosely-coupled, offers many possible syn-
ergies between agents. For instance, a driver agent can use a truck to travel to
its destination and load a package on its way, while another agent may take over
the truck and complete the delivery. If the first agent acted in isolation, it would
deliver the package and then go back to its destination, which would result in a
worse plan. Robot agents in the Blocksworld domain can also cooperate to improve
the quality of the plans: for instance, a robot can pick up a block so that another
robot can retrieve the block below. Goal balance is also a key aspect in Zenotravel
since aircraft agents have limited autonomy. If an aircraft solves too many goals
it may be forced to refuel thereby worsening the plan quality.

Fig. 8 illustrates the MAPR limitations by showing the solution plans obtained
by both approaches for task 8 of the Zenotravel domain. The goals of this task
involve transporting three different people and flying plane1 to city3. The first
three goals are achievable by all the plane agents, but the last goal can only be
completed by agent plane1.

MAPR starts with agent plane3, which solves all of the goals that it can.
Then, plane1 receives the subplan and completes it by solving the remaining goal.
The resulting joint plan is far from the optimal solution. Agent plane3 requires 10
time units to solve its subplan because it transports all of the passengers. The high
number of fly actions forces the agent to introduce additional actions to refuel
its tank. On the other hand, agent plane1 flies directly to its destination without
transporting any passengers.

In contrast, agents in FMAP progressively build the solution plan together
without using an a-priori goal allocation, which allows them to obtain much better

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

26 Alejandro Torreño et al.

Domain Tasks Common
FMAP MAP-POP

Solved Actions Makespan Time Solved Actions Makespan Time

Blocksworld 34 6 19 9,20 7,80 7,57 6 0,91x 0,74x 21,49x
Driverlog 20 2 15 9,50 7,00 0,66 2 1,11x 1,00x 949,39x
Rovers 20 6 19 32,63 14,95 53,82 6 1,01x 1,04x 29,27x
Satellite 20 7 16 17,14 12,57 16,00 7 1,03x 0,89x 0,37x
Zenotravel 20 3 18 7,67 4,33 1,25 3 1,00x 1,00x 87,54x

Depots 20 1 6 14,00 9,00 10,56 1 0,86x 1,00x 2,77x
Elevators 30 22 30 21,32 11,36 14,60 22 1,04x 1,37x 14,23x
Logistics 20 7 10 32,29 12,71 18,26 7 0,97x 0,91x 5,89x
Openstacks 30 0 23 53,13 41,78 268,62 0 - - -
Woodworking 30 0 22 16,50 4,45 100,88 0 - - -

Table 3 Comparison between FMAP and MAP-POP

quality plans, taking advantage of synergies between actions of different agents and
effectively balancing the workload among agents. Fig. 8 shows that, in FMAP,
agent plane1 transports person6 to its destination, thus simplifying the activities
of plane3, which avoids refueling. The resulting plan is a much shorter and better
balanced solution than the MAPR plan (only 6 time steps versus 10 time steps in
MAPR) and it requires fewer actions (13 actions versus 16 in MAPR).

Table 2 shows that FMAP noticeably improves plan quality except in the most
decoupled domains, namely Rovers and Satellite (in the latter, FMAP results are
slightly better than MAPR results). In these domains, synergies among agents are
minimal or even nonexistent. Consequently, MAPR is not penalized by its search
scheme, obtaining plans of similar quality to FMAP.

5.4 FMAP vs. MAP-POP comparison

We compared FMAP with another recent MAP system, MAP-POP [37]. Like
FMAP, MAP-POP agents explore the space of multi-agent plans jointly. This
set-up allows MAP-POP to overcome some of the limitations of MAPR since
it is able to tackle tightly-coupled tasks with cooperative goals. However, MAP-
POP has two major disadvantages. Much like MAPR, MAP-POP is an incomplete
approach because it implicitly bounds the search tree by limiting its branching
factor. This may prevent agents from generating potential solution plans [37].
Additionally, MAP-POP is based on backward-chaining POP technologies, thus
relying on heuristics that offer a rather poor performance in most MAP domains.

Table 3 shows the comparison between FMAP and MAP-POP. As in Table 2,
the average results consider only the tasks solved by both approaches (the FMAP
results for Openstacks and Woodworking domains include all the tasks solved by
this approach because MAP-POP does not solve any of the tasks). The figures in
FMAP show the results obtained using FMAP for the common problems; MAP-
POP values are relative to the results of FMAP.

In general, FMAP results are better than MAP-POP results in almost every
aspect. In terms of coverage, FMAP clearly outperforms MAP-POP, solving 178
out of 244 tasks (roughly 73% of the tasks in the benchmark), while MAP-POP
solves only 54 tasks (22%). Overall, in MAP-POP there are problems with some of
the most complex tightly-coupled domains (specifically, Depots, Openstacks, and

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FMAP: Distributed Cooperative Multi-Agent Planning 27

t2

l4

l3

l6

l5

p4

p3
t1

l2

l1

p2

p1
t3 ... t15

Fig. 9 Logistics-like scalability task

Woodworking), but it performs well in the Elevators domain. With respect to the
loosely-coupled domains, MAP-POP attains only the simplest tasks, solving from
three to seven tasks per domain.

It is difficult to compare the results related to plan quality due to the low
coverage of MAP-POP. Focusing on the domains in which MAP-POP solves a
significant number of tasks, we observe that MAP-POP obtains slightly better
solution plans than FMAP in Blocksworld and Satellite. FMAP, however, outper-
forms MAP-POP in Elevators, the domain in which both approaches solve the
largest number of tasks.

Finally, the results show that FMAP is much faster than MAP-POP, from 5
times faster in Logistics to even 1000 times faster in the Driverlog domain. MAP-
POP only obtains faster times than FMAP in the seven Satellite tasks.

5.5 Scalability analysis

We prepared two additional experiments to analyze the ability of FMAP and
MAPR to scale up. The first test analyzes how both planners scale up when the
number of agents of a task is increased, keeping the rest of the parameters un-
changed. More specifically, we designed a loosely-coupled logistics-like transporta-
tion task, which is shown in Fig. 9. The basic task includes two different trucks, t1
and t2. Truck t1 moves between locations l1 and l2, and truck t2 moves between
locations l3 and l4; there is no connection between t1’s and t2’s locations. The
trucks have to transport a total of four packages, p1 . . . p4, as shown in Fig 9. In
order to ensure that MAPR is able to solve the task, both t1 and t2 can solve
two of the four problem goals by themselves: t1 will deliver p1 and p2, while t2
will transport p3 and p4. Therefore, cooperation is not required in this task, as
opposed to the IPC logistics domain.

We defined and ran 14 different tests for this basic task. In each test, the
number of agents in the task is increased by one, ranging from 2 to 15 truck
agents. The problems are modeled so that the extra truck agents, t3 . . . t15, are
placed in a separate location l5, from which there is no access to the locations that
t1 and t2 can move through. Therefore, the additional agents included in each task
are unable to solve any of the task goals. However, they do propose refinement
plans in FMAP (more precisely, they introduce an action to move to l6, as shown
in Fig. 9), increasing the complexity of the task in terms of both the number of
messages exchanged and the branching factor of the FMAP search tree.

The plot in Fig. 10 separately depicts the time required by each process in
FMAP. We show the time required by FLEX to generate the refinement plans, the
time consumed by the hDTG evaluation procedure, and the time spent by agents
to communicate and synchronize, which includes the base plan selection and the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28 Alejandro Torreño et al.

Fig. 10 Scalability results for the logistics-like task

exchange of plans among agents. Every task was solved by FMAP in 14 iterations,
resulting in a 12-action solution plan (truck t1 and truck t2 each introduced six
actions).

As Fig. 10 shows, FLEX has a noticeably low impact on the overall execution
time. This proves that, even when dealing with privacy and building a tree for
each potentially supportable action, FLEX offers good performance and does not
limit FMAP’s scalability.

Even though each task only required 14 iterations to be solved, the growing
number of agents increases the size of the search tree. In the two-agent task,
the agents generate an average of 3.3 refinement plans per iteration, while in
the 15-agent task, the average branching factor goes up to 11.8 refinement plans.
Nevertheless, this does not affect the time consumed by hDTG, which remains
relatively constant in all tasks. Since agents evaluate plans simultaneously, the
evaluation time hardly grows when the number of participants increases.

Fig. 10 confirms that communications among agents are the major bottleneck
of FMAP. As the number of agents increases, so does the branching factor. There-
fore, each agent has to communicate more refinement plans to a higher number of
participants. Synchronizing a larger number of agents is also more complex, which
increases the number of exchanged messages. All these communications are man-
aged by a centralized component, the QPid broker, which is negatively affected by
the communication overhead of the system.

The behaviour of MAPR remains constant in all of the tests, taking about
0.2 seconds to resolve each task. Since MAPR does not require communications,
the growing number of agents does not affect its performance. Note that if we
consider only the time spent by hDTG (around 0.8 seconds per test) and FLEX
(approximately 0.02 seconds), FMAP execution times are quite similar to MAPR.

The resolution of this loosely-coupled task does not require coordination in
order to be able to compare with MAPR. However, the coordination mechanism

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FMAP: Distributed Cooperative Multi-Agent Planning 29

Fig. 11 Scalability results for the satellite task

and message exchange of FMAP is equally applied to all planning tasks. Hence,
the ability to solve tightly-coupled tasks requires great coordination, which is not
the case for MAPR.

We performed a second experiment based on the satellite domain to assess the
scalability of the two planners when both the number of agents and the number
of goals increase, thus increasing the complexity of the task. We also defined 14
MAP tasks, ranging from 2 to 15 satellite agents. The simplest task comprises
two satellite agents, s1 and s2, which must take an image of two different planets.
The satellites are configured so that each one of them can capture an image of a
single planet. The instruments they have on board are turned on and calibrated,
so the agent can directly reorient and acquire the image. Unlike the first test, each
satellite task adds one more goal over the previous task, as well as an extra agent.
Then, the additional agents, s3 . . . s15, must each solve a goal by themselves. This
increases the branching factor as well as the number of iterations for solving a
task.

Fig. 11 shows the results for this scenario. The solution plans obtained by
FMAP range from 4 actions (in the two-agent task) to 30 actions (in the 15-agent
task). FMAP required 31 iterations to solve the 15-agent task and only 4 iterations
for the two-agent task. The growing complexity also affects the average branching
factor, which ranges from 25.67 to 255.06 plans.

As Fig 11 shows, the complexity of the tasks does not affect FLEX, which
takes less than 0.2 seconds in each task. In general, the performance of FLEX only
decreases when handling very large base plans in domains with many applicable
actions. We can therefore conclude that FLEX is an efficient and highly scalable
component of FMAP.

With regard to the hDTG heuristic, evaluation times range from 0.35 seconds
for the simplest task to 26.64 seconds for the most complex one. Although the
evaluation time is slightly higher than the generation time, we can affirm that this

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

30 Alejandro Torreño et al.

is a good performance considering that: 1) the branching factor and the number
of iterations increase from task to task, which results in a much larger number of
plans to evaluate; and 2) unlike FLEX, the evaluation function hDTG also involves
some communications among agents, which obviously increase when the number
of agents goes up. All in all, and considering just the times of hDTG and FLEX,
FMAP is only about 9 times slower in the 15-agent task than MAPR, which
completes this task in 3 seconds.

In summary, both tests confirm that communication overhead is the main
issue of FMAP with regard to scalability. Communicating plans and synchronizing
agents are rather costly tasks, especially when dealing with complex tasks that
combine a large branching factor and a high number of participating agents.

5.6 Discussion of the results

The experimental results support our initial claim: FMAP is a domain-independent
approach that offers a good trade-off between coverage and execution times being
and is able to solve any typology of MAP task.

We compared FMAP against two different state-of-the-art MAP approaches.
On the one hand, MAPR is designed as a fast MAP solver. The results show that
MAPR provides excellent execution times, but its performance comes at a cost: it
completely rules out tightly-coupled domains that require cooperation. Many real-
world domains, such as logistics or production supply-chains, require cooperation
between independent entities. Hence, non-cooperative planners for solving disjoint
subtasks in which agents can effectively avoid interactions are not suitable for
many real-world MAP problems. Overall, in the experiments, MAPR solves 45%
of the whole benchmark while FMAP solves 73% of the tasks.

On the other hand, MAP-POP is a general approach that is capable of solv-
ing any type of planning task like FMAP. The approach followed by MAP-POP
is clearly influenced by the use of backward-chaining POP technologies and, in
particular, by the application of low-informative heuristics. This planner offers the
worst results in terms of coverage and execution times, thus indicating that FMAP
represents a step ahead in multi-agent cooperative planning.

With regard to the scalability tests, it has been proved that the FMAP ability
to scale up is only affected by communications. While MAPR performance is
unaltered when the number of agents increases, FMAP performance is affected by
its heavy dependency on agent communications. These results lead us to one of
our future lines of work, studying techniques to reduce overhead communication
without losing the ability to tackle any kind of MAP task.

6 Conclusions

FMAP is a general-purpose MAP model that supports inherently distributed do-
mains and defines an advanced notion of privacy. Agents in FMAP use an internal
POP procedure to calculate all possible ways to refine a plan, which guarantees
FMAP completeness. Agents exchange plans and their evaluations by means of a
communication mechanism that is governed by a coordinator agent. FMAP ex-
ploits the structure of distributed state-independent domain transition graphs for

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FMAP: Distributed Cooperative Multi-Agent Planning 31

the heuristic evaluation of the plans, thus avoiding having to recalculate estimates
in each node of the POP search tree.

Privacy is maintained throughout the entire search process. Agents only com-
municate the relevant information they share with the rest of the agents. This
advanced notion of privacy is very useful for modeling real-world problems. The
experiments show that dealing with privacy has a relatively low impact on the
overall performance of FMAP.

The exhaustive testing on IPC benchmarks shows that FMAP outperforms
other state-of-the-art MAP frameworks because it is capable of solving tightly-
coupled domains with specialized agents and cooperative goals as well as loosely-
coupled problems. The performance of FMAP is only affected by the extensive
communications among agents. To the best of our knowledge, FMAP is currently
likely to be the most competitive domain-independent cooperative MAP system.

References

1. Benton, J., Coles, A., Coles, A.: Temporal planning with preferences and time-dependent
continuous costs. In: Proceedings of the 22nd International Conference on Automated
Planning and Scheduling (ICAPS), pp. 2–10 (2012)

2. Borrajo, D.: Multi-agent planning by plan reuse. In: Proceedings of the 12th International
Conference on Autonomous Agents and Multi-agent Systems (AAMAS), pp. 1141–1142
(2013)

3. Boutilier, C., Brafman, R.: Partial-order planning with concurrent interacting actions.
Journal of Artificial Intelligence Research 14(105), 136 (2001)

4. Brafman, R., Domshlak, C.: From one to many: Planning for loosely coupled multi-agent
systems. In: Proceedings of the 18th International Conference on Automated Planning
and Scheduling (ICAPS), pp. 28–35 (2008)

5. Brenner, M., Nebel, B.: Continual planning and acting in dynamic multiagent environ-
ments. Journal of Autonomous Agents and Multiagent Systems 19(3), 297–331 (2009)

6. Bresina, J., Dearden, R., Meuleau, N., Ramakrishnan, S., Smith, D., Washington, R.: Plan-
ning under continuous time and resource uncertainty: A challenge for AI. In: Proceedings
of the 18th Conference on Uncertainty in Artificial Intelligence, pp. 77–84 (2002)

7. Cox, J., Durfee, E.: Efficient and distributable methods for solving the multiagent plan
coordination problem. Multiagent and Grid Systems 5(4), 373–408 (2009)

8. Crosby, M., Rovatsos, M., Petrick, R.: Automated agent decomposition for classical plan-
ning. In: Proceedings of the 23rd International Conference on Automated Planning and
Scheduling (ICAPS), pp. 46–54 (2013)

9. Dimopoulos, Y., Hashmi, M.A., Moraitis, P.: µ-satplan: Multi-agent planning as satisfia-
bility. Knowledge-Based Systems 29, 54–62 (2012)

10. Fikes, R., Nilsson, N.: STRIPS: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence 2(3), 189–208 (1971)

11. Gerevini, A., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic planning in
the fifth International Planning Competition: PDDL3 and experimental evaluation of the
planners. Artificial Intelligence 173(5-6), 619–668 (2009)

12. Ghallab, M., Nau, D., Traverso, P.: Automated Planning. Theory and Practice. Morgan
Kaufmann (2004)

13. Günay, A., Yolum, P.: Constraint satisfaction as a tool for modeling and checking feasibility
of multiagent commitments. Applied Intelligence 39(3), 489–509 (2013)

14. Helmert, M.: A planning heuristic based on causal graph analysis. Proceedings of ICAPS
pp. 161–170 (2004)

15. Hoffmann, J., Nebel, B.: The FF planning system: Fast planning generation through
heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

16. Jannach, D., Zanker, M.: Modeling and solving distributed configuration problems: A CSP-
based approach. IEEE Transactions on Knowledge and Data Engineering 25(3), 603–618
(2013)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

32 Alejandro Torreño et al.

17. Jonsson, A., Rovatsos, M.: Scaling up multiagent planning: A best-response approach. In:
Proceedings of the 21st International Conference on Automated Planning and Scheduling
(ICAPS), pp. 114–121. AAAI (2011)

18. Kala, R., Warwick, K.: Dynamic distributed lanes: motion planning for multiple au-
tonomous vehicles. Applied Intelligence pp. 1–22 (2014)

19. Koehler, J., Ottiger, D.: An AI-based approach to destination control in elevators. AI
Magazine 23(3), 59–78 (2002)

20. Kovacs, D.L.: Complete BNF description of PDDL3.1. Tech. rep. (2011)
21. van der Krogt, R.: Quantifying privacy in multiagent planning. Multiagent and Grid

Systems 5(4), 451–469 (2009)
22. Kvarnström, J.: Planning for loosely coupled agents using partial order forward-chaining.

In: Proceedings of the 21st International Conference on Automated Planning and Schedul-
ing (ICAPS), pp. 138–145. AAAI (2011)

23. Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., Neiman, D.,
Podorozhny, R., Prasad, M., Raja, A., et al.: Evolution of the GPGP/TAEMS domain-
independent coordination framework. Autonomous agents and multi-agent systems 9(1-2),
87–143 (2004)

24. Long, D., Fox, M.: The 3rd International Planning Competition: results and analysis.
Journal of Artificial Intelligence Research 20, 1–59 (2003)

25. Nissim, R., Brafman, R., Domshlak, C.: A general, fully distributed multi-agent planning
algorithm. In: Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pp. 1323–1330 (2010)

26. O’Brien, P., Nicol, R.: Fipa - towards a standard for software agents. BT Technology
Journal 16(3), 51–59 (1998)

27. Öztürk, P., Rossland, K., Gundersen, O.: A multiagent framework for coordinated parallel
problem solving. Applied Intelligence 33(2), 132–143 (2010)

28. Pal, A., Tiwari, R., Shukla, A.: Communication constraints multi-agent territory explo-
ration task. Applied Intelligence 38(3), 357–383 (2013)

29. Richter, S., Westphal, M.: The LAMA planner: Guiding cost-based anytime planning with
landmarks. Journal of Artificial Intelligence Research 39(1), 127–177 (2010)

30. de la Rosa, T., Garćıa-Olaya, A., Borrajo, D.: A case-based approach to heuristic planning.
Applied Intelligence 39(1), 184–201 (2013)

31. Sapena, O., Onaindia, E.: Planning in highly dynamic environments: an anytime approach
for planning under time constraints. Applied Intelligence 29(1), 90–109 (2008)

32. Sapena, O., Onaindia, E., Garrido, A., Arangú, M.: A distributed CSP approach for col-
laborative planning systems. Engineering Applications of Artificial Intelligence 21(5),
698–709 (2008)

33. Serrano, E., Such, J., Bot́ıa, J., Garćıa-Fornes, A.: Strategies for avoiding preference pro-
filing in agent-based e-commerce environments. Applied Intelligence pp. 1–16 (2013)

34. Smith, D., Frank, J., Jónsson, A.: Bridging the gap between planning and scheduling.
Knowledge Engineering Review 15(1), 47–83 (2000)

35. Such, J., Garćıa-Fornes, A., Espinosa, A., Bellver, J.: Magentix2: A privacy-enhancing
agent platform. Engineering Applications of Artificial Intelligence pp. 96–109 (2012)

36. Tonino, H., Bos, A., de Weerdt, M., Witteveen, C.: Plan coordination by revision in
collective agent based systems. Artificial Intelligence 142(2), 121–145 (2002)

37. Torreño, A., Onaindia, E., Sapena, O.: An approach to multi-agent planning with in-
complete information. In: Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI 2012), vol. 242, pp. 762–767. IOS Press (2012)

38. Torreño, A., Onaindia, E., Sapena, O.: A flexible coupling approach to multi-agent plan-
ning under incomplete information. Knowledge and Information Systems 38(1), 141–178
(2014)

39. Van Der Krogt, R., De Weerdt, M.: Plan repair as an extension of planning. In: Proceedings
of the 15th International Conference on Automated Planning and Scheduling (ICAPS),
pp. 161–170 (2005)

40. de Weerdt, M., Clement, B.: Introduction to planning in multiagent systems. Multiagent
and Grid Systems 5(4), 345–355 (2009)

41. Yokoo, M., Durfee, E., Ishida, T., Kuwabara, K.: The distributed constraint satisfaction
problem: Formalization and algorithms. IEEE Transactions on Knowledge and Data En-
gineering 10(5), 673–685 (1998)

42. Zhang, J., Nguyen, X., Kowalczyk, R.: Graph-based multi-agent replanning algorithm.
In: Proceedings of the 6th Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 798–805 (2007)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

