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Abstract 

Water quality evaluation provides important information to estimate water 
system status and to test for compliance with standards. The present work 
analyzes changes concerning the quality of surface water using a data set from a 
monitoring station of a Mediterranean river basin. The data set has a dependency 
structure that renders it multivariate. Principal component analysis is applied to 
characterize associations present in the multivariate measurements. The principal 
component scores exhibit temporal correlation. A combined Shewhart-CUSUM 
control chart is applied to the residuals of the scores time series model to detect 
changes in the mean level of the data set during the study period. This method 
detects an outlying observation in the study period due to an extreme value in 
magnesium concentration. The multivariate assessment of trend is performed 
using non-parametric tests. The covariance inversion test supported rejection of 
the hypothesis of no trend in the variables defined with each combination of 
water quality parameters and month. There is heterogeneity between the trends in 
the different combinations and an overall trend is not representative. The partial 
Mann-Kendall test is employed to analyze the trends of each physicochemical 
variable in the study months. Conductivity trends in two months (May and June) 
are significant and upward. In the same months calcium trend is also significant 
but downward. Sodium concentrations exhibit a significant decreasing trend in 
April. Magnesium levels significantly decrease in March but have an upward 
trend in June. 
Keywords: water quality, multivariate observations, statistical analysis, 
principal component analysis, control chart, non-parametric trend test. 
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1 Introduction 

The quality of surface water is a significant concern issue worldwide. Surface 
waters are degraded by the impact of anthropogenic activities (e.g. agricultural, 
industrial and urban influences, increasing consumption of water resources), as 
well as natural processes (e.g. changes in precipitation input, soil erosion). This 
problem has led administrations to introduce plans and regulations to reduce 
water pollution. The Council Directive 2008/105/EC of 16 December 2008 
established environmental quality standards in the field of water policy and 
management. This directive has been introduced to protect and achieve 
sustainable development water resource systems in the European Union 
countries (Cruz et al. [3]). It establishes annual averages and maximum 
allowable concentrations (environmental quality standards) for priority 
substances and pollutants. The directive has implied that river basin management 
plans of most of Europe’s river basin were submitted to the European 
Commission in Brussels in 2010. 
     The implementation of these plans requires an open and continuous dialogue 
among policy makers, water managers and scientists. The scientific knowledge 
of water systems implies observation of their status. Consistent monitoring 
approaches are needed to indicate actual threats to ecological health. Monitoring 
provides early warning of water resource system changes which may be due to 
episodic events, environmental stressors or activities impact. These effects 
frequently modify the central tendency of observed characteristics by a step 
change, impulse, monotonic trends or non-stationary trends. The detection and 
assessment of changes allows determining whether the water resource is 
improving or deteriorating, and help decision-making to introduce corrective 
actions in order to improve the system. Data obtained during monitoring are 
multi-dimensional. Because multiple indicators are required to assess water 
system quality, the problem is statistically a multivariate problem. The 
multivariate measurements are not mutually exclusive and are often correlated. 
Therefore the detection of system changes from these data sets needs the 
application of multivariate statistical methods. Multivariate techniques, by 
utilizing the information in the correlation structures of a data set, can provide 
faster and more efficient anomaly detection for quality assurance and more 
understandable data analysis for decision-making. 
     In recent years many studies have applied the multivariate technique principal 
component analysis (PCA) to interpret water quality parameters. Helena et al. [5] 
investigated the evolution of the groundwater composition between two surveys. 
They applied PCA to process a set of quantitative analytical data from the 
alluvial aquifer of the Pisuerga River (Spain). Ouyang [12] employed PCA 
method to evaluate the effectiveness of the surface water quality monitoring 
network in a river where the evaluated variables were the monitoring stations. He 
identified monitoring stations that were important in assessing annual variations 
of river water quality. Mishra and Tripathi [10] used PCA to analyze a large and 
complex data set obtained during monitoring of the Ganges River in Varanasi, 
India. They extracted the parameters that were most important for assessing 
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variation in water quality. Ma et al. [9] proposed a model combined PCA and 
information entropy methods to obtain the weights of water quality indicators, 
and the proposed model was applied to assess the reused water quality of Jinshui 
River in Zengzhou City (China). 
     This paper presents the application of PCA combined with control charts to 
detect changes in a multivariate data set from a monitoring station in a river 
basin in Spain. Control charts are on-line schemes widely used to monitor 
processes. In this study the multivariate data show a strong correlation structure 
and multivariate methods that consider the variables jointly are required. 
Univariate control charts can be applied to each individual variable but this 
method is inefficient and can lead to erroneous conclusions. They may 
incorrectly identify out-of-control situations which are really in control when 
analyzed multivariately or may not detect real out-of-control assignable causes 
(Montgomery [11]). Schall and Chandra [14] developed a method of using PCA 
to monitor a process which has many characteristics affecting the quality. They 
applied control charts to PC scores to detect process changes. In this paper the 
data exhibit autocorrelation and the resulting PC scores are also autocorrelated. 
Autocorrelation may lead to more frequent false alarms or to slower detection of 
out-of-control situations and, therefore, to poor performance of control charts 
(Harris and Ross [4]). When autocorrelation is present one possible adjustment is 
to model the time dependency with an appropriate ARIMA model (Box et al. 
[2]) and to apply the control chart to the one-step ahead forecast residuals (e.g. 
Harris and Ross [4]). In this paper the monitoring control scheme is based on the 
residuals of the PC scores. 
     Several methods of testing for multivariate trend have been discussed in the 
water quality literature. In the present article the multivariate assessment of 
trends is performed using three non-parametric tests. The covariance inversion 
test is applied to analyze the hypothesis of any monthly trend in any of the 
observed characteristics (Loftis et al. [7]). This work also uses a non-parametric 
method for testing the homogeneity of trends under dependence of seasons 
(Smith et al. [15]). The partial Mann-Kendall test is also employed to study the 
trend in each variable per month after removing the effect of the other variables 
in the same month. 
     The plan of the remainder of the paper is as follows. Section 2 describes the 
sampling site, the data used and the statistical methods employed in the analysis. 
The empirical results and discussion are presented in Section 3. Section 4 
contains some concluding remarks. 

2 Material and methods 

2.1 Sampling site and data set 

The study data set was collected from the Ebro River basin in the sampling site 
of Tortosa (Spain). The Ebro River basin is located in the NE of the Iberian 
Peninsula, occupying a total surface of 85,362 Km2. It is the largest hydrographic 
basin in Spain, accounting for 17.3% of its total surface area. This river 
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discharges in a delta on the Mediterranean Sea at Tortosa, 180 km south of 
Barcelona. The Ebro is a typical Mediterranean river characterized by seasonal 
low flows and extreme flush effects, with important agricultural and industrial 
activity that has caused heavy contamination problems. Water quality concerns 
in the Ebro basin are salinization processes by natural sources as well as by the 
pollution produced by irrigation. The biogeochemical characteristics of the river 
water are highly influenced by anthropogenic activities.The present legislation 
requires that the water near urban areas be monitored to determine compliance of 
ecological standards of indicators parameters such as conductance and ions 
concentrations. The Confederación Hidrográfica del Ebro (CHE) is a 
government agency established in 1926 to manage the water resources in the 
Ebro River basin (http://www.chebro.es). CHE has implemented a water quality 
monitoring network. Monthly data are available on the web page of this agency. 
In this study the monitoring station located in Tortosa was selected for analysis. 
     The data set has 4 physicochemical parameters- Conductivity at 20ºC 
(μS/cm), Sodium, total (mg/L as Na), Magnesium, total (mg/L as Mg) and 
Calcium, total (mg/L as Ca) - taken on a monthly basis for 14 years (1987-2000). 
The research focuses on the detection of temporal changes of these water quality 
indicators. In table 1 the summarized basic statistics of the 4 parameters is 
presented. 

Table 1:  Summary basic statistics. Concentration units in mg/L for metal 
ions. Conductivity in μS/cm. 

Variable Mean Standard deviation Minimum Maximum 
Conductivity 946.13 229.95 412 1593 
Sodium  82.06 27.04 29.1 139 
Magnesium  23.59 6.55 9.7 43.8 
Calcium 106.49 16.38 72.1 148.3 

2.2 Statistical treatment of the data 

In this study the analysis of data was performed using the statistical software R 
(R Development Core Team [13]). Principal component analysis (PCA) was first 
applied to analyze the correlation structure of data and to obtain a set of 
independent parameters for change detection with control charts. PCA is a 
multivariate statistical technique employed to identify important components that 
explain most of the variances of a system. For each multivariate measurement (or 
observation), the PC scores are linear combinations of the standardized p 
variables. The principal components have two important advantages. The new 
variables are uncorrelated. A few (sometimes 1 or 2) PCs may capture most of 
the variability in the data so that we do not have to use all of the p principal 
components for control. In this work PCA involves the following steps: 
(1) calculate the correlation matrix of the original data (if the analysis is 
performed with this matrix the original variables all have equal weights). 
(2) Find the eigenvalues and the corresponding eigenvectors of the correlation 
matrix; the eigenvalues of the PCs are a measure of their associated variance, the 
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participation of the original variables in the PCs is given by the components of 
the eigenvectors (loadings). (3) Discard any components that only account for a 
small proportion of the variation in the data set. (4) Obtain the score matrix of 
the remaining PCs. The scores are computed as weighted linear combinations of 
the standardized original variables where the coefficients are the eigenvector. A 
detail formalization of PCA method can be found in Jackson [6]. 
     The detection of changes in the mean value of the water quality indicators can 
be performed by employing control charts to monitor the PC scores (Schall and 
Chandra [14]). The American Society for Testing and Materials (ASTM) [1] 
recommends using combined Shewhart-CUSUM charts to detect both sudden 
large and smaller gradual changes in water quality parameters. Lucas [8] 
presented a combined Shewhart-CUSUM quality control scheme which includes 
Shewhart control limits in the CUSUM control procedure. The procedure can 
signal an out-of-control situation at any stage. The scheme is found to be more 
sensitive than the CUSUM chart and the Shewhart scheme for small and 
moderate shifts in the process mean. Application of the Shewhart-CUSUM 
control chart involves selection of three parameters: h (the decision interval 
value or value against which the cumulative sum will be compared), k (reference 
value: a parameter related to the mean change that should be quickly detected), 
and L (the Shewhart control limit, which is the number of standard deviation 
units for an immediate release). Previous research (Lucas [8]) showed that k=1, 
h=5, and L=4.5 were most appropriate for ground water monitoring applications. 
ASTM [1] suggested the use of h=L=4.5, which results in a single limit with no 
compromise in leak detection capabilities. With these values the combined 
control chart quickly detects a mean change of two standard deviations. The 
early recommended values h=L=4.5 and k=1 are used in this work. 
     The Shewhart-CUSUM combined method assumes that the observations are 
independent. In this study the original water quality measurements are 
autocorrelated. The resulting PC scores also exhibit temporal dependence 
following an ARIMA seasonal multiplicative model: 

 ϕp(B)ΦP(B)   d  sD Zt = θq(B)ΘQ(B)at  (1) 

where Zt are the PC scores in month t, and at are the one-step ahead forecast 
errors or residuals. A detailed description of the ARIMA modelling approach can 
be found in Box et al. [2]. The assumption of uncorrelated data is critical to the 
performance of control charts, which are very inefficient when monitoring 
characteristics are dependent (Harris and Ross [4]; Montgomery [11]). 
Autocorrelation may lead to more frequent false alarms or to slower detection of 
out of control situations. In this work the control charts are used to monitor the 
residuals at of the PC scores. The residual-based control charts have been 
proposed in the literature (Harris and Ross [4]) as an appropriate method to deal 
with autocorrelation in monitoring measurements. The residuals at are due to 
random perturbations in the process and under control are independently and 
normally distributed with zero mean and variance a

2. 
     The Shewhart-CUSUM control chart is an acceptable method for detecting 
step and impulse mean-level changes of water quality parameters. Other possible 
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out of control situations are the presence of increasing concentrations with time 
or seasonal trends in data. The detection of these changes can be performed by 
using methods for the assessment of trends. Water quality data usually are 
multivariate. They are often correlated in time and/or highly skewed with 
extreme values. Some of the values may be missing. Some of the above-
mentioned problems are present in this study set. Because of these limitations, 
the use of the residual-based Shewhart-CUSUM control chart as the sole 
statistical method for trend detection is inappropriate. 
     Appropriate techniques have been developed in the applied literature that is 
based on non-parametric statistics to test multivariate trends (Smith et al. [15]). 
These methods are resistant to the problems mentioned above. In this study, 
trend analysis is performed using three non-parametric multivariate trend tests. 
The first method is the covariance inversion test (Loftis et al. [7]). This 
technique is implemented with a quadratic form as test statistic using the 
Kendall’s rank correlation between time and variable. The 4 water quality 
parameters and the 12 months are viewed as defining 48 variables and 48 trend 
statistics, to test the null hypothesis of no trend. The test statistics follows a chi-
square (2) distribution with 48 degrees of freedom under the null hypothesis. 
The second test is an extension of the covariance inversion test proposed by 
Smith et al. [15] and its objective is to assess homogeneities in trends. The 
method decomposes the covariance inversion test statistics into two terms. The 
first term asymptotically displays a 2 distribution with one degree of freedom 
under the null hypothesis of no overall trend. The second term (remainder) is 
considered to be that which persists in all 48 trends after removing an average 
trend. Under the null hypothesis of homogeneous trend, it asymptotically follows 
a 2 distribution with 47 degrees of freedom distribution. The insignificance of 
the remainder validates the use of the first term as a test statistic for analysing an 
overall trend. The third non-parametric method is the partial Man-Kendall test, 
which is a conditional test for trend in each characteristic after removing the 
effect of the other characteristics. We employ this method for each combination 
of variable and month to test the presence of significant trends. 

3 Results and discussion 

In PCA the first step is to diagonalize the data correlation matrix. Table 2 
displays this matrix for the 4 water quality parameters. The pairwise Pearson’s 
correlation coefficients show that there is a strong correlation structure in data. 
All the correlations are significantly different from zero (alpha=0.01). The 
 
 

Table 2:  Correlation matrix. 

Variable Conductivity Sodium Magnesium Calcium 
Conductivity 1 0.901 0.760 0.771 

Sodium 0.901 1 0.809 0.834 
Magnesium 0.760 0.809 1 0.730 

Calcium 0.771 0.834 0.730 1 
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number of PCs which can be computed is equal to the number of variables. The 
first PC accounts for about 84.5% of the total variance of the data. The first two 
PCs sum almost 91.9% of the total variance in the water quality observations. 
Table 3 gives the eigenvectors (loadings) for the first and the second 
components. 

Table 3:  Loadings of the first and second PC. 

Variable Principal component 1 Principal component 2 
Conductivity 0.503 0.173 
Sodium 0.523 0.126 
Magnesium 0.483 -0.833 
Calcium 0.490 0.509 

 

     The absolute value of the loadings is an indicator of the participation of the 
physicochemical variables in the PCs. All variables are well represented by the 
first PC. This component reflects the positive correlation that exists among them. 
The variables that primarily contribute to the second component are magnesium 
and calcium. Their two loadings have different sign revealing than in the sample 
there are months with high concentrations of calcium and small concentrations of 
magnesium, and vice versa. The most significant parameter in this second 
component is magnesium. Its scores can be useful to detect mean-level changes 
in magnesium and calcium. 
     The PC scores are computed as weighted lineal combinations of the original 
water quality observations. The coefficients are the loadings given in table 3. 
The analysis of the scores of the chosen PCs shows that there is autocorrelation 
in PC1 and PC 2 scores (fig. 1). The autocorrelation and partial autocorrelation 
functions in fig. 1 a) and b), suggest that the first PC scores follow an ARIMA 
seasonal multiplicative model of order (1,0,0)x(1,0,0)12: 

 Zt = ϕZt-1 + ΦZt-12 + at  (2) 
 

     The second PC scores follow an ARIMA model of order (0, 0, 1): 

 Zt = θat-1 + at (3) 

     In eqns (2) and (3) Zt represent PC score at month t and at are the one-step 
ahead forecast errors or residuals, which are independent. The detection of mean-
level changes can be performed by simultaneously monitoring the residuals at of 
PC 1 and PC2 time series model. Fig. 2 represents the residual-based Shewhart-
CUSUM control charts. 
     The combined chart for the residuals of PC 1 (Fig.4a)) shows no out-of-
control signal. In fig. 2b) the lower cumulative sum and the absolute value of the 
residuals exceed the control limit (blue line, h=L=4.5) on observation number 
152. The association of PC 2 with magnesium and calcium concentrations 
indicates that there are extreme values in at least one of these two 
physicochemical parameters. There is an extreme value of magnesium 
(43.8 mg/L) at time point 152 (August 1999) which implies an outlying 
multivariate observation.  
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Figure 1: a) Autocorrelation function of the first PC scores. b) Partial 
autocorrelation function of the first PC scores. c) Autocorrelation 
function of the second PC scores. d) Partial autocorrelation function 
of the second PC scores. 

 
     Tables 4 and 5 display the results of the nonparametric tests as applied to the 
water quality data set. First, view the four constituents and twelve months as 
defining 48 variables and 48 trend statistics. The associated covariance matrix is 
of dimension 48 x 48. The covariance inversion test (table 4) rejects the null 
hypothesis of no trend at the 5% level (p-value<0.05). The test statistic is 
decomposed into two terms (see the third and four rows of table 4). 
     The remainder is what persists in all 48 trends after the removal of an average 
trend. This is significant (2=71.6836 with 47 degrees of freedom, P-value 
<0.05). This indicates that there is heterogeneity between the trends in the 
different combinations of variables and months, and that an overall trend is not 
representative. 
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Figure 2: a) Control chart of the residuals of the first PC ARIMA model.  
b) Control chart of the residuals of the second PC ARIMA model. 

Table 4:  Results of the multivariate trend tests based on Kendall’s rank 
correlation between time and variable. 
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0.0148 
 Decomposition:    
 Overall trend 0.0427 1 0.8362 
 Remainder 71.6836 47 0.0117 

 
     A detailed analysis of the trend for each variable and for each month is given 
in Table 5. The method is the partial Mann-Kendall trend test. The values for 
each month in Table 5 are the conditional trend estimations after removing the 
effect of the other variables in the same month. The conditional test shows that 
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respectively. Magnesium also has a significant increasing trend in June. Calcium 
presents a significant decreasing trend in September. 

Table 5:  Results of the application of the Partial Mann-Kendall test. 

Month Conductivity Sodium Magnesium Calcium 
January 0.009 -0.132 0.229 -1.181 
February -0.269 -0.845 0.454 -0.121 
March -0.688 1.257 -2.149* 0.751 
April 1.477 -1.799* 0.722 -0.242 
May   2.322* -0.346 -0.225   -2.304* 
June     6.024** -1.058 1.972*   -2.153* 
July 1.129 -0.703 1.272 -0.769 
August -0.035 -0.405 1.606 0.119 
September 0.935 1.253 0.145 -1.687* 
October 0.822 -0.076 -0.875 -0.144 
November 0.510 1.112 -0.589 -0.347 
December 1.112 1.203 -0.327 -0.538 
*Significant at the 5% level. 
**Significant at the 1% level. 

 
     Multiple factors could have been affecting the river water quality trends. An 
attempt should be made to correlate the observed trends with activity logs for 
this river basin. The overexploitation and irrigation return flow has resulted in 
the significant increase of magnesium in June. Conductivity upward trend is 
significant in May-June because in this period the body of water has more 
dissolved materials such as nutrients and salts, which indicates poor water 
quality. Sources of total dissolved nutrients can include agricultural runoff, 
domestic runoff or discharges of wastewater treatment plants. The significant 
decrease in April accounts for a decrease in salinity in this month. 

4 Conclusions 

In this study changes in surface water quality in a monitoring site of Ebro River 
basin (Spain) have been assessed. For each sample, four physicochemical 
parameters have been considered: Conductivity, Sodium, Magnesium and 
Calcium. The data have been taken on a monthly basis for 14 years (1987–2000). 
The observations have been processed by multivariate statistical techniques in 
order to investigate the presence of changes which may be due to episodic 
events, environmental stressors or anthropogenic activities impact. The 
inspection of the correlation matrix of the four analyzed variables showed the 
existence of strong correlations between them. The application of principal 
component analysis offered a better understanding of water quality status of the 
studied system. This method revealed some specific features of the data 
structure. Two principal components were obtained summing almost 92% of the 
total variance (i.e. information) in the water data set. The first component had 
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similar loadings for all the water quality parameters and represents the strong 
positive correlation among them. The second component was linked with 
magnesium and to a lesser extent with calcium, and measured the difference 
among these two characteristics. 
     Autocorrelation and partial autocorrelation plots of the two first components 
showed that principal component scores were not independent when viewed over 
time. The scores were treated using standard time series modeling approach. An 
ARIMA model was estimated and allowed to obtain the one-step ahead forecast 
errors or residuals. The residuals were independent. The application of the 
Shewhart-CUSUM control chart to the residuals detected an outlying observation 
in the study period due to an extreme value in magnesium concentration. 
Ignoring the serial correlation when it exists can severely impair the 
interpretation of control charts. 
     Multivariate non-parametric trend tests were employed to detect trends. The 
covariance inversion test supported rejection of the hypothesis of no trend in the 
48 variables defined with each combination of variable and month. A 
decomposition of this test statistic showed that the trends are significantly 
different across variables and seasons. Trends for each combination of variable 
and month were analyzed using the partial Mann-Kendall test. Conductivity 
trends in two (May and June) of twelve months were significant and upward. In 
the same seasons calcium trend was also significant but downward. Sodium 
concentrations exhibited a significant decreasing trend in April. Magnesium 
levels significantly decreased in March but had an upward trend in June. These 
results could be useful to the water quality managers and policy –makers to 
select optimal pollutant reduction strategies, to avoid exceeding environmental 
quality standards, and to introduce corrective actions in order to improve the 
system. 
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