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Abstract. A complex networks based method is introduced for comparing
different complete rankings of a finite family of elements. The concepts of com-
petitivity graph and evolutive competitivity graph are introduced as the main
tools for analyzing an (ordered) family of rankings of a fixed set of elements. It
is shown how the structural properties of these competitivity graphs give deep
information about the competitiveness of the elements according to the rankings
considered. The relationships between competitivity graphs and some other well-
known families of graphs, such as permutation graphs, comparability graphs and
chordal graphs are also presented. Finally some applications are presented, in-
cluding the analysis of sports rankings and, more precisely, the study of European
soccer leagues.
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1. Introduction

Complex networks have been the subject of intense study in recent years: In-
ternet, the World Wide Web, and many other types of technological, biological
and social networks have given us a new insight of the possibilities of this new
branch of science. Complex networks are objects composed by a set of nodes
or vertices that are pairwise joined by links or edges. As we have said, this
kind of representation has been recently and successfully used in various tech-
nological, social and biological scenarios, but the study of networks has a long
history in mathematics, inside of a branch of discrete mathematics known as
graph theory. The main difference between the network theory’s approach
and the (combinatorial) graph theory’s approach is that the analysis of com-
plex network always takes care of the computational complexity of the studied
problems, due to the big (generally huge) number of nodes of a network.

Rankings are everywhere. We know different types of rankings that clas-
sify universities by their prestige, countries by their gross domestic product
(GDP), companies by the price and the evolution of their stocks, sportsmen
by their marks,... So it is necessary to develop tools and improve them in
order to analyze in depth and compare the real situation and the evolution of
many kind of objects that compete amongst them, being reflected the result
of that competition through a family of rankings.

The comparison of families of rankings has been a topic of interest of
several authors. We highlight the seminal work of Kendal [8], where the
Kendall’s concordance coefficient is defined. The Kendall’s correlation co-
efficient 7 for two rankings was introduced in his previous work [7]. Rankings
can be also compared by measuring their distance, for example, by the Spear-
man’s footrule rule or some other metrics, see [10], [5]. The number of papers
dealing with ranking systems is huge, including those describing a graph to
define a ranking. Nevertheless, the novelty of our work is the use of graphs as
a tool to compare families of rankings.

2. Competitivity Graphs

Given a set of elements N' = {1,...,n} that we will call nodes we define a
ranking ¢ of N as any bijection ¢ : N' — N. We will identify rankings with
vectors of N™ in the following way: ¢ = (i1, ..., i) if ¢(1) = i1,¢(2) = ia, ...,

c(n) = in. We will write i <. 7 when node i appears first than node j in the
vector of the ranking ¢, i.e., when ¢(i) < ¢(j).

Given a finite set R = {c1,ca,..., ¢} of rankings we say that the pair of
nodes (i,5) € N compete if there exists cs,c; € {1,2,...,7} such that i <., j
but j <, ¢, i.e., ¢ and j exchange their relative positions between the rankings
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¢m and c¢,. We define the competitivity graph of the family of rankings R,
denoted by G.(R) = (N, ER), where Er denotes the set of edges, as the
undirected graph with nodes N and edges given by the rule: there is a link
between i and j if (7,7) compete.

When the family of rankings R = {c1,co, ..., ¢} is ordered, we say that
a pair of nodes (i,7) € N compete at raking cs if they exchange their relative
positions between the rankings c; and cs4.1. We say that two nodes ¢, j compete
k-times if k is the maximal number of rankings where ¢ and j compete. The
evolutive competitivity graph of R, denoted by G5(R) = (N, ES), will be the
weighted undirected graph with nodes N and edges given by the rule: there
is an edge between i and j labeled with weight & if (i,7) compete k times.
Note that the underlying (unweighted) network behind the (weighted) graph
GE(R) is Ge(R).

Note that the order of the rankings is fundamental in the calculation of
the weights of the evolutive competitivity graph, although it does not have
influence in the underlying (unweighted) competitivity graph.

Competitivity graphs have already been studied in the particular case
of two rankings (r = 2). They are the so-called permutation graphs, see
[4]. Permutation graphs are a subclass of another classical class of graphs:
comparability graphs, see [6], [9]. In the following results of [2] we relate
competitivity graphs with comparability graphs, and also with the class of
chordal graphs, see [3].

Competitivity versus comparability:

(i) There are comparability graphs that are not competitivity graphs.

(ii) There are competitivity graphs that are not comparability graphs.

(iii) There are graphs that are neither comparability nor competitivity graphs.
(iv) Permutation graphs are both competitivity and comparability graphs.

Competitivity versus chordal:

(i) There are chordal graphs that are not competitivity graphs.
(ii) There are competitivity graphs that are not chordal graphs.
(iii) There are graphs that are neither competitivity nor chordal.

)

(iv) There are graphs that are both competitivity and chordal.

A deeper study of the structural properties of competitivity graphs has
also been done in [2]. We highlight the computation of the set of eventual
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competitors (connected components of the competitivity graph) directly from
the rankings without the previous computation of the competitivity graph.
For example, if the graph has more than one set of eventual competitors, the
elements of N can be separated into subsets of elements that never compete
among them.

3. Some applications

There are several ways to define the competitiveness of two or more or-
dered families of rankings R = {c1,¢2,...,¢} and S = {c},c),...,c} pos-
sibly coming from different sets of nodes or competitors N' = {1,...,n} and
N ={1,...,n'}. Let G5(R) = (N, E,) and G5(S) = (N, ES) be two differ-
ent evolutive competitivity graphs. The underlying unweighted competitivity
graphs will be denoted by G.(R) = (N,Eg) and G.(S) = (N, Es). As
measures of competitiveness we will consider different parameters:

Normalized mean degree. We define the normalized mean degree of a family
of rankings R as the sum of all the node degrees in the competitivity graph
G.(R) divided by the sum over all nodes of their highest possible degrees

ND(R) = n(nl—l) > deg(i). (1)
1EN

We say that R is more competitive than S with respect to the normalized mean
degree if ND(R) > ND(S).

Normalized mean strength. The strength of a node in a weighted graph
is the sum of the weights of its incident edges. We define the normalized
mean strength of a family of rankings R as the sum of all edge weights in
the evolutive competitivity graph G¢(R) divided by the sum over all possible
edges of their highest possible weights:

w(ER)
(5)(r—=1)°

where w(Ef%) denotes the sum of all weights of the edges of the evolutive
competitivity graph.

We say that R is more competitive than S with respect to the normalized
mean strength if NS(R) > NS(S).

NS(R) = (2)

Clustering coefficient. In graph theory, a clique is a set of nodes mutually
connected between them. For example, a triangle is a clique formed by three
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nodes. The clustering coefficient measures how many nodes in a graph tend
to cluster together. The clustering coefficient C; of a node ¢ is defined as

€;
(5)
where k; is the number of neighbors of node ¢, e; is the number of connected
pairs between the neighbors of 7, and (kzz) represents all possible pairs between
the neighbors of i. Given a family of rankings R, the clustering coefficient of

R is the average of the clustering coefficients of the nodes of the competitivity
graph G.(R), i.e.,

Ci= (3)

1
C(R) = Z Ci. (4)
ieN
We say that R is more competitive than S with respect to the clustering coef-

ficient C if C(R) > C(S).

Similarly, we can consider other graph parameters such as the normalized
size of the maximal clique (i.e., the number of nodes of the maximal clique
contained in the graph divided by the number of nodes of the graph) the
normalized size of the largest connected component, etc. For each of these
parameters, a family of rankings is more competitive than another family if
this parameter in the (evolutive) competitivity graph is bigger

There are other graph parameters that work the other way round: the
smaller they are, the more competitive a family of rankings is. Examples of
such parameters are the number of connected components and the Kendall’s
coefficient 7:

Generalized Kendall’s 7 correlation coefficient. We can define a gener-
alized Kendall’s correlation coefficient T7(R) of a family R of r > 2 rankings.
Following the original definition (number of pairs that do not compete K(R)
minus number of pairs that compete K(R), divided by the number of all

possible pairs (}), see [7]), we set

_20Er| _,  A[ER]
(g‘) n(n —1)

where |Ex| denotes the number of edges of the competitivity graph G.(R).

We can also construct an evolutive Kendall’s correlation coefficient 7(R)e
if we take into account the number of times each pair of nodes compete. In
this sense, we define

o g 2w(Bp)
N GI) ®
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where w(Ef,) denotes the sum of all weights of the edges of the evolutive
competitivity graph. The denominator (5)(r — 1) represents the sum over all
possible edges of their highest possible weights.

We say that R is more competitive than & with respect to the Kendall’s
coefficient if 7.(R) < 7.(S). Notice that the smaller the Kendall’s coefficient
Te(R) is, the more competitive R is.

By using these parameters we have compared the competitiveness of the
mayor European soccer leagues in 2011-12 and 2012-13, see [1]. For example,
Figure 1 shows the evolution of the normalized mean strength along the seasons
2011-12 (on the left) and 2012-13 (on the right).
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Figure 1: The evolution of the normalized mean strength along 2011-12 (on
the left) and 2012-13 (on the right). In both figures the German Bundesliga
is in red, the Italian Lega A is in blue, the Spanish Liga BBVA is in black and
the British Premier League is in green.

4. Conclusions

In this paper we have presented a new tool for analyzing and comparing com-
plete rankings of a finite family of elements. Two new concepts within the
realm of graph’s theory are defined: the competitivity graph of a family of
rankings, and the evolutive competitivity graph of an ordered family of rank-
ings. The structural properties of these graphs give deep information about
the competitiveness of the elements according to the rankings considered.

We highlight that this methodology can be used to study not only sport
rankings but other families of (ordered) rankings: evolution of stock markets,
classifications of countries with respect to different parameters, ordered lists
of universities, etc.
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