

Convergence of Weighted-average consensus for undirected graphs

Francisco Pedroche 1,† , Miguel Rebollo 2 , Carlos Carrascosa 2 and Alberto Palomares 2

Abstract. In this note we address the problem of reaching a consensus in an undirected network where the nodes interchange information with their neighbors. Each node is provided with a value x_i^0 and a weight w_i . The specific goal of the consensus is that each node will be aware of the weighted-average consensus value, $\frac{\sum_i w_i x_i^0}{\sum_i w_i}$, in a distributed way, that is to say without a central control. We show the applicability of a theoretical result about reaching a consensus following an iterative algorithm.

Keywords: consensus algorithm, multi-agent system, networked control systems *MSC 2000:* 65F10, 15B48

† Corresponding author: pedroche@imm.upv.es

Received: December 23th, 2013 Published: March 1st, 2014

1. Introduction

Let G = (V, E) be a graph, with $V = \{v_1, v_2, \dots, v_n\}$ a non-empty set of n vertices (or nodes) and E a set of m edges. Each edge is defined by the pair (v_i, v_j) , where $v_i, v_j \in V$. The adjacency matrix of the graph G is $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ such that $a_{ij} = 1$ if there is an edge connecting node v_i to v_j , and 0, otherwise. The degree d_i of a node i is the number of its links, i.e., $d_i = \sum_{j=1}^n a_{ij}$. We define the Laplacian matrix of the graph as L = D - A where D is the diagonal matrix with the degrees. $D = diag(d_1, d_2, \dots, d_n)$.

¹ Institut de Matemàtica Multidisciplinària, Universitat Politècnica de València

Departament de Sistemes Informàtics i Computació, Universitat Politècnica de València

2. Weighted-average consensus

Let G be an undirected graph. Let \mathbf{x}^0 be a (column) vector with the initial state of each node. Let $\mathbf{w} = [w_1, w_2, \dots, w_n]^T$ a vector with the weight associated to each node. The following algorithm (see [1]) can be used to obtain the value of the weighted-average consensus (that is, a common value for all the nodes, reached by consensus)

$$W\dot{x} = -Lx\tag{1}$$

with $W = diag(w_1, w_2, \dots, w_n)$. A discretized version of (1) is

$$x_i^{k+1} = x_i^k + \frac{\epsilon}{w_i} \sum_{j \in N_i} a_{ij} (x_j^k - x_i^k), \quad \forall i \in N, \quad k = 0, 1, 2, \dots$$
 (2)

where $\epsilon > 0$, and N_i denotes the set of neighbors of node i. The matrix form of (2) is

$$\mathbf{x}^{k+1} = P_w \mathbf{x}^k \quad k = 0, 1, 2, \dots$$
 (3)

where $P_w = I - \epsilon W^{-1}L$. From (2) it follows that

$$\mathbf{x}^k = P_w^k \mathbf{x}^0, \quad k = 1, 2, \dots \tag{4}$$

3. Convergence of Weighted-average consensus for undirected graphs

In [2] we prove the following: Let G be a connected undirected graph. If $\epsilon < \min_{i \in N}(w_i/d_i)$ then the scheme (5) converges to the weighted-average consensus given by $\mathbf{x}_w = \alpha \mathbf{e}$, with \mathbf{e} the all-ones vector and

$$\alpha = \frac{\sum_{i} w_i x_i^0}{\sum_{i} w_i}.$$
 (5)

This result is useful for obtaining a weighted-average consensus in a distributed way, as we show in the next example.

4. Examples

To show the applicability of the previous result we run three series experiments. Denoting $\epsilon_o = \min_{i \in N} (w_i/d_i)$, the experiments are characterized by the following:

Type I: Verify the condition $\epsilon < \epsilon_0$ and therefore converge

Type II: Do not verify the condition $\epsilon < \epsilon_0$ but they converge

Type III: Do not verify the condition $\epsilon < \epsilon_0$ and do not converge

F. Pedroche et al

In all the experiments the initial values x_i^0 are taking randomly distributed among the nodes, with values $x_i^0 \in [0, 1]$. The weights are randomly distributed with $w_i \in (0, 1)$. In Figure 1 we show examples of type II and type III for a network of $n = 10^3$ nodes constructed with preferential attachment.

Figure 1: Example of experiments of Type II (left, $\epsilon = 1.9\epsilon_o$) and Type III ($\epsilon = 2.0\epsilon_o$) using a network generated with preferential attachment. Horizontal axis shows number of iterations, while vertical axis shows the values of x_i^k for each node $i = 1, \ldots n$.

In Figure 2 we show examples of type II and type III for a network of $n = 10^3$ nodes with links randomly generated.

Examples of experiments of Type II (left, $\epsilon = 1.90\epsilon_o$) and Type III ($\epsilon = 1.96\epsilon_o$) using a random network. Horizontal axis shows number of iterations, while vertical axis shows the values of x_i^k for each node $i = 1, \ldots n$.

5. Conclusions

We have shown examples of the applicability of a theoretical result about the converge of weighted-average consensus. The results shown that there is a zone (of values of ϵ) beyond the convergence limit that shows convergence. This is in accordance with the theoretical result, since we are illustrating a sufficient criterion. These results show that future work might be done to refine the convergence criterion.

Acknowledgements

This work is supported by Spanish DGI grant MTM2010-18674, Consolider Ingenio CSD2007-00022, PROMETEO 2008/051, OVAMAH TIN2009-13839-C03-01, and PAID-06-11-2084.

References

- [1] R. Olfati-Saber, J. A. Fax, and R. M. Murray, *Proceedings of the IEEE*, **95**, no. 1, pp. 215-233 (2007)
- [2] F. Pedroche, M. Rebollo, C. Carrascosa and A. Palomares, http://arXiv:1307.7562v1, (2013)