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Abstract 

A new and sensitive application of the chemiluminescence detection has been 

developed for the determination of the pesticide thiacloprid in water. It was based on the 

on-line photoreaction of thiacloprid in basic medium, with quinine acting as sensitizer 

of the chemiluminescent response; Cerium (IV) in sulfuric acid medium was used as 

oxidant. A high automation and reproducibility was provided by a flow injection 

analysis (FIA) manifold. The validation of the method was performed in terms of 

selectivity, linearity, LOD, precision and accuracy. Liquid chromatography with UV 

detection was used as reference for mineral, tap, ground and spring water samples. The 

proposed method is fast (throughput of 130 h-1), sensitive (LOD of 0.8 ng mL-1 without 

preconcentration steps and 0.08 ng mL-1 with solid phase extraction (SPE)), low-cost 

and possible to couple with separative methods for the simultaneous determination of 

other pesticides. The enhanced chemiluminescence intensity was linear with thiacloprid 

concentration over the (2-80) and (80-800) ng mL-1 ranges. A possible reaction 

mechanism is also discussed. 

 

Keywords: thiacloprid; chemiluminescence; photoreaction; flow injection; water; solid 

phase extraction. 
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Introduction 

Thiacloprid ([3-[(6-chloro-3-pyridinyl)methyl]-2-thiazolidinylidene]cyanamide) 

(Fig. 1) is a neonicotinoid insecticide used against a variety of sucking insects in cotton 

and pome fruits. It is a relatively new pesticide (patent 1985)1, which is a disruptor of 

the nervous system by acting as an inhibitor at nicotinic acetylcholine receptors found in 

many insects2. The possible relationship between neonicotinoid pesticides and massive 

disappearance of honeybees from the hive is a topic of great interest nowadays3-4. 

Despite of the specific toxicity of thiachloprid for insects, it is dangerous to humans. Its 

relatively high water solubility results in the potential contamination of surface water, 

especially considering its resistance to photo- and biodecomposition in aqueous 

solutions5. 

 

Fig. 1 Molecular structure of thiacloprid 

 

Due to its low volatility, liquid chromatography (LC) is more commonly used 

than gas chromatography (GC) for the determination of thiacloprid. Mass spectrometer 

(MS)6-11 is the most used detector with LC, although diode-array detection12-14 has been 

also proposed. Many methods have been developed for the determination of 

neonicotinoids residues in food, but only few of them are devoted to their analysis in 

water samples9. On the other hand, it is usually necessary to carry out previous pre-

concentration and clean-up steps, since pesticides are present at low concentrations in 

samples. 

However, despite to be the most usual method for thiacloprid determination, LC-

MS is an expensive technique which is not always available as a routine analytical 

method. Therefore, the development of other strategies is mandatory, and a variety of 

alternative detection systems has been recently proposed for its determination15-16. 
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Chemiluminescence (CL) is a powerful analytical tool applied in the last years in 

a wide variety of disciplines, due to its high sensitivity, selectivity, wide dynamic range 

simplicity and low cost instrumentation17-18. Most of the proposed CL methods are 

based on the luminol system18-20, although direct CL determination with strong oxidants 

(e.g., permanganate, cerium (IV), hexacyanoferrate (III) or periodate) have been also 

employed18,21. These last systems are simpler and involve light emission from the 

reaction between a suitable oxidant and the target analyte, which is the substrate in the 

CL reaction22.  

Additionally, the combination of the CL with photochemical reactions, produced 

by irradiation with UV light, has allowed the increase in the number of compounds that 

can be determined by CL and/or increase the efficiency in the CL reaction18,23-25. On the 

other hand, flow injection analysis (FIA) is an important alternative to more complex 

procedures due to its simplicity and low cost. In addition, its rapidity and reproducibility 

makes it well suited to monitoring transient light emission from CL reactions, and 

allows the easy on-line photoreaction. To the authors´ knowledge, until now no method 

based on CL or FIA has been previously reported for thiacloprid determination. 

This paper reports a simple, economic and sensitive method based on the 

photoinduced chemiluminescence (PICL) technique for thiacloprid determination, fast 

enough for use in routine analyses, which is particularly suitable for environmental 

water control. The Ce(IV)-sulfuric acid system allowed obtaining an emitting molecule 

from a thiacloprid photoproduct, with quinine acting as sensitizer. Although the method 

has been developed using FIA methodology, it could be easily coupled with a LC 

system since both techniques operate in a continuous flow. This combination would be 

highly promising, as it would offer the selectivity necessary to implement the proposed 

method to more complex environmental samples. 

 

Materials and methods 

Chemicals  

All solutions were prepared from analytical-grade reagents in Milli-Q water (18 

M-cm) from Millipore (Bedford, MA, USA), provided with a 0.22 m fiber filter. 

Thiacloprid was purchased from Riedel-de Haën (99.9% purity) (Seelze, Germany). 

Other reagents were: Ce(NH4)2(NO3)6, from Panreac (Barcelona, Spain); NaOH and 
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H2SO4 from Scharlau (Barcelona, Spain); and quinine hydrochloride dihydrate from 

Sigma (Steinheim, Germany). Other pesticides used were: acetamiprid, imidacloprid, 

amitrole, metazachlor, metalaxyl and cyromazine (99.9%), 2,4-D and pirimicarb 

(99.6%), diquat monohydrate (99.4%), glyphosate and quinmerac (99.2%), fenamiphos 

(97.7%), diuron (99.5%), imazalil (99.8%) and MCPA (98.7%) all of them from Riedel-

de Haën; methomyl (99.5%) from Chem Service (West Chester, USA); and, 

diphenamide (99.9%) from Fluka (Buchs, Switzerland). 

The solid phase extraction (SPE) of water samples was carried out using Strata-

X (polymeric reversed phase) 200 mg/6 mL cartridges from Phenomenex (Torrance, 

CA, USA). 

 

Flow injection procedure 

The FIA manifold optimized for the PICL determination of thiacloprid is depicted in 

Fig. 2. Connections between the different parts of the flow assembly were carried out 

with PTFE coil of 0.8 mm i.d. from Omnifit. Gilson (Worthington, OH, USA) Minipuls 

2 peristaltic pumps, provided with tygon pump tubes from Restec (Barcelona, Spain), 

were used for flow control. The laboratory-made photoreactor consisted of PTFE tubing 

(0.8 mm i.d. x 400 cm) tightly coiled around a 15 W low-pressure mercury lamp 

(Sylvania) for germicidal use. The samples were injected by a 4-way rotatory valve 

Model 5041 (Rheodyne, Wertheim-Mondfeld, Germany). The photodetector package 

was a P30CWAD5F-29 Type 9125 photomultiplier tube (PMT) supplied by Electron 

Tubes (Uxbridge, UK) operating at 1280 V and located in a laboratory-made light-tight 

box. The solutions merged in a T-piece placed inside close to the flow-cell, a flat-spiral 

glass tube of 1 mm i.d. and 3 cm total diameter. The output was fed to a computer 

equipped with a CT2 counter-timer board, also supplied by Electron Tubes. 
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Fig. 2 Flow assembly for the PICL determination of thiacloprid. Q1: thiacloprid solution 

at 1.85 mL min-1; Q2: NaOH 0.15 M at 0.5 mL min-1; Q3: quinine 2x10-5 M at 0.5 mL 

min-1; Q4: H2O at 11.4 mL min-1; Q5: Ce(IV) 10-3 M in H2SO4 0.07 M at 2.6 mL min-1. 

Injection volume: 583 L. P: peristaltic pump; PR: photoreactor; IV: Injection valve; 

PMT: photomultiplier tube 

 

Sample preparation 

Water samples from different origins, namely ground, spring, mineral and tap 

waters were tested. They were collected in plastic flaks at 4 ºC and analysed within 48 

h. Prior to analysis, samples were pretreated by filtering over a 0.45 m membrane filter 

(Sartorius, Goettongen, Germany). 100 mL of sample was spiked in order to obtain 0.5, 

1.0, 1.5, 2.0 and 2.5 ng mL-1 of pesticide.  

In order to obtain a 20-fold pre-concentration, SPE of 100 mL of the spiked 

samples was performed off-line at 3 mL min-1 using a vacuum system and Strata-X 

cartridges. 6.0 mL of methanol followed by 9.0 mL of water were used to precondition 

the cartridges. After that, the washing was performed with 9.0 mL of water and, next, 

air was passed 15 min for drying. Thiacloprid was eluted by means of gravity with 3.0 

mL of methanol and finally under vacuum. The residue was evaporated to dryness under 

a gentle stream of nitrogen in a water bath at 30ºC; finally it was dissolved with 5.0 mL 

of water. 
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Reference method 

LC in combination with a diode-array detector (DAD) was used as a reference 

for sample analysis and validation of the proposed method. After the above-mentioned 

SPE procedure, the aliquots of sample were filtered through 0.22 m syringe filters. The 

mobile phase consisted of a mixture of water and acetonitrile (75:25, v/v). The reversed 

phase separation was performed in the isocratic mode at a flow rate of 0.8 mL min-1. A 

Kinetex C18 100 x 4.6 mm (2.6 m particle size) column from Phenomenex, in 

conjunction with a security guard UHPLC C18 from Jasco Analítica (Madrid, Spain), 

was used. Chromatographic analysis was carried out with a HPLC equipment from 

Jasco Analytica. 100 L of sample, in 25% of acetonitrile, was injected and the 

determination was performed at 240 nm. The retention time was 5.6 min and the peak 

area was used for analytical purposes.  

   

Results and discussion 

Method development 

Preliminary studies 

Thiacloprid did not show CL properties when oxidized by common oxidants. 

However, it is well known that UV irradiation can induce reactions of photolysis, 

photocyclization, photoisomerization, photooxidation or photoreduction24; the 

photoproducts obtained often exhibit luminescent properties, which is the basis of PICL 

methods. Since the absorption spectrum of thiacloprid (200-380 nm with a maximum at 

242 nm26) and the emission spectrum of the low-pressure Hg lamp (200-300 nm, with a 

maximum at 254 nm24) employed overlap, thiacloprid was considered to be a good 

candidate to generate PICL. 

To study the PICL of thiacloprid, a FIA manifold on the basic lines of that 

shown in Fig. 2, but without channel Q3 and with an additional channel (oxidant 

medium) that converges with Q5 (oxidant), was used. Perchlorate 8x10-3 M in basic 

medium and nine oxidants commonly used in CL systems24 were employed at the 

following flow rates (mL min-1): 7.8 for carrier, 1.2 for oxidant and oxidant media, 2.1 

for thiacloprid and 0.65 for photodegradation media. As a result, a strong CL emission 
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(17.6 kHz) was observed for 10 g mL-1 of thiacloprid when Ce(IV) was used as 

oxidant in sulfuric acid medium, employing 0.1 M NaOH as irradiation medium. On the 

other hand, permanganate in acid medium, and ferricyanide and periodate in basic 

medium, also provided significant CL signals (about 3 kHz), when basic medium was 

used for irradiation, but lower than that reported for Ce(IV). 

Optimization process 

Optimization process was performed by using the univariate approach and 

optimal values were selected considering the sensitivity, reproducibility, blank outputs 

and signal/noise ratio.  

The first aim was to find the best oxidant system for PICL determination of 

thiacloprid. The four oxidants above-mentioned were tested at different concentrations, 

namely (optimal value between brackets) 3x10-3–7x10-3 M (5x10-3 M) for Ce(IV), 2x10-

5–9x10-4 M (6x10-5 M) for permanganate, 10-5–10-2 M (6x10-5 M) for ferricyanide, and, 

2x10-3–2x10-2 M (1.5x10-2 M) for periodate. The highest signals were found for Ce(IV) 

and permanganate (about 5 kHz for 3 g mL-1 of thiacloprid in both cases). Therefore, 

the effect of different oxidation media was studied for both oxidants. As shown in Fig. 

3, sulfuric, perchlorate and nitric acids were the best option in both cases. Finally, it was 

found that Ce(IV) in sulfuric acid 0.08 M was the best oxidant system (outputs two-fold 

higher than those from permanganate were obtained). 

 

Fig. 3 CL signal obtained with Ce(IV) and permanganate in several acid media (1 M) 
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 The effect of the oxidation time was investigated by changing simultaneously 

the carrier and oxidant system (Ce(IV) and sulfuric acid) flow rates within the 6.6 – 

11.8 mL min-1 range, keeping their ratio constant. As a result, 7.5 and 1.7 mL min-1 

were found as the optimal flow rates for carrier and oxidant system, respectively. 

Bearing in mind that it was difficult to test the effect of sulfuric acid (oxidant 

medium) and sodium hydroxide (irradiation medium) on pH independently, different 

buffers were assayed for the CL reaction medium, namely glycine-HCl (pH 1.2 and 2), 

ftalate (pH 2.4 and 3.2), and acetic/acetate (pH 4). Citrate and tartrate buffers were 

discarded because of their negative effect on the baseline. As a result, it was found that 

only glycine buffer at pH 1.2 provided similar results to those previously obtained with 

sulfuric acid. Therefore, the effect of irradiation media was studied using both, sulfuric 

acid and glycine buffer, as oxidation media. Taking into account the obtained results in 

preliminary studies, NaOH and H2SO4 were assayed as irradiation media. NaOH led to 

higher outputs (40% improvement) in both oxidation media. Consequently, NaOH 0.1 

M and sulfuric acid were finally selected as irradiation and oxidation media, 

respectively.  

Next, several compounds described in the literature27 as potential CL enhancers 

were examined. To this end, the manifolds were modified being the configurations 

employed as the basic lines showed in Fig. 2, but with an additional Y-shaped piece 

after the lamp, in order to study the effect of the studied substances, both in the 

photoreaction and CL reaction or only in the CL reaction. 

The following substances were tested: ethanol, acetone, acetonitrile, a mixture of 

acetonitrile and acetone, 2-propanol, 1,4-dioxane, formic acid, sodium sulfite, quinine, 

8-hydroxyquinoline, fluorescein, rhodamine B, riboflavin, acridin orange, hydrogen 

peroxide, -cyclodextrin, sodium dodecyl sulfate, hexadecyltrimethylammonium 

bromide and Triton X-100. 

As quinine, sulfite and riboflavin provided the highest signals, their effect on the 

CL emission was further studied over the (4.7x10-5–9.3x10-4), (10-5–2x10-4) and (10-5– 

10-3) M ranges respectively, both before and after the irradiation step. Sulfite and 
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quinine provided similar results, and better than riboflavin. However, sulfite was 

discarded due to its higher blank signals and lower stability. Finally, a concentration of 

9.3x10-5 M of quinine, introduced before the irradiation step, was selected (6.5-fold 

increase).  

Quinine has been often employed with Ce(IV) in order to increase the CL 

intensity, by an energy-transfer excitation process. The reduction of Ce(IV) would 

produce excited Ce(III), which is deactivated by emitting light of 350 nm yielding a 

weak CL signal28-32. Quinine is a good fluorescent substance (Φ=0.577) having an 

emission maximum at about 450 nm33. Excited Ce(III) would transfer energy to quinine 

yielding excited quinine, which would be responsible for the strong CL observed. 

The photoproduct obtained and the yield of the photodegradation step are 

strongly dependent on irradiation time. Because of that, this parameter was studied by 

changing the sample, irradiation medium (NaOH) and sensitizer (quinine) flow rates 

simultaneously, keeping their ratio constant. As can be seen in fig. 4, irradiation times 

between 39 and 48 s provided the best result. A dramatic decrease in the CL emission 

was observed with longer irradiation times, which was probably due to the formation of 

a non-CL photoproduct. Consequently, an irradiation time of 42 s was selected, which 

corresponded to 1.85 mL min-1 for sample and 0.5 mL min-1 for both, NaOH and 

quinine. 

 

Fig. 4 Effect of irradiation time (tR) on CL signal 
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Bearing in mind that high temperatures can influence on oxidation rate, the 

sample loop and two 1.5 m sections of teflon tube (0.8 mm i.d.), containing the carrier 

(located immediately prior to the injection valve to minimize sample dispersion) and the 

oxidant, were submerged in a water bath at different temperatures. A slight increase of 

signal (+17%) was observed when temperature increased until 50 ºC and, after that, 

signals decreased. Taking into account the small improvement achieved, room 

temperature was selected in order to have a simpler manifold.   

The insertion volume was the last parameter optimized, testing values between 

398 and 675 L. The signal reached a plateau at 583 L; therefore, this value was 

selected for further investigation. 

Finally, bearing in mind the results achieved in the optimization step, the main 

variables were re-optimized using the following ranges (optimal results in brackets) (see 

Fig. S5 in Electronic Supplementary Material): Ce(IV): 2x10-4-5.5x10-3 M (10-3 M); 

sulfuric acid: 0.05-0.10 M (0.07 M); global flow rate in CL reaction: 8.3-15.4 mL min-1 

(14 mL min-1 corresponding to 11.4 and 2.6 mL min-1 for carrier and oxidant 

respectively); NaOH: 0.13-0.19 M (0.15 M); quinine: 2x10-6-10-4 M (2x10-5 M); and, 

irradiation time: 32-60 s (42 s; sample flowing at 1.85 mL min-1 and NaOH and quinine 

at 0.5 mL min-1).  

 

Validation 

 The dependence between CL signal and thiacloprid concentration was linear and 

two different linear ranges were found (Fig. 5). The corresponding equations average, 

calculated from five calibrations obtained on different days with fresh solutions were: I= 

(0.0470±0.0011) C + (0.14±0.04) with r2=0.995 for thiacloprid concentrations ranging 

from 2 to 80 ng mL-1; and I= (0.0107±0.0005)·C + (3.3±0.5) with r2=0.996, for pesticide 

concentrations from 80 to 800 ng mL-1; where I is the intensity (kHz) and C the 

concentration (ng mL-1) 
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Fig. 5 Influence of thiacloprid concentration on the CL signal. 

1st linear range: 2 – 80 ng mL-1 

2nd linear range: 80 – 800 ng mL-1 
 

 The limit of detection (LOD), defined as the lowest thiacloprid concentration 

giving a signal equal or greater than the blank peak plus three times its standard deviation 

(SD), was experimentally determined and took a value of 0.8 ng mL-1. The inter-day 

reproducibility of the proposed method was determined from the slopes of the above-

mentioned series of 5 calibrations. The relative standard deviation (RSD) were 2.3 and 

4.7% for the first and second linear range, respectively. The intra-day repeatability, 

determined as the RSD of a series of 23 injections of 40 ng mL-1 of thiacloprid, was 

2.1%. The throughput, calculated from the same series of peaks, was 130 h-1. 

The interfering effect of the ions commonly present in natural waters at relevant 

concentrations was investigated in order to assess the tolerance of the proposed method 

(Table I). The effect of other pesticides from different chemical groups34 was also 

studied (Table II). The relative errors showed in both tables were obtained using 40 ng 

mL-1 of thiacloprid as a reference. This study was carried out by reducing the 

concentration of interfering compounds until the relative error was below 5%. As can be 

observed, some of the tested ions, namely NO3
-, NH4

+, Mg2+, HCO3
- or H2PO4

-, showed 

an important interfering effect.  
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Table I Study of interfering species on thiacloprid 40 ng mL-1 

Interferent Concentration (g mL-1) Error (%) 

Na+ 480 -2.5 

K+ 500 -2.2 

Ca2+ 800 -3.2 

Mg2+ 30 -4.4 

NH4
+ 1 -3.0 

Cl- 1415a -3.2 

SO4
2- 1000a -2.5 

CH3COO- 20 -5.0 

H2PO4
- 30 -4.9 

HCO3
- 30 -3.0 

NO3
- 0.15 -1.8 

Urea 80 -2.6 
a Maximum concentration assayed 

 
Table II Interfering effect of pesticides on thiacloprid 40 ng mL-1 

Common name Chemical group [pesticide]/[thiacloprid] Error (%) 

Acetamiprid Neonicotinoid 10 -3.7 

Amitrole Triazole 10 -2.8 

Cyromazine Triazine 10 -0.1 

2,4-D Alkylchlorophenoxy 10 +1.2 

Dimethoate Organophosphate 0.25 +2.6 

Diphenamid Alkanamide 7.5 -2.2 

Diquat monohydrate Bipyridylium 3.75 -2.4 

Diuron Phenylurea 0.25 -2.3 

Fenamiphos Organophosphate 0.25 +1.1 

Glyphosate Phosphonoglycine 10 +5.0 

Imazalil Imidazole 10 -4.3 

Imidacloprid Neonicotinoid 0.175 -4.3 

MCPA Aryloxyalkanoic acid 8.75 +0.7 

Metalaxyl Phenylamide 2.5 -1.8 

Metazachlor Chloroacetamide 5 -3.2 

Methomyl Carbamate 0.25 +4.8 

Pirimicarb Carbamate 10 -5.0 

Quinmerac Quinoline 10 -4.2 
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A strong decrease in the CL was observed when nitrate was present. It has 

probably to do with the oxidant consumption of nitrite, obtained as a result of the 

photoreduction of nitrate by UV light35. Others ions can also influence, on the 

photodegradation and/or the oxidation steps. However, ionic interferences can be easily 

removed by SPE. 

When the effect of other pesticides on the CL signal was tested, it was found that 

dimethoate, fenamiphos and methomyl showed a strong interfering effect. That result 

was expected, since an important CL response for the photoproducts of all of them 

when oxidized by cerium (IV) have been previously reported21,36-37. Bearing in mind 

that fact, the use of a separative technique, such as LC, prior to analysis should be 

advisable when those pesticides are together with thiacloprid; thus, apart from their 

separation, their simultaneous determination should be achieved. Other neonicotinoid 

pesticides did not provide CL signal under the experimental conditions, but they 

inhibited the CL signal of thiacloprid because of matrix effect. A strongest interfering 

effect was observed for imidacloprid, which has a chemical structure more similar to 

thiacloprid. Finally, the addition of diuron resulted in an important decrease of CL. 

Diuron photoproducts have been reported as chemiluminescent when oxidized38; 

although a different oxidant system was used (potassium ferricyanide in phosphate 

buffer at pH 11.5) in that method, a slight CL with cerium was also reported, but the 

concentrations of oxidant needed were higher in that case. Consequently, the decrease in 

the CL observed should be probably due to a cerium consumption by diuron. Thus, the 

separative strategy above-mentioned should be also recommendable in order to avoid 

the oxidant consumption.  

 

Quantitative results 

In order to increase the selectivity and sensitivity of the method, SPE (Sample 

preparation section) was applied to mineral, tap, ground and spring water samples. As a 

result, a LOD of 0.08 ng mL-1 was achieved, which is under the maximum permitted 

concentration, established by the European Community, in 0.1 ng mL-1 for individual 

pesticides and 0.5 ng mL-1 for total pesticides in drinking water39 and 1–3 ng mL-1 in 

surface water40. For evaluating the accuracy of the method, the achieved results were 

compared with those obtained using HPLC-DAD (Reference Method section).  
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As can be seen in Table III, mean recoveries ranging from 83.5 to 93.7% for 

samples spiked at five levels (between 0.5 and 2.5 ng mL-1) were achieved. Bearing in 

mind that the acceptable range for recoveries in water samples is usually set between 70 

and 110%, with a maximum permitted RSD of 20%41, it can be considered that the 

analytical performance of the proposed CL method was successful. In addition, the 

results were in good agreement (88.5-96.3%) with those obtained from HPLC. 

 
Table III Accuracy of the method 

Sample 
Added  

(ng mL-1) 

Found  
FIA-PICL 
(ng mL-1) 

Found 
LC-DAD 
(ng mL-1) 

Recovery (%) 
FIA-PICL vs 

added (RSD, %) 

Recovery (%) 
FIA-PICL vs LC-
DAD (RSD, %) 

Mineral water 1a 0.5 0.45 0.47 91.7 (6.2) 92.3 (5.9) 

1.0 0.96 1.04 

1.5 1.31 1.53 

2.0 1.72 1.94 

2.5 2.48 2.50 

Mineral water 2b 0.5 0.44 0.49 88.0 (7.1) 90.0 (3.9) 

1.0 0.80 0.91 

1.5 1.45 1.52 

2.0 1.81 2.00 

2.5 2.12 2.46 

Tap water 0.5 0.39 0.44 83.5 (9.9) 89.6 (8.7) 

1.0 0.85 0.91 

1.5 1.23 1.44 

2.0 1.51 1.89 

2.5 2.42 2.41 

Ground water 0.5 0.43 0.50 85.6 (7.2) 88.5 (5.8) 

1.0 0.81 0.96 

1.5 1.43 1.50 

2.0 1.59 1.89 

2.5 2.16 2.33 

Spring water 0.5 0.42 0.46 93.7 (8.4) 96.3 (5.9) 

1.0 0.91 0.97 

1.5 1.54 1.51 

2.0 1.80 1.97 

2.5 2.52 2.45 
a Soft water  
b Hard water 
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Conclusions 

A new and fast strategy has been proposed for thiacloprid determination in water 

samples. The method was based on the chemiluminescent reaction of its photoproducts 

with Ce(IV) in a sulfuric solution; the light emission being greatly sensitised by quinine.  

The method could be implemented with SPE, in order to increase sensitivity and 

selectivity. The LODs achieved were: 0.08 and 0.8 ng mL-1 with and without SPE 

respectively. These values are competitive with those reported by most of methods used 

for the determination of thiacloprid in water samples. The LC-MS method proposed by 

Pareja et al.10, employing a hybrid triple quadrupole-linear ion trap-MS, allowed LODs 

as low as 0.002 ng mL-1; but in the LC-MS method reported by Seccia et al.9SPE of 1 L 

of sample was required in order to obtain a LOD of 0.01 ng mL-1. Other recently 

published methods based on alternative methods15-16, provided LODs between 0.2-0.3 

ng mL-1.  

In summary, the proposed method has provided a high sensitivity and good 

recoveries when applied to water samples. It is simple, fast and cheap; moreover, it 

avoids the use of organic solvents and time consuming steps as filtration. Thus, it could 

be applied as a routine method for thiacloprid control in water samples. In addition, its 

coupling with separative techniques as LC would allow the simultaneous determination 

of other pesticides as dimethoate, fenamiphos and methomyl. 
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