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Abstract. The ensemble Kalman filter (EnKF) is coupled with upscal-3

ing to build an aquifer model at a coarser scale than the scale at which the4

conditioning data (conductivity and piezometric head) had been taken for5

the purpose of inverse modeling. Building an aquifer model at the support6

scale of observations is most often impractical, since this would imply nu-7

merical models with millions of cells. If, in addition, an uncertainty analy-8

sis is required involving some kind of Monte-Carlo approach, the task be-9

comes impossible. For this reason, a methodology has been developed that10

will use the conductivity data, at the scale at which they were collected, to11

build a model at a (much) coarser scale suitable for the inverse modeling of12

groundwater flow and mass transport. It proceeds as follows: (i) generate an13

ensemble of realizations of conductivities conditioned to the conductivity data14

at the same scale at which conductivities were collected, (ii) upscale each re-15

alization onto a coarse discretization; on these coarse realizations, conduc-16

tivities will become tensorial in nature with arbitrary orientations of their17

principal directions, (iii) apply the EnKF to the ensemble of coarse conduc-18

tivity upscaled realizations in order to condition the realizations to the mea-19

sured piezometric head data. The proposed approach addresses the problem20

of how to deal with tensorial parameters, at a coarse scale, in ensemble Kalman21

filtering, while maintaining the conditioning to the fine scale hydraulic con-22

ductivity measurements. We demonstrate our approach in the framework of23

a synthetic worth-of-data exercise, in which the relevance of conditioning to24

conductivities, piezometric heads or both is analyzed.25
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1. Introduction

In this paper we address two problems, each of which has been the subject of many26

works, but which have not received as much attention when considered together: upscaling27

and inverse modeling. There are many reviews on the importance and the methods of28

upscaling [e.g., Wen and Gómez-Hernández , 1996; Renard and de Marsily , 1997; Sánchez-29

Vila et al., 2006], and there are also many reviews on inverse modeling and its relevance30

for aquifer characterization [e.g., Yeh, 1986; McLaughlin and Townley , 1996; Zimmerman31

et al., 1998; Carrera et al., 2005; Hendricks Franssen et al., 2009; Oliver and Chen, 2011;32

Zhou et al., 2011a]. Our interest lies in coupling upscaling and inverse modeling to perform33

an uncertainty analysis of flow and transport in an aquifer for which measurements have34

been collected at a scale so small that it is prohibitive, if not impossible, to perform35

directly the inverse modeling.36

The issue of how to reconcile the scale at which conductivity data are collected and the37

scale at which numerical models are calibrated was termed “the missing scale” by Tran38

[1996], referring to the fact that the discrepancy between scales was simply disregarded;39

data were collected at a fine scale, the numerical model was built at a much larger scale,40

each datum was assigned to a given block, and the whole block was assigned the datum41

value, even though the block may be several orders of magnitude larger than the volume42

support of the sample. This procedure induced a variability, at the numerical block43

scale, much larger than it should be, while at the same time some unresolved issues have44

prevailed like what to do when several samples fell in the same block.45
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To the best of our knowledge, the first work to attempt the coupling of upscaling and in-46

verse modeling is the upscaling-calibration-downscaling-upscaling approach by Tran et al.47

[1999]. In their approach, a simple averaging over a uniformly coarsened model is used48

to upscale the hydraulic conductivities. Then, the state information (e.g., dynamic piezo-49

metric head data) is incorporated in the upscaled model by the self-calibration technique50

[Gómez-Hernández et al., 1997]. The calibrated parameters are downscaled back to the51

fine scale by block kriging [Behrens et al., 1998] resulting in a fine scale realization condi-52

tional to the measured parameters (e.g., hydraulic conductivities). Finally, the downscaled53

conductivities are upscaled using a more precise scheme [Durlofsky et al., 1997; Li et al.,54

2011a] for prediction purposes. The main shortcoming of this approach is that the in-55

verse modeling is performed on a crude upscaled model, resulting in a downscaled model56

that will not honor the state data accurately. Tureyen and Caers [2005] proposed the57

calibration of the fine scale conductivity field by gradual deformation [Hu, 2000; Capilla58

and Llopis-Albert , 2009], but instead of solving the flow equation at the fine scale they59

used an approximate solution after upscaling the hydraulic conductivity field to a coarse60

scale. This process requires an upscaling for each iteration of the gradual deformation61

algorithm, which is also time-consuming, although they avoid the fine scale flow solution.62

More recently, an alternative multiscale inverse method [Fu et al., 2010] was proposed. It63

uses a multiscale adjoint method to compute sensitivity coefficients and reduce the compu-64

tational cost. However, like traditional inverse methods, the proposed approach requires65

a large amount of CPU time in order to get an ensemble of conditional realizations. In66

our understanding, nobody has attempted to couple upscaling and the ensemble Kalman67

filtering (EnKF) for generating hydraulic conductivity fields conditioned to both hydraulic68
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conductivity and piezometric head measurements. Only the work by Peters et al. [2010]69

gets close to our work as. For the Brugge Benchmark Study, they generated a fine scale70

permeability field, which was upscaled using a diagonal tensor upscaling. The resulting71

coarse scale model was provided to the different teams participating in the benchmark72

exercise, some of which used the EnKF for history matching. We have chosen the EnKF73

algorithm for the inverse modeling because it has been shown that it is faster than other74

alternative Monte Carlo-based inverse modeling methods (see for instance the work by75

Hendricks Franssen and Kinzelbach [2009] who show that the EnKF was 80 times fastar76

than the sequential self-calibration in a benchmark exercise and nearly as good).77

Our aim is to propose an approach for the stochastic inverse modeling of an aquifer that78

has been characterized at a scale at which it is impossible to solve the inverse problem, due79

to the large number of cells needed to discretize the domain. We start with a collection of80

hydraulic conductivity and piezometric head measurements, taken at a very small scale,81

to end with an ensemble of hydraulic conductivity realizations, at a scale much larger82

than the one at which data were originally sampled, all of which are conditioned to the83

measurements. This ensemble of realizations will serve to perform uncertainty analyses of84

both the parameters (hydraulic conductivities) and the system state variables (piezometric85

heads, fluxes, concentrations, or others).86

The rest of the paper is organized as follows. Section 2 outlines the coupling of upscaling87

and the EnKF, with emphasis in the use of arbitrary hydraulic conductivity tensors in the88

numerical model. Next, in section 3, a synthetic example serves to validate the proposed89

method. Then, in section 4, the results are discussed. The paper ends with a summary90

and conclusions.91
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2. Methodology

Hereafter, we will refer to a fine scale for the scale at which data are collected, and92

a coarse scale, for the scale at which the numerical models are built. The methodology93

proposed can be outlined as follows:94

1. At the fine scale, generate an ensemble of realizations of hydraulic conductivity95

conditioned to the hydraulic conductivity measurements.96

2. Upscale each one of the fine scale realizations generated in the previous step. In the97

most general case, the upscaled conductivities will be full tensors in the reference axes.98

3. Use the ensemble of coarse realizations with the EnKF to condition (assimilate) on99

the measured piezometric heads.100

2.1. Generation of the Ensemble of Fine Scale Conductivities

The first step of the proposed methodology makes use of geostatistical tools already101

available in the literature [e.g., Gómez-Hernández and Srivastava, 1990; Deutsch and102

Journel , 1998; Strebelle, 2002; Mariethoz et al., 2010]. The technique to choose will103

depend on the underlying random function model selected for the hydraulic conductivity:104

multi-Gaussian, indicator-based, pattern-based, or others. In all cases, the scale at which105

these fields can be generated is not an obstacle, and the resulting fields will be conditioned106

to the measured hydraulic conductivity measurements (but only to hydraulic conductivity107

measurements). These fields could have millions of cells and are not suitable for inverse108

modeling of groundwater flow and solute transport.109

2.2. Upscaling
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Each one of the realizations generated in the previous step is upscaled onto a coarse

grid with a number of blocks sufficiently small for numerical modeling. We use the flow

upscaling approach by Rubin and Gómez-Hernández [1990] who, after spatially integrating

Darcy’s law over a block V ,

1

V

∫

V

q̄dV = −Kb
( 1

V

∫

V

∇h dV
)

, (1)

define the block conductivity tensor (Kb) as the tensor that best relates the block average110

head gradient (∇h) to the block average specific discharge vector (q̄) within the block.111

Notice that to perform the two integrals in the previous expressions we need to know the112

specific discharge vectors and the piezometric head gradients at the fine scale within the113

block. These values could be obtained after a solution of the flow problem at the fine scale114

[i.e., White and Horne, 1987], but this approach beats the whole purpose of upscaling,115

which is to avoid such fine scale numerical simulations. The alternative is to model a116

smaller domain of the entire aquifer enclosing the block being upscaled. In such a case,117

the boundary conditions used in this reduced model will be different from the boundary118

conditions that the block has in the global model, and this will have some impact on the119

fine scale values of ∇h and q̄. The dependency of the heads and flows within the block120

on the boundary conditions is the reason why the block upscaled tensor is referred to as121

non-local [e.g., Indelman and Abramovich, 1994; Guadagnini and Neuman, 1999].122

For the flow upscaling we adopt the so-called Laplacian-with-skin method on block inter-123

faces as described by Gómez-Hernández [1991] and recently extended to three dimensions124

by Zhou et al. [2010]. The two main advantages of this approach are that it can handle125

arbitrary full conductivity tensors, without any restriction on their principal directions;126

and that it upscales directly the volume straddling between adjacent block centers, which,127
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at the end, is the parameter used in the standard finite-difference approximation of the128

groundwater flow equation (avoiding the derivation of this value by some kind of averaging129

of the adjacent block values). Once the interblock conductivities have been computed, a130

specialized code capable of handling interblock tensors is necessary. For this purpose, the131

public domain code FLOWXYZ3D [Li et al., 2010], has been developed. The details of132

the upscaling approach, the numerical modeling using interblock conductivity tensors, and133

several demonstration cases can be found in Zhou et al. [2010]; Li et al. [2010, 2011a, b].134

The resulting upscaled interblock tensors produced by this approach are always of rank135

two, symmetric and positive definite.136

The Laplacian-with-skin method on block interfaces for a given realization can be briefly137

summarized as follows:138

• Overlay a coarse grid on the fine scale hydraulic conductivity realization.139

• Define the interblock volumes that straddle any two adjacent blocks.140

• For each interblock:141

– Isolate the fine scale conductivities within a volume made up by the interblock plus142

an additional “border ring” or “skin” and simulate flow, at the fine scale, within this143

volume.144

– As explained in many studies [e.g, Gómez-Hernández , 1991; Sánchez-Vila et al.,145

1995; Sánchez-Vila et al., 2006; Zhou et al., 2010; Li et al., 2011a], there is a need to solve146

more than one flow problem in order to being able of identifying all components of the147

interblock conductivity tensor.148

– From the solution of the flow problems, use Equation (1) to derive the interblock149

conductivity tensor.150
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• Assemble all interblock tensors to build a realization of upscaled hydraulic conduc-151

tivity tensors at the coarse scale.152

The above procedure has to be repeated for all realizations, ending up with an ensemble153

of realizations of interblock conductivity tensors.154

2.3. The EnKF with Hydraulic Conductivity Tensors

Extensive descriptions of the EnKF and how to implement it have been given, for155

instance, by Burgers et al. [1998]; Evensen [2003]; Naevdal et al. [2005]; Chen and Zhang156

[2006]; Aanonsen et al. [2009]. Our contribution, regarding the EnKF, is how to deal157

with an ensemble of parameters that, rather than being scalars, are tensors. After testing158

different alternatives, we finally decided not to use the tensor components corresponding159

to the Cartesian reference system as parameters within the EnKF, but to use some of160

the tensor invariants, more precisely, the magnitude of the principal components and the161

angles that define their orientation.162

For the example discussed later we will assume a two-dimensional domain, with hy-

draulic conductivity tensors varying in space K = K(x) of the form

K =

[

Kxx Kxy

Kxy Kyy

]

. (2)

Each conductivity tensor is converted onto a triplet {Kmax, Kmin, θ}, with Kmax being the163

largest principal component, Kmin, the smallest one, and θ, the orientation, of the maxi-164

mum principal component with respect to the x-axis according to the following expressions165
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[Bear , 1972]:166

Kmax =
Kxx +Kyy

2
+

[

(

Kxx −Kyy

2

)2

+

(

Kxy

)2
]1/2

,

Kmin =
Kxx +Kyy

2
−
[

(

Kxx −Kyy

2

)2

+

(

Kxy

)2
]1/2

, (3)

θ =
1

2
arctan

(

2Kxy

Kxx −Kyy

)

.

After transforming all conductivity tensors obtained in the upscaling step onto their167

corresponding triplets, we are ready to apply the EnKF. We will use the EnKF im-168

plementation with an augmented state vector as discussed below; this is the standard169

implementation used in petroleum engineering and hydrogeology, although alternative170

implementations and refinements of the algorithm could have been used [see Aanonsen171

et al., 2009, for a review].172

Using the EnKF nomenclature, the state of the system is given by the spatial distribu-

tion of the hydraulic heads, the state transition equation is the standard flow equation

describing the movement of an incompressible fluid in a fully saturated porous medium

[Bear , 1972; Freeze and Cherry , 1979] (in two dimensions for the example considered

later), and the parameters of the system are the spatially varying hydraulic conductivities

(the storage coefficient is assumed to be homogeneous and known, and therefore, it is a

parameter not subject to filtering), i.e.,

Yk = f(Xk−1,Yk−1), (4)

where Yk is the state of the system at time step tk, f represents the groundwater flow173

model (including boundary conditions, external stresses, and known parameters), and174

Xk−1 represents the model parameters after the latest update at time tk−1.175

The EnKF algorithm will proceed as follows:176
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1. Forecast. Equation (4) is used to forecast the system states for the next time step177

given the latest state and the latest parameter update. This forecast has to be performed178

in all realizations of the ensemble.179

2. Analysis. At the forecasted time step, new state observations are available at mea-180

surement locations. The discrepancy between these state observations and the forecasted181

values will serve to update both the parameter values and the system state at all locations182

in the aquifer model as follows:183

(i) Build the joint vector Ψk, including parameters and state values. This vector can

be split into as many members as there are realizations in the ensemble, with

Ψk,j =

[

X

Y

]

k,j

(5)

being the jth ensemble member at time tk. Specifically, X (for a realization) is expressed

as:

X = [(lnKmax, lnKmin, θ)1, . . . , (lnKmax, lnKmin, θ)Nb
]T (6)

where Nb is the number of interfaces in the coarse numerical model. Notice that the184

logarithm of the conductivity principal components is used, since their distribution is,185

generally, closer to Gaussian than that of the conductivities themselves, which results186

in the optimality in the performance of the EnKF [Evensen, 2003; Zhou et al., 2011b;187

Schöniger et al., 2011].188

(ii) The joint vector Ψk is updated, realization by realization, by assimilating the

observations (Yobs
k ):

Ψa
k,j = Ψ

f
k,j +Gk

(

Yobs
k + ǫ−HΨ

f
k,j

)

, (7)
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where the superscripts a and f denote analysis and forecast, respectively; ǫ is a random

observation error vector; H is a linear operator that interpolates the forecasted heads to

the measurement locations, and, in our case, is composed of 0′s and 1′s since we assume

that measurements are taken at block centers. Therefore, equation (7) can be rewritten

as:

Ψa
k,j = Ψ

f
k,j +Gk

(

Yobs
k + ǫ−Y

f
k,j

)

, (8)

where the Kalman gain Gk is given by:

Gk = P
f
kH

T
(

HP
f
kH

T +Rk

)

−1

, (9)

where Rk is the measurement error covariance matrix, and P
f
k contains the covariances189

between the different components of the state vector. Pf
k is estimated from the ensemble190

of forecasted states as:191

P
f
k ≈ E

[

(

Ψ
f
k,j −Ψ

f

k,j

)(

Ψ
f
k,j −Ψ

f

k,j

)T
]

(10)

≈
Ne
∑

j=1

(

Ψ
f
k,j −Ψ

f

k,j

)(

Ψ
f
k,j −Ψ

f

k,j

)T

Ne

,

where Ne is the number of realizations in the ensemble, and the overbar denotes average192

through the ensemble.193

In the implementation of the algorithm, it is not necessary to calculate explicitly the full194

covariance matrix P
f
k , since the matrix H is very sparse, and, consequently, the matrices195

P
f
kH

T and HP
f
kH

T can be computed directly at a strongly reduced CPU cost.196

3. The updated state becomes the current state, and the forecast-analysis loop is started197

again.198

The question remains whether the updated conductivity-tensor realizations preserve the199

conditioning to the fine scale conductivity measurements. In standard EnKF, when no up-200
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scaling is involved and conductivity values are the same in all realizations at conditioning201

locations, the forecasted covariances and cross-covariances involving conditioning points202

are zero, and so is the Kalman gain at those locations; therefore, conductivities remain203

unchanged through the entire Kalman filtering. In our case, after upscaling the fine-scale204

conditional realizations, the resulting ensemble of hydraulic conductivity tensor realiza-205

tions will display smaller variances (through the ensemble) for the tensors associated with206

interfaces close to the fine scale measurements than for those far from the measurements.207

These smaller variances will result in a smaller Kalman gain in the updating process at208

these locations, and therefore will induce a soft conditioning of the interblock tensors on209

the fine scale measurements.210

The proposed method is implemented in the C software Upscaling-EnKF3D, which is211

used in conjunction with the finite-difference program FLOWXYZ3D [Li et al., 2010] in the212

forecasting step. From an operational point of view, the proposed approach is suitable for213

parallel computation both in terms of upscaling and EnKF, since each ensemble member214

is treated independently, except for the computation of the Kalman gain.215

2.4. CPU time analysis

Without a CPU analysis, we can argue that the coupling of upscaling with the EnKF216

is of interest because it allows to analyze problems that otherwise could not be handled217

simply because the size of the numerical model is not amenable to the available computer218

resources. In our case, with our resources, we could not run any flow model with more219

than 108 nodes. However, even for those models for which we could run the fine scale flow220

simulation, the CPU time savings associated to the upscaling approach are considerable221
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and worth considering for fine scale models with more than a few tens of thousands of222

nodes.223

We performed a conservative analysis of CPU time savings in which only the CPU time224

spent in the flow simulations is considered, the savings will be larger when the time needed225

to estimate the ensemble covariance and the Kalman gain are considered. We run several226

flow simulations for model sizes ranging from 104 to 107 nodes, for different realizations227

of the hydraulic conductivities with the same statistical characteristics as the examples228

that will be shown later. The regression of the CPU times with respect to the number of229

nodes (Figure 1) gives the following expression:230

CPUt = 10−5Ncells (11)

A conservative CPU time analysis has been performed in order to231

3. Application Example

In this section, a synthetic experiment illustrates the effectiveness of the proposed cou-232

pling of EnKF and upscaling.233

3.1. Reference Field

We generate a realization of hydraulic conductivity over a domain discretized into 350234

by 350 cells of 1 m by 1 m using the code GCOSIM3D [Gómez-Hernández and Journel ,235

1993].236

We assume that, at this scale, conductivity is scalar and its natural logarithm, lnK, can

be characterized by a multiGaussian distribution of mean -5 (ln cm/s) and unit variance,

with a strong anisotropic spatial correlation at the 45◦ orientation. The correlation range
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in the largest continuity direction (x′) is λx′ = 90 m and in the smallest continuity direction

(y′) is λy′ = 18 m. The Gaussian covariance function is given by:

γ(r) = 1.0 ·
{

1− exp

[

−
√

(3rx′

90

)2

+
(3ry′

18

)2

]}

, (12)

with
[

rx′

ry′

]

=

[

1/
√
2 1/

√
2

−1/
√
2 1/

√
2

][

rx
ry

]

, (13)

and r = (rx, ry) being the separation vector in Cartesian coordinates. The reference237

realization is shown in Figure 4A. From this reference realization 100 conductivity data238

are sampled at the locations shown in Figure 4B. These data will be used for conditioning.239

The forward transient groundwater flow model is run in the reference realization with240

the boundary conditions shown in Figure 5 and initial heads equal to zero everywhere.241

The total simulation time is 500 days, discretized into 100 time steps following a geometric242

sequence of ratio 1.05. The aquifer is confined. Specific storage is assumed constant and243

equal to 0.003 m−1. The simulated piezometric heads at the end of time step 60 (67.7244

days) are displayed in Figure 6. Piezometric heads at locations W1 to W9 in Figure 5 are245

sampled for the first 60 time steps to be used as conditioning data. The simulated heads246

at locations W10 to W13 will be used as validation data.247

3.2. Hydraulic Conductivity Upscaling

For the reasons explained by Zhou et al. [2010]; Li et al. [2010], the fine scale realizations248

must be slightly larger than the aquifer domain in order to apply the Laplacian-with-skin249

upscaling approach. We assume that the aquifer of interest is comprised by the inner250

320 by 320 cell domain for all realizations. Each one of these realizations is upscaled251

onto a 32 by 32 square-block model implying an order-of-two magnitude reduction in the252

D R A F T November 18, 2011, 1:49pm D R A F T



X - 16 LI ET AL.: MODELING TRANSIENT GROUNDWATER FLOW BY COUPLING ENKF AND UPSCALING

discretization of the aquifer after upscaling. After several tests, the skin selected for the253

upscaling procedure has a width of 10 m, since it is the one that gives best results in the254

reproduction of the interblock specific discharges when compared to those computed on255

the fine scale underlying realizations.256

Since the upscaling is applied to the interblock volume straddling between adjacent257

block centers, there are 32 by 31 column-to-column interblock tensors (Kb,c) plus 31 by258

32 row-to-row interblock tensors (Kb,r). All interblock tensors are transformed into their259

corresponding triplet of invariants prior to starting the EnKF algorithm.260

For illustration purposes, Figure 7 shows the resulting triplets for the reference field.261

This figure will be used later as the reference upscaled field to analyze the performance262

of the proposed method. On the right side of Figure 6, the simulated piezometric heads263

at the end of the 60th time step are displayed side by side with the simulated piezometric264

heads at the fine scale. The reproduction of the fine scale spatial distribution by the265

coarse scale simulation is, as can be seen, very good; the average absolute discrepancy266

between the heads at the coarse scale and heads at the fine scale (on the block centers) is267

only 0.087 m.268

3.3. Case Studies

Four cases, considering different types of conditioning information, are analyzed to269

study the performance of the proposed approach (see Table 1). They will show that270

the coupling of the EnKF with upscaling can be used to construct aquifer models that271

are conditional to conductivity and piezometric head data, when there is an important272

discrepancy between the scale at which the data are collected and the scale at which the273

flow model is built. The cases will serve also to carry out a standard worth-of-data exercise274
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in which we analyze the trade-off between conductivity data and piezometric head data275

regarding aquifer characterization.276

Case A is unconditional, 200 realizations are generated according to the spatial corre-277

lation model given by Equation (11) at the fine scale. Upscaling is performed in each278

realization and the flow model is run. No Kalman filtering is performed.279

Case B is conditional to logconductivity measurements, 200 realizations of logconduc-280

tivity conditional to the 100 logconductivity measurements of Figure 3B are generated at281

the fine scale. Upscaling is performed in each realization and the flow model is run. No282

Kalman filtering is performed.283

Cases A and B act as base cases to be used for comparison when the piezometric head284

data are assimilated through the EnKF.285

Case C is conditional to piezometric heads. The same 200 coarse realizations from Case286

A serve as the initial ensemble of realizations to be used by the EnKF to assimilate the287

piezometric head measurements from locations W1 to W9 for the first 60 time steps (66.7288

days).289

Case D is conditional to both logconductivity and piezometric heads. The same 200290

coarse realizations from Case B serve as the initial ensemble of realizations to be used by291

the EnKF to assimilate the piezometric head measurements from locations W1 to W9 for292

the first 60 time steps (66.7 days).293

In Cases C and D we use the measured heads obtained at the fine scale in the reference294

realization as if they were measurements obtained at the coarse scale. There is an error295

in this assimilation that we incorporate into the measurement error covariance matrix.296

Specifically we here assumed a diagonal error covariance matrix, with all the diagonal297
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terms equal to 0.0025 m2; this value is approximately equal to the average dispersion298

variance of the fine scale piezometric heads within the coarse scale blocks.299

3.4. Performance Measurements

Since this is a synthetic experiment, the “true” aquifer response, evaluated at the fine300

scale, is known. We also know the upscaled conductivity tensors for the reference aquifer,301

which we will use to evaluate the performance of the updated conductivity tensors pro-302

duced by the EnKF.303

The following criteria, some of which are commonly applied for optimal design evalua-304

tion [Nowak , 2010], will be used to analyze the performance of the proposed method and305

the worth of data:306

1. Ensemble mean map. (It should capture the main patterns of variability of the307

reference map.)308

2. Ensemble variance map. (It gives an estimate of the precision of the maps.)309

3. Ensemble average absolute bias map, ǫX , made up by:

ǫXi
=

1

Ne

Ne
∑

r=1

|Xi,r −Xi,ref |, (14)

where Xi is the parameter being analyzed, at location i, Xi,r represents its value for310

realization r, Xi,ref is the reference value at location i, and Ne is the number of realizations311

of the ensemble (200, in this case). (It gives an estimate of the accuracy of the maps.)312

4. Average absolute bias

AAB(X) =
1

Nb

Nb
∑

i=1

ǫXi
, (15)
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where Nb is the number of interblocks when X is coarse logconductivity tensor component,313

or the number of blocks when X is piezometric head. (It gives a global measure of314

accuracy.)315

5. Square root of the average ensemble spread

AESP (X) =

[

1

Nb

Nb
∑

i=1

σ2
Xi

]1/2

, (16)

where σ2
Xi

is the ensemble variance at location i. (It gives a global measure of precision.)316

6. Comparison of the time evolution of the piezometric heads at the conditioning317

piezometers W1 to W9, and at the control piezometers W10 to W13. (It evaluates the318

capability of the EnKF to update the forecasted piezometric heads using the measured319

values.)320

4. Discussion

Ensembles of coarse realizations for the four cases have been generated according to321

the conditions described earlier. Figure 8 shows the evolution of the piezometric heads in322

piezometers W1 and W9 for the 500 days of simulation; the first 60 steps (66.7 days) were323

used for conditioning in cases C and D. Similarly, Figure 9 shows piezometers W10 and324

W13; these piezometers were not used for conditioning. Figure 10 shows the ensemble325

mean and variance of the piezometric heads at the 60th time step, while Figure 11 shows326

the ensemble average absolute bias. Figure 12 shows the ensemble mean and variance of327

ln(Kmax) for interblocks between rows, and Figure 13 shows the ensemble average absolute328

bias. Finally, Table 2 shows the metric performance measurements for ln(Kmax) between329

rows and for piezometric heads at the 30th, 60th and 90th time steps.330

4.1. The EnKF Coupled with Upscaling
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The EnKF has the objective of updating conductivity realizations so that the solution331

of the flow equation on the updated fields will match the measured piezometric heads.332

Analyzing cases C and D in Figure 8, we can observe how the updated fields, when333

piezometric head is assimilated by the EnKF, produce piezometric head predictions that334

reproduce the measured values very well, particularly when compared with case A, which335

corresponds to the case in which no conditioning data are considered. Notice also that336

piezometric head data are assimilated only for the first 66.7 days (the period in which the337

heads are almost perfectly reproduced in the EnKF updated fields) while the rest of the338

simulation period serves as validation. Additional validation of the EnKF generated real-339

izations is given in Figure 9 that shows two of the piezometers not used for conditioning;340

we can also observe the improvement in piezometric head reproduction for cases C and D341

as compared to case A. Furthermore, the analysis of Figure 10 shows how, for cases C and342

D, the average spatial distribution, at the end of time step 60, follows closely the reference343

piezometric head distribution, while the ensemble variance is reduced to very small values344

everywhere. The ensemble average head bias is also noticeably reduced when conditioning345

to heads, not just at the conditioning locations (as expected) but also elsewhere. A final346

analysis to show how conditioning to the heads improves the overall reproduction of the347

head spatial distribution is by looking at the metrics displayed in Table 2. Comparing348

cases B and C, it is interesting to notice the increasing impact of the conditioning to349

piezometric heads as time passes; at time step 30, the initial effect of just conditioning to350

hydraulic conductivity measurements (which occurs from time step 0 ) is still larger than351

just conditioning to the heads measured during the first 30 time steps, but at time step352

60, this effect is clearly reversed, and it is maintained to time step 90 even though the353

D R A F T November 18, 2011, 1:49pm D R A F T



LI ET AL.: MODELING TRANSIENT GROUNDWATER FLOW BY COUPLING ENKF AND UPSCALING X - 21

heads between steps 60 and 90 are not used for conditioning. As expected, conditioning354

to both piezometric heads and hydraulic conductivities gives the best results in terms of355

smallest bias and smallest spread.356

From this analysis we conclude that the EnKF coupled with upscaling is able to generate357

an aquifer model at a scale two orders of magnitude coarser than the reference aquifer358

scale that is conditional to the piezometric heads.359

Besides achieving the original goal of the EnKF algorithm, it is also important to360

contrast the final conductivity model given by the EnKF, with the reference aquifer model.361

For this purpose we will compare the final ensemble of realizations obtained for cases362

C and D with the upscaled realization obtained from the reference, fine scale aquifer363

model. Conditioning to piezometric head data should improve the characterization of364

the logconductivities. Indeed, this is what happens as it can be seen when analyzing365

Figures 12 and 13 and Table 2. In these figures only the maximum component of the366

logconductivity tensors for the interblocks between rows is displayed, but the members367

of the triplet for the tensor between rows, as well as the members of the triplet for the368

tensors between columns, show a similar behavior. The ensemble mean maps are closer369

to the reference map in case that conditioning data are used; the variance maps display370

smaller values as compared to case A; and the bias map shows values closer to zero than in371

case A. All in all, we can conclude that the EnKF updates the block conductivity tensors372

to produce realizations which get closer to the aquifer model obtained after upscaling the373

reference aquifer.374

There remains the issue of conditioning to the fine scale conductivity measurements.375

Since the fine scale conductivity measurements were used to condition the fine scale real-376
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izations, the conditioning should be noticed in the upscaled model only if the correlation377

scale of the conductivity measurements is larger than the upscaled block size. In such a378

case (as is the case for the example), the ensemble variance of the upscaled block con-379

ductivity values should be smaller for blocks close to conditioning datum locations than380

for those away from the conditioning points. Otherwise, if the correlation length is much381

smaller than the block size, then all blocks have a variance reduction of the same magni-382

tude and the impact of the conditioning data goes unnoticed. Case B is conditioned only383

on the fine scale logconductivity measurements. Comparing cases A and B in Figure 12384

and in Table 2 we notice that for the unconditional case, the ensemble mean of ln(Kmax)385

between rows is spatially homogeneous and so is the variance; however, as soon as the386

fine scale conductivity data are used for the generation of the fine scale realizations, the387

ensemble of upscaled realizations displays the effects of such conditioning, the ensem-388

ble mean starts to show patterns closer to the patterns in the upscaled reference field389

(Figure 7), and the ensemble variance becomes smaller for the interblocks closer to the390

conditioning measurements. Analyzing case D in Figure 12, which takes the ensemble of391

realizations from case B and updates it by assimilating the piezometric head measurements392

at piezometers W1 to W9, we conclude that the initial conditioning effect (to hydraulic393

conductivity data) is reinforced by the new conditioning data, the patterns observed in394

the ensemble mean maps are even closer to the patterns in the reference realization, and395

the ensemble variance remains small close to logconductivity conditioning locations and,396

overall, is smaller than for case B.397

Finally, when no conductivity data are used to condition the initial ensemble of re-398

alizations, conditioning to piezometric heads through EnKF also serves to improve the399
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characterization of the logconductivities as can be seen analyzing case C in Figure 12 and400

Table 2. Some patterns of the spatial variability of ln(Kmax) are captured by the ensem-401

ble mean and the ensemble variance is reduced with respect to the unconditional case,402

although in a smaller magnitude than when logconductivity data are used for conditioning.403

From this analysis we conclude that conditioning to piezometric head data by the EnKF404

coupled with upscaling improves the characterization of aquifer logconductivities whether405

conductivity data are used for conditioning or not.406

It should be emphasized that, since the EnKF algorithm starts after the upscaling of407

the ensemble of fine scale realizations ends, the EnKF-coupled-with-upscaling performance408

will be much restricted by the quality of the upscaling algorithm. It is important to use409

as accurate an upscaling procedure as possible in the first step of the process, otherwise410

the EnKF algorithm may fail. An interesting discussion on the importance of the choice411

of upscaling can be read in the study of the MADE site by Li et al. [2011a].412

4.2. Worth of Data

We can use the results obtained to make a quick analysis of the worth of data in413

aquifer characterization, which confirms earlier findings [e.g., Capilla et al., 1999; Wen414

et al., 2002; Hendricks Franssen, 2001; Hendricks Franssen et al., 2003; Fu and Gómez-415

Hernández , 2009; Li et al., 2011c] and serves to show that the proposed approach works416

as expected. By analyzing Figures 8, 9, 10, 11, 12, and 13, and Table 2, we can conclude417

that conditioning to any type of data improves the characterization of the aquifer conduc-418

tivities, and improves the characterization of the state of the aquifer (i.e., the piezometric419

heads). The largest improvement occurs when both, hydraulic conductivity and piezo-420

metric head measurements are used. These improvements can be seen qualitatively on421
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the ensemble mean maps, which are able to display patterns closer to those in the ref-422

erence maps; on the ensemble variance maps, which display smaller values than for the423

unconditional case; and on the ensemble average bias maps, which also show reduced bias424

when compared with the unconditional case. Quantitatively, the same conclusions can be425

made by looking at the metrics in the Table. The reproduction of the piezometric heads426

also improves when conditioning to any type of data.427

It is also interesting to analyze the trade-off between conductivity data and piezometric428

head data by comparing cases B and C. As expected, the characterization of the spatial429

variability of hydraulic conductivity is better when conductivity data are used for con-430

ditioning than when piezometric head are; also, as expected, the opposite occurs for the431

characterization of the piezometric heads.432

4.3. Other Issues

We have chosen a relatively small-sized fine scale model to demonstrate the method-433

ology, since we needed the solution at the fine scale to create the sets of conditioning434

data and to verify that the coarse scale models generated by the proposed approach give435

good approximations of the “true” response of the fine scale aquifer. We envision that the436

proposed approach should be used only when the implementation of the numerical model437

and the EnKF are impractical at the fine scale.438

To our understanding, it is the first time that the EnKF is applied on an aquifer with439

conductivities characterized by full tensors. The approach of representing the tensors by440

their invariants seems to work in this context. More sophisticated EnKF implementations,441

such as double ensemble Kalman filter [Houtekamer and Mitchell , 1998], ensemble square442

root filter [Whitaker and Hamill , 2002], Kalman filter based on the Karhunen-Loeve de-443
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composition [Zhang et al., 2007], normal-score ensemble Kalman filter [Zhou et al., 2011b],444

could have been used, which would have worked equally well or better than the standard445

EnKF.446

The example has been demonstrated using a reference conductivity field that was gener-447

ated following a multiGaussian stationary random function. Could the method be applied448

to other types of random functions, i.e., non-multiGaussian or non-stationary? It could,449

as long as each step of the approach (see Section 2) could. More precisely, for the first450

step, the generation of the fine scale hydraulic conductivity measurements, there are al-451

ready many algorithms that can generate realizations from a wide variety of random452

functions, including non-multiGaussian and non-stationary; the second step is basically453

deterministic, we replace an assembly of heterogeneous values by an equivalent block ten-454

sor, the underlying random function used to generate the fine scale realizations has no455

interference on the upscaling; however, for the third step, the application of EnKF to456

non-multiGaussian parameter fields is more difficult, some researchers propose moving on457

to particle filtering [Arulampalam et al., 2002], some others have worked on variants of458

the EnKF to handle the non-multiGaussianity [e.g., Sun et al., 2009; Zhou et al., 2011b;459

Schöniger et al., 2011; Li et al., 2011d]; the non-stationarity is not an issue, since the460

EnKF deals, by construction, with non-stationary states.461

5. Conclusion

The “missing scale” issue brought out by Tran [1996] is still, today, much overlooked.462

Data, particularly conductivity data, are collected at smaller support volumes and in463

larger quantities than years ago, yet, when constructing a numerical model based on464
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these data, the discrepancy between the scale at which data are collected and the scale of465

the numerical model is most often disregarded.466

We have presented an approach to rigorously account for fine-scale conductivity mea-467

surements on coarse-scale conditional inverse modeling. The resulting model is composed468

of an ensemble of realizations of conductivity tensors at a scale (much) coarser than the469

scale at which conductivities were measured. The ensemble of final realizations is condi-470

tioned to both conductivity and piezometric head measurements. The latter conditioning471

is achieved by using the ensemble Kalman filter on realizations of conductivity tensors.472

To handle the tensor parameters, we propose to work with the invariants of the tensors,473

instead of their representations on a specific reference system, this approach allows the474

ensemble Kalman filter to perform a tensor updating which produces realizations that are475

conditioned to the transient piezometric head measurements.476
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Gómez-Hernández, J. J., and A. G. Journel (1993), Joint sequential simulation of multi-521

Gaussian fields, Geostatistics Troia, 92 (1), 85–94.522
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Hendricks Franssen, H. J., J. J. Gómez-Hernández, and A. Sahuquillo (2003), Coupled in-541

verse modelling of groundwater flow and mass transport and the worth of concentration542

data, Journal of Hydrology, 281 (4), 281–295.543

Houtekamer, P., and H. Mitchell (1998), Data assimilation using an ensemble kalman544

filter technique, Monthly Weather Review, 126 (3), 796–811.545

Hu, L. Y. (2000), Gradual deformation and iterative calibration of gaussian-related546

stochastic models, Math. Geology, 32 (1), 87–108.547

Indelman, P., and B. Abramovich (1994), Nonlocal properties of nonuniform averaged548

flows in heterogeneous media, Water Resour. Res., 30 (12), 3385–3393.549
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Li, L., H. Zhou, and J. J. Gómez-Hernández (2011b), Transport upscaling using multi-557

rate mass transfer in three-dimensional highly heterogeneous porous media, Advances558

in Water Resources, 34 (4), 478–489.559
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Zhou, H., J. J. Gómez-Hernández, H.-J. Hendricks Franssen, and L. Li (2011b), An625

approach to handling Non-Gaussianity of parameters and state variables in ensemble626

Kalman filter, Advances in Water Resources, 34 (7), 844–864.627

Zimmerman, D., G. De Marsily, C. Gotway, M. Marietta, C. Axness, R. Beauheim,628

R. Bras, J. Carrera, G. Dagan, P. Davies, et al. (1998), A comparison of seven geosta-629

tistically based inverse approaches to estimate transmissivities for modeling advective630

transport by groundwater flow, Water Resources Research, 34 (6), 1373–1413.631

D R A F T November 18, 2011, 1:49pm D R A F T



X - 34 LI ET AL.: MODELING TRANSIENT GROUNDWATER FLOW BY COUPLING ENKF AND UPSCALING

y = 1E-06x
1.3264

0

500

1000

1500

2000

2500

0. 0E+00 2. 0E+06 4. 0E+06 6. 0E+06 8. 0E+06 1. 0E+07

Number of cells

C
P

U
ti
m

e
[s

]

Figure 1. Regression of CPU time versus number of cells from several runs of MODFLOW on

heterogeneous realizations.
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Figure 2. CPU time as a function of upscaling ratio for a single time step modeling. Plots A,

B and C show, for different fine scale model sizes, the CPU time needed to run one single time

step in a fine scale model and the CPU times needed for the upscaling plus running the flow

model for different sizes of the upscaling block. Plot D shows the ratio of CPU time between the

fine scale and the coarse scale, the larger the ratio, the larger the savings.
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Figure 3. CPU time as a function of the number of time steps modeled. Plots A, B and C

show, for a fine scale model of 105 nodes, and for an upscaled model of 103 blocks (upscaling

ratio of 100), the CPU time needed to run the fine and coarse scale models as a function of the

number of time steps. Plot D shows the ratio of CPU time between the fine scale and the coarse

scale, the larger the ratio, the larger the savings.
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Figure 5. Sketch of the flow problem with boundary conditions, observation and prediction

wells. Empty squares correspond to the piezometric head observation wells (W1-W9); filled

squares correspond to the control wells (W10-W13).
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Figure 6. Reference piezometric head at the 60th time step. Left, as obtained at the fine

scale; right, as obtained at the coarse scale
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Figure 7. Upscaled values for the interblock tensor components: ln(Kmax), ln(Kmin) and

rotation angle for the maximum component measured from the x-axis θ (in degrees), for both

the interblocks between columns and the interblocks between rows. Upscaling method used:

Laplacian with a skin of 10 m
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Figure 8. Piezometric head time series in the reference field and simulated ones for all cases at

wells W1 (left column) and W9 (right column). The piezometric heads measured at these wells

during the first 67.7 days were used as conditioning data for cases B and D.
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Figure 9. Piezometric head time series in the reference field and simulated ones for all cases

at control wells W10 (left column) and W13 (right column). These wells were not used as

conditioning data for any case.
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Figure 10. Ensemble average and variance of piezometric heads for the different cases.
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Figure 11. Ensemble average absolute bias of piezometric heads for the different cases.
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Figure 12. Ensemble average and variance of ln(Kmax) for the different cases.
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Figure 13. Ensemble average absolute bias of ln(Kmax) for the different cases.
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Table 1. Definition of Cases depending on the the different sets of conditioning data.

Conditioning Data Case A Case B Case C Case D
Hydraulic conductivities(K) No Yes No Yes
Dynamic piezometric heads(h) No No Yes Yes

Table 2. Bias and spread of predicted heads at time steps 30, 60 and 90 and of updated

loghydraulic conductivity lnKb,r
max at time step 60.

Case A Case B Case C Case D
AAB(hnt=30) 0.189 0.119 0.124 0.118
AESP (hnt=30) 0.201 0.132 0.111 0.086
AAB(hnt=60) 0.580 0.256 0.224 0.195
AESP (hnt=60) 0.533 0.323 0.186 0.146
AAB(hnt=90) 0.672 0.281 0.236 0.204
AESP (hnt=90) 0.627 0.355 0.195 0.153
AAB(lnKmax) 0.452 0.306 0.417 0.296
AESP (lnKmax) 0.805 0.660 0.702 0.594

D R A F T November 18, 2011, 1:49pm D R A F T


