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Factorizing kernel operators

O. Galdames Bravo and E. A. Sánchez Pérez

Abstract. Consider an operator T : X(µ) → Y (µ) between Banach function spaces
having adequate order continuity and Fatou properties. Assume that T can be fac-
torized through a Banach space as T = R ◦S, where R and the adjoint of S are p-th
power and q-th power factorable, respectively. Then a canonical factorization scheme
can be given for T . We show that it provides a tool for analyzing T that becomes
specially useful for the case of kernel operators. In particular, we show that this
square factorization scheme for T is equivalent to some inequalities for the bilinear
form defined by T . Kernel operators are studied from this point of view.

Primary 46E30, Secondary 47B38, 46B42, 46B28
Banach function spaces, Köthe duality, p-th power factorable operators, factoriza-

tion, kernel operators.

1. Introduction

The class of p-th power factorable operators has shown to be a convenient tool for ana-
lyzing certain factorization properties of operators between Banach function spaces (see
Chapter 5 in [9]). For instance, relevant operators coming from the Fourier analysis as
convolution operators and the Fourier transform are examples of such kind of linear
maps (see Chapter 7 in [9]). Essentially, this class is defined by an extension property
that allows to factorize an operator T : X(µ) → Y (µ) between two Banach function
spaces through the p-th power X(µ)[p] of X(µ). Interesting properties of linear maps
satisfying such requirement can be proved by means of this factorization scheme and its
characterizations via spaces of p-integrable functions with respect to a vector measure.

In this paper we use this technique to provide some factorization diagrams for kernel
operators. In order to do that, it is shown to be necessary to develop the duality theory
of p-th power factorable operators. We show in Section 2 some basic definitions and some
examples and results on p-th power factorable kernel operators that can be obtained
using the duality formula for p-th powers of Banach function spaces. Section 3 is devoted
to present our main factorization theorem for operators satisfying some p-th power and
q-th power factorability properties for T and for its adjoint operator T ∗, respectively.

Support of the Ministerio de Ciencia e Innovación under project #MTM2009-14483-C02-02 (Spain) is
gratefully acknowledged.
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This result (Theorem 3.7) involves also the spaces of p-integrable functions with respect
to a vector measure. Some examples and applications are also given. Finally, in Section
4 we provide the factorization schemes for kernel operators that can be obtained using
this technique.

2. Preliminaries and basic results

Let (Ω,Σ, µ) be a finite measure space. If p is a positive extended real number, we write
p′ for the real number satisfying 1/p + 1/p′ = 1. A Banach function space X(µ) over µ
(B.f.s. for short) is an ideal of the space of (equivalence classes of) measurable functions
L0(µ) endowed with a complete norm that is compatible with the µ-a.e. order and such
that L∞(µ) ⊆ X(µ) ⊆ L1(µ) (see p.28 in [8]). For the sake of simplicity we will write X
instead of X(µ) if the measure is clear in the context. Let m : Σ → E be a countably
additive vector measure, where E is a Banach space. For an element x′ of the dual space
E∗ of E, we define the scalar measure 〈m,x′〉 by 〈m,x′〉(A) := 〈m(A), x′〉, A ∈ Σ. We
write |〈m,x′〉| for the variation of the measure 〈m,x′〉, and ‖m‖ for the semivariation of
the vector measure m. A measure as |〈m,x′〉| that is equivalent to m —in the sense that
has the same null sets— is called a Rybakov measure for m. Such a measure always exists;
we refer to [5] for this notion, and for definitions and basic results on vector measures.

We say that a measurable function f is m-integrable if f ∈ L1(|〈m,x′〉|) for all
x′ ∈ E∗ and for all A ∈ Σ there exists a unique vector x0 ∈ E such that 〈x0, x

′〉 =∫
A

f d〈m,x′〉 for all x′ ∈ E∗; in this case the notation
∫

A
f dm := x0 is used. Let λ be a

Rybakov measure for m. The space of (equivalence classes of) m-integrable functions is
denoted by L1(m), which is a Banach function space over λ with the norm

‖f‖L1(m) := sup
x′∈BE∗

∫
|f | d|〈m,x′〉|, f ∈ L1(m).

The integration map Im : Lp(m) → E given by f  
∫
Ω

fdm is always well defined and
continuous.

A Banach function space X(µ) is order continuous if for every sequence (fn)n ⊂
X(µ), fn ≥ 0, such that fn ↓ 0 we have that ‖fn‖ ↓ 0. X(µ) has the Fatou property if
for every increasing sequence (fn)n ⊂ X(µ) such that fn ↑ f and supn ‖fn‖ < ∞, then
f ∈ X(µ) and limn ‖fn‖ = ‖f‖. The Banach space of all integral functionals on X(µ) is
the Köthe dual space and is denoted by X(µ)′. The topological dual is denoted by X(µ)∗.
In [8, p.29-30] we can find the following characterizations: X(µ) is order continuous if and
only if X(µ)′ = X(µ)∗ and X(µ) has the Fatou property if and only if X(µ)′′ = X(µ).

If 0 < p < ∞ and f ∈ L0(µ), we will use the notation fp for the function fp(w) :=
|f(w)|psign{f(w)}, w ∈ Ω. The p-th power space of a B.f.s. (X(µ), ‖ · ‖X(µ)) is the space

X(µ)[p] := {f ∈ L0(µ) : |f |1/p ∈ X(µ)}

which is a quasi-Banach function space with quasi-norm

‖f‖X(µ)[p]
:= ‖ |f |1/p‖

p

X(µ) .

This quasi-norm is equivalent to a norm if and only if X(µ) is q-convex (see Proposition
2.23 in [9] and [9, Ch.2] for definitions and basic properties of Banach function spaces).



Factorizing kernel operators 3

Recall that a Banach function space X(µ) is q-convex if there is a constant Kq such that
for every finite set f1, ..., fn ∈ X(µ), the inequality∥∥∥(

n∑
i=1

|fi|q)1/q
∥∥∥ ≤ Kq(

n∑
i=1

‖fi‖q)1/q

holds. It is q-concave if there is a constant Kq such that the converse inequality

(
n∑

i=1

‖fi‖q)1/q ≤ Kq‖(
n∑

i=1

|fi|q)1/q‖

holds. If µ is a finite measure then for every 1 ≤ p, X ⊆ X[p]. Throughout the paper
i[p] will denote this inclusion, that will be written as j[q] sometimes for the aim of clarity
when p-th power and q-th power factorable operators are be involved.

A particular case of p-th power spaces (1 ≤ p < ∞) are the spaces Lp(m) of p-
integrable functions with respect to the vector measure m, that are defined by Lp(m) :=
(L1(m))[1/p]. In this case, the p-th power quasi-norm gives in fact a norm, and Lp(m) ⊆
L1(m) . The (restricted) integration map will be denoted in this case by I

(p)
m : Lp(m) → E.

The next basic properties will be used in the paper. More information can be found
in Lemma 2.20, Lemma 2.21 and Proposition 2.23 in [9].

Lemma 2.1. Let X(µ) and Y (µ) be a couple of Banach function spaces. Then:
1. For all 0 < p, r < ∞ we have that

(
X(µ)[p]

)
[r]

= X(µ)[pr].

2. X(µ) ⊆ Y (µ) if and only if X(µ)[p] ⊆ Y (µ)[p] for some p ∈ (0,∞).
3. X(µ) is order continuous if and only if X(µ)[p] is o.c. for all p ∈ (0,∞).
4. If 0 < p ≤ q < ∞, then X(µ)[p] ⊆ X(µ)[q].

The natural definition of operators on Banach function spaces involving p-th powers
is the following.

Definition 2.2. Let 1 ≤ p < ∞, X(µ) an order continuous Banach function space, and
E a Banach space. We say that a linear and continuous operator T : X(µ) → E is p-th
power factorable if there exists a linear and continuous operator T[p] : X(µ)[p] → E, which
equals T on X(µ) ⊆ X(µ)[p]. In other words, the following diagram commutes

X(µ) T //
� r

i[p] $$HH
HH

HH
HH

H E

X(µ)[p]

T[p]

<<yyyyyyyyy

where i[p] is the continuous inclusion.

According to this factorization scheme, notice that for analyzing adjoint operators
some information on the dual of the space X(µ)[p] is required. Recall that for two Banach
function spaces X(µ) and Y (µ) the space of multipliers from X(µ) to Y (µ) is defined as
the space

X(µ)Y (µ) := {g ∈ L0(µ) : gX(µ) ⊆ Y (µ)}.
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If it is nontrivial, the operator norm provides a Banach function space structure for
X(µ)Y (µ) when the µ-almost everywhere order is considered. Notice that in particular
the Köthe dual of X(µ) is defined as

X(µ)′ = {g ∈ L0(µ) : gX(µ) ⊆ L1(µ)} ,

and so X(µ)′ = X(µ)L1(µ).
Let us show now a representation formula for the dual of the space X[p], which is

naturally related to the space X(µ)Lp(µ).

Remark 2.3. First, it is important to remark that for an index p ∈ (0,∞), p 6= 1, we
have in general that (X(µ)′)[p] 6= (X(µ)[p])′. To see this, assume that µ is a purely non
atomic finite measure. If (X(µ)′)[p] = (X(µ)[p])′, then X(µ)′ ⊆ (X(µ)′)[p] = (X(µ)[p])′ ⊆
X(µ)′, and due to Proposition 2.26 in [9], X(µ)′ = (X(µ)′)[p] = L∞(µ), which is true if
X(µ) = L1(µ). For p > 1 this would imply that X(µ)′ = (X(µ)[p])′ = (L1/p(µ))′ = {0}
(see [13, Ch.15]). If p < 1, we have that

L∞(µ) = L∞(µ)[p] = (X(µ)′)[p] = (X(µ)[p])
′ = L(1/p)′(µ) = L1/1−p(µ),

and so p = 1, which is a contradiction.

The main duality identification involving X[p] and XLp

is

(X(µ)[p])′ = (X(µ)Lp(µ))[p],

that holds for all p ∈ (0,∞) (see Proposition 2.29(ii),(iv) in [9]).

We finish this section with two results on sufficient conditions for the factorization
of kernel operators through p-th power spaces. Let us introduce some definitions and
notations on kernel operators. We say that a function K : Ω× Ω → R that is integrable
with respect to µ in each coordinate is a kernel function. Consider a couple of Banach
function spaces X(µ) and Y (µ), and assume that the formula

TK(f)(x) :=
∫

K(x, y)f(y) dµ(y)

defines a continuous map TK : X(µ) → Y (µ). Then we say that TK is a kernel operator.
We denote by ‖K‖X(µ)y = ‖K‖X(µ)y(x) to the function x ‖K(x, ·)‖X(µ); ‖K‖X(µ)x

is defined in the same way for the second coordinate. Note that a necessary condition for
this to be well defined is that for all x ∈ Ω the corresponding function y  K(x, y) be-
longs to X(µ). In what follows this requirement is implicitly assumed when the functions
‖K‖X(µ)y and ‖K‖X(µ)x are considered. For the aim of simplicity, when X(µ) = Lq(µ)
we will write ‖K‖qy and ‖K‖qx.

Proposition 2.4. Let X(µ) be a Banach function subspace of Lp(µ), and Y (µ) be a p-
convex Banach function space with the Fatou property. Let K be a kernel function sat-
isfying that there is q ≥ p such that

∥∥‖K‖Y (µ)[q]x

∥∥
p′

< ∞. Then the kernel operator
TK : X(µ) → Y (µ) defined by K can be extended to the space Lp(µ).
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Proof. First note that ‖ · ‖q is p-concave, since q ≥ p. Then we can use the generalized
Minkowski inequality (see [12, Theorem 2.3]) and the integral Hölder inequality. Let
f ∈ X(µ). We have that

‖TK(f)‖Y (µ) =
∥∥∥∥∫

Ω

K(x, y)f(y) dµ(y)
∥∥∥∥

Y (µ)

≤
∥∥‖|K(x, y)|1/q|f(y)|1/q‖q

qy

∥∥
Y (µ)

≤ M
∥∥‖|K(x, y)|1/q|f(y)|1/q‖Y (µ)x

∥∥q

qy

= M

∫
Ω

(
‖ |K|1/q‖

q

Y (µ)x

)
(y)|f(y)| dµ(y)

≤ M
∥∥‖K‖Y (µ)[q]x

∥∥
p′
‖f‖p

Therefore, as a consequence of the inclusion X(µ) ⊆ Lp(µ) and the facts that simple
functions are in X(µ) and are dense in Lp(µ), TK can be extended continuously to the
space Lp(µ). �

Proposition 2.5. Let r, s, p ≥ 1 be such that 1
r = 1

p + 1
s and let K be a kernel function such

that
∥∥‖K‖qx

∥∥
s/r

< ∞. Then the kernel operator associated to K, TK : Lp(µ) → Lq(µ) is
r-th power factorable.

Proof. Since r ≤ p, Lp(µ) ⊆ Lr(µ). Let f be a simple function. Then, using Minkowski’s
inequality and Hölder’s inequality we obtain

(
‖TK(fr)‖q

)1/r =
(∫

Ω

∣∣∣∣∫
Ω

K(x, y)f(y)r dµ(y)
∣∣∣∣q dµ(x)

)1/(qr)

≤
[∫

Ω

(∫
Ω

|K(x, y)f(y)r|q dµ(x)
)1/q

dµ(y)
]1/r

=
[∫

Ω

|f(y)|r
(∫

Ω

|K(x, y)|q dµ(x)
)1/q

dµ(y)
]1/r

=
(∫

Ω

|f(y)|r‖K‖qx(y) dµ(y)
)1/r

≤
(∫

Ω

|f(y)|p dµ(y)
)1/p(∫

Ω

‖K‖s/r
qx (y) dµ(y)

)1/s

=
∥∥ (
‖K‖qx

)1/r∥∥
s

(∫
Ω

|f(y)|p dµ(y)
)1/p

=
∥∥ (
‖K‖qx

)1/r∥∥
s
‖f‖p.

Using that simple functions are dense in Lp(µ), these inequalities proves that there is a
constant C such that ‖TK(g)‖q ≤ C‖ |g|1/r‖r

p = C‖g‖Lp(µ)[r]
for all g ∈ Lp(µ). Thus we

have that TK : Lp(µ) → Lq(µ) is r-th power factorable. �
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Notice that these results work also for the adjoint operator T ′K , since it is again a
kernel operator with a similar kernel.

Example 2.6. The Volterra operator V : Lp[0, 1] → Lq[0, 1] has kernel function K(x, y) :=
χ[0,x](y). Hence, for r, s > 1 such that 1

r = 1
p + 1

s we have that
∥∥‖K‖qx

∥∥
s/r

= ( qr
qr+s )r/s

and then V is r-th power factorable for 1 ≤ r ≤ p (see Example 5.9 in [9]).

3. Square factorization diagrams

A p-th power factorable operator can be easily characterized by means of a factorization
diagram, as has been shown in Section 2 (see Lemma 5.3 in [9] for the case of a µ-
determined operator). In this section we provide a square factorization scheme for the
generalization of the notion of p-th power factorable operator that is given in the following
definition. Through the rest of the paper, we write our results for operators between
Banach function spaces over the same finite measure µ for the sake of clarity. However,
the reader can notice that the results work also for Banach function spaces over different
finite measures.

Definition 3.1. Let X(µ) and Y (µ) be B.f.s.’s. Then we say that an operator T : X(µ) →
Y (µ) is (p, q)-th power factorable if there exist a Banach space E and operators R : X(µ) →
E and S : E → Y (µ) such that T = S ◦ R, R is p-th power factorable and the Köthe
adjoint operator of S, S′ : Y (µ)′ → E∗ is q-th power factorable.

Let us show first a relevant example of this class of operators.

Example 3.2 (Hardy type operators). Let s ≥ 0 and consider the kernel operator Hs

with kernel function K(x, y) := 1
xs χ[0,x](y), i.e.

(Hsf)(x) =
∫ 1

0

K(x, y)f(y) dy =
∫ 1

0

1
xs

f(y)χ[0,x](y) dy =
1
xs

∫ x

0

f(y) dy .

Note that by Hölder’s inequality the operator Hs : Lu[ 0, 1] → Lv[ 0, 1] is always well
defined and continuous for 1 ≤ v < u when s < 1/v − 1/u (in fact, it is continuous in
more cases, see for instance [2, Theorem 3.10]). Under these restrictions for u, v and s
we can consider the following factorization. For f(x) = x−s and the Volterra operator
V : Lu[0, 1] → Lu[0, 1], we can write

Hs = Mf ◦ V : Lu[0, 1] V−→ Lu[0, 1]
Mf−→ Lv[0, 1].

It is known that V is p-th power factorable for all 1 ≤ p ≤ u (see [9, Example 5.9]). On
the other hand, notice that (Mf )′ = Mf : Lv′ [0, 1] → Lu′

[0, 1] and for g ∈ Lu[0, 1] we
have that Mf (g) ∈ Lv[0, 1]. Take then an index 1 < t ≤ v′ such that s < 1/u′ − t/v′

(note that these requirements are compatible with the restrictions on the indexes written
above). Then a direct computation usinng Hölder’s inequality gives the continuity of the
map Mf : Lv′/t → Lu′

, i.e. (Mf )′ is t-th power factorable. Consequently, Hs is (p, t)-th
factorable for all 1 ≤ p ≤ u.
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In Chapters 4 and 5 of [9] it is studied how an operator can be extended to the space
of p-integrable functions with respect to a vector measure in the following way. If X(µ) is
an order continuous Banach function space and T : X → E is an operator, we know that
mT (A) := T (χA) is a vector measure. For the case of p-th power factorable operators,
if mT has the same null sets that µ (i.e. T is µ-determined), we have that X(µ) is
included into Lp(mT ) and so the operator T can be extended to Lp(mT ). In this case, the
inclusion map [i] : X → Lp(mT ), given by f  [i](f) = [f ] is injective (here [f ] denotes
the equivalence class of f with respect to ‖mT ‖). However, injectivity is not needed
for obtaining a factorization of T through Lp(mT ). Without the injectivity assumption,
taking into account that 1-th power factorability coincides with continuity, the map
[i] is still well defined and continuous, and we always have that [i](X(µ)) ⊆ L1(mT )
continuously (see [3]). We will denote this relation by X(µ) ↪→[i] L1(mT ). In the case
that we can assure that in fact [i](X(µ)) is included in the subspace Lp(mT ) of L1(mT )
for any p > 1, we will also write X(µ) ↪→[i] Lp(mT ).

The following lemma is a generalization of part (i)⇔(iii) in Theorem 5.7 of [9]
without the assumption of T being µ-determined. The ideas that prove it can be found
in [4].

Lemma 3.3. Let 1 ≤ p < ∞, and let X(µ) be an order continuous Banach function
space. Consider a Banach space E. The following assertions for an operator T : X → E
are equivalent.

1. T is p-th power factorable, i.e. there exists C > 0 such that

‖Tf‖E ≤ C‖f‖X[p]
, f ∈ X .

2. The map X ↪→[i] Lp(mT ) is well defined (and so continuous).

Proof. Assume that 1 is satisfied. Then the operator T : X → E is continuous with the
relative topology on X induced by X[p]. Since —by the order continuity assumption—
X is dense in X[p] we know that T can be uniquely extended to X[p]. Let us denote
by T[p] : X[p] → E to this extension. Note that mT[p] = mT . By the comments above
we can assure that X[p] ↪→[i] L1(mT[p]) = L1(mT ). Finally for f ∈ X we have that
|f |p ∈ X[p] ↪→[i] L1(mT ), hence∥∥ [f ]

∥∥
Lp(mT )

=
∥∥ (|f |p)1/p

∥∥
Lp(mT )

=
∥∥ [ |f |p]

∥∥1/p

L1(mT )

≤ K1/p‖|f |p‖1/p
X[p]

= K1/p‖f‖X .

So we have that X ↪→[i] Lp(mT ).
For the converse suppose that X ↪→[i] Lp(mT ). Then the calculation above shows that
X[p] ↪→[i] L1(mT ). In consequence, we have that T = ImT

◦ [i] ◦ i[p]. Thus, for f ∈ X, we
have that

‖Tf‖E = ‖
(
ImT

◦ [i] ◦ i[p]

)
f‖

E
≤ ‖ImT

◦ [i]‖‖f‖X[p]
.

This finishes the proof. �



8 O. Galdames Bravo and E. A. Sánchez Pérez

Remark 3.4. Note that the assumption on the p-th power factorability of a non trivial
operator T together with the order continuity of X implies that (X[p])∗ is nontrivial.
Certainly, the composition of T with a functional x∗ ∈ E∗ produces a continuous func-
tional z∗ on the quasi-normed space (X, ‖ · ‖X[p]) that together with the density of X in
X[p] and the order continuity gives that z∗ ∈ (X[p])∗.

We will call the map [i] —that depends on µ and mT — an inclusion/quotient map.
Notice that the Köthe adjoint map [i]′ is injective, since ‖mT ‖ is always absolutely con-
tinuous with respect to µ. This general point of view for the understanding of the integral
extension of operators can be found in [4], without assuming T to be µ-determined. Also
notice that the map [i]′ depends on the Rybakov measure ν for mT that is considered
for defining Lp(mT ) as a Banach function space over ν. In fact, in order to simplify the
notation, we will fix a Rybakov measure ν for defining the map [i]′. In general, the injec-
tive map [i]′ do not define a natural inclusion, i.e. [i]′(f) is not necessarily equal to [f ].
Let dν/dµ be the Radon-Nikodým derivative of ν with respect to µ. Then the duality
relation is given by〈

f, [i]′(g)
〉

=
∫

f [i]′(g)dµ =
∫

[i](f) gdν =
∫

[i](f) g
(dν

dµ

)
dµ,

—where f ∈ X(µ) and g ∈ (Lp(mT ))′— that do not produce a proper inclusion map,
but it is the key for finding the optimal range of an operator with values in a Banach
function space, in the sense that is explained in [7]. Observe that if [i] is injective (that
is, µ is equivalent to ‖mT ‖), then [i]′(g) = (dν/dµ) · g, in other words [i]′ is given by a
multiplication by a positive function.

The following result provides the main characterization for (p, q)-th power factorable
operators.

Theorem 3.5. Let X(µ) and Y (µ) be order continuous Banach function spaces with the
Fatou property such that Y (µ)′ is also order continuous. Let T : X(µ) → Y (µ) be an
operator. Then there exists an operator

T[p,q] : X(µ)[p] → (Y (µ)′[q])
′

such that T = (i[q])′ ◦ T[p,q] ◦ i[p] if and only if T is (p, q)-th power factorable.

Proof. Assume first that we have an operator T[p,q] : X(µ)[p] → ((Y (µ)′)[q])
′ such that

T = (i[q])′ ◦ T[p,q] ◦ i[p] (it is implicitly assumed that the inclusions i[p] and i[q] are well-
defined). Then T[p,q] ◦ i[p] is —by definition— p-th power factorable. The order continuity
of Y ′ implies the order continuity of the Banach function space (Y ′)[q], and so ((Y ′)[q])∗ =
((Y ′)[q])′ (see Remark 2.6 in [9]). Consequently, Y ′ = Y ∗ and (Y ′)[q] ⊆ (((Y ′)[q])′)∗.
Therefore, ((i[q])′)∗ : Y ′ = Y ∗ → ((Y (µ)′[q])

′)∗ factorizes through the inclusion map
Y ′ ↪→ (Y ′)[q], and so it is q-th power factorable.

For the converse, suppose that T is (p, q)-th power factorable and consider the
Banach space E, the p-th power factorable operator R : X(µ) → E and the operator
S : E → Y (µ) such that S′ is q-th power factorable and T = S ◦R. Then by [9, Lemma
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5.3] we have an extension as

X(µ) R //
� r

i[p] $$HH
HH

HH
HH

H E

X(µ)[p]

R0

<<yyyyyyyyy

On the other hand, by the same result we have a factorization for S′ as

Y ′ S′
//� q

j[q] ""EE
EE

EE
EE

E∗

(Y ′)[q]

S′
0

<<yyyyyyyy

By dualizing and taking into account the properties of the spaces involved, we can obtain
the following factorization scheme.

X(µ) S◦R //
� _

i[p]

��

R &&MMMMMMMMMM
Y (µ) = Y ′′

E ↪→ E∗∗

((S′)0)
∗

''OOOOOOOOOOO

S

66nnnnnnnnnnnn

X[p]
R //

+ �

R0

99rrrrrrrrrrr (
(Y ′)[q]

)′?�

j′[q]

OO

where R = ((S′)0)∗ ◦R0 plays the role of T[p,q]. Since (i[q])′′ = i[q], we obtain the result.
�

Example 3.6. Classical factorization theorems provide easy examples of factorizations
as the one above for the case (1, 1). Suppose that we have a weakly compact operator
T : X(µ) → Y (µ), where X(µ) and Y ′(µ) are order continuous. Since each weakly com-
pact operator factorizes through a reflexive Banach space (see for instance [5, Corollary
VIII.4.9]), we can find a factorization for T as

X(µ) T //

R
!!DD

DD
DD

DD
Y (µ)

F

S

==zzzzzzzz

where F is a reflexive Banach space. In particular, R can be extended to its optimal
domain L1(mR) and the same holds for S′ : (Y (µ))′ → F ∗ to the corresponding space
L1(mS′). Consequently, T is (1, 1)-th factorable, and the factorization space is reflexive.

The following theorem provides a factorization for (p, q)-th power factorable oper-
ators involving spaces Lp(m) for a vector measure m. Roughly speaking they are the
class of operators that allows factorization schemes through an operator from Lp(m1) to
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(Lq(m2))′. In a sense, they can be considered as a generalization of the following situ-
ation without the strong geometric requirements on T that are necessary in this case.
Let 1 ≤ q, p < ∞. Consider a p-convex and q-concave operator T : X(µ) → Y (µ) (see [8,
Chapter 1.d]). If θ ∈ (0, 1), let us define pθ := p

θ+(1−θ)p and qθ := q
1−θ . By [10, Theorem

15] we know that it is possible to find a factorization of T as T = S ◦ R where S is
pθ-convex and R is qθ-concave for all θ ∈ (0, 1). Moreover, by [11, Sec. 2, Corollary 7]
there is a Banach lattice E such that it is pθ-concave and qθ-convex, and T factorizes
through E. We can apply now Maurey’s Theorem [1, Theorem 7.1.2] to factorize T as

X(µ) T //

��

Y (µ)

Lpθ (µ) i // Lqθ (µ)

OO

The next result shows that (p, q)-th power factorable operators can be considered as
a vector measure version of such kind of factorization scheme (see (4) and (5) in the
theorem below).

Theorem 3.7. Let X(µ) be an order continuous B.f.s., and Y (µ) be Fatou and order con-
tinuous B.f.s. such that Y (µ)′ is order continuous. Let T : X(µ) → Y (µ) be an operator.
Then the following statements are equivalent:

1. T is (p, q)-th power factorable.
2. There exists some K > 0 such that

|〈T (f), g〉| ≤ K‖f‖X(µ)[p]
‖g‖(Y (µ)′)[q]

, f ∈ X(µ), g ∈ Y (µ)′ ,

3. There exists an operator

T[p,q] : X(µ)[p] → (Y (µ)′[q])
′

such that the following diagram is commutative

X(µ) T //
� _

i[p]

��

Y (µ)

X(µ)[p]

T[p,q] // (Y (µ)′[q])
′?�

(j[q])
′

OO

4. There exist two operators F : X → ((Y ′)[q])
′ and G : Y ′ → (Y ′)[q] and an operator

H : Lp(mF ) → (Lq(mG′))′ such that the following diagram is commutative

X(µ) T //

[i]

��

Y (µ)

Lp(mF ) H // (Lq(mG′))′

[j]′

OO
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5. There exist an operator H and a Banach space E and two operators R : X → E and
S : E → Y such that T = S ◦R and that the following diagram is commutative

X(µ) T //

[i]

��

Y (µ)

Lp(mR) H // (Lq(mS))′

[j]′

OO

Proof. 1 ⇔ 3 was proved in Theorem 3.5. In order to achieve 2 ⇒ 3 we will show that the
operator T is (‖ · ‖(Y ′)[q]

–‖ · ‖X[p])-continuous. Let s be a simple function. By hypothesis
we have that |〈T (f), s〉| ≤ K‖f‖X[p]

‖s‖(Y ′)[q]
, for all f ∈ X. In consequence, for all simple

functions s ∈ B(Y ′)[q]
we have that |〈T (f), s〉| ≤ K‖f‖X[p]

, i.e.

sup
s
|〈T (f), s〉| ≤ K‖f‖X[p]

,

where the supremum is taken over all the simple functions s in the ball B(Y ′)[q]
. The

density of the simple functions in (Y ′)[q] (recall that Y ′ is order continuous), and the
continuity of T allows us to extend this inequality to all g ∈ B(Y ′)[q]

in order to obtain

‖Tf‖((Y ′)[q])
′ = sup

g∈B(Y ′)[q]

|〈T (f), g〉| ≤ K‖f‖X[p]
.

Then we can extend T to X[p] ensuring moreover that the range of T must be in ((Y ′)[q])
′.

In other words, there exists T[p,q] : X[p] → ((Y ′)[q])′ such that T = j′[q] ◦ T[p,q] ◦ i[p] where
i[p] is the inclusion of X into X[p] and j[q] the inclusion of Y ′ into (Y ′)[q].

3 ⇒ 2 Let f ∈ X(µ) and g ∈ Y (µ)′. Then

|〈T (f), g〉| = |〈(j[q])′ ◦ T[p,q] ◦ i[p](f), g〉|
= |〈T[p,q] ◦ i[p](f), (j[q])′′(g)〉|
≤ ‖T[p,q]‖‖ i[p](f)‖X(µ)[p]

‖ j′′[q](g)‖(Y (µ)′[q])
′′

≤ K ‖f‖X(µ)[p]
‖g‖Y (µ)′[q]

,

where K = ‖T[p,q]‖‖ i[p]‖‖(j[q])′′‖.

3 ⇒ 4 Let us define E := ((Y (µ)′)[q])′. Consider the p-th power factorable map
F := T[p,q] ◦ i[p] : X → E and the q-th power factorable map G := j[q] given by the
inclusion of Y ′ into (Y ′)[q]. Using the order continuity and Fatou properties of the involved
spaces and the characterization given in Lemma 3.3 we obtain the factorization

X(µ) T //

[i]

��

F

""EE
EE

EE
EE

EE
EE

E
Y (µ)

Lp(mF )
I
(p)
F

// E

G′

<<xxxxxxxxxxxxx

(I
(q)
G′ )′

// Lq(mG′)′

[j]′

OO
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where H := (I(q)
G′ )′ ◦ I

(p)
F .

Note that the proof of the previous implication gives in fact also 3 ⇒ 5, for E =
((Y (µ)′)[q])′ and S = G′. 4 ⇒ 5 is obvious. Finally, for 5 ⇒ 1 we have by hypothesis that
X(µ) ↪→[i] Lp(mR) and that Y (µ)′ ↪→[j] Lq(mS′). By Lemma 3.3 we have that R is p-th
power factorable and S′ is q-th power factorable and thus the result is obtained.

�

4. (p, q)-th power factorable kernel operators

In this section we apply the results that we have obtained in the previous one in the setting
of the kernel operators. Under certain requirements, they will allow us to determine when
a kernel that defines an operator between a couple of Banach function spaces defines in
fact an operator between Lp-spaces.

Let us introduce first some notation. As in the rest of the paper, let (Ω,Σ, µ) be
a finite measure space. Consider a function h : Ω → R. Then we can define a function
Ω × Ω → R by h(x, y) := h(x)χΩ(y); in this case we will write h(x) for the aim of
simplicity. Consider a function K : Ω × Ω → R+ that is integrable with respect to the
product measure µ⊗ µ. We will call such a function a kernel, and we will denote by TK

the associated kernel operator. Clearly, the relation C  
∫

C
Kµ⊗ µ, C ∈ Σ⊗ Σ defines

a measure in the product space (Ω × Ω,Σ ⊗ Σ, µ ⊗ µ). In what follows we will call η to
this measure.

Theorem 4.1. Let X(µ) and Y (µ) be Fatou and order continuous Banach function spaces
such that Y (µ)′ is order continuous. Let K ∈ L1(µ ⊗ µ) be an integrable kernel and fix
p, q ≥ 1. Suppose that for all f ∈ X(µ) and g ∈ Y (µ)′

‖f(x)g(y)‖L1(η) ≤ C ‖f(x)‖Lp(η)‖g(y)‖Lq(η) ,

for a constant C > 0. Suppose also that the kernel operator TK : X(µ) → Y (µ) is p2-th
power factorable and T ′K is q2-th power factorable. Then TK is (p, q)-th power factorable.

Proof. For the aim of clarity we write dx and dy for dµ(x) and dµ(y). We can use the
Tonelli’s Theorem and the fact that T is p2-th power factorable to obtain∫

Ω×Ω

|f(y)|p dη =
∫

Ω×Ω

|f(y)|pχΩ(x)K(x, y) dx⊗ dy

=
∫

Ω

(∫
Ω

|f(y)|pK(x, y) dy
)
χΩ(x) dx

≤ ‖χΩ‖Y (µ)′ sup
u∈BY (µ)′

∫
Ω

(∫
Ω

|f(y)|pK(x, y) dy
)
u(x) dx

= ‖χΩ‖Y (µ)′ sup
u∈BY (µ)′

|〈T (|f |p), u〉|

= ‖χΩ‖Y (µ)′ ‖T (|f |p)‖Y (µ) ≤ ‖χΩ‖Y (µ)′ Q1 ‖ |f |1/p ‖p2

X(µ) .

Analogously, by the q2-th power factorability of T ′, we have that∫
Ω×Ω

|g(x)|q dη ≤ ‖χΩ‖X(µ) Q2 ‖ |g|1/q ‖q2

Y (µ)′ .
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In consequence we obtain

|〈T (f), g〉| =
∣∣∣∫

Ω

(∫
Ω

f(x)K(x, y) dx
)
g(y) dy

∣∣∣ =
∣∣∣∫

Ω×Ω

f(x)g(y) dη
∣∣∣

≤ ‖fg‖L1(η) ≤ C ‖f‖Lp(η)‖g‖Lq(η) ≤ D ‖f‖X(µ)[p]
‖g‖(Y (µ)′)[q]

,

where D = C ‖χΩ‖X(µ)‖χΩ‖Y (µ)′Q1Q2. Then we apply Theorem 3.7 in order to obtain
that T is (p, q)-th power factorable. �

Hölder’s inequality provides the following result.

Corollary 4.2. Let X(µ) and Y (µ) be Fatou and order continuous Banach function spaces
such that Y (µ)′ is order continuous. Let K ∈ L1(µ ⊗ µ) be an integrable kernel and fix
p, q ≥ 1 such that 1

p + 1
q ≤ 1. Suppose that the kernel operator TK : X(µ) → Y (µ) is p2-th

power factorable and T ′K is q2-th power factorable. Then TK is (p, q)-th power factorable.

Corollary 4.3. Under the same hypothesis of Theorem 4.1 and assuming that 1/p+1/q = 1
and that T is a positive operator, we have that T is factorable through Lp-spaces of scalar
measures, i.e. the following diagram is commutative

X(µ) T //

��

Y (µ),

Lp(µ1)
T̂ // Lp(µ2)

OO

where µ1 and µ2 are positive finite measures.

Proof. By Theorem 4.1 we obtain an operator from Lp(mR) to (Lq(mS′))′, where R and
S are operators. In fact, the proof of Theorem 4.1 makes clear that R and S′ can be
chosen to be positive. On the other hand, since T is a positive operator we obtain by [8,
Proposition 1.d.9],∥∥∥( N∑

i=1

|T (fi)|p
)1/p∥∥∥

(Lq(mS′ ))′
≤

∥∥∥( N∑
i=1

|fi|p
)1/p∥∥∥

Lp(mR)

which implies by [6, Theorem 5] the factorization diagram for two measures µ1 and µ2

that are Rybakov measures for mR and mS′ , respectively. �

To finish the paper we come back to the consequences of the (p, q) boundedness
requirements for the kernel on the (p, q)-th power factorability of the corresponding
kernel operator. The following result can be considered in sense a variant of Proposition
2.5. It can be applied for instance in the case of the Hille-Tamarkin operators.

Proposition 4.4. Let X(µ) and Y (µ) be Fatou and order continuous Banach function
spaces such that Y (µ)′ is order continuous. Let be 1 < p, q < ∞. Assume that X(µ) and

Y (µ) are such that XLp2

and (Y ′)Lq2

are Banach function spaces. Let TK : X(µ) → Y (µ)
be a kernel operator with kernel K : Ω × Ω → [0,+∞[ such that K ∈ L1(µ ⊗ µ) and∥∥‖Kx‖p′

∥∥
q′

< ∞, then TK is (p, q)-th power factorable.
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Proof. First notice that by Remark 2.3 the fact that XLp2

is a Banach function space
implies the embedding of X[p] into Lp(µ). The same holds for Y[q] and Lq(µ). Applying
this fact and Hölder’s inequality twice we obtain

|〈TKf, g〉| =
∣∣∣∫

Ω

∫
Ω

K(x, y)f(y)g(x) dy dx
∣∣∣

≤ ‖f‖p

∫
Ω

|‖Kx‖p′(x)| |g(x)| dx

≤
∥∥‖Kx‖p′

∥∥
q′
‖g‖q‖f‖p

≤
∥∥‖Kx‖p′

∥∥
q′
‖f‖X(µ)[p]

‖g‖Y (µ)′[q]
.

�

References

1. F. Albiac and N.J. Kalton, Topics in Banach space theory, Graduate Text in Mathematics,
vol. 233. Springer, New York, 2006.

2. C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Inc., Boston, 1988.

3. J. M. Calabuig, O. Delgado and E. A. Sánchez Pérez, Generalized Perfect Spaces, Indag.
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