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Abstract 

TiO2 coatings can be used as self-cleaning surfaces owing to their photocatalytic and 

hydrophilic properties. Suspension plasma spray (SPS) has proven to be a feasible and 

cheap technique for producing self-cleaning surfaces with acceptable photo-activity. 

This paper presents a nanoindentation study of the mechanical properties (hardness, 

Young’s modulus and scratch resistance) of photoactive layers of suspension plasma 

sprayed TiO2 coatings applied on to glass substrates. Microstructure observation 

showed that the rutile grains were surrounded by fine anatase crystals. Under the 

same spraying conditions, the resulting anatase/rutile concentrations varied 

depending on the cooling rate (the substrate being either cooled with water or in air). 

The results showed that higher concentrations of anatase, which is softer than rutile, 

reduced the scratch damage and increased the friction coefficient. 
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1. Introduction 

TiO2 semiconductors are used in solar cells, optical devices, and in photocatalytic 

reactors which references can find elsewhere [1-5]. The photocatalytic property is 

generated when TiO2 is exposed to UV light, owing to its band gap centred between 

3.0 eV and 3.2 eV, though this energy can be tuned to be sensitive to visible light by 

means of specific dopants [6, 7]. The liberated electrons previously excited by light 

radiation can reach the TiO2 surface and then react with the organic matter deposited 

on the photoactive layers, degrading the organic molecules [8]. This degradation 

produces free active radicals, which can react or dissolve in water (in a solution 

configuration). In addition, activated TiO2 is very hydrophilic and the contact angle of 

water is very low, creating a slippery surface. These properties make such materials 

highly appropriate to be employed as self-cleaning [9-11] surfaces. Other recent 

applications include wastewater treatment and disinfection [12, 13]. 

TiO2 coatings can be produced by various techniques, such as atmospheric plasma 

spray, APS. APS is a particularly appropriate technique because a large area of TiO2 can 

be easily deposited without any special requirements, such as vacuum pressures or 

reactive atmospheres [14-17]. In the APS technique, the material is fed in powder form 

into a high-energy flame and the melted particles are deposited on to the substrate, 

forming the coating. When very fine or nanometre-sized particles are sprayed, the 

material needs to be in the form of aggregates because the low acceleration of such 

very small masses is insufficient to allow them to reach the substrate. In the 

suspension plasma spray, SPS, used in this study, nanoparticle kinetic flight was 

improved by using a liquid carrier suspension containing the dispersed nanoparticles 

[18]. According to the literature [19-21], the SPS coatings obtained using nanopowder 

feedstock exhibit improved characteristics, because these coatings contain less 

porosity than APS and have a denser nanostructure. In recent studies on 

nanostructured TiO2 coatings produced by SPS [17], photocatalytic activity was 

reported on observation of methylene blue degradation under UV radiation [23, 24].  



TiO2 can be found in amorphous, anatase, and rutile phases. Independently of the 

technique used to generate the TiO2 coatings, high concentrations of anatase are 

required to obtain high ratios of photocatalytic activity [25, 26]. However, the 

compositional balance between these phases affects the mechanical properties of the 

coatings, making it necessary to find a compromise between optimal photocatalytic 

activity and good mechanical response. Lech Pawlowski et al. [27] conducted a 

nanoscratch study on sprayed TiO2 coatings and examined the critical load required to 

generate coating failure on a substrate. Studies are unavailable in the literature, 

however, on the nanomechanical and tribological behaviour of such coating 

components. 

The present study was undertaken to characterise the nanomechanical properties and 

damage resistance of suspension plasma sprayed TiO2 coatings. The studied coatings 

were chosen from a series of suspension plasma sprayed TiO2 coatings obtained in a 

previous work [28]. The following two coatings, which were sprayed under the same 

conditions, were chosen: the first was applied on to a substrate cooled in air, which 

gave rise to a homogenous anatase-rutile phase distribution; the second was applied 

on to a substrate cooled with water, which yielded a segregated anatase-rutile phase 

distribution. Nanoindentation tests were then performed on these coatings: the 

results from the scratch tests were correlated with the hardness (H) and Young’s 

modulus (E) of the phase distribution. The constituent microstructures and phases 

were observed using a field-emission scanning electron microscope (FE-SEM). 

 

2. Experimental Conditions 

2.1. Materials and coatings preparation 

TiO2 supplied by Evonik Industries under reference Aerodisp W 740 X was used in an 

aqueous suspension at 40 wt%. Aggregates smaller than 100nm made up of 20-30 nm 

nanoparticles of 90 wt% anatase + 10 wt% rutile provided the suspension with a 

viscosity below 1000 mPaS and a density of 1.41 g/cm3.  



The coatings were deposited using a F4-MB monocathode torch (Sulzer Metco, 

Wolhen Switzerland) with a 6 mm internal diameter anode. The substrates were pre-

heated at 300 °C to enhance coating adhesion. 

Suspension injection was performed through a calibrated diaphragm of 150 µm 

diameter. The plasma gas was a mixture of He and Ar with flow rates of 10 l/min and 

50 l/min, respectively. Arc intensity was kept constant at 400 A. The surfaces of the 

deposited material were cooled either by spraying water (8 mls-1) or by spontaneous 

cooling along the projection procedure.  

Pyrex glass specimens in the form of 25 mm diameter disks were used as substrates. 

The substrates were cleaned with ethanol and dried in air prior to coating deposition. 

After deposition, cross-sections of the resulting specimens were polished down to 0.25 

µm abrasives. Surface roughness, measured by a standard surface roughness tester, 

was Ra = 1.10.2 μm for the coatings obtained under both types of cooling conditions. 

Further details on the photoactivity behaviour and composition characterization by 

Raman microprobe analysis on the cross-sections are given in a previous paper [28]. 

 

2.2 Sample characterisation procedure 

An Agilent G-200 nanoindenter was used to analyse the H and E of the resultant 

polished coating cross-sections with a calibrated Berkovich indenter. The indentations 

were performed at constant depth mode. The stiffness used for the H and E calculation 

was obtained by continuous stiffness measurement [29, 31] CSM, in the 45-50 nm 

average depth range. The scratch tests were conducted with the same apparatus, 

using a lateral force sensing module and a spherical sapphire indenter with a 100 µm 

diameter. The scratches were made on the sample surface applying a dynamic load 

from 0 mN to 100 mN along a 100 µm distance. Cross-section microstructure and wear 

tracks were observed using a HITACHI S-4100 field-emission scanning electron 

microscope (FE-SEM). 

 



3. Results and discussion 

Figure 1 shows the cross-section FE-SEM images of the two types of coatings. These 

images show that the thicknesses reached were between the 30 µm to 40 µm. Figs. 1a 

and 1b, the latter being at higher magnification, show that the coatings cooled in air 

exhibited a microstructure made up of (I) harder and larger grains surrounded by (II) 

softer and smaller grains. These morphologies were well characterised by Raman 

microprobe analysis in a previous work [28] and correspond to rutile and anatase TiO2 

phases, respectively. Fig. 1b shows that the coating consisted of dense material 

without measurable porosity. Hereafter, this specimen is designated A+R (Anatase + 

Rutile on surface). In contrast, the water-cooled samples (Fig. 1c) displayed a phase 

distribution in the form of a bi-layer structure. A great rutile grain concentration was 

found at the substrate surface, while the anatase microstructure lay at the coating 

outer surface. Hereafter, this specimen is designated A (only Anatase on surface). 

This bi-layer structure may be explained as follows: the high temperature reached in 

the flame (3000-8000 K) melted all sprayed material. Subsequent fast cooling caused a 

significant amount of particles to crystallise as anatase phase, despite the rutile 

transformation occurs at 700-800 ⁰C. In previous studies [32, 33] this transformation 

was reported when the TiO2 suspension was sprayed directly into water, producing a 

high TiO2 content in the form of anatase. However, the material sprayed close to the 

substrate was transformed into rutile owing to the higher temperature of the 

substrate and the subsequently deposited hot material. A previous study [28] 

confirmed this double-layer structure of anatase-rutile, independently of whether steel 

or glass was used as substrate material.  

The H and E features of the observed microstructures were analysed by means of a 

square grid of 300 nanoindentation tests on the sample cross-section with 

homogeneously distributed anatase and rutile (A + R specimen). The distance between 

each imprint was programmed to be 1 µm. This sample was chosen because of the 

more homogeneous anatase and rutile distribution throughout the coating. The 

distribution of the mechanical properties was then represented by histogram 

distributions and surface mappings in which each H and E result was plotted on the 



axis coordinates with the same dimensions and locations as in the tested area. The 

distribution of the H and E results at 40-50 nm depth, is shown in Figure 2. As this type 

of plot depends to a great extent on the choice of bin size, the distributions were also 

plotted by the normal probability distributions acquired previously by fitting the 

cumulative results. This procedure has been described previously in similar studies [34, 

35]. The H distribution clearly showed two main values centred at 8.5 GPa and 16.5 

GPa. These results are close to those reported for TiO2 anatase and rutile respectively 

[36]. The E histogram was difficult to deconvulate owing to the similar E values 

expected for both phases and their greater elastic stress field beneath the indenter 

[37]. The H and E maps acquired on the A+R sample are shown in Figure 3. The 

foregoing results confirm that the microstructure of the larger grains, which consisted 

of rutile, displayed the harder behaviour. These grains were surrounded by the anatase 

matrix that, though retaining its initial nanostructure, was the softer phase.  

In order to compare the tribological properties of the A and A + R specimen surfaces, 

scratch tests were performed on those surfaces. FE-SEM images of the tracks produced 

under the test conditions used are shown in Figure 4. The maximum load attained 

corresponded to the bottom of the wear track, the experiment starting at zero load at 

the top. The friction force (Fµ) and coefficient of friction (µ) recorded during the 

scratch tests are plotted in Figure 5. The linear behaviour of Fµ under the test 

conditions used assured that no critical load was reached. The increase in friction 

when scratch load rose agreed with Nosonovsky and Bhushan’s observation [38, 39] 

that is, at small contact sizes, µ increased when contact size and the applied load rose.  

The recorded µ at the experimented conditions was higher on the A specimen surface, 

resulting an average value of µ= 0.7, compared with µ= 0.3 on the A+R surface. This 

behaviour may be explained by the theory of multi-asperity contacts put forward by 

Zhang et al. [40, 41]. According to this theory, when two surfaces are in contact, a part 

of the load is distributed on the contact area of the asperities and/or on the contact 

area of debris particles. Thus, the resultant µ consists of the sum of three components: 

adhesion (1- β)µadhesion, asperity ploughing βµasperity, and debris ploughing µdebris. The ‘β’ 

coefficient is a value that depends on surface roughness. The spherical indenter used 

in this study assured that multiple-asperity contact conditions were in place, in which 



there was a mechanical interlocking between the contacting surfaces, despite the low 

applied loads. 

The main friction component on the A specimen was (1-β)µadhesion. This was justified by 

observing the slide pattern, in which no evidence of asperity or debris ploughing was 

found. The wear track is shown at higher magnifications in the FE-SEM images of 

Figure 6. On the specimen A wear track (Fig. 6a), several transverse lines crossing the 

slide pattern as a plastic/adhesive wear mechanism may be observed, which explains 

the higher recorded friction. 

On the other hand, Fig. 6b shows that a number of particles were pulled out of the A + 

R specimen. This was probably the result of small clusters of rutile particles detaching 

from the anatase matrix when the cohesion of the plastically deformed matrix failed. It 

may, further, be observed that the asperities were levelled inside the wear track: the 

inter-asperity voids were presumably (i) filled with the pushed material and (ii) 

reduced by a polishing effect. These assumptions would corroborate the main friction 

components on the A + R specimen surface being the sum of µasperity and µdebris. In any 

event, the friction components produced a lower friction than that found on specimen 

A, owing to coating adhesion. 

Plots of penetration depth versus load along the scratch are shown in Figure 7. The 

penetration curves were automatically calculated by subtracting the original 

morphology from the scratch and residual profile data using the nanoindenter 

Testworks(R)  software. The penetration curves exhibited a resultant track depth of 3 

µm and 4 µm at maximum scratch load for the A and A + R specimens, respectively. 

These results indicate that the damage observed on the A + R specimen was greater 

than that on the A specimen. The generation of wear debris particles, visible as bright 

spots at higher magnifications in Figure 8, probably produced the arising damage as a 

result of a polishing mechanism of the surface asperity.  

Archanta et al. [42, 43] reported that, in this type of tribosystem, wear particles 

continued to form during the subsequent sliding test cycles, some of those particles 

agglomerating and being pulled out from the wear track as large wear particles. In the 

present study, the rutile grains were expected to act as abrasive material or as a tribo-



layer, but no evidence was found in this regard. Several cyclical scratch experiments at 

constant load would reveal the wear mechanism that occurred under these test 

conditions and further research is needed on this issue. 

The above findings show that the damage resistance and friction behaviour of the 

studied TiO2 layers depended on how the microstructures were distributed in the 

coating surface. Although the resultant hardness of the A + R coating was higher than 

that of the A specimen surface, the tribological properties displayed different 

behaviour owing to the nature of the slide and wear mechanism. In photocatalytic 

applications, high anatase content is essential to reach the required photocatalytic 

activity. This scenario needs to be taken into account when photoactive surfaces are 

deposited, independently of the technique involved, because a comprise needs to be 

found between the mechanical and the photocatalytic properties by controlling the 

microstructure and phases contained in the layers. 

 

Conclusions 

In this study, suspension plasma sprayed TiO2 coatings, which were cooled either in air 

or with water, exhibited a homogeneous anatase and rutile phase distribution or re-

crystallised anatase on surface, respectively. Under the plasma spray test conditions 

used, all the feedstock melted, temperatures being reached above that at which the 

material undergoes rutile transformation. However, depending on the cooling rate, the 

melted material was also able to re-crystallise into anatase, this being the case with 

the coating obtained on the water-cooled substrate.  

The nanoindentation technique proved to be a useful method of characterising the 

arising phases, which consisted of anatase nano-crystals and rutile micro particles that 

displayed a hardness of 8.5 GPa and 16.5 GPa, respectively. The nanoscratch 

experiments confirmed that coatings with uniformly distributed rutile exhibited lower 

scratch resistance than the coatings with re-crystallised anatase, owing to the abrasive 

behaviour of the harder rutile phase. The higher friction coefficient obtained on the 

anatase surface (µ=0.7) compared with that obtained on the anatase + rutile surface 



(µ=0.3) also needs to be taken into account. The spherical indenter used in the scratch 

tests could be suitably used in further wear research because the linearity of the 

friction behaviour assures detection of any cohesive or adhesive failure.  
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