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Abstract

This paper presents a meaningful practical per-
formance comparison between the last genera-
tion of Graphics Processing Units (GPUs) and the 
last generation multi-core CPUs when they are 
used to solve given Signal Processing algorithms. 
Two kinds of tests were considered: when GPU 
pre-designed computational libraries were avail-
able, and when the GPU code was developed by 
the authors. Results show that GPUs offer great 
possibilities, but its programming is still hard 
and high performances can be obtained only if 
the algorithm can be adapted to the GPU pro-
gramming model.

Keywords: Multi-core/GPU Architecture, per-
formance evaluation, MAGMA, QR, K-Best algo-
rithm, MIMO decoder

1. Introduction

In last years, the number of scientific contribu-
tions and research projects related to the use 
of Graphics Processing Units (GPUs) as general 
purpose computers (GP-GPU) has significantly 
increased. This phenomenon has occurred in 
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almost all engineering fields that require inten-
sive computing, and Signal Processing is not an 
exception [1].

The initial idea in many of these applications and 
projects is that GPU (many-core) can achieve 
better performance than CPU (multi-core) due 
to a simple quantification of “many” against 
“multi”, and assuming that CPU are more expen-
sive and more resource-consuming. Perhaps 
this belief stems from the graphs distributed by 
NVIDIA (see Figure 1) [2], where GPU perform-
ance in terms of Gflop/s is quite impressive. 
However, it must be noticed that the perform-
ances of sequential or parallel computers are 
always obtained under specific conditions and 
the results should not be extrapolated to other 
circumstances.
 
GPUs are fascinating tools and represent a 
quantitative leap in the development of high 
performance hardware. Probably it would be im-
possible to go back, and the near future cannot 
be imagined without GPU technology. However, 
to give accurate opinions and ensure their use-
fulness, it is essential to carry out a quantitative 
performance analysis. It should show the ranges 
and working conditions for which the attained 
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lems with application in Signal Processing: the 
linear Least Squares problem (LLSP) and the QR 
Decomposition [10][11], which can be consid-
ered as the computational tool to solve LLSP. The 
other is an algorithm employed in the detection 
stage of MIMO (Multiple Input Multiple Output, 
[12]) wireless systems: the K-best tree-search de-
tector [13], which presents high computational 
requirements and a different approach.

The chosen problems cover several aspects of 
usability of GPUs in Signal Processing. The first 
two problems are very general and there exist 
libraries that can solve efficiently them on both 
GPU and CPU. In this work we have employed 
the LAPACK library [14] for CPU and the MAGMA 
library [15] for GPU. The other problem is more 
specific, thus, the necessary code for their imple-
mentation has been developed by the authors.
 
The rest of the paper is organized as follows. Sec-
tion 2 describes the evolution and current status 
of multi-core/ many-core architectures. Section 
3 presents the computational problems studied 
here and describes in detail the used bench-
mark. The different computational experiments 
carried out and the conditions and results are 
shown in Section 4. Section 5 discusses these 
results. Finally, Section 6 reports the conclusions 
of present work.

2. GPU/multicore models 
evolution

2.1 Heterogeneous computational models
One of the more decisive concepts for success-
fully programming a computer that uses GPU 
is the underlying model of parallel computer. 
Traditionally, a GPU card has been considered 
as an isolated parallel computer, fitting a SIMD 
model, and connected to a sequential computer 

benefits are really important, together with a 
quantitative assessment of those benefits.

GPUs exhibit a fast evolution. The last models on 
the market have more cores, more computation-
al power and several new features [3][4]. Soft-
ware tools also allow a friendlier GPU program-
ming than some years ago: CUDA (Compute 
Unified Device Architecture, [2]) is continuously 
evolving and the most recent SDK versions solve 
problems of previous versions; OpenCL [5] lan-
guage seems a good future alternative but un-
fortunately it does not show the evolution speed 
and the performance of CUDA.

However, there remain serious programming 
difficulties, especially if GPUs are intended to be 
used as general purpose machines. Sometimes 
these difficulties are intrinsic and related to the 
SIMD (Single Instruction Multiple Data) model, 
which essentially allows data-parallelism but 
limits the use of graphics accelerators in general 
purpose applications. Instead, MIMD (Multiple 
Instruction Multiple Data) models allow task-
parallelism and can be more efficient in this last 
type of applications. 

Some GPU limitations are derived from their 
technical specifications (for instance, their clock 
frequency is lower than the current-generation 
CPU), from usage and memory capacity limita-
tions and, especially, from the fact that GPUs ex-
ist as accelerators and not as chips that include 
all the features of the set CPU-GPU. Until now, 
the attempts to design this kind of chip (see, e.g., 
reference [6]) have resulted only in theoretical 
approaches and prototypes that could not get 
into commercial stage.

A realistic approach to the performance of GPU 
in a particular field involves identifying the prob-
lems that can be solved with these tools, defin-
ing which benchmarks will be used in perform-
ance analysis and setting evaluation metrics. 
In this paper we pursue to show a quantitative 
analysis of the benefits obtained by the GPU 
in given applications of Signal Processing. The 
work is a natural continuation of the previous 
papers [7][8], which analyzed the impact and the 
potential that these architectures may represent 
in the field of Signal Processing. In the present 
paper we analyze the performance of some par-
ticular libraries used in Signal Processing with a 
more pragmatic point of view.

We chose a simple series of typical problems 
found in several applications in this field and as-
sessed their behavior when they are solved on 
current CPU and also on computers that incor-
porate GPUs. The last two GPU models marketed 
by NVIDIA, Tesla and Fermi [3], as well as the 
latest generation Intel processors with 4 and 6 
cores [9], have been used for this purpose.

The chosen target problems are described in 
what follows. First, we chose two general prob-

  Figure 1. Evolution of the theoretical floating-point operations per second 
achieved with different GPU versions [2].
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(see Figure 2). From this point of view, the GPU 
card can be seen as a set of 240/480 (depend-
ing on model) processors, running the same 
instruction simultaneously, each one on its own 
set of data. An appropriate performance metric 
for this system could be the speedup achieved 
by the graphic card against the CPU. This spee-
dup can be obtained by dividing the runtime of 
a program executed in the sequential proces-
sor by the execution time given by the graphic 
card. A similar metric consists of comparing the 
Gflop/s needed by the CPU and the GPU to solve 
the same problem. Note that the different clock 
speed of operation in the sequential unit and in 
the GPU causes an unfair comparison between 
performances of CPU and GPU.  In fact, this is 
not a classical speedup because the considered 
sequential machine is not an instance of the con-
sidered parallel machine for just one processor.

A more realistic model should consider the host 
system and graphic card as a whole, and the host 
computer as another parallel computer, at the 
same level than the GPU. This leads us to the het-
erogeneous parallel computer model. A similar 
model is used for instance in [16]. Following this 
idea, a system with a GPU or an accelerator card 
(see Figure 3) consists of a set of two (or more) 
parallel computers, with different speeds, each 
of them with access to different types of mem-
ory, which also implies different memory access 
times for each processor.

A model of this kind would be characterized by 
the number and type of processors, and differ-

ent access time of each processor to the different 
types of memory. For example a system compris-
ing a multicore type CPU is considered in Figure 
3. This system has a first-level cache and a main 
memory, shared by all cores, and an accelera-
tor manycore type card with different types of 
memory (global memory, constant memory, 
shared memory). In this case the CPU can write 
and read to global and constant memory of the 
GPU and GPU can write and read to its global 
memory and only read from constant memory.

Performance and programming of this model 
depend on: the type of parallel computer (MIMD 
in the case of the CPU, SIMD in the case of the 
GPU), the clock speed of CPU and GPU, the access 
time to each type of memory and the amount 
of memory in each memory class. Note that the 
performance of a GPU in a system of this kind is 
difficult to evaluate as an isolated component. 
The best metric in this case may be to compare 
the speed of the system with and without the 
accelerator card. It must be allowed (and even 
encouraged) a simultaneous use of the GPU and 
CPU, and compare the Gflop/s obtained when 
they act together and when eliminating the use 
of the GPU to solve a concrete problem.

This second approach is much more realistic, 
and it is used, for example, in the case of numeri-
cal linear algebra libraries like MAGMA or CULA 
[17]. Although these libraries are considered 
specific libraries for GPU, they run usually part of 
their programs on the CPU and reserve the GPU 
to execute those parts that exhibit a strong data 
parallelism.

The systems used in our case can be modelled 
as follows: two benchmarks are mapped onto 
a  heterogeneous model system (QR and LLSP) 
and the other one uses the GPU model system 
(K-best problem). The specific technical charac-
teristics of the computers are described later.

2.2 Last and penultimate GPU generations 
Three GPU generations have been released since 
the beginning of NVIDIA GP-GPU computing 
until nowadays: firstly Tesla 8-series, then Tesla 
10-series, and finally Tesla 20-series (or Fermi 
architecture). The most important differences 
between Tesla 10-series and Fermi [18] are sum-
marized below.

2.2.1 Hardware features
• The number of multiprocessors of the GPU 
has decreased from 30 to 14, and the number 
of cores per multiprocessor has increased 
from 8 to 32 cores, thus the total number of 
cores has increased from 240 to 448.

• Memory error control (ECC) is supported in 
global and cache memory to improve reliability.

• Configurable size L1 cache exists (either 16 
kB or 48 kB per core). Shared memory size is 
now either 48 kB or 16 kB depending on the 

  Figure 2. Sequential computer with a GPU acce-
lerator.

GPUs represent 
a quantitative 
leap in the 
development of 
high performance 
hardware. 
However, there 
remain serious 
programming 
difficulties, 
especially if GPUs 
are intended to be 
used as general 
purpose machines.

 Figure 3. Heterogeneous parallel computer system.
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2.3 Last multicore generations 
During the last few years, Intel and AMD have 
been focused in developing up to 12 cores proc-
essors [9][19][20]. The last Intel architecture, 
codename Nehalem, uses 45 nm technology 
(Westmere is the 32 nm evolution) in processors 
with 2, 4, 6 and 8 cores. On the other hand, AMD 
developed the Phenom architecture for desktop 
environments, with 45 nm technology and with 
2, 3, 4, and 6 cores, and Opteron 6000 series for 
servers, with 8 and 12 cores. 

In both cases, their purpose is getting maximum 
performance with minimal consumption using 
hyperthreading and other technologies as:
•Intel's Turbo Boost Technology and Intelli-
gent Power Technology allow the processors to 
change their frequencies on demand in order 
to improve their performance (if more power 
is needed) or to save energy (in low utilization 
periods).

• AMD's Turbo Core Technology allows to switch 
off some cores in order to increase the frequen-
cy of the other ones when this provides a better 
performance.

However, new objectives of both companies 
have appeared due to the GPU growing market 
in recent years. Intel started the Larrabee archi-
tecture GPGPU project some years ago with an 
uncertain future. Nowadays its interest seems fo-
cused on the Teraflop Research Chip (also known 
as Polaris), which is an 80-core processor with a 
GPU-like conception [21].

On the other hand, after acquiring ATI and since 
2006, AMD has been developing the 40 nm tech-
nology known as AMD Fusion, which integrates 
the processor and the GPU on the same chip [22].

3. Benchmarks

3.1 Problem description 
3.1.1 QR decomposition 
Also known as QR factorization [10], it decom-
poses a matrix A into a product of an orthogonal 
matrix and an upper triangular matrix, A = QR, 
where Q is the orthogonal matrix (unitary in case 
of A being complex) and R is an upper triangular 
matrix.

More generally, we can factor a mxn matrix, be-
ing m≥n, as the product of the matrices Q and 
R. Since the last m-n rows are full of zeroes, the 
following partition is commonly made:

 

(1)

where R1 is a nxn upper triangular matrix, Q1 is 
mxn and Q2 is mx(m-n). Q1 and Q2 both have or-
thonormal columns.

chosen cache size. The L2 cache is 768 kB per 
multiprocessor (the same size for maximum 
total L1 and L2 caches).

• GDDR5 DRAM is used instead of GDDR3 
DRAM.

2.2.2 Base architecture 
• The number of threads per block has been 
doubled (from 512 to 1024), although the 
maximum number of blocks per multiproc-
essor remains constant (8). The maximum 
number of threads per multiprocessor has 
increased from 1024 to 1536 but the number 
of threads per warp remains constant (32).

• There were 32-bit/16k registers in 10-series 
and 20-series present 32-bit/32k registers 
per multiprocessor.

• Double precision arithmetic performance 
has been improved (now it is IEEE 754-2008) 
with half the speed of single precision arith-
metic (in Tesla 10-series this relative speed 
was 1/8th).

• Virtual address space of 64 bits with unified 
address space (except for constant and tex-
ture memory) is available for 64-bit versions 
of Linux and Windows operating systems.

• Atomic instructions are now faster because 
atomic values can be placed in L2 cache.

• There exists a new instruction set transpar-
ent to the programmer thanks to the PTX 
code.

But not just hardware and architecture modifi-
cations improve the execution times of applica-
tions. CUDA 4 helps to get better performance:

• Grids can be tridimensional (in Fermi).

• Several GPUs can be shared across multiple 
threads: concurrent kernels can be launched 
from different host threads. A single thread 
can access all GPUs.

• Changes in page-locked host memory allo-
cation reduce memcpy overhead and usage 
of system memory.

• Data can be copied from one GPU to an-
other without intervention of CPU (only in 
Fermi).

• Support for unified virtual addressing: sin-
gle memory space in the GPU+CPU system 
has been implemented on Tesla 20-series 
and with 64-bit applications on Linux and 
Windows.

• Improvements in performance analysis de-
bugging and disassembling have been de-
veloped.

One of the 
more decisive 
concepts for 
successfully 
programming a 
computer that 
uses GPU is 
the underlying 
model of 
parallel 
computer.
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This problem can be solved in a GPU by using 
the MAGMA library, which implements three ver-
sions of the QR decomposition, all of them based 
on elementary reflectors. As commented above, 
they follow an hybrid model, which means they 
are not totally run on GPU. The tiniest and/or 
hardest tasks to be parallelized efficiently are 
executed on CPU using LAPACK/BLAS, while the 
rest of the code (like BLAS 3 operations)  are cal-
culated on GPU using CUBLAS [23]. This method 
provides more overlapping between CPU and 
GPU works and improves algorithm efficiency.

The functions related to each of the three ver-
sions, whose interfaces are equivalent to the LA-
PACK ones for CPU, are described below.

3.1.1.1 Xgeqrf
The matrix and the final result are stored in CPU 
memory and the routine allocates memory in 
the GPU and makes all the necessary transfers in 
both directions.

magma_int_t magma_Xgeqrf(magma_int_t m, 	
magma_int_t n, <type> *a, 
	 magma_int_t lda, <type> *tau, 
	 <type> *work, magma_int_t lwork, 	
magma_int_t *info)

3.1.1.2 Xgeqrf_gpu
In this version, matrix dA must be already stored 
in GPU memory, where it also stores the results 
and the triangular factor of the block reflector 
matrix used in the factorization so they can be 
used later avoiding their recomputation and 
transfers, therefore the application of Q is much 
faster.

magma_int_t magma_Xgeqrf_gpu(magma_int_t m, 	
magma_int_t n, <type> *dA, 
	 magma_int_t ldda,<type> *tau, 
	 <type> *dT, magma_int_t *info)

3.1.1.3 Xgeqrf2_gpu
This version is similar to Xgeqrf_gpu: matrix dA 
is allocated in GPU memory but the triangular 
factor of the block reflector is applied but not 
stored for future use.

magma_int_t magma_Xgeqrf2_gpu
(magma_int_t m, magma_int_t n, <type> *dA, 
                 	 magma_int_t ldda, <type> *tau, 
                 	 magma_int_t *info)

3.1.2 Linear least squares problem (LLSP)
This is equivalent to solving an overdetermined 
system of equations. Given ,
the LLSP consists of finding an   so that  

It is common to use the QR factorization in order 
to solve this (full-rank) problem [10].The MAG-
MA implementation is based in the Xgeqrf_gpu 
model (described in the section above).

The LS interfaces are the same as in the LAPACK 
library:

magma_int_t magma_Xgels_gpu(char trans, 	
magma_int_t m, magma_int_t n, 
	 magma_int_t nrhs, <type> *dA, 
	 magma_int_t ldda, <type> *dB, 
	 magma_int_t lddb, <type> *hwork, 		
magma_int_t lwork, magma_int_t *info)

3.1.3 K-Best tree-search detection in MIMO 
wireless systems 
One of the tasks of the receiver in a multiple-
input multiple-output (MIMO) wireless system 
is the detection of the transmitted data, which 
is affected by the communication channel and 
the noise [24]. Given the received signal x and 
the channel matrix H, the detection problem 
consists in determining the transmitted vector s 
with the highest a posteriori probability. In prac-
tice, this is carried out by solving the following 
integer least squares problem  			 
		

                                                                                                       (2)

which can be straightforwardly solved by an 
exhaustive search over the whole set of nT -di-
mensional lattice points s, a priori known and 
denoted by Mn

T. Note that nT and nR stand for the 
number of transmitting and receiving antennas, 
respectively.

This implementation is cumbersome for practi-
cal systems; however, its complexity can be sub-
stantially reduced by means of tree search de-
tection methods. Assuming that nT = nR, the QR 
factorization (1) of the channel matrix (H = QR) 
transforms the system into an equivalent one 
that can be solved using a tree structure [25]. If 
(2) is multiplied by QT and y = QTx, problem (2) 
can be equivalently expressed as	

                                                           (3)

where the triangular structure of R has also been 
exploited.

The detection process starts from the l = nT level 
of the tree and each survivor candidate of the 
l-th level is represented by  S(l) = [sl,sl+1,...,snT] 

All the problems 
for the general use 
of GPU are being 
solved through: 
libraries like MAG­
MA and CUBLAS, 
new programming 
environments 
such as CUDA, and 
new hardware 
improvements 
such as the new 
Fermi card.

  Figure 4. Description of the search tree in a K-Best MIMO detector.
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synchronization among threads. This fact also 
makes impossible to employ shared memory to 
store the calculations and to get the K survivors 
in the kernel, since the shared memory is only 
accessible by a certain processor and it would be 
impossible to operate with distance values resid-
ing on different processors. 

Therefore the CUDA parallelization includes only 
the calculation of the cumulative distance for eve-
ry node at a certain level and does not include the 
sorting and calculation of the K-best survivors, 
this process are carried out sequentially.

4. Experiments

4.1 Computer description
Two different computers have been used in our ex-
periments. The first one, denoted as System 1, has 
two four-core processors: Intel Xeon E5430 @ 2.66 
GHz with 6 MB cache memory. The installed graph-
ics card is a Nvidia Quadro Fx 5800 with 30 8-core 
multiprocessors (240 cores), a clock frequency of 
1.35 GHz and 4 GB of GDDR3 global memory. The 
GPU hardware allows concurrent copy and execu-
tion and the installed CUDA SDK and Toolkit is the 
3.1 version. The machine has the MKL 10.1, CULA 
2.1 and MAGMA 1.0 RC4 libraries installed and has 
support to work with OpenMP and UPC.

The other computer, denoted as System 2, has two 
Intel Xeon X5680 processors at 3.33 GHz and 96 
GB of GDDR3 main memory. Each one is an hexa-
core processor with 12 MB of cache memory, and 
with the hyperthreading technology they have 
24 virtual processor. It contains two Nvidia Tesla 
C2070 GPUs with 448 cores and 6 GB of GDDR5 
global memory each one. The core frequency is 
1.15 GHz.  The architecture of these GPUs is Fermi 
and hence it supports the maximum parallelism 
level with several kernel execution overlapping, 
data copy and kernel execution overlapping, si-
multaneous host to device and device to host 
data copy, etc. The installed CUDA toolkit and SDK 
version is 4.0 and it has also libraries as MKL 10.3, 
CULA 2.1 and MAGMA 1.0 RC4 installed.

4.2 Performance Results
4.2.1 QR decomposition
This test has been run over System 2. The sizes 
(number of columns or rows of the used square 
matrices) were: 1024, 2048, 3072, 4032, 5184, 
6016, 7040, 8064, 9088 and 9984. Matrices were 
randomly generated from a normal distribution.

Since all MAGMA methods for QR factoriza-
tion present similar results, it is just shown the 
Xgeqrf2_gpu evolution, which offers a subtle 
better performance when comparing with LA-
PACK for single precision complex data, even 
though for the smallest matrix sizes the differ-
ence is not large. When the matrix size grows the 
GPU works more than 400 Gflop/s faster than the 
CPU (see Fig. 5).

and called tree node. The accumulated partial 
Euclidean distance (PED) associated to S(l) is re-
cursively calculated as  
where is the distance between 
levels l and ||l + 1|| in the decoding tree, which 
will be named branch weight, with   
Hence, the solution of (3) is the vector  S(l) that 
minimizes D1(S (l) ).

Every time we descend from a node in level l 
(parent node) to the nodes in level l-1 that are 
connected to it (children nodes), the branch 
weights of the children nodes are computed, 
then, it is said that the parent node has been 
expanded. Various strategies can be followed to 
discard parts of the tree where the candidates are 
likely to be far from the solution of (3). The K-Best 
algorithm [13] expands the detection tree from 
top to bottom and considers only those K survivor 
candidates that show the smallest accumulated 
PEDs at each level of the tree (see Fig. 4). 

The main advantage of this method is that the 
maximum number of expanded nodes is lim-
ited by K and can be known in advance, which 
determines the necessary resources and makes 
its hardware implementation easier.  Also, some 
parts of the algorithm as the node expansion of 
all the surviving candidates at the same level can 
be carried out in parallel.

3.2 Benchmark descriptions
3.2.1 QR decomposition and Linear Least 
Squares problem
The MAGMA distribution includes several 
source-code files which allow a performance 
analysis of each of the operations supported 
by the library, also including a comparison with 
a pure CPU-execution using LAPACK. Some of 
these tests evaluate the performance of the sub-
routines without considering initial/final data 
transfers between CPU and GPU, because the 
routines they use suppose that the data are al-
ready in the GPU. Other tests take into account 
this time because the used subroutines assume 
that the initial data is still in CPU memory. Vari-
ability of performance when different datatypes 
(real or complex) and precision (simple or dou-
ble) are used has also been tested.

3.2.2 K-Best tree-search detection in MIMO 
wireless systems
In the K-Best problem, at every level of the detec-
tion tree, the number of expanded nodes is N = 
K x M, where M is the constellation size. For each 
node, the branch weight must be computed, the 
accumulated distance updated and then the best 
K survivors selected to proceed in the next level. 

In the CUDA implementation, we assigned the 
calculations of the PED in each branch of the tree 
to a different thread. When all threads finish the 
calculations, the information of the N nodes and 
their distances are sent to the CPU to obtain the 
K minimum distances. The inherent dependency 
between the levels of the tree requires barrier 
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Figure 6 shows performance differences among 
different datatypes. The fastest operations are 
in single precision, and complex datatypes offer 
better performance than real ones.

These results are similar to the ones shown in the 
MAGMA project website [26], showing only little 
differences due to the use of Tesla C2070 cards in-
stead of the C2050 model and different CPUs, and 
also considering data transfers (while the official 
results measure only the calculations). See [27] for 
the results published by MAGMA developers.
 
4.2.2 Linear least squares problem
This test was run over System 2, using the follow-
ing sizes of square matrices: 1024, 2048, 3072, 

4032, 5184, 6016, 7040, 8064, 9088 y 10112. 
Matrices are randomly generated from a normal 
distribution.

Figure 7 shows performance comparison with 
LAPACK for double precision operations. For 
complex data, both the CPU and GPU start al-
most at the same measure but when size 2048 
is reached the GPU increases performance a lot. 
Even though after that point their evolution is 
similar, they keep separated by 300 Gflop/s. For 
real data, CPU works better for small matrices 
but it stalls and is easily overwhelmed by GPU 
when size 2048 is reached. 
 
Regarding the datatype, it is shown again that 
single precision datatype are processed much 
faster than double precision datatype, and that 
complex data gets better performance than real 
data (see Fig.8).

For LS problem, the MAGMA website just shows 
a comparison for complex datatypes, again with 
similar results to the ones shown. See [28] for the 
results reported by MAGMA.

4.2.3 K-Best tree-search detection in MIMO 
wireless systems 
These benchmark tests were performed on the 
two systems described before. They were car-
ried out by varying the different parameters of 
the problem, such as channel matrix size and the 
constellation size. The selected sizes for H were 
2x2 and 4x4 and the constellation sizes M={4, 16, 
64, 256}.  Different values for K were considered 
depending on the constellation size. Further-
more, a multicarrier transmission with different 
number of subcarriers, denoted as Nc , was con-
sidered. The values for these two last parameters 
will be addressed in the Results section.

For the CUDA implementation, we defined a two-
dimensional grid containing two-dimensional 
blocks of size NH = 16x16, so the total number of 
blocks required can be calculated as follows:

  
and the number of blocks in each dimensions is 
upper bounded by .

Figure 9 shows the speedup resulting from the 
comparison between the computational times 
to run the algorithms at the GPU and the compu-
tational times of the implementations on CPU. 
The performance offered by Fermi is twice the 
performance with the Tesla architecture. Note 
that the code is not optimized to make use of 
new benefits and features of the Fermi architec-
ture, but it is a code implemented for previous 
GPU families.
 
This implementation considers that only the 
PED calculation of the tree branches was paral-

  Figure 5. Comparison with LAPACK QR using sin-
gle precision complex

  Figure 6. Xgeqrf2_gpu performance compari-
son depending on the datatype and including data 
transfers.

 Figure 7. LS performance for double precision 
complex and real datatypes.
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when the operations are independent. 
In the K-Best problem, the K-best survivors’ cal-
culation cannot start until all threads have fin-
ished the previous GPU computation and thus 
the CPU remains idle in the meantime. In the 
same way, the GPU cannot proceed with the fol-
lowing branches of the tree until the CPU has 
not determined the new K survivors and sent 
such information back to the GPU.

A useful measure of the goodness of a CUDA im-
plementation is the degree of parallelization of 
the algorithm on the GPU, which is revealed by 
the speedup achieved with many GPU threads 
against a single thread. In order to achieve this, 
a sequential version in CUDA based on a grid 
with a single block with only one thread was im-
plemented. The single thread is responsible for 
calculating all the distances of the N tree nodes 
for each level.

Figure 10 shows the speedup or degree of par-
allelization at the Fermi GPU (System 2). It can 
be observed that it increases as the number of 
threads that process the information gets high-
er, since the occupancy of the GPU gets better 
and it is ensured that a greater number of cores 
in the GPU are working.

5. Conclusions

GPUs are a very valuable tool, offering relatively 
high computing power at low cost (€ or $ per 
flop/s, an interesting and important evaluation 
performance parameter). However, their use in 
scientific computing is not yet fully widespread, 
because there are still some problems for their 
use by non-specialized programmers. Especial-
ly, their programming is quite clumsy, because 
the programmer must take into account many 
architecture details that can be safely ignored 
when programming for a CPU. 

As with CPU programming, it is highly desirable 
the use of specialized libraries (CUBLAS, MAG-
MA) to relieve the programmer of the task of 
dealing with very specialized algorithms. Some 
of these libraries take the approach of using the 
GPU as support for the CPU (no just as an inde-
pendent device), using both co-ordinately.

Another problem is that the performance of 
GPU depends heavily on the problem to be 
solved (that is, if the algorithm can be casted 
into a SIMT framework). If the algorithm has 
many divergent paths, it is very unlikely than 
a GPU implementation can give good results. 
Communications between the CPU and the 
GPU can decrease the throughput of the GPU, 
especially when the GPU must wait for the re-
sults of the CPU, as shown with the K-Best tree 
search. Generally speaking, algorithms where 
the different threads must synchronize very 
often will not profit from the full computing 
power of the GPU.

lelized, and we see that the tree branches are 
processed up to seven times faster on the GPU 
than on the CPU.

However, if we measure the data transfer time 
between the GPU and the CPU at each level of 
the tree, the total computational times of the al-
gorithm are very similar in the sequential and in 
the parallel implementations. 

Therefore, the benefits here are much lower 
than those achieved in the previously analyzed 
benchmarks. This is because the previous tests 
were carried out with highly optimized comput-
ing cores, and also the scheme of such problems 
allows a simultaneous use of the CPU and GPU 

  Figure 8.  LS performance comparison depending 
on the datatype and including data transfers.

  Figure 9.  Speedup for 400 subcarriers in Nvidia 
Tesla and Fermi architectures.

 Figure 10. Speedup for 1 subcarrier in Nvidia Fer-
mi architecture.
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Anyway, all the problems for the general use of 
GPU are being solved through: libraries like MAG-
MA and CUBLAS, new programming environments 
such as CUDA, and new hardware improvements 
such as the new Fermi card. Thus the perform-
ance of GPU in Signal Processing applications, as 
in many other fields, offers promising future pos-
sibilities. This will enable the application of known 
algorithms previously discarded for their large 
computational cost.
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