
Waves · 2011 · year 3

Abstract

This paper presents a meaningful practical per-
formance comparison between the last genera-
tion of Graphics Processing Units (GPUs) and the
last generation multi-core CPUs when they are
used to solve given Signal Processing algorithms.
Two kinds of tests were considered: when GPU
pre-designed computational libraries were avail-
able, and when the GPU code was developed by
the authors. Results show that GPUs offer great
possibilities, but its programming is still hard
and high performances can be obtained only if
the algorithm can be adapted to the GPU pro-
gramming model.

Keywords: Multi-core/GPU Architecture, per-
formance evaluation, MAGMA, QR, K-Best algo-
rithm, MIMO decoder

1. Introduction

In last years, the number of scientific contribu-
tions and research projects related to the use
of Graphics Processing Units (GPUs) as general
purpose computers (GP-GPU) has significantly
increased. This phenomenon has occurred in

The impact of GPU/Multicore in Signal Processing:
a quantitative approach

almost all engineering fields that require inten-
sive computing, and Signal Processing is not an
exception [1].

The initial idea in many of these applications and
projects is that GPU (many-core) can achieve
better performance than CPU (multi-core) due
to a simple quantification of “many” against
“multi”, and assuming that CPU are more expen-
sive and more resource-consuming. Perhaps
this belief stems from the graphs distributed by
NVIDIA (see Figure 1) [2], where GPU perform-
ance in terms of Gflop/s is quite impressive.
However, it must be noticed that the perform-
ances of sequential or parallel computers are
always obtained under specific conditions and
the results should not be extrapolated to other
circumstances.

GPUs are fascinating tools and represent a
quantitative leap in the development of high
performance hardware. Probably it would be im-
possible to go back, and the near future cannot
be imagined without GPU technology. However,
to give accurate opinions and ensure their use-
fulness, it is essential to carry out a quantitative
performance analysis. It should show the ranges
and working conditions for which the attained

V.M García1, A.Gonzalez2 , C. González2, F.J. Martínez-Zaldívar2, C.Ramiro1, S. Roger2, A.M. Vidal1
Department of Information Systems and Computation1 (DSIC),
Audio and Communications Signal Processing Group2 (GTAC) iTEAM,
Universitat Politècnica de València - Camino de Vera s/n - 46022 Valencia (Spain)

Waves · 2011 · year 3 / ISSN 1889-8297 97

lems with application in Signal Processing: the
linear Least Squares problem (LLSP) and the QR
Decomposition [10][11], which can be consid-
ered as the computational tool to solve LLSP. The
other is an algorithm employed in the detection
stage of MIMO (Multiple Input Multiple Output,
[12]) wireless systems: the K-best tree-search de-
tector [13], which presents high computational
requirements and a different approach.

The chosen problems cover several aspects of
usability of GPUs in Signal Processing. The first
two problems are very general and there exist
libraries that can solve efficiently them on both
GPU and CPU. In this work we have employed
the LAPACK library [14] for CPU and the MAGMA
library [15] for GPU. The other problem is more
specific, thus, the necessary code for their imple-
mentation has been developed by the authors.

The rest of the paper is organized as follows. Sec-
tion 2 describes the evolution and current status
of multi-core/ many-core architectures. Section
3 presents the computational problems studied
here and describes in detail the used bench-
mark. The different computational experiments
carried out and the conditions and results are
shown in Section 4. Section 5 discusses these
results. Finally, Section 6 reports the conclusions
of present work.

2. GPU/multicore models
evolution

2.1 Heterogeneous computational models
One of the more decisive concepts for success-
fully programming a computer that uses GPU
is the underlying model of parallel computer.
Traditionally, a GPU card has been considered
as an isolated parallel computer, fitting a SIMD
model, and connected to a sequential computer

benefits are really important, together with a
quantitative assessment of those benefits.

GPUs exhibit a fast evolution. The last models on
the market have more cores, more computation-
al power and several new features [3][4]. Soft-
ware tools also allow a friendlier GPU program-
ming than some years ago: CUDA (Compute
Unified Device Architecture, [2]) is continuously
evolving and the most recent SDK versions solve
problems of previous versions; OpenCL [5] lan-
guage seems a good future alternative but un-
fortunately it does not show the evolution speed
and the performance of CUDA.

However, there remain serious programming
difficulties, especially if GPUs are intended to be
used as general purpose machines. Sometimes
these difficulties are intrinsic and related to the
SIMD (Single Instruction Multiple Data) model,
which essentially allows data-parallelism but
limits the use of graphics accelerators in general
purpose applications. Instead, MIMD (Multiple
Instruction Multiple Data) models allow task-
parallelism and can be more efficient in this last
type of applications.

Some GPU limitations are derived from their
technical specifications (for instance, their clock
frequency is lower than the current-generation
CPU), from usage and memory capacity limita-
tions and, especially, from the fact that GPUs ex-
ist as accelerators and not as chips that include
all the features of the set CPU-GPU. Until now,
the attempts to design this kind of chip (see, e.g.,
reference [6]) have resulted only in theoretical
approaches and prototypes that could not get
into commercial stage.

A realistic approach to the performance of GPU
in a particular field involves identifying the prob-
lems that can be solved with these tools, defin-
ing which benchmarks will be used in perform-
ance analysis and setting evaluation metrics.
In this paper we pursue to show a quantitative
analysis of the benefits obtained by the GPU
in given applications of Signal Processing. The
work is a natural continuation of the previous
papers [7][8], which analyzed the impact and the
potential that these architectures may represent
in the field of Signal Processing. In the present
paper we analyze the performance of some par-
ticular libraries used in Signal Processing with a
more pragmatic point of view.

We chose a simple series of typical problems
found in several applications in this field and as-
sessed their behavior when they are solved on
current CPU and also on computers that incor-
porate GPUs. The last two GPU models marketed
by NVIDIA, Tesla and Fermi [3], as well as the
latest generation Intel processors with 4 and 6
cores [9], have been used for this purpose.

The chosen target problems are described in
what follows. First, we chose two general prob-

 Figure 1. Evolution of the theoretical floating-point operations per second
achieved with different GPU versions [2].

 ISSN 1889-8297 / Waves · 2011 · year 398

(see Figure 2). From this point of view, the GPU
card can be seen as a set of 240/480 (depend-
ing on model) processors, running the same
instruction simultaneously, each one on its own
set of data. An appropriate performance metric
for this system could be the speedup achieved
by the graphic card against the CPU. This spee-
dup can be obtained by dividing the runtime of
a program executed in the sequential proces-
sor by the execution time given by the graphic
card. A similar metric consists of comparing the
Gflop/s needed by the CPU and the GPU to solve
the same problem. Note that the different clock
speed of operation in the sequential unit and in
the GPU causes an unfair comparison between
performances of CPU and GPU. In fact, this is
not a classical speedup because the considered
sequential machine is not an instance of the con-
sidered parallel machine for just one processor.

A more realistic model should consider the host
system and graphic card as a whole, and the host
computer as another parallel computer, at the
same level than the GPU. This leads us to the het-
erogeneous parallel computer model. A similar
model is used for instance in [16]. Following this
idea, a system with a GPU or an accelerator card
(see Figure 3) consists of a set of two (or more)
parallel computers, with different speeds, each
of them with access to different types of mem-
ory, which also implies different memory access
times for each processor.

A model of this kind would be characterized by
the number and type of processors, and differ-

ent access time of each processor to the different
types of memory. For example a system compris-
ing a multicore type CPU is considered in Figure
3. This system has a first-level cache and a main
memory, shared by all cores, and an accelera-
tor manycore type card with different types of
memory (global memory, constant memory,
shared memory). In this case the CPU can write
and read to global and constant memory of the
GPU and GPU can write and read to its global
memory and only read from constant memory.

Performance and programming of this model
depend on: the type of parallel computer (MIMD
in the case of the CPU, SIMD in the case of the
GPU), the clock speed of CPU and GPU, the access
time to each type of memory and the amount
of memory in each memory class. Note that the
performance of a GPU in a system of this kind is
difficult to evaluate as an isolated component.
The best metric in this case may be to compare
the speed of the system with and without the
accelerator card. It must be allowed (and even
encouraged) a simultaneous use of the GPU and
CPU, and compare the Gflop/s obtained when
they act together and when eliminating the use
of the GPU to solve a concrete problem.

This second approach is much more realistic,
and it is used, for example, in the case of numeri-
cal linear algebra libraries like MAGMA or CULA
[17]. Although these libraries are considered
specific libraries for GPU, they run usually part of
their programs on the CPU and reserve the GPU
to execute those parts that exhibit a strong data
parallelism.

The systems used in our case can be modelled
as follows: two benchmarks are mapped onto
a heterogeneous model system (QR and LLSP)
and the other one uses the GPU model system
(K-best problem). The specific technical charac-
teristics of the computers are described later.

2.2 Last and penultimate GPU generations
Three GPU generations have been released since
the beginning of NVIDIA GP-GPU computing
until nowadays: firstly Tesla 8-series, then Tesla
10-series, and finally Tesla 20-series (or Fermi
architecture). The most important differences
between Tesla 10-series and Fermi [18] are sum-
marized below.

2.2.1 Hardware features
• The number of multiprocessors of the GPU
has decreased from 30 to 14, and the number
of cores per multiprocessor has increased
from 8 to 32 cores, thus the total number of
cores has increased from 240 to 448.

• Memory error control (ECC) is supported in
global and cache memory to improve reliability.

• Configurable size L1 cache exists (either 16
kB or 48 kB per core). Shared memory size is
now either 48 kB or 16 kB depending on the

 Figure 2. Sequential computer with a GPU acce-
lerator.

GPUs represent
a quantitative
leap in the
development of
high performance
hardware.
However, there
remain serious
programming
difficulties,
especially if GPUs
are intended to be
used as general
purpose machines.

 Figure 3. Heterogeneous parallel computer system.

Waves · 2011 · year 3 / ISSN 1889-8297 99

2.3 Last multicore generations
During the last few years, Intel and AMD have
been focused in developing up to 12 cores proc-
essors [9][19][20]. The last Intel architecture,
codename Nehalem, uses 45 nm technology
(Westmere is the 32 nm evolution) in processors
with 2, 4, 6 and 8 cores. On the other hand, AMD
developed the Phenom architecture for desktop
environments, with 45 nm technology and with
2, 3, 4, and 6 cores, and Opteron 6000 series for
servers, with 8 and 12 cores.

In both cases, their purpose is getting maximum
performance with minimal consumption using
hyperthreading and other technologies as:
•Intel's Turbo Boost Technology and Intelli-
gent Power Technology allow the processors to
change their frequencies on demand in order
to improve their performance (if more power
is needed) or to save energy (in low utilization
periods).

• AMD's Turbo Core Technology allows to switch
off some cores in order to increase the frequen-
cy of the other ones when this provides a better
performance.

However, new objectives of both companies
have appeared due to the GPU growing market
in recent years. Intel started the Larrabee archi-
tecture GPGPU project some years ago with an
uncertain future. Nowadays its interest seems fo-
cused on the Teraflop Research Chip (also known
as Polaris), which is an 80-core processor with a
GPU-like conception [21].

On the other hand, after acquiring ATI and since
2006, AMD has been developing the 40 nm tech-
nology known as AMD Fusion, which integrates
the processor and the GPU on the same chip [22].

3. Benchmarks

3.1 Problem description
3.1.1 QR decomposition
Also known as QR factorization [10], it decom-
poses a matrix A into a product of an orthogonal
matrix and an upper triangular matrix, A = QR,
where Q is the orthogonal matrix (unitary in case
of A being complex) and R is an upper triangular
matrix.

More generally, we can factor a mxn matrix, be-
ing m≥n, as the product of the matrices Q and
R. Since the last m-n rows are full of zeroes, the
following partition is commonly made:

(1)

where R1 is a nxn upper triangular matrix, Q1 is
mxn and Q2 is mx(m-n). Q1 and Q2 both have or-
thonormal columns.

chosen cache size. The L2 cache is 768 kB per
multiprocessor (the same size for maximum
total L1 and L2 caches).

• GDDR5 DRAM is used instead of GDDR3
DRAM.

2.2.2 Base architecture
• The number of threads per block has been
doubled (from 512 to 1024), although the
maximum number of blocks per multiproc-
essor remains constant (8). The maximum
number of threads per multiprocessor has
increased from 1024 to 1536 but the number
of threads per warp remains constant (32).

• There were 32-bit/16k registers in 10-series
and 20-series present 32-bit/32k registers
per multiprocessor.

• Double precision arithmetic performance
has been improved (now it is IEEE 754-2008)
with half the speed of single precision arith-
metic (in Tesla 10-series this relative speed
was 1/8th).

• Virtual address space of 64 bits with unified
address space (except for constant and tex-
ture memory) is available for 64-bit versions
of Linux and Windows operating systems.

• Atomic instructions are now faster because
atomic values can be placed in L2 cache.

• There exists a new instruction set transpar-
ent to the programmer thanks to the PTX
code.

But not just hardware and architecture modifi-
cations improve the execution times of applica-
tions. CUDA 4 helps to get better performance:

• Grids can be tridimensional (in Fermi).

• Several GPUs can be shared across multiple
threads: concurrent kernels can be launched
from different host threads. A single thread
can access all GPUs.

• Changes in page-locked host memory allo-
cation reduce memcpy overhead and usage
of system memory.

• Data can be copied from one GPU to an-
other without intervention of CPU (only in
Fermi).

• Support for unified virtual addressing: sin-
gle memory space in the GPU+CPU system
has been implemented on Tesla 20-series
and with 64-bit applications on Linux and
Windows.

• Improvements in performance analysis de-
bugging and disassembling have been de-
veloped.

One of the
more decisive
concepts for
successfully
programming a
computer that
uses GPU is
the underlying
model of
parallel
computer.

 ISSN 1889-8297 / Waves · 2011 · year 3100

This problem can be solved in a GPU by using
the MAGMA library, which implements three ver-
sions of the QR decomposition, all of them based
on elementary reflectors. As commented above,
they follow an hybrid model, which means they
are not totally run on GPU. The tiniest and/or
hardest tasks to be parallelized efficiently are
executed on CPU using LAPACK/BLAS, while the
rest of the code (like BLAS 3 operations) are cal-
culated on GPU using CUBLAS [23]. This method
provides more overlapping between CPU and
GPU works and improves algorithm efficiency.

The functions related to each of the three ver-
sions, whose interfaces are equivalent to the LA-
PACK ones for CPU, are described below.

3.1.1.1 Xgeqrf
The matrix and the final result are stored in CPU
memory and the routine allocates memory in
the GPU and makes all the necessary transfers in
both directions.

magma_int_t magma_Xgeqrf(magma_int_t m, 	
magma_int_t n, <type> *a,
	 magma_int_t lda, <type> *tau,
	 <type> *work, magma_int_t lwork, 	
magma_int_t *info)

3.1.1.2 Xgeqrf_gpu
In this version, matrix dA must be already stored
in GPU memory, where it also stores the results
and the triangular factor of the block reflector
matrix used in the factorization so they can be
used later avoiding their recomputation and
transfers, therefore the application of Q is much
faster.

magma_int_t magma_Xgeqrf_gpu(magma_int_t m, 	
magma_int_t n, <type> *dA,
	 magma_int_t ldda,<type> *tau,
	 <type> *dT, magma_int_t *info)

3.1.1.3 Xgeqrf2_gpu
This version is similar to Xgeqrf_gpu: matrix dA
is allocated in GPU memory but the triangular
factor of the block reflector is applied but not
stored for future use.

magma_int_t magma_Xgeqrf2_gpu
(magma_int_t m, magma_int_t n, <type> *dA,
 	 magma_int_t ldda, <type> *tau,
 	 magma_int_t *info)

3.1.2 Linear least squares problem (LLSP)
This is equivalent to solving an overdetermined
system of equations. Given ,
the LLSP consists of finding an so that

It is common to use the QR factorization in order
to solve this (full-rank) problem [10].The MAG-
MA implementation is based in the Xgeqrf_gpu
model (described in the section above).

The LS interfaces are the same as in the LAPACK
library:

magma_int_t magma_Xgels_gpu(char trans, 	
magma_int_t m, magma_int_t n,
	 magma_int_t nrhs, <type> *dA,
	 magma_int_t ldda, <type> *dB,
	 magma_int_t lddb, <type> *hwork, 		
magma_int_t lwork, magma_int_t *info)

3.1.3 K-Best tree-search detection in MIMO
wireless systems
One of the tasks of the receiver in a multiple-
input multiple-output (MIMO) wireless system
is the detection of the transmitted data, which
is affected by the communication channel and
the noise [24]. Given the received signal x and
the channel matrix H, the detection problem
consists in determining the transmitted vector s
with the highest a posteriori probability. In prac-
tice, this is carried out by solving the following
integer least squares problem 			
		

 (2)

which can be straightforwardly solved by an
exhaustive search over the whole set of nT -di-
mensional lattice points s, a priori known and
denoted by Mn

T. Note that nT and nR stand for the
number of transmitting and receiving antennas,
respectively.

This implementation is cumbersome for practi-
cal systems; however, its complexity can be sub-
stantially reduced by means of tree search de-
tection methods. Assuming that nT = nR, the QR
factorization (1) of the channel matrix (H = QR)
transforms the system into an equivalent one
that can be solved using a tree structure [25]. If
(2) is multiplied by QT and y = QTx, problem (2)
can be equivalently expressed as	

 (3)

where the triangular structure of R has also been
exploited.

The detection process starts from the l = nT level
of the tree and each survivor candidate of the
l-th level is represented by S(l) = [sl,sl+1,...,snT]

All the problems
for the general use
of GPU are being
solved through:
libraries like MAG­
MA and CUBLAS,
new programming
environments
such as CUDA, and
new hardware
improvements
such as the new
Fermi card.

 Figure 4. Description of the search tree in a K-Best MIMO detector.

Waves · 2011 · year 3 / ISSN 1889-8297 101

synchronization among threads. This fact also
makes impossible to employ shared memory to
store the calculations and to get the K survivors
in the kernel, since the shared memory is only
accessible by a certain processor and it would be
impossible to operate with distance values resid-
ing on different processors.

Therefore the CUDA parallelization includes only
the calculation of the cumulative distance for eve-
ry node at a certain level and does not include the
sorting and calculation of the K-best survivors,
this process are carried out sequentially.

4. Experiments

4.1 Computer description
Two different computers have been used in our ex-
periments. The first one, denoted as System 1, has
two four-core processors: Intel Xeon E5430 @ 2.66
GHz with 6 MB cache memory. The installed graph-
ics card is a Nvidia Quadro Fx 5800 with 30 8-core
multiprocessors (240 cores), a clock frequency of
1.35 GHz and 4 GB of GDDR3 global memory. The
GPU hardware allows concurrent copy and execu-
tion and the installed CUDA SDK and Toolkit is the
3.1 version. The machine has the MKL 10.1, CULA
2.1 and MAGMA 1.0 RC4 libraries installed and has
support to work with OpenMP and UPC.

The other computer, denoted as System 2, has two
Intel Xeon X5680 processors at 3.33 GHz and 96
GB of GDDR3 main memory. Each one is an hexa-
core processor with 12 MB of cache memory, and
with the hyperthreading technology they have
24 virtual processor. It contains two Nvidia Tesla
C2070 GPUs with 448 cores and 6 GB of GDDR5
global memory each one. The core frequency is
1.15 GHz. The architecture of these GPUs is Fermi
and hence it supports the maximum parallelism
level with several kernel execution overlapping,
data copy and kernel execution overlapping, si-
multaneous host to device and device to host
data copy, etc. The installed CUDA toolkit and SDK
version is 4.0 and it has also libraries as MKL 10.3,
CULA 2.1 and MAGMA 1.0 RC4 installed.

4.2 Performance Results
4.2.1 QR decomposition
This test has been run over System 2. The sizes
(number of columns or rows of the used square
matrices) were: 1024, 2048, 3072, 4032, 5184,
6016, 7040, 8064, 9088 and 9984. Matrices were
randomly generated from a normal distribution.

Since all MAGMA methods for QR factoriza-
tion present similar results, it is just shown the
Xgeqrf2_gpu evolution, which offers a subtle
better performance when comparing with LA-
PACK for single precision complex data, even
though for the smallest matrix sizes the differ-
ence is not large. When the matrix size grows the
GPU works more than 400 Gflop/s faster than the
CPU (see Fig. 5).

and called tree node. The accumulated partial
Euclidean distance (PED) associated to S(l) is re-
cursively calculated as
where is the distance between
levels l and ||l + 1|| in the decoding tree, which
will be named branch weight, with
Hence, the solution of (3) is the vector S(l) that
minimizes D1(S (l)).

Every time we descend from a node in level l
(parent node) to the nodes in level l-1 that are
connected to it (children nodes), the branch
weights of the children nodes are computed,
then, it is said that the parent node has been
expanded. Various strategies can be followed to
discard parts of the tree where the candidates are
likely to be far from the solution of (3). The K-Best
algorithm [13] expands the detection tree from
top to bottom and considers only those K survivor
candidates that show the smallest accumulated
PEDs at each level of the tree (see Fig. 4).

The main advantage of this method is that the
maximum number of expanded nodes is lim-
ited by K and can be known in advance, which
determines the necessary resources and makes
its hardware implementation easier. Also, some
parts of the algorithm as the node expansion of
all the surviving candidates at the same level can
be carried out in parallel.

3.2 Benchmark descriptions
3.2.1 QR decomposition and Linear Least
Squares problem
The MAGMA distribution includes several
source-code files which allow a performance
analysis of each of the operations supported
by the library, also including a comparison with
a pure CPU-execution using LAPACK. Some of
these tests evaluate the performance of the sub-
routines without considering initial/final data
transfers between CPU and GPU, because the
routines they use suppose that the data are al-
ready in the GPU. Other tests take into account
this time because the used subroutines assume
that the initial data is still in CPU memory. Vari-
ability of performance when different datatypes
(real or complex) and precision (simple or dou-
ble) are used has also been tested.

3.2.2 K-Best tree-search detection in MIMO
wireless systems
In the K-Best problem, at every level of the detec-
tion tree, the number of expanded nodes is N =
K x M, where M is the constellation size. For each
node, the branch weight must be computed, the
accumulated distance updated and then the best
K survivors selected to proceed in the next level.

In the CUDA implementation, we assigned the
calculations of the PED in each branch of the tree
to a different thread. When all threads finish the
calculations, the information of the N nodes and
their distances are sent to the CPU to obtain the
K minimum distances. The inherent dependency
between the levels of the tree requires barrier

 ISSN 1889-8297 / Waves · 2011 · year 3102

Figure 6 shows performance differences among
different datatypes. The fastest operations are
in single precision, and complex datatypes offer
better performance than real ones.

These results are similar to the ones shown in the
MAGMA project website [26], showing only little
differences due to the use of Tesla C2070 cards in-
stead of the C2050 model and different CPUs, and
also considering data transfers (while the official
results measure only the calculations). See [27] for
the results published by MAGMA developers.

4.2.2 Linear least squares problem
This test was run over System 2, using the follow-
ing sizes of square matrices: 1024, 2048, 3072,

4032, 5184, 6016, 7040, 8064, 9088 y 10112.
Matrices are randomly generated from a normal
distribution.

Figure 7 shows performance comparison with
LAPACK for double precision operations. For
complex data, both the CPU and GPU start al-
most at the same measure but when size 2048
is reached the GPU increases performance a lot.
Even though after that point their evolution is
similar, they keep separated by 300 Gflop/s. For
real data, CPU works better for small matrices
but it stalls and is easily overwhelmed by GPU
when size 2048 is reached.

Regarding the datatype, it is shown again that
single precision datatype are processed much
faster than double precision datatype, and that
complex data gets better performance than real
data (see Fig.8).

For LS problem, the MAGMA website just shows
a comparison for complex datatypes, again with
similar results to the ones shown. See [28] for the
results reported by MAGMA.

4.2.3 K-Best tree-search detection in MIMO
wireless systems
These benchmark tests were performed on the
two systems described before. They were car-
ried out by varying the different parameters of
the problem, such as channel matrix size and the
constellation size. The selected sizes for H were
2x2 and 4x4 and the constellation sizes M={4, 16,
64, 256}. Different values for K were considered
depending on the constellation size. Further-
more, a multicarrier transmission with different
number of subcarriers, denoted as Nc , was con-
sidered. The values for these two last parameters
will be addressed in the Results section.

For the CUDA implementation, we defined a two-
dimensional grid containing two-dimensional
blocks of size NH = 16x16, so the total number of
blocks required can be calculated as follows:

and the number of blocks in each dimensions is
upper bounded by .

Figure 9 shows the speedup resulting from the
comparison between the computational times
to run the algorithms at the GPU and the compu-
tational times of the implementations on CPU.
The performance offered by Fermi is twice the
performance with the Tesla architecture. Note
that the code is not optimized to make use of
new benefits and features of the Fermi architec-
ture, but it is a code implemented for previous
GPU families.

This implementation considers that only the
PED calculation of the tree branches was paral-

 Figure 5. Comparison with LAPACK QR using sin-
gle precision complex

 Figure 6. Xgeqrf2_gpu performance compari-
son depending on the datatype and including data
transfers.

 Figure 7. LS performance for double precision
complex and real datatypes.

Waves · 2011 · year 3 / ISSN 1889-8297 103

when the operations are independent.
In the K-Best problem, the K-best survivors’ cal-
culation cannot start until all threads have fin-
ished the previous GPU computation and thus
the CPU remains idle in the meantime. In the
same way, the GPU cannot proceed with the fol-
lowing branches of the tree until the CPU has
not determined the new K survivors and sent
such information back to the GPU.

A useful measure of the goodness of a CUDA im-
plementation is the degree of parallelization of
the algorithm on the GPU, which is revealed by
the speedup achieved with many GPU threads
against a single thread. In order to achieve this,
a sequential version in CUDA based on a grid
with a single block with only one thread was im-
plemented. The single thread is responsible for
calculating all the distances of the N tree nodes
for each level.

Figure 10 shows the speedup or degree of par-
allelization at the Fermi GPU (System 2). It can
be observed that it increases as the number of
threads that process the information gets high-
er, since the occupancy of the GPU gets better
and it is ensured that a greater number of cores
in the GPU are working.

5. Conclusions

GPUs are a very valuable tool, offering relatively
high computing power at low cost (€ or $ per
flop/s, an interesting and important evaluation
performance parameter). However, their use in
scientific computing is not yet fully widespread,
because there are still some problems for their
use by non-specialized programmers. Especial-
ly, their programming is quite clumsy, because
the programmer must take into account many
architecture details that can be safely ignored
when programming for a CPU.

As with CPU programming, it is highly desirable
the use of specialized libraries (CUBLAS, MAG-
MA) to relieve the programmer of the task of
dealing with very specialized algorithms. Some
of these libraries take the approach of using the
GPU as support for the CPU (no just as an inde-
pendent device), using both co-ordinately.

Another problem is that the performance of
GPU depends heavily on the problem to be
solved (that is, if the algorithm can be casted
into a SIMT framework). If the algorithm has
many divergent paths, it is very unlikely than
a GPU implementation can give good results.
Communications between the CPU and the
GPU can decrease the throughput of the GPU,
especially when the GPU must wait for the re-
sults of the CPU, as shown with the K-Best tree
search. Generally speaking, algorithms where
the different threads must synchronize very
often will not profit from the full computing
power of the GPU.

lelized, and we see that the tree branches are
processed up to seven times faster on the GPU
than on the CPU.

However, if we measure the data transfer time
between the GPU and the CPU at each level of
the tree, the total computational times of the al-
gorithm are very similar in the sequential and in
the parallel implementations.

Therefore, the benefits here are much lower
than those achieved in the previously analyzed
benchmarks. This is because the previous tests
were carried out with highly optimized comput-
ing cores, and also the scheme of such problems
allows a simultaneous use of the CPU and GPU

 Figure 8. LS performance comparison depending
on the datatype and including data transfers.

 Figure 9. Speedup for 400 subcarriers in Nvidia
Tesla and Fermi architectures.

 Figure 10. Speedup for 1 subcarrier in Nvidia Fer-
mi architecture.

 ISSN 1889-8297 / Waves · 2011 · year 3104

Anyway, all the problems for the general use of
GPU are being solved through: libraries like MAG-
MA and CUBLAS, new programming environments
such as CUDA, and new hardware improvements
such as the new Fermi card. Thus the perform-
ance of GPU in Signal Processing applications, as
in many other fields, offers promising future pos-
sibilities. This will enable the application of known
algorithms previously discarded for their large
computational cost.

Acknowledgements

This work was financially supported by the Span-
ish Ministerio de Ciencia e Innovación (Projects
TIN2008-06570-C04-02, TEC2009-13741 and
CAPAP-H3 TIN2010-12011-E), Universitat Politèc-
nica de València through “Programa de Apoyo a
la Investigación y Desarrollo (PAID-05-10)” and
Generalitat Valenciana through project PROM-
ETEO/2009/013.

References

[1] GTC 2010 Presentation Archive http://
www.nvidia.com/object/gtc2010-presen-
tation-archive.html

[2] NVIDIA, NVIDIA CUDA Programming Guide,
Version 3.2, 11/09/2010

[3] Fermi Compute Architecture. www.nvidia.
com/content/PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_
Whitepaper.pdf

[4] Graphic card ATI Radeon http://www.
amd.com/us/products/desktop/graphics/
ati-radeon-hd-5000/Pages/ati-radeon-
hd-5000.aspx

[5] OpenCL - The open standard for parallel
programming of heterogeneous systems
http://www.khronos.org/opencl/

[6] L. Seiler, D. Carmean, E. Sprangle, T. For-
syth, M. Abrash, P. Dubey, S. Junkins, A.
Lake, J. Sugerman, R. Cavin, R. Espasa,
E. Grochowski, T. Juan, P. Hanrahan “Lar-
rabee: A Many-Core x86 Architecture for
Visual Computing” ACM Transactions on
Graphics, Vol. 27, No. 3, Article 18, Publica-
tion date: August 2008. pp. 1-15

[7] A. Gonzalez, J. A. Belloch, F. J. Martinez, P.
Alonso, V. M. Garcia, E. S. Quintana-Orti,
A. Remon, A. M. Vidal, “The Impact of the
Multi-core Revolution on Signal Process-
ing”, Waves, vol. 2, pp. 74-85, 2010.

[8] A. Gonzalez, J. A. Belloch, G. Piñero, J.
Lorente, M. Ferrer, S. Roger, C. Roig, F. J.
Martinez, M. de Diego, P. Alonso, V. M. Gar-
cia, E. S. Quintana-Orti, A. Remon, A. M.
Vidal, “Application of Multi-core and GPU
Architectures on Signal Processing: Case
Studies”, Waves, vol. 2, pp. 86-96, 2010.

[9] Intel® Microarchitecture Codename Ne-
halem. http://www.intel.com/technology/
architecture-silicon/next-gen/319724.pdf

[10] G. H. Golub and C. F. van Loan. Matrix

computations. Johns Hopkins University
Press, 1996.

[11] A, Bjork, “Numerical methods for Least
Square Problems”, Philadelphia PA-SIAM,
1996

[12] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H.
Bölcskei, “An overview of MIMO communi-
cations - a key to Gigabit wireless,” Proceed-
ings of the IEEE, vol. 92, no. 2, pp. 198–218,
Feb. 2004.

[13] Z. Guo and P. Nilsson, “Algorithm and im-
plementation of the K-Best Sphere Decod-
ing for MIMO detection,” IEEE Journal on
Selected Areas in Communications, vol.24,
no.3, pp. 491–503, March 2006.

[14] E. Anderson, Z. Bai, C. Bishof, J. Demmel,
and J. Dongarra. LAPACK User Guide; Sec-
ond edition. SIAM, 1995.

[15] S. Tomov, R. Nath, P. Du, J. Dongarra, MAG-
MA version 0.2 Users’ Guide, November
2009. http://icl.cs.utk.edu/magma

[16] Grey Ballard, James Demmel, and Andrew
Gearhart. “Communication bounds for het-
erogeneous architectures”. Lapack working
note 239. February 2011

[17] CULA, tools. CULA Reference Manual.
www.culatools.com

[18] Peter N. Glaskowsky “NVIDIA’s Fermi: The
First Complete GPU Computing Architec-
ture”, September 2009

[19] AMD Phenom architecture http://www.
amd.com/US/PRODUCTS/DESKTOP/PROC-
ESSORS/PHENOM-II/Pages/phenom-ii.aspx

[20] AMD Opteron 6000 Series Platform Quick
Reference Guide. http://www.amd.com/
us/Documents/48101C_Opteron__6000_
QRG_FINAL.pdf

[21] Intel Polaris http://download.intel.com/
pressroom/kits/Teraflops/Teraflops_Re-
search_Chip_Overview.pdf

[22] AMD Fusion http://sites.amd.com/us/
Documents/48423B_fusion_whitepaper_
WEB.pdf

[23] CUBLAS Library. http://developer.down-
load.nvidia.com/compute/cuda/3_2/
toolkit/docs/CUBLAS_Library.pdf

[24] S. Roger, F. Domene, C. Botella, G. Piñero, A.
Gonzalez, and V. Almenar, “Recent advanc-
es in MIMO wireless systems”, Waves, vol. 1,
pp. 115-123, 2009.

[25] M. O. Damen, H. E. Gamal, and G. Caire,
“On maximum-likelihood detection and
the search for the closest lattice point,” IEEE
Transactions on Information Theory, vol.49,
no.10, pp. 2389–2402, October 2003.

[26] MAGMA project website http://icl.cs.utk.
edu/magma/

[27] MAGMA QR evaluation performance
http://www.cs.utk.edu/~tomov/MAGMA-
QR-Fermi.tif

[28] MAGMA LS evaluation performance http://
www.cs.utk.edu/~tomov/MAGMA-QR-
Solve-Fermi.tif

Waves · 2011 · year 3 / ISSN 1889-8297 105

Biographies

	

Antonio M. Vidal
receives his M.S. degree in
Physics from the “Universi-
dad de Valencia”, Spain, in
1972, and his Ph.D. degree
in Computer Science from
the “Universidad Politéc-
nica de Valencia”, Spain, in
1990. Since 1992 he has

been in the Universidad Politécnica de Valencia,
Spain, where he is currently a full professor in the
Department of Computer Science. He is the coordi-
nator of the project “High Performance Computing
on Current Architectures for Problems of Multiple
Signal Processing", currently developed by INCO2
Group and financed by the Generalitat Valenciana,
in the frame of PROMETEO Program for research
groups of excellence. His main areas of interest in-
clude parallel computing with applications in nu-
merical linear algebra and signal processing.

	

Alberto Gonzalez
was born in Valencia,
Spain, in 1968. He re-
ceived the Ingeniero de
Telecomunicacion degree
from the Universidad Po-
litecnica de Catalonia,
Spain in 1992, and Ph.D
degree from de Universi-

dad Politecnica de Valencia (UPV), Spain in 1997.
His dissertation was on adaptive filtering for ac-
tive control applications. From January 1995, he
visited the Institute of Sound and Vibration Re-
search, University of Southampton, UK, where he
was involved in research on digital signal process-
ing for active control. He is currently heading the
Audio and Communications Signal Processing
Research Group (www.gtac.upv.es) that belongs
to the Institute of Telecommunications and Mul-
timedia Applications (i-TEAM, www.iteam.es).
Dr. Gonzalez serves as Professor in digital signal
processing and communications at UPV where he
heads the Communications Department (www.
dcom.upv.es) since April 2004. He has published
more than 70 papers in journals and conferenc-
es on signal processing and applied acoustics.
His current research interests include fast adap-
tive filtering algorithms and multichannel signal
processing for communications, 3D sound repro-
duction and MIMO wireless systems.

	

Francisco José
Martínez Zaldívar
was born in Paiporta,
Spain, in 1966. He re-
ceived the Licenciado
en Informática and Ph.D.
degrees from the Univer-
sidad Politécnica de Va-
lencia, Spain, in 1990 and

2007 respectively. He is currently Lecturer at the
Departamento de Comunicaciones, Universi-
dad Politécnica de Valencia. His current research
interests include parallel computing in signal
processing.

	

Víctor M. García
obtained a degree in
Mathematics and Compu-
ter Science (Universidad
Complutense, Madrid) in
1991, later an MSc degree
in Industrial Mathematics
(University of Strathclyde,
Glasgow) in 1992 and a Ph.

D. degree in Mathematics (Universidad Politécni-
ca de Valencia) in 1998. He is a T.U. (senior lecturer)
in the Universidad Politécnica de Valencia, and his
areas of interest are Numerical Computing, paral-
lel numerical methods and applications.

	
 Sandra Roger
was born in Castellón,
Spain, in 1983. She re-
ceived the degree in Elec-
trical Engineering from
the Universidad Politéc-
nica de Valencia, Spain,
in 2007 and the MSc.
degree in Telecommuni-

cation Technologies in 2008. Currently, she is a
PhD grant holder from the Spanish Ministry of
Science and Innovation under the FPU program
and is pursuing her PhD degree in Electrical En-
gineering at the Institute of Telecommunications
and Multimedia Applications (iTEAM). In 2009
and 2010, she was a guest researcher at the In-
stitute of Communications and Radio-Frequency
Engineering of the Vienna University of Technol-
ogy (Vienna, Austria) under the supervision of
Prof. Gerald Matz. Her research interests include
efficient data detection, soft demodulation and
channel estimation for MIMO wireless systems.

 ISSN 1889-8297 / Waves · 2011 · year 3106

	

Carla Ramiro Sánchez
was born in Valencia,
Spain, in 1984. She re-
ceived the Engineer De-
gree in Computer Science
and an Technical Engineer
Degree in Telematics in
2009, both from the Uni-
versitat de Valencia, and

the MSc. degree in Parallel and Distributed Com-
puting in 2010, from the Universidad Politécnica
de Valencia, Spain. She is working an assistant
researcher in the Department of Information
Systems and Computation at the Universidad
Politécnica de Valencia. Her research focuses on
parallelization of signal processing problems on
the different cores of a CPU and GPU.

	
 Cristina Yenyxe
González García
was born in Oviedo, Spain,
in 1986. She received her
Bachelor in Computer
Science from the Univer-
sidad de Oviedo, Spain,
in 2008. Currently, she is
a studying the Master in

Parallel and Distributed Computing in Univer-
sidad Politécnica de Valencia, Spain. She is also
contributing to the project "High Performance
Computing on Current Architectures for Prob-
lems of Multiple Signal Processing". Her main
interest is parallel computing, especially GPU
programming.

