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ABSTRACT

This work compares the experimental results obtained for the energy performance study of a ground coupled 

heat pump system with the design values predicted by means of standard methodology. The system energy

performance of a monitored ground coupled heat pump system is calculated using the instantaneous 

measurements of temperature, flow and power consumption and these values are compared with the numerical 

predictions. These predictions are performed with the TRNSYS software tool following standard procedures 

taking the experimental thermal loads as input values. The main result of this work is that simulation results 

solely based on nominal heat pump capacities and performances overestimate the measured overall energy 

performance by a percentage between 15% and 20%. A sensitivity analysis of the simulation results to changes 

in percentage of its input parameters showed that the heat pump nominal coefficient of performance is the 

parameter that mostly affects the energy performance predictions. This analysis supports the idea that the 

discrepancies between experimental results and simulation outputs for this ground coupled system are mainly 

due to heat pump performance degradation for being used at partial load. An estimation of the impact of this 

effect in energy performance predictions reduces the discrepancies to values around 5%. 

Keywords: Heating and cooling systems, ground coupled heat pump, energy efficiency, computer simulation, 

experiments.
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1. INTRODUCTION

Ground coupled heat pumps are recognized by the U.S. Environmental Protection Agency [1] as being among the 

most efficient and comfortable heating and cooling systems available today. These pumps represent a good 

alternative system for heating and cooling buildings [2-10]. By comparison with standard technologies, these heat 

pumps offer competitive levels of comfort, reduced noise levels, lower greenhouse gas emissions and reasonable 

environmental safety. Their electrical consumption and maintenance requirements are lower than those required by 

conventional systems and, therefore, have lower annual operating cost [11-13]. 

The design of a ground coupled heat pump HVAC system is based on predictions coming from simulation tools. 

First step in a standard design procedure is the estimation of the thermal loads that the air-conditioned area is 

going to demand. Its value determines the capacity of the ground source air-conditioning system. From this value 

and a proper estimation of the ground thermal properties, the characteristics of the water to water heat pump and 

the required length and layout of the borehole heat exchangers are estimated.

The purpose of this work is to compare a standard design procedure based on a TRNSYS [14] simulation with 

the experimental results obtained on a monitored geothermal plant. The experimental validation of design 

models for thermal facilities is the subject of a considerable amount of research works [15-19]. In [15], an air-

cooled reciprocating chiller is modeled and analyzed. In [16], for instance, a variable-refrigerant-volume air 

conditioning system is simulated using EnergyPlus and experimentally validated. In [17], a numerical model for 

heat storage with phase change materials is presented and experimentally checked. In [18], the cooling capacity 

of earth-air-pipe systems is modeled and evaluated. And in [19], the design and performance of solar powered 

absorption cooling systems is studied. Many other references can be included here, being the ones presented 

before just a representative sample of the strong activity in the area.

Some of the models describing the behaviour of thermal facilities have been implemented as modules for the 

TRNSYS software tool. Its experimental validation is also a field of strong research activity [20-23]. In [20], a 

comparison between measured and predicted long term performance of a grid connected photovoltaic system 

using TRNSYS is performed. In [21], thermal testing and numerical simulation with the TRNSYS software of a 

prototype cell using light wallboards coupling vacuum isolation panels and phase change materials is presented. 

In [22], experimental measurements and numerical modeling with TRNSYS of a green roof are compared. And 

in [23], the validation of a TRNSYS computer model for solar assisted district heating systems with seasonal hot 

water heat store is studied. More references can be added being the presented ones just a representative sample 
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of the almost standard use of TRNSYS software as simulation tool of the dynamic behaviour of thermal 

facilities.

In the subject of the present work, the experimental validation of models for ground coupled heat pumps 

working in heating and cooling mode, the amount of research works is more limited. In Europe, research focused 

in this area has been performed in Turkey, with the objective of experimentally characterizing the system 

performance, and also in the development of models to predict this performance. In Hepbasli [24, 25] and Inalli 

and Esen [26, 27] the experimental characterization of ground coupled heat pump system performance working 

in both heating and cooling modes was tempted. There are also studies of ground coupled heat pump system 

performance when combined with thermal solar energy [28-31]. In Esen, Inalli et al [32, 33] models to predict 

ground coupled heat pump system performance are presented. These authors have also developed research in the 

subject of the present work. In [34] experimental measures of the energy performances of a horizontal ground 

coupled heat pump system are shown, which are used to validate a numerical model describing ground heat 

transfer. In [35] a study on modeling and performance assessment of a heat pump system for utilizing low 

temperature geothermal resources in buildings is presented. Finally, in [36-40], the recent research developed in 

China on the subject of ground coupled heat pumps working in refrigeration mode is described.

The main objective of this work is to compare long term energy performance experimental measurements of a 

monitored ground coupled heat pump system, with the predictions from a standard design procedure based in the 

TRNSYS simulation tool. One of the difficulties that appear when doing this comparison comes from the fact 

that the actual thermal loads differ significantly from the estimated ones. These estimations are based in 

predictions of building occupancies, weather data … being in many cases substantially different than the actual 

operation conditions. To avoid this difficulty, in this work the measured thermal loads are used as input value of 

the simulation design tool to evaluate the goodness of the models describing the ground coupled heat pump 

HVAC system. 

In this study a comparison between the energy performance measured in GeoCool geothermal experimental plant 

and the energy performance predictions from a standard design procedure is performed. This procedure uses as 

input values the thermal loads measured along a whole year of measurements, nominal heat pump capacities and 

performances, and ground thermal properties. Numerical predictions and experimental results are compared, 

performing then an exhaustive analysis of the origin of the discrepancies between both. 
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This article is structured as follows. In Section 2, the experimental setup of GeoCool installation is described. 

Section 3 presents the procedure to calculate the system energy efficiency. Afterwards, in Section 4, the 

simulated system, its structure, inputs and outputs are explained. In Section 5, the results are presented and 

discussed. Finally, in section 6, the conclusions obtained from the presented results are summarized.

NOMENCLATURE

2. GEOTHERMAL EXPERIMENTAL PLANT 

Geothermal experimental system was the result of a EU project (GeoCool) and air-conditions a set of spaces in 

the Department of Applied Thermodynamics at the Polytechnic University of Valencia, Spain, with a total 

surface of approximately 250 m2. This area includes nine offices, a computer classroom, an auxiliary room and a 

corridor. All rooms, except the corridor, are equipped with fan coils supplied by the experimental system: an air 

to water heat pump and a ground coupled (geothermal) heat pump working alternately (Figure 1). The 

geothermal system consists of a reversible water to water heat pump (15.9 kW of nominal cooling capacity and 

19.3 kW of nominal heating capacity), a vertical borehole heat exchanger and a hydraulic group. The water to 

water heat pump is a commercial unit (IZE-70 model manufactured by CIATESA) optimized using propane as 

refrigerant. As reported in GeoCool final publishable report [41], the coefficient of performance of the improved 

heat pump is 34% higher in cooling and 15% higher in heating operation.The vertical heat exchanger is made up 

of 6 boreholes of 50 m. depth in a rectangular configuration, with two boreholes in the short side of the rectangle 

and three in the large side, being 3 m. the shorter inter-borehole distance. All boreholes are filled with sand and 

finished with a bentonite layer at the top to avoid intrusion of pollutants in the aquifers.

FIGURE 1

The GeoCool plant was designed to allow a fair comparison between a ground source (geothermal) heat pump 

system and an air source heat pump system [2, 3], therefore a network of sensors was set up to allow monitoring 

the most relevant parameters of these systems (Figure 1). These sensors measure temperature, mass flow and 

power consumption. The temperature sensors are four wire PT100 with accuracy ±0.1 ºC. The mass flow meters 

are Danfoss Coriolli meters, model massflo MASS 6000 with signal converter Compact IP 67 and accuracy 

<0.1%. The power meters are multifunctional power meters from Gossen Metrawatt, model A2000 with 

accuracy ±0.5% of the nominal value. Data from this sensor network is collected by a data acquisition unit 

Agilent HP34970A with plug-in modules HP34901A.
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The geothermal system is characterized by the heat that the ground can absorb or transfer. To record this value 

inlet and outlet fluid temperature of the water to water heat pump and circulating mass flow are measured. In 

addition inlet and outlet temperature in each borehole are measured too and in three of the boreholes the 

temperature at several depths is recorded to acquire ground temperatures. There is a power meter located on the 

right of figure 1 which has two functions: record the consumption of the air to water heat pump including the fan 

when the air system is working or record the consumption of the water to water heat pump plus the circulation 

pump when the geothermal system is working.

3. SYSTEM ENERGY EFFICIENCY

The system energy efficiency is calculated from the power consumption readings and the values of the internal 

thermal loads calculated from experimental measurements. These thermal loads are calculated with the values of 

Tin, Tout and m  showed in Figure 1 (measured with four wire PT100 temperature sensors and a Coriolis meter). 

Instantaneous thermals loads are obtained by means of the following expression:

)()()( ththtQ inout
 !! , (1)

where,

)()( tCpTmth inin  ! ; )()( tCpTmth outout  ! (2)

are the input and output enthalpy flows at the circuit connecting the fan coils and the heat pump. Because of all 

the measures are taken in one minute intervals, the internal thermal load is defined as the integral of expression 

(1). It represents the cooling or heating load demanded by the building during the time period t starting at T0

time.

dttQQ
tT

T

)(
0

0





(3)

Likewise, the system energy consumption is calculated by integrating numerically the power consumption, 
.

W  , 

measured by the power meter located on the right of figure 1, corresponding to the consumption of the water to 

water heat pump, wwW
.

 , plus the consumption of the circulation pump, cpW
.

.

dttWW
tT

T
!

!!

!
0

0

)( ; )()()( tWtWtW cpww
 !! (4)
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The system energy efficiency is characterized by the energy performance factor, defined as the ratio between the 

thermal load and the electric energy consumption during a time interval:

W

Q
PF 

(5)

Depending on the duration of the integration period the energy performance factor can be seasonal, monthly, 

daily, etc. The most representative one is the seasonal performance factor (SPF) that estimates the system 

performance in a working mode (heating or cooling).

4. SIMULATED SYSTEM

The aim of this work is to compare a ground coupled heat pump design methodology with experimental results; 

therefore, GeoCool plant is modelled and simulated with TRNSYS software tool, commonly used by geothermal 

engineers.

TRNSYS [14] is a transient system simulation program with a modular structure that was designed to solve 

complex energy system problems by breaking the problem down into a series of smaller components (referred to 

as “Types”). TRNSYS Library includes the components commonly found in a geothermal system (ground heat 

exchanger, heat pump, circulation pump, etc) and the program allows to directly join the components 

implemented using other software (e.g. Matlab or Excel). In this case this feature is important because the 

simulation uses as input values the experimental thermal loads measured in GeoCool experimental plant, in form 

of an Excel file.

Figure 2 shows the TRNSYS model scheme used to simulate GeoCool plant. The model scheme consists of four 

components: water to water heat pump, circulation pump, vertical ground heat exchanger and loads. The first 

three components have been selected from TRNSYS library. And the last component, “Loads”, is an Excel file 

containing the experimental thermal loads. All components are described next.

FIGURE 2

4.1 Water to water heat pump (WWHP)

The water to water heat pump selected component is a reversible heat pump; it supplies the thermal loads 

absorbing energy from (heating mode) or rejecting energy to (cooling mode) the ground. This type is based on 

user-supplied data files containing catalogue data for the capacity and power draw, based on the entering load 

and source temperatures. These files (one for heating and one for cooling) are modified introducing the values of 
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the GeoCool commercial unit (CIATESA IZE-70). The performance improvement coming from using propane 

as refrigerant instead of R-407c is also included (an increment of 34% for the Efficiency Energy Rate, EER, and 

an increment of 15% for the coefficient of performance, COP, as reported in GeoCool final report [41]). These 

corrections have been included by diminishing the value of the absorbed power by the compressor for the same 

amount of generated thermal power. The model is able to interpolate data within the range of input values 

specified in the data files but it isn’t able to extrapolate beyond the data range.

The component works with two control signals: heating and cooling. When one of these signals are on, the 

model calls the corresponding data file and calculates the coefficient of performance (COP), the energy absorbed 

(
absorbedQ

.
) or rejected (

rejectedQ
.

) and the outlet temperatures of the water in the internal (load) and external 

(source) circuits. In this case source represents the ground heat exchanger. These values are given by the 

following equations.

Heating mode

heatingww

heatingww

W

Q
COP

,

.

,

.


(6)

heatingwwheatingwwabsorbed WQQ ,

.

,

..


(7)

sourcesource

absorbed
insourceoutsource

Cpm

Q
TT .

.

,, 
(8)

loadload

heatingww
inloadoutload

Cpm

Q
TT .

,

.

,, 
(9)

Cooling mode

coolingww

coolingww

W

Q
COP

,

.

,

.


(10)

coolingwwcoolingwwrejected WQQ ,

.

,

..

!!
(11)

sourcesource

rejected
insourceoutsource

Cpm

Q
TT .

.

,, 
(12)

loadload

coolingww
inloadoutload

Cpm

Q
TT .

,

.

,,  (13)
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Where 
wwQ

.
represents the heat pump heating or cooling capacity at current conditions and wwW

.

 means the 

power drawn by the heat pump in each mode. 

4.2 Circulation pump (CP)

The circulation pump component is a simple-speed model which computes mass flow rate using a variable 

control function, which must have a value between 1 and 0 (f). The user can fix the maximum flow capacity, in 

the model established for the heat pump, and the pump power is calculated as a linear function of mass flow rate, 

defined in the following expression: 

fW
m

fm
W

m

m
WW cp

source

source
cp

source

source
cpcp max,

max,

max,
max,

max,
max,









 !!! (14)

cpW max,

.
 and m max, source are the pump power consumption and the water mass flow when the pump is operating at 

full capacity, and m source is the water mass flow through the pump in each time step, obtained by multiplying the 

maximum flow rate by the control signal.

4.3 Vertical ground heat exchanger (VGHE)

A vertical ground heat exchanger model must analyze the thermal interaction between the duct system and the 

ground, including the local thermal process around a pipe and the global thermal process through the storage and 

the surrounding ground. GeoCool ground heat exchanger has been modelled using ‘Duct Ground Heat Storage 

Model’ [42]. This model assumes that the boreholes are placed uniformly within a cylindrical storage volume of 

ground. There is convective heat transfer within the pipes, and conductive heat transfer to the storage volume. 

The temperature in the ground is calculated from three components: global temperature, local solution and a 

steady flux solution. The global and local problems are solved with the use of an explicit finite difference 

method. The steady flux solution is obtained analytically. The temperature is then calculated using superposition 

methods.

The user can define ground thermal properties like thermal conductivity and heat capacity and also determine the 

main heat exchanger characteristics (depth, radius, number of boreholes, etc.). The parameters used in the 

simulation are shown in Table 1. 

In order to evaluate the ground thermal properties at GeoCool site, laboratory experiments on soil samples were 

performed. The fill thermal conductivity considered is the average value for wet sand. Also U-tube pipe 

parameters correspond to the properties of polyethylene pipes DN 32 mm PE 100.
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4.4 Loads

Loads module represents the thermal loads that the air conditioning area is demanding. Normally, these thermal 

loads are estimated from the building characteristics, occupancies, weather data… obtaining an a priori 

prediction of the hourly thermal loads that the air conditioning area is demanding. To make a better comparison 

between the usual design procedure to predict the energy performance of the system and the experimental data 

measured, the simulation uses the experimental thermal loads measured in GeoCool plant along a whole cooling 

season and a whole heating season as input values. An Excel file keeps these experimental thermal loads 

calculated from the experimental data using equation (3) with integration periods of one hour. Figure 3 shows 

the values obtained after performing this calculation. 

FIGURE 3

At each time step of the simulation (one hour) loads module can supply the value of the corresponding hourly 

thermal load. Nevertheless, the quantity that the water to water heat pump module needs as one of its inputs is 

the inlet load temperature (Tload,in). To calculate this input value from the hourly thermal load, the internal circuit 

(hydraulic pipes that connect the heat pump with the fan coils) is considered as a control volume where the 

power balance can be evaluated as:

..

,,

.

)( QQTTCpm wwoutloadinloadloadload 
(15)

where 
.

Q  represents the hourly thermal loads and 
wwQ

.
is the heat pump capacity at current conditions. The initial 

conditions were assumed as 20 ºC of pipes water temperature and a pipes volume of 0.5 m3. Equation (15) is 

programmed in the Excel file, so the excel file directly supplies the inlet load temperature to the water to water 

heat pump module. Loads component also supplies to the heat pump module the control signals for running or 

stopping (Tload, out =45 ºC is fixed as stop temperature in heating and Tload, out=12 ºC is fixed as stop temperature in 

cooling).

4.5 Model outputs: energy performance factor

The TRNSYS model calculates the energy performance factors which are to be compared with the 

corresponding experimental values. The simulation program obtains this quantity following the same 

procedure outlined in section 3 to calculate the experimental value for the energy performance factor. 

Besides, the model plots the evolution of the main system parameters as ground and source 

temperatures, ground heat exchanger flow rate, control signals, devices power consumption, etc.
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5. COMPARISON BETWEEN SIMULATION OUTPUTS AND EXPERIMENTAL 

RESULTS

In this section, a comparison between the measured energy performance factors of GeoCool plant and its 

predictions from the TRNSYS simulation is presented, as well as an exhaustive analysis of the discrepancies 

between both.

GeoCool experiment was designed to make a comparison between a ground source heat pump system and an air 

source heat pump system operating during a whole year. The conclusions of this comparison were presented in 

[2, 3]. The experimental measurements of GeoCool ground coupled system are used in this work to compare the 

energy performance factors of the plant with the ones predicted by a standard design procedure based in 

TRNSYS simulation. Experimental measures were acquired in one minute intervals during a whole heating 

season and a whole cooling season. Heating season experimental data are available for the periods from January 

31, 2005 until May 6, 2005, and from October 17, 2005 until January 13, 2006. Cooling season experimental 

data are available for the periods from May 9, 2005 until July 31, 2005, and from September 1, 2005 until 

October 14, 2005. A simulation using TRNSYS software tool has been performed to exactly reproduce GeoCool 

experiment. The measured energy performances and the predicted ones are compared in figures 4 and 5.

FIGURE 4

In figure 4, the accumulated (long term) energy performances for both seasons are depicted. Dash-dotted lines 

correspond to the values obtained from the simulation and solid lines correspond to experimental measured 

values. The quantity shown in the vertical axis is the performance factor (PF) defined in equation (5), for an 

integration period starting the first day of each season and ending at the day in the abscissa. From this figure it 

can be seen that the simulation outputs overestimate the experimental measures by a percentage between 15% 

and 20%. Errors for these energy performance experimental measures were calculated from the accuracy of 

measurement sensors following standard linear propagation of errors, being estimated in the range between 15% 

and 20% [2]. Taking into account these experimental uncertainties in principle it can be concluded that in most 

cases experimental values and simulation estimations are compatible. Nevertheless, the tendencies observed are 

very similar when comparing both curves, pointing to the fact that there may be systematic discrepancies.

FIGURE 5

In figure 5, the energy performance factor calculated for each day of operation (daily performance factor, DPF) 

is shown. Dash-dotted lines correspond to the values obtained from the simulation and solid lines correspond to 
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experimental measured values. The quantity shown in the vertical axis is the daily (short term) performance 

factor, which corresponds to the performance factor defined in equation (5) for an integration period starting at 

the beginning of each day and finishing at the end of it. The quantity shown in the horizontal axis corresponds to 

the considered day. Errors for these daily performances were also calculated from the accuracy of measurement 

sensors following standard linear propagation of errors [2]. In figure 5 two dash-dot-dotted lines are included to 

indicate the error bandwidth corresponding to each value of daily performance factor, for each date, the distance 

between the top dash-dot-dotted line and the bottom dash-dot-dotted line represents the error bandwidth of the 

DPF value for this date. Estimated and experimental data show a similar behaviour to the one observed for the 

accumulated value of the performance factor presented in figure 4. The main difference is a higher discrepancy 

between both values when the heating or cooling demand is very low (close to the dates in which the system 

changes operation from heating to cooling mode). 

To understand the origin of the discrepancies between simulated and experimental data, a sensitivity analysis of 

the energy performance simulation results to changes of its input parameter values was performed. Important 

design parameters to take into account here are those describing the soil. Nevertheless, the simulated energy 

performance results are rather insensitive to changes in the main ground parameters such as conductivity and 

diffusivity. The reason for this insensitivity lays in the design of the GeoCool borehole heat exchanger itself, 

which was done taking into account a large uncertainty in the available soil conductivity estimations. Regarding 

the parameters describing the heat pump, a high sensitivity of the simulated results to the heat pump nominal 

coefficient of performance is observed. 

As the heat pump coefficients used in the simulation are well established steady test data, the idea was at hand 

that the differences between experimental and simulated data could be explained as degradation of the heat pump 

performance for being used at partial load, i.e., at conditions where the capacity is higher than the actual thermal 

demand. To take into account this effect in the simulation outputs a suitable parameterization for the 

instantaneous coefficient of performance degradation factor (CDF) is needed. The ARI standard [43] suggests a 

generalized use of the following equation to calculate CDF:

)1(1 PLRCDF !!! 
(16)

Being PLR the partial load ratio and the coefficient of performance degradation parameter. PLR variable is 

defined as the quotient between the actual thermal demand and the capacity at current conditions (maximum 

energy which could be supplied in the case of continuous working at full capacity). And  parameter is a 



Page 12 of 25

Acc
ep

te
d 

M
an

us
cr

ip
t

12

degradation coefficient characterizing the diminishing of the heat pump coefficient of performance for being 

used at partial load. This parameter is specified by the heat pump manufacturer. In case of lack of information 

about it, ARI standard [43] suggests to use 0.25as a default value. As shown in [44], this simple correlation 

between partial load ratios and heat pump performance degradation is sometimes an unacceptable 

approximation. Nevertheless, as there is no available parameterization for the instantaneous coefficient of 

performance degradation factor of the GeoCool water to water heat pump, the ARI suggestion was followed to 

make an estimation of the impact of heat pump performance degradation in the energy performance results.

To include this effect in the simulation results, an average degradation coefficient is estimated just integrating 

equation (16) for a time period. The hourly results for the PLR (calculated as the ratio between the hourly 

thermal loads and the heat pump capacity at current conditions for the same time period) and the default value 

0.25are used to calculate it. Then, energy performances estimated for a time period are multiplied by the 

average degradation coefficient corresponding to the same period. Accumulated energy performances (Figure 4) 

and daily energy performances (Figure 5) have been corrected following this procedure. 

Dotted lines in figure 4 correspond to the accumulated energy performance values obtained from the simulation 

multiplied by the corresponding average degradation coefficient. With this correction included simulation results 

match very well with the tendencies described by the experimental measured values, being the differences 

between both always smaller than 3% for data belonging to the heating season and always smaller than 7% for 

data belonging to the cooling season. Dotted lines in figure 5 correspond to the daily energy performance values 

obtained from the simulation for this quantity multiplied by the corresponding average degradation coefficient. 

These corrected values also match well with experimental results, giving support to the hypothesis that the 

discrepancies between experimental measures of energy performance and simulation predictions are mainly due 

to the degradation of the heat pump performance for being used at partial load.

It is worth to stress that with the quite simple correlation between partial load ratios and heat pump performance 

degradation described by equation (16) and using the default value 0.25 (not corresponding to any 

experimental characterization of GeoCool water to water heat pump) discrepancies between energy 

performances experimental measures and PLR-corrected numerical predictions are substantially reduced to 

values around 5%. Experimental measures and PLR-corrected numerical predictions also show very similar 

tendencies confirming the idea that the partial load ratio is the variable needed to improve the agreement 

between both. To even reduce these differences an experimental characterization of GeoCool water to water heat 
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pump working at partial loads is needed. Looking at figure 4, where accumulated energy performances are 

included, it can be guessed that equation (16) is a reasonable description of GeoCool heap pump performance 

degradation, being 0.25 a good choice in heating mode while in cooling mode a slightly lower value will be a 

better choice. Looking at figure 5, where daily energy performances are included -more sensitive to variations in 

thermal demands-, it can be seen that the linear correlation shown in equation (16) is not so good for low values 

of partial load ratios, corresponding to dates in which the system changes operation from heating mode to 

cooling mode. A different description of GeoCool heat pump performance degradation should be given for low 

partial loads ratios. 

Finally, notice that the previous estimation can be performed just because energy performances are not sensible 

to changes in ground thermal properties. A large influence of ground properties in energy performance 

predictions would have made it difficult to distinguish which effect is the responsible of the discrepancies 

between experimental measures and numerical predictions. 

6. CONCLUSIONS 

In this article a comparison between experimental and simulation results for the energy performance of a ground 

coupled heat pump system in mixed climate conditions is presented. The main conclusion of this work is that 

simulation results solely based on nominal heat pump capacities and performances substantially overestimate the 

measured energy performance of the ground coupled system by a percentage between 15% and 20%. The 

relevance of this comparison relies in the fact that the performed simulation is based on a standard design 

procedure for ground coupled heat pump systems, using as input values parameters that are usually available for 

the engineer in charge of the system design.

A sensitivity analysis of the energy performance simulation predictions to changes on the input parameters has 

been performed. This analysis shows that the heat pump coefficient of performance is the parameter that highly 

affects energy performance simulation predictions, pointing to the idea that discrepancies between experimental 

results and simulation outputs are mainly due to degradation of heat pump performance for being used at partial 

load. An estimation of the impact of this effect using a simple correlation between heat pump performance 

degradation and partial load ratio reduce the discrepancies to values around 5%.

A better description of GeoCool heat pump, based on an experimental characterization, will be needed to 

diminish the discrepancies to even smaller values. Furthermore, if other quantities, like ground heat transfer or 

instantaneous fluid temperatures, are to be predicted by the simulation tool and compared with experimental 
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measurements, also a better model describing the borehole heat exchanger will be needed. Nevertheless, these 

further refinements are out of the scope of this work, whose objective was evaluating the goodness of a standard 

design procedure based on TRNSYS to predict the long term energy performance of a monitored ground coupled 

heat pump system. 
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FIGURE CAPTIONS

Figure 1. GeoCool schematic diagram. The air to water heat pump and the ground source heat pump are linked 

in parallel to the internal hydraulic group that transfers the energy to fan-coils. 

Figure 2. TRNSYS model scheme used to simulate GeoCool plant. 

Figure 3. Hourly thermal loads calculated from the experimental data measured during one year of operation of 

GeoCool plant. Positive values are associated to heating demand and negative values to cooling demand.

Figure 4. Comparison between experimental measurements (solid lines) and numerical predictions (dash-dotted 

lines and dotted lines) for the accumulated performance factor of GeoCool plant. 

Figure 5. Comparison between experimental measurements (solid lines) and numerical predictions (dash-dotted 

lines and dotted lines) for the daily performance factor of GeoCool plant. Errors for the experimental values of 

daily performance factor are represented by the distance between the top dash-dot-dotted line and the bottom 

dash-dot-dotted line (upper/lower error bound).
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Nomenclature

CDF Coefficient of performance degradation factor
COP Coefficient of performance
Cp Specific heat at constant pressure
cp Circulation pump
DPF Daily performance factor
f Circulation pump variable control function

h Enthalpy flow
m Mass flow
PF Performance factor
PLR Partial load ratio
Q Thermal loads

.

Q Instantaneous thermal loads
SPF Seasonal performance factor
T Temperature
W Energy consumption

.

W Power consumption

Greek letters

 Coefficient of performance degradation parameter

Subscripts

in Input
max Maximum
out Output
ww Water to water heat pump
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Borehole heat exchanger parameters Value
Number of boreholes 6
Borehole depth 50 m
Borehole radius 0.120 m
Outer radius of u-tube pipe 0.016 m
Inner radius of u-tube pipe 0.0131 m
Center to center half distance 0.035 m
Fill thermal conductivity 2.0 W/m K
Pipe thermal conductivity 0.42 W/m K
Ground parameters Value
Undisturbed ground temperature 291.15 K
Storage thermal conductivity 1.43 W/m K
Storage Heat Capacity 2400 kJ/m3/K

Table 1. Description parameters of the ground and of the borehole heat exchanger.
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FIGURE 1
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FIGURE 2
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FIGURE 3
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FIGURE 4
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FIGURE 5


