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Abstract 12 

With the aim of reducing energy consumption and improve water use in pressurised irrigation 13 

systems, the methodology for grouping intakes of pressurised irrigation networks into sectors 14 

to minimize energy consumption developed by Jimenez Bello et al.(2010a) was modified to 15 

allow irrigation intakes to operate the scheduled time according to crop water needs instead of 16 

operating in restricted irrigation periods of the same length. Moreover a method was 17 

developed to detect the maximum number of intakes that can operate without extra energy in 18 

the case the source has enough head to at least feed some of them. 19 

These methods were applied to a Mediterranean irrigation system, where the total cropped 20 

area was orchards, mainly citrus. In this case study, water was allocated to two different 21 

groups of intakes, one fed by gravity and the other one by pumps. A saving of 36.3 % was 22 

achieved, by increasing the total volume supplied by gravity, by decreasing the injection 23 

pump head and by improving the pump performance. Therefore all intakes operate just the 24 

strict irrigation time at the minimum required pressure. 25 

Keywords: Energy saving, Irrigation network; Irrigation scheduling; Water use.  26 
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List of abbreviations 27 

CEVTp: Energy consumption per m
3
 of pumped water (kWh m

-3
). 28 

CEVTt: Energy consumption per m
3
 of total delivered water (kWh m

-3
). 29 

CoEVT: Energy cost per m
3
 of total delivered water (c€ m

-3
). 30 

CoEVTt: Energy and power cost per m
3
 of total delivered water (c€ m

-3
). 31 

EDI: energy dependence index. Relation between the pumped volume and the total volume 32 

delivered, when some intakes can be supplied by gravity (dimensionless ). 33 

FSP: Fixed speed pump. 34 

GA: genetic algorithms. 35 

INOC: Number of intakes with not enough pressure. 36 

IOC: Number of intakes that operate correctly. 37 

ND: Nominal diameter (mm). 38 

Nint: Number of intakes. 39 

PHI: pumping head injected by a pumping station (MPa).  40 

Pmin_Hid: Minimum required pressure at hydrant (MPa). 41 

TGrav: Time period when water is delivered by gravity (h). 42 

TPump: Time period when water is delivered by pumps (h). 43 

VGrav: Water volume supplied by gravity (m
3
). 44 

VMaxGrav: Maximum potential water volume supplied by gravity for a given scenario (m
3
). 45 
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VPump: Water volume delivered by pumps (m
3
). 46 

VSD: Variable speed driver. 47 

VSP: Variable speed pump. 48 

WHI: Water head at the intake point (m). 49 

WUA: Water users association. 50 

VNOC : Volume supplied by intakes with not enough pressure (m
3
). 51 

VOC: Volume supplied by the intakes that operate correctly (m
3
).  52 
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1 Introduction 53 

The modernization of the irrigation systems in semi-arid regions has increased the water use 54 

efficiency, but at the same time there has been a large increase in energy consumption 55 

(Jackson et al., 2010; Corominas, 2010) reducing the economic profitability of irrigated 56 

agriculture, especially for low price crops. Due to the continuous energy price rising, more 57 

attention has been paid to reduce its use. The first group of actions are those carried out 58 

during the irrigation system design process. The network layout and pipe size diameter are 59 

determined having into account economic criteria (Labye et al., 1988; Lansey and Mays, 60 

1989; Planells et al., 2007 and Theocharis et al., 2006). Previously, base demand for each 61 

consumption node is determined according to the crop water requirements for the most 62 

demanding water period (Clément and Galand, 1979; Planes et al., 2001; Pulido-Calvo et al., 63 

2003). Since the crop water requirement changes along the irrigation season, the required 64 

pumping head and flow discharges change over the season, especially in systems operating on 65 

demand (Lamaddalena and Sagardoy, 2000). For this reason the pump set selection and its 66 

operation mode by the use of variable speed driver technology (VSD) is a key aspect not only 67 

to guarantee the water delivery, but to be efficient in the use of energy. With this aim Planells 68 

et al. (2005) developed an algorithm for minimizing the investment and operation costs of 69 

pumping stations. They determined the maximum and minimum system head curves and the 70 

evolution of demand curves to obtain the maximum discharge needed. Then the number of 71 

required pumps and its operation mode, fixed or variable speed, were determined. Moreno et 72 

al. (2009) studied how to get the optimal characteristic and efficiency curves at pumping 73 

stations and concluded that if the selected pumps fit those curves, the number of variable sped 74 

pumps (VSP) did not need to be increased. Lamaddalena and Khila (2013) studied the use of 75 
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VSP in on demand pressurised systems. Energy efficiency was achieved matching the 76 

discharge and the system curve by regulating the operation of the pumping station on the basis 77 

of maximum efficiency. 78 

All these actions were developed for on demand irrigation networks. However, from the 79 

operational point of view, when the user’s operation is restricted to a given period of time, the 80 

required head can be reduced, as well as the energy consumption. To assess how this 81 

operating way would improve the energy efficiency, Rodríguez et al. (2009a) studied the 82 

potential savings in a case study by simulating the change of the operation system from on-83 

demand to operate by sectors. The irrigation network was divided in two sectors according to 84 

a homogeneous elevation criterion. Each of the hydrants from the two performed sector could 85 

work freely on the assigned period (12 hours). It was concluded that energy savings could be 86 

as high as 27%. Carrillo Cobo et al. (2010) proposed a methodology for sectoring the 87 

irrigation network using a topological criteria. Irrigation hydrants were grouped according to 88 

their distance and height to the injection point of the network by means of clustering 89 

techniques where the number of sectors was fixed beforehand. Each hydrant could operate 90 

freely in the period scheduled for its sector. The disadvantage of this sectoring network 91 

approach is that it does not ensure optimum performance from the energy point of view. In 92 

fact, this approach tends to group nearby hydrants into sectors, thus increasing the head loses 93 

in the pipes, making it not suitable for use in undersized or overloaded networks. 94 

Fernandez-Garcia et al. (2013) modified the previous methodology to be used with different 95 

water sources. Once sectors were performed, the pumping calendar was established by means 96 

of genetic algorithms (GA) with the aim of minimizing a multi-objective function: the energy 97 
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consumption and the systems failures (the number of hydrants without enough pressure). The 98 

decision variables were the number of operating sectors, the pump heads and the number of 99 

operational months. 100 

The three last approaches assumed a high constant efficiency of pumping groups (0.75-0.8), 101 

but actually efficiency is variable depending on the demand scenario. This approach could 102 

lead to choose a solution associated with low pump efficiencies, being not a good solution 103 

(Moreno et al., 2010, Jimenez-Bello et al. 2011). 104 

For irrigation networks operating on-turns where users have strictly restricted when to 105 

operate, Jimenez Bello et al. (2010a) developed a methodology based on GA and hydraulic 106 

models where hydrants or irrigation intakes were grouped in efficient sectors in terms of 107 

energy. The goal was to optimise the energy consumption per irrigation event, i.e. reducing 108 

the amount of energy used per m
3
 of pumped water. As a result, irrigation sectors to minimize 109 

energy consumption could be established and, in addition, the minimum head pressure 110 

required for proper operation of each irrigation sector was known in advance. The potential 111 

saving of the energy consumption per m
3
 of water delivered (CEVT, kWh m

-3
) for the 112 

scenario that simulated the actual performing of a study case was 22.3%. Then this 113 

methodology was successfully applied in this study case for several campaigns achieving an 114 

actual energy saving of 16% (Jimenez Bello et al, 2011). Reasons why not the potential 115 

saving was achieved were restrictions in the real operation of the network. Besides central 116 

fertigation was performed but not for all users, then the non fertigating-intakes had to operate 117 

in the same sector (Jimenez Bello et al, 2010b). Moreover users had the option to shut off 118 
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their manual valves, making the total demanded flow different to that assumed in the 119 

simulations, and then the pumps did not operate with the highest predicted performance.  120 

García- Prats et al. (2012) used another heuristic optimization method, Simulated Annealing, 121 

to make sectors with minimum energy consumption. It was coupled with hydraulic models as 122 

well. As in the previous study, it was applied to a case study where irrigation was scheduled 123 

on strict irrigation turns. Potential savings for this case study were 11.8% and 15.5% 124 

compared to the network operating on demand and sectorized using the criterion of hydrant 125 

elevation with respect to the pumping station. 126 

Despite these last two approaches reduce energy consumption, it is not ensured that water use 127 

is optimal, as occurred in the two aforementioned case studies. Since not all plots have the 128 

same crops, they are not in the same phenological stage, and the characteristics of the subunits 129 

are different, the theoretical irrigation times will be different. If the same irrigation time was 130 

scheduled for all of them, some plots will receive more water than required and other less, 131 

resulting in an inefficient water management. 132 

To solve this problem, the methodology developed by Jimenez Bello et al. (2010a) for 133 

grouping intakes of pressurised irrigation networks into sectors to minimize energy 134 

consumption has been improved to allow operating intakes at different scheduled times 135 

without affecting pump performance.  136 

In addition, one way to save energy in pressurized irrigation networks is to maximize the 137 

number of intakes that can operate without pumping, in other words, maximizing the water 138 

volume supplied by gravity. Thus the energy dependence of the system decreases. This 139 
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strategy can be applied in irrigation districts where there is enough elevation head between 140 

some demand nodes and the water sources. 141 

These methodologies have been applied in an irrigation district where currently users make 142 

their water petitions ordering an irrigation time. Then, technicians arrange the irrigation 143 

scheduling by their own criteria trying to minimize the energy consumption while meeting 144 

user requirements. 145 

The results of the simulated scenarios were compared with the irrigation system management 146 

carried out on 2012 by means of some energy indicators proposed for energy audits in Water 147 

Users Associations (WUAs; IDAE, 2008; Abadia et al., 2008). 148 

2 Methodology 149 

2.1  Case study 150 

The WUA of Realon is located in the municipality of Picassent in Valencia (Spain; 39º 22’ 151 

43’’ N, 0º 28’ 20’’ W). The total irrigated area was 180 ha composed of 500 plots. The 152 

average plot area is 3.598 m
2
. The irrigation network is branched and has 62 multioutlet 153 

hydrants and a total of 342 intakes. A multioutlet hydrant has several intakes, a common 154 

solution adopted for network design when plot size is small. In this way, network pipe lengths 155 

are shorter and more economic. As a result, users connect their drip irrigation subunits to the 156 

water supply system through water intakes. The average hydrant elevation is 90.8 m, ranging 157 

from 111.5 m to 79 m, and total network length is 14426 m. Pipes are made of polyvinyl 158 

chloride and according to standard UNE EN ISO 1452-2:2010, internal nominal diameter 159 

(ND) ranges from 500 to 125 mm. Nominal pressure ratings are 1.0 and 0.6 MPa. Fig. 1 160 

shows the network layout and the hydrant location.  161 
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Water is stored in a pond feed by a canal. Its elevation is 114.4 m and it is 3 m above the 162 

pumping station. The system regulation is carried out by three equal vertical multistage 163 

pumps each powered by an engine of 45 kW. Fig. 2 shows the characteristic curves, head-164 

flow and performance-flow obtained after being tested. Two of them are Fixed Speed Pump 165 

(FSP) and the other one is a Variable Speed Pump (VSP). All users are charged according to 166 

their water consumption with a fixed price per m
3
. Collective fertigation is performed for all 167 

users. The total cropped area is orchards and the predominant crop is citrus (95 %). All of 168 

them are drip irrigated. 169 

The system is operated by a Supervisory Control and Data Acquisition System (SCADA), 170 

which reports on real time flow-meter readings and informs on system failures. 171 

Users make requests on how long they want to irrigate. The WUA’s technicians arrange 172 

irrigation scheduling dividing intakes in two groups: those that can be feed by gravity and 173 

those that need extra head by pumps. The criteria to select the intakes that will operate by 174 

gravity is based on the difference between the water elevation head and the hydrant 175 

elevations. This difference should be at least higher than the target pressure at hydrants, which 176 

is set to 0.25 MPa. 177 

Table 1 shows the structure of the contracted tariff by the WUA where energy is charged 178 

according to the energy consumption (€ kWh
-1

) and the contracted rate power (€ kW
-1

 Month
-

179 

1
), which has a fixed price. WUA has contracted 198, 120 and 35 kW for the off-peak, regular 180 

and peak periods respectively. The off -peak power is contracted to guarantee the operation 181 

for three pumps, the regular period for two pumps and the peak period to perform 182 

maintenance. In the event the power exceed the maximum contracted, pumps are turned off. 183 
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The irrigation intakes that need extra energy are scheduled in the off-peak period, from 184 

00:00h to 8:00 h. and from 8:00 h to 10:00 h (regular period). The WUA’s technicians try to 185 

make homogenous the pumped flow, avoiding exceeding the maximum power contracted to 186 

not be penalized by the energy supplier. The outlet pump pressure is fixed to 0.32 MPa by the 187 

system control for all pumping periods. 188 

In order to avoid pumping out of off-peak periods, the irrigation time for users was limited to 189 

a maximum of 4 h. The average scheduled irrigation time per intake was 1.85 h.  190 

Gravity intakes are scheduled from 10:00 to 24:00 in one irrigation day, when the energy is 191 

more expensive. This daily schedule is maintained during the irrigation season only with 192 

small changes suggested by the users. As crop water requirements increase along the season, 193 

the number of irrigation days per week was increased. The total number of irrigation days in 194 

2012 was 132 and the average supplied volume applied per day 5977 m
3
. 195 

2.2 Methodology for irrigation scheduling with minimum energy consumption and 196 

optimum water use. 197 

The sectoring model developed by Jimenez-Bello et al. (2010a) was applied to the Realon 198 

Irrigation district. Briefly, the model allows to group irrigation intakes in such a way that the 199 

sum of the intake flows drops in the regions where the pump efficiency is higher and the 200 

pressure head is lower fulfilling the minimum required pressure at the demand node (see Fig. 201 

4 in Jimenez-Bello et al., 2010a). The required data comes from a calibrated mathematical 202 

model of the irrigation network. Calibration is feasible nowadays because modern irrigation 203 

systems are equipped with pressure sensors placed in hydrants and flow meters at each intake. 204 

The required input parameters for grouping intakes are 1) the minimum pressure head 205 
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required at hydrants, 2) the desired number of sectors and 3) those parameters related with 206 

GA. The decision variables are the sectors to which each hydrant or intake can belong to. 207 

Once the GA model is run, the best solution to the grouping problem is achieved after some 208 

termination conditions are reached, as a maximum generation number. Indeed, this procedure 209 

guarantees that irrigation can be carried out at the lowest energy consumption per total 210 

volume of water delivered. 211 

However, in the above method the operation time is the same for all intakes grouped in a 212 

sector. For example, in the case study depicted in Jimenez-Bello et al. (2010a, 2011a) intakes 213 

were grouped into 6 consecutive sectors of two hours. All intakes irrigate the same time with 214 

the minimum energy consumption but the method did not guarantee the optimal water use. 215 

For this reason the method has been modified in such a way that each intake could operate 216 

just the required time, according to the crop type, the phenological stage, the irrigation subunit 217 

features or the farmer criteria. 218 

With this aim, the irrigation day now is divided into time slots, where intakes can operate. 219 

Then the decision variables are the time slot at each intake starts to operate. For example if 220 

the irrigation day lasts ten hours, this period can be divided into intervals of 15 minutes. In 221 

that case, the domain of the decision variables will be integers ranged 1-40. If it is divided 222 

into intervals of 5 minutes the domain will range 1-120. Once a slot is assigned by the GA to 223 

an intake, it operates the scheduled time (rounded to an integer number of time slots).  224 

Fig. 3 shows the time pattern of a multi-outlet hydrant with two intakes which operation does 225 

not overlap and another hydrant with 5 intakes where some intakes operate overlapped. 226 

Hydrant base demand is the sum of intake flows. Each intake has a demand factor. Then the 227 
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hydrant demand is simulated multiplying the base demand by the intake factor when it 228 

operates. 229 

The optimisation process gives as result for each intake the slots in which has to operate to 230 

minimise the energy consumption, satisfying at the same time the crop water requirements.  231 

The highest the number of slots, the more accurate the method will optimize the water use, 232 

because scheduled irrigation times will fit better the theoretical ones. Nevertheless the 233 

optimization process will take longer, due to the increased number of time slots require more 234 

computations. 235 

2.3  Methodology for setting the intakes to be fed by gravity 236 

When water head at source point (WHI, m) is enough to deliver water at the required pressure 237 

for some irrigation intakes, a way of reducing the energy consumption is to avoid pumping 238 

when these intakes operate. This strategy can be used particularly in hours when energy is 239 

more expensive. 240 

For that purpose, a new methodology was developed based on the previous one. Again the 241 

available period is divided into time slots, being the decision variable the slot when each 242 

hydrant or irrigation intake starts to operate. Now, the objective function is either to maximize 243 

the number of intakes or the water volume delivered during this period without using pumps, 244 

fulfilling the minimum pressure required. In addition, the final network scheduling must not 245 

have intakes without enough pressure, which can be formulated in a single goal function: 246 

                                   )II(Max NOCOC       (1) 247 

             )VV(Max NOCOC       (2) 248 
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where IOC are the number of intakes that operate correctly, INOC the number of intakes with 249 

not enough pressure. Alternatively, VOC is the delivered volume for the intakes that operate 250 

correctly and VNOC is the delivered volume for intakes with not enough pressure. 251 

A new integer decision variable is added to each intake that indicates whether it operates or 252 

does not, resulting in a chromosome that has twice number of genes than intakes (Nint). The 253 

first Nint gen values ranges between 1 and the number of slots, determining when the intake 254 

starts to operate. The second Nint gen values range between 0 and 1, meaning 1 the intake 255 

operates and 0 does not. 256 

Previously, to get a faster solution those intakes that cannot work with the minimum required 257 

pressure because the difference in elevation between the source and the hydrant is not enough, 258 

are discarded. The options selected for the GA process were an initial population of 100, 259 

roulette rank selection, uniform crossover, 10 % mutation probability and the process stops 260 

when 1500 generations were processed (Jimenez- Bello at al., 2010a). No meaningful 261 

improvements were found in the fitness solution when the number of generations was 262 

increased. 263 

The result is an irrigation scheduling with the maximum number of intakes operating without 264 

pumping and fulfilling the minimum pressure required. Intakes not operating in the final 265 

solution will need extra energy. 266 

2.4 Application to the case study 267 

The mathematical model of the network represented the elements at the level of multioutlet 268 

hydrants where each hydrant is assigned to a demand node in the EPANET scenario. The 269 
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network was built in 2009 and the characteristics of the layout are perfectly defined. The 270 

model was calibrated by means of five pressure sensors (SSC2035 Sensortechnics, Puchheim, 271 

Germany) placed at five hydrants and the network head before the filtering system there was 272 

an additional one. The scale of pressure transducers was from 0 to 1.0 MPa which maximum 273 

non linearity was ± 0.20 % of FS. Data was stored in data loggers (Model CDL-2U Meinecke, 274 

Hanover, Germany). The flow meters of each intake were used to measure the water flows. At 275 

pump station there was and electromagnetic flow meter model (Model HMS 2500, Liquid 276 

Controls Illinois, USA) with accuracy ± 0.8 % for velocity greater than 1 m s
-1

. The difference 277 

between the total sum of water flow meters and the water flow meter measured at the pump 278 

units was meaningless. For this reason network water losses were not considered. Since intake 279 

flows and pipe diameters were perfectly known, pipe roughness of each diameter size was 280 

chosen as calibration variable. Due to the restricted number of pressure sensors, criterion used 281 

to choose hydrants was to maximize the number of equations that will include the 16 diameter 282 

sizes existing in the network. Selected hydrants were located at the end of network branches. 283 

The total number of equations was 29, due to intakes located in the same hydrants operated at 284 

different times adding extra equations. The goal function was to minimize the quadratic error 285 

of estimated pressure versus measured pressure. This approach is known as Simple Least 286 

Squares (Moreno et al 2008).Pipe head losses were calculated using Darcy-Weisbach formula. 287 

Minor head losses were assigned to pipe roughness. A value of 0.007 mm was set to pipe 288 

roughness. The average relative pressure error in the model was 3.84%. 289 

In order to assess the error model, CEVT was calculated for an actual scenario and compared 290 

to that obtained from the energy billing data. Pump behaviour of VSP was simulated by using 291 
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affinity laws (Planells et al. 2005). To assess this assumption, a power and energy analyser 292 

(Model C.A 8334B, Chauvin Arnoux, Paris, France) was installed from 10
th

 to 15
th

 May 2012. 293 

Next, new scenarios where defined according to the minimum required service pressure at 294 

hydrant (Pmin_Hid) and the pumping operating time per day (TPump). The rest of the day was 295 

assumed to be used for gravity delivery. For each scenario, first the maximum number of 296 

intakes that could operate by gravity fulfilling the minimum pressure requirements was 297 

identified by applying the methodology depicted above. Then, for the rest of the day those 298 

intakes that require extra energy were processed with the AG method to search for the proper 299 

time scheduling with the minimum energy consumption. Finally the different scenarios were 300 

compared to decide what irrigation strategy should be more convenient. 301 

3 Analysis of the results 302 

3.1 Scenarios tested 303 

To assess the application of the aforementioned methodologies, seven scenarios were studied.  304 

The first scenario (Sce1) simulates the irrigation scheduling performed along the season 2012, 305 

decided by the WUA managers. The rest of scenarios were simulated modifying the Pmin_Hid 306 

(0.2, 0.22 and 0.25 MPa) and the TPump (6, 8 and 10 h). Main scenario features and analysis 307 

results are showed in Table 3. 308 

3.2 Model assessment 309 

Once the network hydraulic model was built, its accuracy was assessed for the period 10
th

 to 310 

15
th

 May of 2012. The actual irrigation scheduling was run by the model (TPump = 10 h) 311 

providing a CEVT value of 0.147 kWh m
-3

 while the actual value for the tested period was 312 
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0.151 kWh m
-3

, which means a relative error of -2.98 %. The VPS behaviour was assessed by 313 

comparing its simulated energy consumption with that empirically registered using an energy 314 

analyser. For an irrigation day the average simulated consumption was 216.5 kWh. Compared 315 

to the actual one the relative error was 3.9 %, making the model enough reliable.  316 

From the analysis of Scenario 1 came out that 77 intakes had a pressure lower than 0.25 MPa, 317 

25 while pumps worked (from 00:00h to 10:00h) and 52 while fed by gravity (from 10:00h to 318 

00:00h). Table 2 shows the actual operating pressure of the irrigation intakes. 319 

3.3 Optimization of volumes delivered by gravity 320 

Once the model reliability was assessed, the GA algorithm to maximize the volume supplied 321 

by gravity was applied. The pumped volume (VPump) for the actual scenario (Sce 1) was 4381 322 

m
3
 and the volume supplied by gravity (Vgrav) was 1596 m

3
, then the energy dependence 323 

index (EDI) was 73.3 % (Table 3). However the potential volume to be delivered by gravity 324 

(VMaxgrav) was 2594 m
3
. 325 

Scenario 4 was run to study if the system had the possibility to supply more water without 326 

pumping, being Pmin_Hid and TGrav the same as for scenario 1. The EDI was reduced by 12.3 %. 327 

The number of operating intakes was 3 less than in Scenario 1, however the selected intakes 328 

supplied larger volume. Moreover all operating intakes would operate having pressure higher 329 

than 0.25 MPa, not like Scenario 1 where 52 intakes had lower pressure than the required 330 

minimum.  331 

To test whether increasing TGrav then also Vgrav increases, TGrav was extended to 24 hours 332 

(Scenario 7). This scenario would be convenient for those periods where water demand is not 333 
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high and irrigation take place only some days per week. Thus, when a high irrigation 334 

frequency was not necessary, pumps could operate some days and irrigate by gravity the 335 

remaining days. Results showed that EDI would be 59.7%, a 13.6 % lower than scenario 1 336 

and 1.3 % lower than scenario 4. The potential volume supplied by gravity for PMinHid = 0.25 337 

MPa was not achieved due to the diameters of the final network branches were small (ND 338 

125). The total length of these pipes was 2995 m, being the head losses quite high in those 339 

segments. For example if these segments would be replaced for pipe diameters of ND 160 340 

EDI would be 56.6%, achieving VMaxgrav. This shows that topological criteria to group intakes, 341 

as shown in Carrillo Cobo et al. (2010), are not convenient to reach the optimum solution. 342 

Scenarios 2 and 3 simulated the actual schedule Tgrav = 14 h, but PMinHid was set to 0.20 MPa 343 

and 0.22 MPa, decreasing EDI by 27.1 % and by 21.8 % respectively. Fig 5. shows the plots 344 

irrigated by gravity in scenarios 1, 2 and 4. Graduated colours are assigned according to the 345 

irrigation starting time. This method spreads the intakes in such a way that reduces the head 346 

losses along the network. 347 

Since in scenario 1 TPump used two hours of regular tariff, Tgrav was extended 2 hours to use 348 

pumps only during peak-off periods, from 0 to 8:00 h (scenario 5). Even though intakes had 349 

two additional hours to be scheduled, EDI was 60.6 %, that is just 0.4% more volume would 350 

be supplied by gravity than in scenario 4, due to the aforementioned restriction of the pipe 351 

size diameter. Even for Tgrav= 18 h the EDI was 60.5 %, a slight decrease compared to 352 

scenario 4. 353 
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3.4 Optimization of volumes delivered by pumps 354 

Once Vgrav was maximized for each scenario, irrigation scheduling for Vpump was arranged by 355 

the GA that minimizes the energy consumption. Scenario 4, the optimized counterpart of 356 

scenario 1, had a consumption per m
3
 water pumped (CEVTp) of 0.126 kWh m

-3
, which 357 

means a reduction of 23.5 % compared to scenario 1 (0.164 kWh m
-3

). CEVTp for scenario 1 358 

was the average of the irrigation season as the daily irrigation scheduling was the same. This 359 

saving was mainly due to two reasons. The first one is the pumping head injection (WHI) was 360 

lower because operating intakes are distributed along the TPump in such a way the flow is more 361 

homogenous, head losses are minimized, and PHI was adjusted to guarantee PMinHid. Fig. 6 362 

shows the water head injection (WHI, MPa), the pumping head injection (PHI, MPa) and the 363 

pumped flow (Q, l s
-1

) for scenarios 1, 4, 5 and 6. WHI was set by WUA technicians to 0.32 364 

MPa for scenario 1. As the water level storage pond is 3 m above, PHI was 0.29 MPa. WHI 365 

was 0.273 MPa for scenario 4, lower than in scenario 1. 366 

The second reason is that the final scheduling guarantees the best pump performances. In Fig. 367 

6, efficiencies of the VSP (η1VSP) and the two FSP (η2FSP, η3FSP) can be observed. As the WHI 368 

remains constant along the pumping period then η2FSP is 0.58, not far from the optimal (0.68, 369 

see Fig. 2). When there are peak or low demands, the VSP operate to adjust the flow rates. 370 

The flow fluctuations make the VPS performance being low in some periods, with a mean 371 

value of 0.52 and maximums for the CEVTp up to 0.24 kWh m
-3

. Moreover because water 372 

pumping has to finish before 10:00 h to avoid peak tariff periods, performances in the two 373 

previous hours are unstable for all pumps. 374 

Fig. 6 shows that FSP1 performance for scenario 4 is lower than for scenario 1. As the PHI 375 

decreases then η2FSP decreases for flows higher than optimal (see Fig. 2). However η1VSP 376 

remains almost constant along the pumping period, close to the optimum. The adapted GA 377 
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methodology allows the progressive incorporation of the intakes in such a way that the 378 

demanded flow guarantees the minimum CEVTp. As it can be observed FSP2 was not 379 

necessary for this scenario, which permits a reduction of the maximum power contracted. The 380 

PHI ranges from 0.221 MPa to 0.243 MPa, but as the control system does not allow to set 381 

pressures dynamically, the maximum value was kept fixed. This fact avoids a lower CEVTp 382 

(Jimenez-Bello et al 2010a). 383 

Considering both the pumped and the gravity volume, the comparison of the consumed 384 

energy per m
3
 for the total delivered volume (CEVTt, kWh m

-3
) between scenario 4 and 385 

scenario 1 gives a saving of 36.4%, higher than CEVTp saving because of the lower EDI for 386 

scenario 4. 387 

Since energy is charged according the daily period when it is consumed, the scenarios were 388 

compared by means of the economic cost instead of the energy cost. The total energy cost of 389 

total water delivered (pumped and gravity), by disregarding the power cost (CoEVT, c€ m
-3

) 390 

and taking it into consideration (CoEVTt, c€ m
-3

), were calculated. For the sake of simplicity, 391 

the power cost was charged by dividing the annual power cost by the total annual supplied 392 

volume, giving an average unit cost of 0.532 c€ m
-3

. 393 

In spite of energy was 5.2 c€ kWh
-1

 cheaper in the peak-off period than in the regular period, 394 

the extra power to pump more volume in less time did not compensate this fact. Then 395 

scenarios 5 and 6 had higher CoEVTt than scenario 4, but all of them had lower CoEVTt than 396 

scenario 1. In particular, scenario 4 had a total cost 26.5 % lower than scenario 1. However 397 

comparing to CoEVT (36.4 %) the saving is lower because power is a fixed cost.  398 
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Another cost saving strategy is to reduce the contracted power, especially in the most 399 

expensive periods. As Fig. 6 shows, scenario 4 does not use the three pumps, therefore the 400 

contracted power could be reduced from 198 kW to 120 kW for the peak-off period. That 401 

would mean a total energy cost of total water delivered modifying the power contracted 402 

(CoEVTb) of 1.406 c€/m
3
 and a saving of 28.7 %. 403 

For scenarios 5 and 6 the power contracted could be reduced in the ordinary period from 120 404 

kW to 60 Kw (for maintenance purposes). In this case, comparing scenario 5 to scenario 1 the 405 

CoEVTb would be 31.5% lower. 406 

4 CONCLUSIONS 407 

The methodology developed by Jimenez-Bello et al (2010a), where intake operation is 408 

scheduled in such a way that energy use is minimized, has been improved allowing each 409 

intake operate just the scheduled time according to crop needs. In this way, crop water 410 

requirements can be satisfied more efficiently and intakes are not restricted to operate in fixed 411 

time periods. 412 

Moreover, a new method based on the previous one can be used to maximize the number of 413 

intakes fed by gravity, in those irrigation systems where the sources has enough head to 414 

supply water to some demand nodes without using pumps.  415 

Both methods were applied to a case study where a realistic energy saving of 36.4 % was 416 

achieved, in terms of energy consumption (kWh m
-3

). This was mainly due to increasing the 417 

intakes fed by gravity, decreasing the pump head injection and increasing the pump 418 

performances. In addition the contracted maximum power could be reduced as well, which 419 
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leads to a potential saving for the total energy costs of up to 31.5 % (c€ m
-3

). These are the 420 

potential savings. To achieve them, continuous monitoring of the system should be carried out 421 

to fit the model to the events along the irrigation season (Jimenez-Bello, 2011). 422 

 Nevertheless if the minimum required pressured at hydrant would be 20 m, i.e. 20 % lower, 423 

savings up to 65.6 % in energy consumption could be achieved for the studied irrigation 424 

system. More attention should be paid in head losses from the hydrant to the irrigation 425 

subunit. 426 

In conclusion, the modern irrigation districts with SCADA systems allow to collect data to 427 

feed hydraulic network models. By means of the aforementioned methodologies energy 428 

performance can be improved by proper scheduling. Users only suffer the restriction of when 429 

they can irrigate along the day, but crop water requirements are fulfilled and big energy 430 

savings are achieved.  431 
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