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When comparing the performance of video coding approaches, evaluating different commercial video encoders, or measuring the
perceived video quality in a wireless environment, Rate/distortion analysis is commonly used, where distortion is usually measured
in terms of PSNR values. However, PSNR does not always capture the distortion perceived by a human being. As a consequence,
significant efforts have focused on defining an objective video quality metric that is able to assess quality in the same way as a
human does. We perform a study of some available objective quality assessment metrics in order to evaluate their behavior in two
different scenarios. First, we deal with video sequences compressed by different encoders at different bitrates in order to properly
measure the video quality degradation associated with the encoding system. In addition, we evaluate the behavior of the quality
metrics when measuring video distortions produced by packet losses in mobile ad hoc network scenarios with variable degrees of
network congestion and nodemobility. Our purpose is to determine if the analyzedmetrics can replace the PSNRwhile comparing,
designing, and evaluating video codec proposals, and, in particular, under video delivery scenarios characterized by bursty and
frequent packet losses, such as wireless multihop environments.

1. Introduction

In the past years, the development of novel video coding
technologies has spurred the interest in developing digital
video communications, where evaluation mechanisms to
assess the video quality play a major role in the overall design
of video communication systems.

Themost reliableway of assessing zthe quality of a video is
subjective evaluation, because human beings are the ultimate
receivers in most applications. The mean opinion score
(MOS), which is a subjective quality metric obtained from
a number of human observers, has been regarded for many
years as themost reliable form of qualitymeasurement. How-
ever, the MOS method is too cumbersome, slow, and expen-
sive for most applications. Objective quality assessment met-
rics (QAM) are valuable because they provide video designers

and standard organizations withmeans for makingmeaning-
ful quality evaluations without convening viewer panels.

Recently, new objective image and video quality metrics
have been proposed. They emulate human perception of
video quality since they produce results which are very simi-
lar to those obtained from subjective methods. Most of these
proposals were tested and compared in the different phases
carried out by the video quality experts group (VQEG),
which was formed to develop, validate, and standardize new
objective measurement and comparison methods for video
quality. The models that the VQEG forum validates result in
International Telecommunication Union (ITU) recommen-
dations and standards for objective quality measurement for
both television and multimedia applications [1]. Some of the
QAM proposals are designed to be as generalist as possible,
that is, to be able to assess quality for a wide set of different
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distortion types, while other QAM focus their design on the
detection of one, two, or a reduced set of specific distortions.

It would be desirable to find a QAM for image and video
that exhibits a goodbehavior for any set of video and/or image
distortions, that is, that detects accurately (as close as possible
to the human perceived quality) any distortion regardless of
its type and degree. Also, it would be desirable that the time
required to obtain a quality measurement is short enough in
order to have a practical use or even to be able to use it in real
time.

But quality is by definition a highly subjective feature
that is influenced not only by the intrinsic characteristics
of the signal but also by psychological and environmental
factors. Therefore, the task of choosing “the best QAM” is
influenced by too many factors and sources of inaccuracy.
These sources of inaccuracy are, for example, the reliability
of unbiased subjective reference data, the selection of video
or image contents, the degree of the impairments and where
they appear (in space and time), the procedure used to
map between subjective and objective quality values, and
even the use and interpretation of the correlation indicators.
These factors must be taken into account when making
comparisons between metrics [2].

The selection of a QAM may also depend on the target
applicationwhere it will be used. Examples of applications are
a real-time monitor that adaptively adjusts the image quality
in a video acquisition or transmission system, a benchmark-
ing image processing system, or even algorithms and encoder
proposals that are embedded into image processing systems
to decide about the preprocessing and postprocessing stages.

Weworkwith a set of themost relevant quality assessment
metrics whose source code or test software has been made
available by their authors. So, we can use them in our own
evaluation tests.

As mentioned before, we will analyze the behavior of the
candidate metrics in two test environments. The first one,
is the compression environment, where the quality of com-
pressed sequences at different bitrates with different encoders
is compared by means of QAM. The most common way of
doing the comparisons between existing image/video coding
approaches, improvements over these approaches, or com-
pletely new codec designs is by performing a rate/distortion
(R/D) analysis. When using R/D, the distortion is usually
measured in terms of PSNR (peak signal-to-noise ratio)
values, where rates are often measured in terms of bpp (bits
per pixel) for images or bps (bits per second) for video. So,
in this test environment, we work with the selected QAM as
candidates to replace the PSNR as the distortionmetric in the
R/D comparisons.Wewill also consider theQAMcomplexity
in order to determine their applicability. The second one
is the packet loss environment, where we will analyze the
behavior of the candidate metrics in the presence of packet
losses under different mobile ad hoc networks (MANET)
scenarios. In particular, we are going to compare the behavior
of QAM when measuring the quality degradation of an
H.264/AVC video delivery in a MANET. We use a hidden
Markov model (HMM) to accurately reproduce the packet
loss patterns typical of these networks, including variable
network congestion levels and different degrees of node

mobility. For each particular network scenario, we perform a
bitstream erasure process based on the loss patterns suggested
by the HMM model. The resulting bitstream is delivered to
the H.264/AVC decoder in order to get the resulting HRC
that will be used to calculate the QAM value.

The organization of the paper is as follows. In the next
section, we will describe the main frameworks addressing
objective QAM. In Section 3, we will expose some key aspects
of how to compare heterogeneous metrics and the method
used to compare the metrics under evaluation. In Section 4,
we show the behavior of several available quality metrics
in the compression environment. In Section 5, the models
and the methods used for the packet loss environment are
explained and a behavioral analysis of the metrics is made for
different network scenarios. Finally, in Section 6, we present
the main conclusions of this work.

2. Objective Quality Assessment Metrics

In the past years, a big effort has been done in the field of
QAM. A large number or objective metrics can be found in
the literature. Some of them have been designed for a specific
kind of distortions, while others are more generalist and try
to assess quality regardless of the distortion type. Besides,
eachmetric design is different.Objective evaluation of picture
quality in line with human perception is still difficult [3–9]
due to the complex, multidisciplinary nature of the problem,
including aspects related to physiology, psychology, vision
research, and computer science. Nevertheless, with proper
modeling of major underlying physiological and psychologi-
cal phenomena and by obtaining results from psychophysical
tests and experiments, it is possible to develop better visual
quality metrics to replace nonperceptual criteria as PSNR or
MSE being still widely used nowadays.

In the literature, we can find different classifications and
frameworks that group several QAM depending on the way
they are designed. In this section, we will briefly describe the
main ideas behind the different frameworks, along with their
main QAM.

There is a consensus in a primer classification of objective
quality metrics [10, 11] attending to the availability of original
nondistorted info (video reference) to measure the quality
degradation of available distorted versions.

(i) Full reference (FR) metrics perform the distortion
measure with full access to the original image/video
version, which is taken as a perfect reference.

(ii) No reference (NR) metrics have no access to the
reference image/video. So, they have to perform the
distortion estimation based on the distorted version
only. In general they have lower complexity but are
less accurate than FR metrics and are designed for a
limited set of distortions and video formats.

(iii) Reduced reference (RR) metrics have access to partial
information about the original video. A RR metric
defines what information has to be extracted from
original video, so it can be compared with the the
same one extracted from the distorted version.
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Figure 1: Example of three figures with different impairments and the same PSNR values: (a) original, (b) contrast stretched 26.55 dB, (c)
JPEG compressed 26.60 dB, and (d) blurred 26.55 dB.
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Figure 2: Common block diagram of the error sensitivity framework.

The most widely used FR objective video quality metrics
are the mean square error (MSE) and the peak signal-to-
noise ratio (PSNR). They are simple and quick to calculate,
providing a good way to evaluate the video quality [12].
However, it is well known that these metrics do not always
capture the distortion perceived by the human visual system
(HVS). In Figure 1, an original image has been distorted in
different ways. The PSNR metric gives almost the same value
for each distortion, indicating that the quality of the distorted
images is the same, but as it can be seen, the perceived quality
is different for each image.Moreover, it is not unusual that the
perceived quality of image in Figure 1(b) is higher than the
one given to the original one, Figure 1(a). That is, a distorted
image has better perceptual quality than the original one.
If PSNR is used for measuring the quality of the resulting
images/videos produced by the different coding proposals,
how can we certify that one coding proposal has a better
perceptual quality than another?

In this section, we will briefly describe also themain ideas
behind the different frameworks and the most relevant and
cited QAM of each one. QAM can be classified by many
factors such as the metric architecture (number and type of
blocks and stages or algorithms used in the metric design),
the primary domain (space or frequency) where they work,
and the inclusion or not of HVS characteristics or HVS
models in their design.

2.1. HVS Model Based Framework. A basic idea of any
metric based on a HVS model is that subjective differences
between two images cannot be extracted directly from the
given images (original and distorted one) but from their
perceived versions, that is, from the version that our brain
perceives. As it is known, the HVS produces several visual
scene information reductions, carried out in different steps.

The way in which this information reduction process is
modeled is the key to obtain a good subjective fidelity metric.

This framework includes themetrics that are clearly based
on a HVS model, that is, their design follow the stages of any
of the available HVS models. We include here metrics from
the error sensitivity framework (ESF) [7] and also some other
RR and NR metrics that are based on HVS models.

This frameworkmainly include FRmetrics based onHVS
models that measure errors between the reference and the
distorted content using a HVS model.

In general, the emulation ofHVS is a bottom-up approach
that follows the first retina processing stages to continue with
different models of the visual cortex behavior. Also, some
metrics deal with cognitive issues about the human visual
processing modeling that are included as additional stages.

The main difference between the FR metrics of this
framework is related to the way they perform the subband
decomposition inspired by the complex HVS models [13–
15], low cost decompositions in DCT [16, 17] or wavelet [18]
domains, and with other HVS related issues like in [19] where
foveal vision is also taken into account and in [20] where
focus of attention is also considered. It is worth noting that
most of proposed FR quality assessment models share the
error sensitivity based philosophy which is motivated from
psychophysical vision science research [11].

Figure 2 shows a block diagram with the typical process-
ing stages of a FRmetric. In the preprocessing stage, different
operations are done in order to adequate some characteristic
of the reference and the distorted input versions. These
operations commonly include pixel alignment, image crop-
ping, color space transformations, device calibrations, PSF
filtering, light adaptation, and other operations. Not all the
metrics perform all these operations; each metric processes
both signals in a different way. After the preprocessing stage,
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usually HVS models first decompose the input signal into
spatiotemporal subbands at both the reference and distorted
signals.

The contrast sensitivity function (CSF) can be imple-
mented in the channel decomposition step by the use of linear
filters that approximate the frequency responses to the CSF
like in [21]. But most of the metrics choose to implement
the CSF as weighting factors that are applied to the channels
after the channel decomposition, providing for each channel
a different perceptual sensitivity.

As mentioned before, frequency decomposition is one of
the biggest differences between models and hence between
metrics. Complex HVS frequency channel decomposition
models are used in QAM designs, but some of these models
are simplified attending to computational constraints. In this
sense, other QAM use the DCT [16] or wavelet [18] trans-
forms showing good MOS correlation results. Depending
also on the metric type and the distortions it handles, metrics
use different channel decomposition models.

Cortical receptive fields are represented by 2D Gabor
functions, but the Gabor decomposition is hard to compute
and is not suitable for some operations as invertibility, recon-
struction by addition, and so forth. In [22], Watson modeled
a frequency and orientation decomposition with profiles
similar to the 2D Gabor functions but computationally more
efficient. Other authors like Lubin [23], Daly [24], Teo and
Heeger [13], and Simoncelli et al. [25] provided different
models trying to approximate as close as possible the HVS
channel decomposition.

There are also some models that use temporal frequency
decomposition in order to account for the characteristics of
the temporal mechanisms in the HVS [21, 26]. The design of
temporal filter banks is typically implemented using infinite
impulse response filters (IIR) with a delay of only a few
frames; other authors use finite response filters that despite
their higher delay are simpler to implement.

The next step is error normalization and masking.
Masking occurs when a stimulus that is visible by itself
cannot be detected due to the presence of another stimulus.
In contrast, facilitation occurs when a nonvisible stimulus
becomes visible due to the presence of another stimulus.
Most of the HVS models implement error normalization and
masking as a gain-control mechanism, using the contrast
visibility thresholds toweight the error signal at each channel.
Somemetrics [14], due to complexity and performance issues,
use only intrachannel masking, while others [13] include
interchannel masking, as there are evidences that channels
are not totally independent in the HVS. Other authors
[27] include also in this stage the luminance masking, also
called light adaptation. In [28, 29], some comparisons of
different masking models and some considerations about
how to include them into an image encoder are made. In
[30], authors propose a contrast gain-control model of the
HVS that incorporates also a contrast sensitivity function for
multiple oriented bandpass channels.

The last processing step (Figure 2) is the error pooling,
which is in charge of combining the error signals in differ-
ent channels into a single distortion/quality interpretation,
providing different importance to errors depending on the

channels where they appear. For most QAM, a Lp norm or
Minkowski norm is used to produce an image spatial error
maps. From the spatial error map, a frame-level distortion
score is computed. In video quality assessment, we obtain the
corresponding sequence-level distortion score by averaging
frame scores. For the time domain, some metrics use tem-
poral HVS models or information to accurately reproduce
human scores, while others simply do not assess time domain.
Other QAM that may be included in the model based
framework may be found in [13, 15–21, 26, 27, 31–36].

2.2. HVS Properties Framework. In this framework we con-
sider the metrics that, although are not based on a specific
HVS model, are still inspired in features of the HVS. We
also include those metrics that are designed to detect specific
impairments produced by any of the processing stages of
image and video coding, like quantization, transmission
errors, and so forth.

The Institute for Telecommunication Sciences (ITS) pre-
sented in [37] an objective video quality assessment system
that was based on human perception. They extract several
features from the original and degraded video sequences
that were statistically analyzed in comparison with the cor-
responding human rating extracted form subjective tests.
This analysis provide parameters to adjust objectivemeasures
for these features and, after being combined in a simple
linear model, they provide the final predicted scores. Some
of the extracted features require the presence of the origi-
nal sequence, while others are extracted in a no-reference
mode. The proposed metric exploits spatial and temporal
information. The processing include Sobel filtering, Laplace
filtering, fast Fourier transforms, first-order differencing,
color distortion measures, and moment calculation.

In [38], authors proposed a RR metric for in-service
quality monitoring system. Their metric is built on a set
of spatiotemporal distortion metrics that can be used for
monitoring in-service of any digital video system. Authors
expose that a digital video quality metric, in order to
be widely applicable, must accurately emulate subjective
responses, must work over the full range of quality (from
very low bit rate to very high), must be computationally
efficient, and should work for end-to-end in-service quality
monitoring.Themetrics are based on extracted features from
the video sequence as in [37] and in order to satisfy the last
condition (to be able to work in in-service monitoring sys-
tems), these features, extracted from spatiotemporal regions
are sent, compressed following the ITU-R Recommendation
BT.601, through an ancillary data channel so that it can be
continuously transmitted. In the paper, the authors describe
these spatiotemporal distortion metrics in detail, so that they
can be implemented by researchers.

Later, through The National Telecommunications and
Information Administration (NTIA), the same authors, pro-
posed the general model of the video quality measurements
techniques (known as VQM metric [39, 40]) for estimating
video quality and its associated calibration techniques. This
metric was submitted to be independently evaluated on
MPEG-2 and H.263 video systems by the video quality
experts group (VQEG) in their phase II full reference
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television (FR-TV) test. In [41], authors reduce the require-
ments of some of the features extracted in the NTIA general
model in order to achieve a monitoring system that uses less
than 10 kbits/s of reference information.

We also can find metrics based on watermarking tech-
niques that analyze the quality degradation of the embed-
ded image [42]. There are metrics that are designed for
measurement-specific distortions types and those produced
by specific encoders [43, 44]. Another representative metrics
in this framework are the ones proposed in [43–49].

2.3. Statistics of Natural Images Framework. Some drawbacks
of the model based HVS framework are reviewed in [7, 50].
Some of these drawbacks are, for example, that the HVS
models work appropriately for simple spatial patterns, like
pure sine waves; however, whenworkingwith natural images,
where several patterns coincide in the same image area,
their performance degrades significantly. Another drawback
is related to the Minkowski error pooling, as it is not a
good choice for image qualitymeasurement. As authors show,
different error patterns can lead to the same final Minkowski
error.

Therefore, several authors argue that the approach to the
problem of perceptual quality measurement must be a top-
down approach, analyzing the HVS to emulate it at a higher
abstraction level. The authors supporting this approach pro-
pose using the statistics of the natural images. Some of them
propose the use of image statistics to define the structural
information of an image. When this structural information
is degraded, then the perceptual quality is also degraded. In
that sense, a measurement of the structural distortion should
be a good approximation to the perceived image distortion.
These metrics are able to distinguish between distortions that
change the image structure and distortions that do not change
it, like changes in luminance and contrast.

In [7, 51], authors define a Universal Quality Index
that is able to determine the structural information of the
scene. This index models any distortion as a combination
of three different factors: (a) the loss of correlation between
the original signal and the distorted one, (b) the mean
distortion that measures how close the mean of the original
and distorted version are, and (c) the variance distortion that
measures how similar the variances of the signals are. The
dynamic range of the Quality Index is [−1, 1]. A value of 1
indicates that both signals are identical.They apply this index
in a 8 × 8 window for an image, obtaining a quality map of
the image.The overall index is the average of the quality map.

Authors in [50] further improve their previous quality
index and in [52] propose a generalization of their work
where any distortion may be decomposed into a linear
combination of different distortion components. In [53], the
model is extended to the complex wavelet domain in order
to design a robust metric to scaling, rotation, and translation
effects.

Authors in [54] proposed a video qualitymetric following
a frame by frame basis. It takes quality measures for different
blocks of each frame taking into account their spatial variabil-
ity, the movement, and other effects (like blocking) by means
of a specifically adapted NR metric [45].

Other authors use also statistics of the natural scene in a
different way.They state that the statistical patterns of natural
scenes have modulated the biological system, adapting the
different HVS processing layers to these statistics. First a
general model of the natural images statistics is proposed.
The modeled statistics are those captured with high quality
devices working in the visual spectrum (natural scenes). So,
text images, computer generated graphics, animations, draws,
random noise or image, and videos captured with nonvisual
stimuli devices like radar, sonar, X-ray, and so forth are out
of the scope of this approach. Then, for a specific image, the
perceptual quality is measured taking into account how far its
own statistics are from the modeled ones. In [55], a statistical
model of a wavelet coefficient decomposition is proposed,
and in [56] the authors propose an NR metric derived from
previous work.

Some metrics defined under this approach take the
objective quality assessment as an information loss problem,
using techniques related to information theory [57, 58].

2.4. Metrics under Study. Now, we introduce the metrics we
will use in our study.The criteria to choose thesemetrics, and
no other ones, was the availability of their code (source or
executable) to reproduce their behavior as follows.

(i) The DMOSp-PSNR metric: we translate the tradi-
tional PSNR to the DMOS space applying a scale-
conversion process. We call the resulting metric
DMOSp-PSNR.

(ii) The Mean Structural SIMilarity index [50] (MSSIM)
from the structural distortion/similarity framework:
in the reference paper, this FR metric was tested
against JPEG and JPEG2000 distortion types. We
test its performance with the new distortion types
available in the second release of Live Database,
“Live2 Database” since it is considered a generalist
metric.

(iii) The visual information fidelity (VIF)metric [59] from
the Statistics of Natural Images Framework. A FR
metric that quantifies the information available in
the reference image and determine how much of
this reference information can be extracted from the
distorted image.

(iv) The no-reference JPEG2000 quality assessment
(NRJPEG2000) [54] from the Statistics of Natural
Images Framework. A NR metric that uses natural
scene statistical models in the wavelet domain
and uses the Kullback-Leibler distance between
the marginal probability distributions of wavelet
coefficients of the reference and distorted images as a
measure of image distortion.

(v) Reduced-reference image quality assessment
(RRIQA) [57] from the Statistics of Natural Images
Framework. The only RR metric under study. It is
based on a natural image statistical model in the
wavelet transform domain.

(vi) The no-reference JPEG quality score (NRJPEGQS)
[43] from the HVS properties framework. A NR
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metric designed specifically for JPEG compressed
images.

(vii) The video quality metric [40] (VQM general model)
from the HVS properties framework. The VQM uses
RR parameters sent through an ancillary channel that
requires at least 14% of the uncompressed sequence
bandwidth. Although being conceptually an RR met-
ric, it was submitted to the VQEG FR-TV test because
the ancillary channel can be used to receive more
detailed and complete references from the original
frames, even the original frames themselves.

3. Comparing Heterogeneous Metrics

As previously mentioned, each QAM gets the quality of the
image/video using its own and specific scale that depends
on its design. Therefore, these raw quality scores cannot be
compared directly, even though the range of the values (scale)
is the same. In order to compare fairly the behavior of various
metrics for a set of images or sequences, the objective quality
index obtained from each metric has to be converted into a
common scale.

When reviewing the performance comparisons that
authors made in their new QAM proposals, few details are
provided about the comparison procedure itself. So, it is
difficult to replicate these results. Authors in [2] reviewed the
sources of inaccuracy of each step of the QAM comparing
process, shown at Figure 3. The sources of inaccuracy may
be related to many factors as the reliability of the subjective
reference data, the types and grade of the distortions in the
images or videos, the selection of the content thatmade up the
training and testing sets, and even the use and interpretation
of the correlation indicators.These sources of inaccuracy can
lead to quantitative differences when the same QAM is tested
by different authors, even when the tests are correctly done.
Although different tests can provide slightly varying results
for a set of metrics, their results should be in line as explained
in [2].

These issues encouraged and guided us to perform our
own comparison test with the selectedQAM in order to adapt
the test to the target applications we are interested in. The
results of our test, as expected, were slightly different from
other comparison tests but remain in line with their results
[2].

We use the method and mapping function proposed by
the VQEG [6, 60] with some refinements proposed in other

relevant comparison tests [61]. The chosen target scale is
the DMOS scale (differences mean opinion score) which is
the one used by the VQEG and other authors [61] when
comparing metric proposals.

In order to compare several QAM, first a subjective test
must be done, for example, a Double Stimulus Continuous
Quality Scale (DSCQS) method as suggested and explained
in [6], in order to get the subjective quality assessment of
a set of images or sequences. The scale used by the viewers
goes from 0 to 100. Raw scores obtained in subjective tests are
converted into difference scores and processed further [58]
to get a linear scale in the 0–100 range. The mean opinion
score (MOS) can be calculated for the source and distorted
versions of each image or sequence in this set. The DMOS is
therefore the difference between the MOS value obtained for
the original image/sequence and the MOS value obtained for
the distorted one. So, for a particular image or sequence, its
DMOS value gives themean subjective value of the difference
between the original and the distorted versions. A value of 0
means no subjective difference found between the images by
all the viewers. Due to the nature of the subjective test this
value is very unlikely.

In this work, we have not done such a subjective test.
Instead of this, we have used directly the DMOS values
published in the Live Database Release 2 [62] and in the
VQEG Phase I Database [63].

Basically, the raw score of each metric must be converted
into a value in this predicted DMOS (DMOSp) scale. This is
done in the curve fitting step, shown in Figure 3. The final
result of this scale-conversion process allows the quality score
given by a metric for a specific image/sequence to be directly
comparable with the one given by the other metrics for the
same image/sequence.

We use the nonlinear mapping function between the
objective and the subjective scores, as suggested in the VQEG
Phase I and Phase II testing and validation tests [6, 60] as
well as in other extensive metrics comparison tests [61]. This
function is shown in (1). It is a parametric function which
is able to translate a QAM raw score to the DMOSp space.
As suggested in [2, 64], the performance evaluation of the
metrics (correlation analysis step in Figure 3) is computed
after a nonlinear curve fitting process.

A linear mapping function cannot be used because
quality scores are rarely scaled uniformly in the DMOS
scale, because different subjectsmay interpret vocabulary and
intervals of the rating scale differently, depending on the
language, viewing instructions, and individual psychological
characteristics. Therefore, a linear mapping function would
give too pessimistic view of the metric performance. Several
mapping functions could be selected for this purpose, such
as cubic, logistic, exponential, and power functions, with
monotonicity being themain property that the functionmust
comply with, at least in the relevant range of values.

Consider

Quality (𝑥) = 𝛽
1
logistic (𝛽

2
, (𝑥 − 𝛽

3
)) + 𝛽

4
𝑥 + 𝛽
5
, (1)

logistic (𝜏, 𝑥) = 1
2
−
1

1 + exp (𝜏𝑥)
. (2)
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Table 1: Equation parameters of metrics under study.

𝛽
1

𝛽
2

𝛽
3

𝛽
4

𝛽
5

MSSIM −39.5158 14.9435 0.8684 −10.8913 46.4555
VIF −3607.3040 −0.5197 −1.6034 −476.0144 −693.3585
NRJPEGQS 37.6531 −0.9171 6.6930 −0.2354 40.7253
NRJPEG2000 37.3923 0.8190 0.6011 −0.8882 74.5031
RRIQA −18.9995 1.5041 3.0368 6.4301 5.0446
PSNR-DMOSp 23.2897 −0.4282 28.7096 −0.6657 61.5160
VQM-GM −163.6308 6.3746 −7.6192 114.4685 76.6525
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Figure 4: Dispersion plot used for the VIF metric including the
curve fit for (1).

Equation (1) has five parameters, from 𝛽
1
to 𝛽
5
, that

are fixed by the curve fitting process that achieves the best
correlation between the QA metric values and the subjective
DMOS values. We have not found in the literature any
mapping function with its parameters for any image/video
database. So, we have calculated these parameters based on
sets of images and sequences that conformwith our “training
sets”.

As an example, Figure 4 shows the dispersion plot used in
the fitting process for one of the metrics, in this case the VIF
metric. Each point of the scatter-plot corresponds to an image
of the training set used, Live2 Database [62]. For each image
in the training set, we get the average DMOS value obtained
in the subjective test and we run each metric in order to get
its raw quality scores. Each metric gives its score in its own
scale.

The𝑥-axis of Figure 4 corresponds to the raw values given
by the VIF implementation used, where 0 corresponds to
the highest quality reported by the metric and decreasing
values report lower quality. In the 𝑦-axis, we have the
corresponding DMOS values. The curve fitting process gives
us the parameters for (1), which is represented by the solid
curve in Figure 4.

The quality of the images in the subjective test is variable,
covering a large range of distortion types and intensities
for each distortion. Image distortions go from very highly
distorted to practically undistorted ones. The viewers gave

Table 2: Goodness of DMOSp-DMOS fitting.

PCC RMSE SROCC
MSSIM 0.8625 7.9682 0.851
VIF 0.9529 0.0516 0.9528
NRJPEGQS 0.936 3.0837 0.902
NRJPEG2000 0.9099 7.056 0.9021
RRIQA 0.9175 4.4986 0.9194
PSNR-DMOSp 0.85257 9.0969 0.8197
VQM-GM 0.8957 7.6746 0.9021

their scores for each image in the set, obtaining the average
DMOS value. As shown in Figure 4, the dynamic range of the
average DMOS values does not reach the limits of the DMOS
scale (0 and 100) for any distortion type; therefore, the fitted
curve predictsDMOSp values inside the samedynamic range.
This is the reason why for a raw score of 0 (the best possible
quality for the metric in this case), the predicted DMOSp
value is not 0; that is, there was no image scored with an
average DMOS value of 0, instead of that, the best DMOSp
value obtained is around the value of 20. So, in the case of the
VIF metric its dynamic DMOSp range varies from 20 to 80.

Having fixed the beta parameters for each metric (see
Table 1), (1) can be used to estimate or predict the DMOSp
value for any objective metric score.

In Table 2, the performance of our fittings is shown.
These performance parameters show the degree of correlation
between the DMOSp values and the subjective DMOS values
provided by the viewers. Performance validation parameters
are the Pearson correlation coefficient (PCC), the root mean
squared error (RMSE), and the Spearman rank order corre-
lation coefficient (SROCC).

Another key point to consider while comparing QAM [2]
is the selection of the image or video sequence set used as
“training set.” The “training set” is used to perform the curve
fitting process.This set should be chosenwith special care and
must be excluded fromvalidation tests. So for eachmetric, the
fitting process must be done using images or sequences with
impairments that the metric is designed to handle. See [2] for
details of how an incorrect selection of the image “training
set” can influence the final interpretation of the statistics used
in the correlation analysis.

Once the metric has been evaluated in the correlation
analysis step, it will work with another set of images or
sequences that we call the “testing set.” For the “testing set,”
the DMOS values are unknown; therefore, we obtain them
via (1).
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Figure 5: PSNR versus DMOSp-PSNR for the evaluated codecs (mobile sequence).

In our study, all the metrics have been “trained” only with
the luminance information. The MSSIM, VIF, RRIQA, and
DMOSp-PSNR metrics were “trained” with the whole Live2
Database because they are intended to be generalist metrics.

The NRJPEGQS was “trained” only with the JPEG dis-
torted images of Live2 database as thismetric is designed only
to handle this type of distortions. And for the same reason
the NRJPEG2000 was “trained” only with the JP2K distorted
images of Live2 Database and the VQM-GM was “trained”
with a subset of 8 video sequences and its 9 corresponding
HRCs of the VQEG Phase I Database in a bitrate range of 1 to
4Mb/s.

It is important to mention that each of these “training
sets” has different dynamic ranges in the DMOS scale
depending on the degree of distortions applied to the images
in each set.

We define as “homogeneous metrics” those which were
trained with the same sets, and therefore, we use the term
“heterogeneous metrics” to refer to metrics that were trained
with different sets.

Our “testing set” comprises different standard video
sequences that are commonly used in video coding evalua-
tion research, as shown in Table 3. For FR-metrics, both ref-
erence and distorted images/sequences are used as input. For
NR-metrics only the distorted image/sequence is available.
For RR-metrics, the reference image/sequence is the input of
the features extraction step, and both the extracted features
and the distorted image/sequence are the input for the final
metric evaluation step. Image metrics were applied to each
frame of the sequences and the mean raw value for all the
frames was translated to the DMOSp scale. Hence, we finally
obtain comparable DMOSp values for all images/sequences.

4. Analyzing Metrics Behavior in
a Compression Environment

In this section, we will study the behavior of the QAM
under evaluation when assessing the quality of compressed
images and sequences with different encoders. As exposed

Table 3: Sequences included in the “test set”.

Sequence Frame F. number F. rate
Foreman QCIF: 176 × 144

300
30 fps.

Container
Foreman CIF: 352 × 288
Container
Mobile 640 × 512 40

before, in the development of a new encoder or when
performing modifications to existing ones, the performance
of the proposals must be evaluated in terms of perceived
quality by means of the R/D behavior of each encoder. The
distortion metric commonly used in the R/D comparisons is
PSNR.

So, in this test environment, we will work with the
selected metrics as candidates to replace the PSNR as the
quality metric in a R/D comparison of different video codecs.
In this case, we will use a set of video encoders and video
sequences in order to create distorted sequences hypothetical
reference circuit (HRC) at different bitrates and analyze the
results of the different QAM under study. Also, we will
consider the metric complexity in order to determine their
scope of application. For the tests, we have used an Intel
Pentium 4 CPU Dual Core 3.00GHz with 1 Gbyte RAM.The
programming environment used is Matlab 6.5 Rel.13. The
codecs under test are H.264/AVC [65], Motion-JPEG2000
[66], and Motion-LTW [67]. The fitting between objective
metric values and subjective DMOS scores was done using
theMatlab curve fitting toolbox looking for the best fit in each
case.

A R/D plot of the different video codecs under test,
using the traditional PSNR as a distortion measure, is shown
in Figure 5(a). It is usual to evaluate performance of video
codecs in a PSNR range varying from 25–27 dB to 38–
40 dB, because it is difficult to determine which one is better
with PSNR values above 40 dB. This saturation effect, at
high qualities, is not captured by the traditional PSNR that
increases steadily as the bitrate rises, as shown in Figure 5(a).
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Figure 6: QAM comparison using the same sequences with different codecs.

We convert the traditional PSNR to a metric that we
call DMOSp-PSNR by applying the scale-conversion process
explained in Section 3. We can consider the DMOSp-PSNR
metric to be the “subjective” counterpart of the traditional
PSNR. It is the same metric, though expressed in a different
scale. The DMOSp scale denotes distortion, thereby quality
increases as DMOSp value decreases. The main difference
between PSNR and its counterpart DMOSp-PSNR is that
the saturation effect is fixed, as we can see in Figure 5(b).
As it can be seen, subjective saturation effect is noticeable
above a specific quality value. At bitrates above 11.5Mbps,
the DMOSp values practically do not change. This behavior
is the same for all the evaluated codecs and video formats,
confirming that there is no noticeable subjective difference
when watching the sequences at the two highest evaluated
bitrates (11.7 and 20.7Mbps).

But as mentioned before the only modification that has
been done to the PSNR metric was the mapping process
with the DMOS data; that is, the raw values of the PSNR
have not changed; therefore, DMOSp-PSNR metric does not
fix the known drawbacks shown in Figure 1. For bitrates
values below the saturation point (11.5Mbps in the case of
Figure 5(b)), the behavior of the two R/D curves is the same.
In fact, the DMOSp-PSNR metric below the saturation point
arranges the codecs by quality in the same order as the PSNR
does, agreeing also with the results of subjective tests. This
behavior is the same for all evaluated sequences and bitrates.

Since PSNR, and therefore DMOSp-PSNR, are known to
be inaccurate perceptual metrics for image or video quality
assessment, we now analyze the remaining metrics under
study for all codecs and bitrates. These metrics have a better
perceptual behavior and they offer different scores for the
images in Figure 1.

The expected behavior of a QAM scoring an image or
sequence at different bitrates is as follows.

(i) It should give a decreasing quality value as the bitrate
decreases when bitrate values are below saturation
threshold.

(ii) The quality value should be almost the same when
bitrate values are above saturation threshold.

So, we run all the metrics for each HRC and analyzed
the resulting data between consecutive bitrates, obtaining
the quality scores in the DMOSp space. A simple subjective
DSCQS test was performed with 23 viewers in order to detect
if there was really perceived differences above threshold in
these sequences at high bitrates (above saturation 11.5Mbps).
In the tests, the three HRCs (for each sequence and encoder)
with higher bitrates were presented to the viewers: the first
HRC (the first located below saturation point, 6.4Mbps)
and the last two HRCs (two rightmost points from curves
in Figure 5, 11.58 and 20.65Mbps) that are locate in the
saturation region. The test concluded that no perceptual
differenceswere detected above saturation threshold,whereas
all the viewers detected some perceptual differences bellow
threshold. The predicted DMOSp differences for these HRCs
above threshold vary from 0.82 to 4.91 DMOSp points, so we
can initially conclude that above saturation these small differ-
ences in DMOSp values are perceptually indistinguishable.

In Figure 6 we can see examples of the R/D plots used
for comparing the metrics where all the evaluated QAM
were applied to the same sequence. In Figure 6(a), the HRCs
were encoded with the H.264/AVC codec. The NRJPEG2000
metric is omitted because it is not designed to handle DCT
transform distortions. In the same way, in Figure 6(b), where
HRCs were encoded with M-JPEG2000, the NRJPEGQS
metric is omitted because it is not designed to handle the
distortions related to the wavelet transform. We can see that
the perceptual saturation is captured by all the QAM at high
bitrates (high quality) regardless of the encoder. The same
holds for all the sequences and encoders.

As mentioned in Section 3, monotonicity is expected
in the mapping function. So, the expected behavior of the
metrics should also be monotonic; that is, metrics should
indicate lower quality values as the bitrates decrease. How-
ever, if we look at Figure 6(b) and focusing on the two lowest
bitrates, the quality score given by both the RRIQA and
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Figure 7: First frame of Foreman QCIF encoded at 70Kbps (left)
and 135Kbps (right).

NRJPEG2000metrics increases as the bitrate value decreases.
This is contrary to the expected behavior of a QAM. Figure 7
shows the first frame of the Foreman QCIF frame size
sequence at these bitrates. Clearly, the right image (135 Kbps)
receives a better subjective score than the left one (70Kbps),
though the mentioned metrics state just the opposite in this
particular case. Our results for the compression environment
show that NRJPEG2000 offers wrong quality scores between
the two highest compression ratios with the M-JPEG2000
codec, for all the sequences and frame sizes tested. RRIQA
also failed with this codec at high compression ratios, but
only for small video formats. All the other metrics exhibit a
monotonic behavior for all bitrates regardless of the encoder
and sequence being tested.

Figure 6 will also help us to explain what it was exposed
in Section 3; heterogeneous metrics should not be compared
directly because the dynamic range of the subjective quality
scores in each training set is different. Looking at Figure 6(a)
and focusing on the lowest bitrate, the DMOSp rating
differences between metrics arrive surprisingly up to 44.21
DMOSp units.

In fact, there are three different behaviors corresponding
to the use of three different training sets: VQM-GM was
trained with VQEG sequences, NRJPEGQS was trained
only with the JPEG distorted images, and the rest of the
metrics trained with the whole set of distorted images in the
Live2 Database. This is the main reason of these anomalous
behaviors in Figure 6.

So, when including in the same R/D plot curves from
different metrics it should be checked that the metrics are
homogeneous in order to avoid misleading conclusions.

Determining how good a metric works depends on how
good themetric predicts the subjective scores given by human
viewers. This goodness of fit is measured in parameters like
those of Table 2. Our performance validation data tells that
the VIFmetric is the one which best fits the subjective DMOS
values among the metrics in the same “training set.”

Figure 8 represents the common R/D plots used when
comparing the performance of the encoders being tested.
In this case the plot shows how the VIF metric evaluates
the performance of the encoders. If the mapping function
of the metrics was obtained with the same “training set,”
then the ranking order of the encoders should agree with the
subjective ranking order for each bitrate being evaluated.

We performed a simple subjective test with 23 viewers in
order to evaluate if we can trust the codec ranking; that is,
for a specific bitrate, the metric should arrange the encoders
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Figure 8: R/D performance evaluation of the three video codecs
using mobile ITU video sequence by means of VIF metric.

by quality, in the same order that a human observer does.
For each rate and sequence, the reconstructed sequence of
each encoder was presented simultaneously to the subjects.
The ordering of the three sequences varies for each HRC, so
that the subjects had no knowledge about the encoder order.
The subjects ranked the sequences by perceptual quality if no
differences were detected between pairs of sequences; they
also annotated this fact. After analyzing the users scores and
removing outliers, the test confirms that the ranking order of
the metrics was the same as the subjective ranking.

In the cases where viewers scored no perceptual dif-
ference between sequences, the metrics gave always values
lower than 2.9 DMOSp units of difference between encoders.
In this test, for slightly higher differences, for example,
3.11 DMOSp units at 2.1Mb/s between H264/AVC and M-
JPEG2000 in Figure 8, most of the viewers could see some
perceptual differences between the sequences, since they
ranked H264/AVC to have better perceptual quality than M-
JPEG2000 and M-LTW.

In order to determine how much difference expressed in
the DMOSp scale is perceptually detectable, deeper studies
and subjective tests must be done. From our studies, we
detect that the perceptual meaning of the difference depends
on the point in the DMOSp scale where we are working.
For example, for high quality (as stated before in previous
tests), DMOSp value differences up to 4.91 DMOSp points
were imperceptible; however, at lower quality levels, smaller
differences (3.11) can be perceived.

Finally, Table 4 shows, for different frame sizes, the mean
frame evaluation time and the evaluation time for the whole
sequence needed by eachmetric to assess its rawquality value.
Times for the two steps of RRIQA, features extraction (f.e.),
and quality evaluation (eval.) have been separately measured.
For a CIF sequence (calibration and colour conversion time is
not included) the VQM-GM is faster than the other metrics,
except NRJPEGQS and DMOSp-PSNR. DMOSp-PSNR is by
far the less computationally expensive metric at all frame
sizes. On the other hand, RRIQA and VIF are the slowest
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Table 4: QAM average scoring times (seconds) at frame and sequence level.

QCIF CIF 640 × 512

Frame Seq. Frame Seq. Frame Seq.
MSSIM 0.028 8.4 0.147 44.1 0.764 30.5

VIF 0.347 104.1 1.522 456.5 6.198 247.9

NRJPEGQS 0.01 3 0.049 14.6 0.201 8.1

NRJPEG2000 0.163 48.9 0.486 145.9 1.595 63.8

RRIQA (f.e.) 4.779 1433.7 6.95 2084.9 10.111 404.5

RRIQA (eval.) 0.201 60.2 0.635 190.6 2.535 101.4

DMOSp-PSNR 0.001 0.3 0.006 1.7 0.02 0.8

metrics (they run a linear multiscale, multiorientation image
decomposition), although in our tests the VIF is the most
accurate metric among the general purpose metrics.

5. Analyzing Metrics Behaviour in a Packet
Loss Environment

Our objective in this section is to analyze the behavior of
the candidate metrics in the presence of packet losses under
different MANET scenarios. In order to model the packet
losses in these error prone scenarios, we use a three-state hid-
den Markov model (HMM) and the methodology presented
in [68]. HMMs are well known for their effectiveness in
modeling bursty behavior, relatively easy configuration, quick
execution times, and general applicability. So, we consider
that they fit our purpose of accelerating the evaluation
process of QAM for video delivery applications on MANET
scenarios, while offering similar results to the ones obtained
by means of simulation or real-life testbeds. Basically, by the
use of the HMM, we define a packet loss model for MANET
that accurately reproduces the packet losses occurring during
a video delivery session.

The modeled MANET scenario is composed of 50 nodes
moving in an 870 × 870 square meters area. Node mobility
is based on the random way-point model, and speed is
fixed at a constant value between 1 and 4m/s. The routing
protocol used is DSR. Every node is equipped with an IEEE
802.11g/e enabled interface, transmitting at the maximum
rate of 54Mbit/s up to a range of 250 meters. Notice that a
QoS differentiated service is provided by IEEE 802.11e [69].
Concerning traffic, we have six sources of background traffic
transmitting FTP/TCP traffic in the best effort MAC access
category. The foreground traffic is composed by real traces
of an H.264 video encoded (using the Foreman CIF video
test sequence) at a target rate of 1Mbit/s. The video source
is mapped to the video MAC acess category.

We apply the HMM described above to extract packet
arrival/loss patterns for the simulation traces and later repli-
cate these patterns for testing.Wedescribe two environments:
(a) congestion related environment and (b) mobility related
environment.

The congestion environment is composed of 6 scenarios
with increasing level of congestion, from 1 to 6 video sources.
The mobility environment is composed of 3 scenarios with

only one video source, but with increasing degrees of node
mobility (from 1 to 4m/s).

For each of these scenarios, we get different packet loss
patterns provided by the HMM that represents each scenario.

After an analysis of the packet losses, different patterns
are defined as follows.

(i) Isolated small bursts represent less than 7 consecutive
lost packets. As each frame is split in 7 packets at
source, isolated bursts will affect 1 or 2 frames, but
none of them will be completely lost. This error pat-
tern is mainly due to network congestion scenarios,
where some packets are discarded due to transitory
high occupancy in the wireless channel or buffers at
relaying nodes.

(ii) Large packet loss bursts. Large Bursts cause the loss of
one or more consecutive frames. Large packet error
bursts are typically a consequence of high mobility
scenarios, where the route to the destination node
is lost and a new route discovery process should
be started. This will keep the network link in down
state during several seconds, losing a large number of
consecutive packets.

We have used the H.264/AVC codec adjusting the error
resilience parameters to the values proposed in [70], so that
the decoder is able to reconstruct sequences even when large
packet loss bursts occur. H.264/AVC is configured to produce
one I frame every 29 P frames, with no B frames and to
split each frame in 7 slices, so we put each slice into a
separate packet and encapsulate its output in RTP packets. As
suggested in [70], we also force 1/3 of themacroblocks of each
frame to be randomly encoded in intramode.

We have used the ForemanCIF seq. (300 frames at 30 fps)
to build an extended video sequence by repeating the original
one up to the desired video length. After running the encoder
for each extended video sequence, we get RTPpacket streams.
Then, we delete from the RTP packet stream, those packets
that have been marked as lost packets by the HMM model.
This process simulates packet losses in theMANET scenarios,
so a distorted bitstream will be delivered to the decoder. The
decoder behavior depends on the packet loss burst type as
follows.

(i) When an isolated small bursts appear, the decoder is
able to apply error concealmentmechanisms to repair
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Figure 9: PSNR frame values during a long packet loss burst (from
frame 2327 to 2525) at different bitrates.

the affected frames. The video quality decreases, and
just after the burst, the reconstructed video quality
recovers the quality by means of the random intra-
coded macroblock updating. When the next I frame
arrives, it completely stops error propagation.

(ii) When the decoder faces large bursts, it stops decoding
and waits until new packets arrive. This produces a
sequence in the decoder that is shorter than the orig-
inal one. Therefore, both sequences are not directly
comparable with the QAM and so we freeze the last
completely decoded frame until the burst ends.

Once we have comparable video sequences (original and
decoded video sequences with the same length), we are able
to run the QAM. Each metric produces an objective quality
value for each frame in its own scale. Then, we perform the
scale-conversion to the DMOSp scale (see Section 3).

Figure 9 shows the objective quality value in the tradi-
tional PSNR scale at three different compression levels (low
compression, medium compression, and high compression)
during a large packet loss burst. We observe the evolution
of quality during the burst period. What the observer sees
during this large burst is a frozen frame, with more or
less quality depending on the compression level. The PSNR
metric reports that quality drops drastically with the first
frame affected by the burst and decrease even more as the
difference between the frozen frame and the current frame
increases. Nearly at the middle of the burst, an additional
drop of quality can be observed. It corresponds to a scene
change (with the beginning of a new cycle of the foreman
video sequence). At this point, the drastic scene changemakes
the differences between sequences even higher, and the PSNR
metric scores with even worse values, reaching values as low
as 10–12 dBs.

On the other hand, the perceived quality which changes
at these levels is quite difficult to evaluate. So, a better
perceptually designed QAM should not score such a quality
drop in this situation because quality saturates. When the

burst ends, quality rapidly increases because of the arrival of
packets belonging to the same frame number than the current
one in the original sequence (frame 2525 in Figure 9).

If during such a burst a QAM takes into account only the
quality of the frozen frame, disregarding the differences with
the original one (which changes over time), the effect of the
burst would remain unnoticed for that metric, that is, quality
remain constant.

Figure 10 shows the evolution of the candidate QAM
during a large burst (similar to Figure 9 but in this case in the
DMOSp space). There is a panel for each compression level:
Figure 10(a) corresponds to high compression, Figure 10(b)
to middle compression, and Figure 10(c) to low compression.
We observe some interesting behaviors that we proceed to
analyze.

From a perceptual point of view, quality must drop to a
minimum when one or more frames are lost completely and
should remain that way until the data flow is recovered. It
should not matter if a scene change takes place inside the
large burst. VIF andMSSIM behaves this way. At the point of
the burst, where the scene change takes place, both the VIF
and MSSIM metrics have almost reached their “bad quality”
threshold regardless of the compression level and therefore
there is no substantial change in the reported quality. The
drop of quality to the minimum at the beginning of the burst
evidence the lost of whole frames.

NR metrics do not detect the presence of a frozen frame
(by dropping the quality score) as expected because the
quality given by these metrics remain at the level scored
for the frozen frame during the burst duration. So, NR
metrics could not detect the beginning of a large burst,
since lost frames will be replaced with the last correctly
decoded frame (frozen frame) and the reference frames are
not available for comparison. However, NR metrics detect
the end of such bursts. Figure 11 will help us to explain this
behavior, showing how reconstruction is done after a large
burst. This figure shows the impairments produced when the
large burst ends. Figure 11(a) is the current frame, the one
being transmitted. Figure 11(b) is the frozen frame that was
repeated during the burst duration. When the burst ends,
the decoder progressively reconstruct the sequence using the
intramacroblocks from the incoming video packets. So the
decoder partially updates the frozen framewith the incoming
intramacroblocks. This is shown in Figures 11(c) and 11(d)
where the face of the foreman appears gradually.

The gradual reconstruction of the frame with the incom-
ing macroblocks is interpreted in a different way by NR met-
rics and FR metrics. When the macroblocks begin to arrive,
what happens at frame 2522 (see Figure 12), the NR metrics
react scoring down quality, while the FR metrics begin to
increase their quality score, just the opposite behavior. For
a NR metric, without a reference frame, Figure 11(c) has
clearly worse quality than Figure 11(b). But for a FRmetric the
corresponding macroblocks between Figures 11(c) and 11(a)
help to increase the scored quality.

So, NR metrics react only when the burst of lost packets
affects frames partially, that is, isolated bursts and at the end
of a large burst. The NRJPEGQS metric reacts harder (i.e.,
it shows higher quality differences) than the NRJPEG2000
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Figure 10: Metric comparison in the DMOSp space during a very large burst.

(a) (b) (c) (d)

Figure 11: Frame reconstruction after a large burst: (a) original frame, (b) last frozen frame, and (c) (d) first and second reconstructed frames
after the burst.

because it was designed to detect the blockiness introduced
by the discrete cosine transform. When the frame is fully
reconstructed then the score obtained with NR and FR
metrics approaches again the values achieved before the
burst, which depends on the compression rate.

The RRIQA metric shows high variability in its scores
between consecutive frames inside bursts. These variations
becomemore evident as the degree of compression decreases.
The nature of the data sent through the ancillary channel, 18
scalar parameters obtained form the histogram of the wavelet
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Figure 12: End of the large burst for the low compression panel. FR
and NR metrics show the opposite behavior.

subbands of the reference image, is very sensitive to loss of
synchronism between the reference frame and the frozen
one. On the decoder, the same extracted parameters are
statistically compared with the received through the ancillary
channel. When this comparison is performed with two sets
of parameters obtained from different frames, unexpected
results appear.

Concerning the FR metrics, MSSIM, VIF, and PSNR-
DMOSp show a similar behavior or trend.MSSIMandPSNR-
DMOSp show closer quality scores between them than the
ones obtained with the VIF metric, which gives lower quality
values than the other two metrics. This behavior is the same
regardless of the compression level inside the large burst.
Leaving aside the PSNR-DMOSp, which is not really a QAM,
the other two FR metrics (VIF and MSSIM) have the same
behavior when facing large bursts.

Figure 13 shows an isolated burst. In this case, blur
and edge shifting impairments are introduced altering only
one frame. This fact is perceived only by the FR metrics
and the NRJPEG2000, which is designed to detect this
type of impairments. The error concealment mechanism of
H.264/AVC needs up to 6 frames to achieve the same quality
scores obtained before the burst. Figure 14 shows the original
frame (a) and three subsequent frames (b, c, d), where the
effect of the lost packets is concealed by the H.264/AVC
decoder.

As defined previously, an isolated burst can affect one or
two consecutive frames. In the last case, the behavior of the
QAM when facing the isolated burst resembles the behavior
of the metrics with a large burst. The difference is that the
concealment mechanisms and the correct reception of part
of the frames avoid the largest drop in the quality.
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Figure 13: Metric comparison for an isolated burst.

Figure 15 shows multiple consecutive bursts (large and
isolated) that behave as exposed previously. From left to right,
we see a large burst followed by an isolated one. This pattern
repeats again one more time, and at the right most part of
the figure, between frames 352 and 372, two large bursts
occur consecutively, having a gap between them where new
incoming packets arrive for a short period of time (frames 361
and 362).

In Figure 16, we zoom into this area (frames 352 to 372) to
analyze why the behavior of the DMOSp-PSNRmetric differs
from the other FR metrics during the gap between bursts. In
the gap, the encoder is not able to reconstruct a whole frame
because the gap is too small, that is, between the two large
bursts only a small amount of packets arrive, and this is not
enough to reconstruct a whole frame. So the involved frames
(361 and 362) are partially reconstructed (Figures 17(b) and
17(c)). Both frames exhibit perfect correspondence in the
lower half with the original one (Figure 17(a)). Therefore,
the scored quality must increase, at least to some extent,
compared to the quality of the previous frozen frame, as
occurs at the end of a large burst.This fact is only reflected by
theVIF andMSSIMmetrics.ThePSNR-DMOSpmetric is not
able to detect this because it is computed using information
from the whole frame. For the VIF and theMSSIM, which are
perceptually driven, the lower half of the frame increases their
raw scores, in the same way as the human scores do. After
frame 362, quality decreases again since the following frame
is frozen too. So, VIF andMSSIM detect two consecutive loss
burst, while PSNR-DMOSp and the other metrics consider
only a single larger one.

6. Conclusions

The main goal of this work was focused on looking for a
quality assessment metric that could be used instead of the
PSNR when evaluating compressed video sequences with
different encoder proposals at different bitrates and to analyze
the behavior of such metrics when compressed video is
transmitted over error prone networks such as MANETs.
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(a) (b) (c) (d)

Figure 14: Packet loss affecting only one frame. (a) Original frame and (b, c, d) next three decoded frames.
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Figure 15: Frame interval where different type of bursts occurs
consecutively.

We explained the procedures that we followed to compare
QAM metrics and alerted about some issues that arise when
a comparison between heterogeneous metrics is made. The
metrics must be compared using a common scale, since the
raw scores of the metrics are not directly comparable. The
scale-conversion process involves subjective tests and the use
of mapping functions between the subjective MOS values
and the metrics raw values. The parameters for the mapping
function we used are provided in the paper.Themetrics were
first trained with a set of images from two open source image
and video databases with known MOS values. The metrics
were tested with another set of images and videos also taken
from available databases. In order to perform a fair com-
parison, the training and testing sets used with each metric
must use only impairments which the metric was designed
to handle. We defined as heterogeneous metrics those that
were trained with different sets of images or sequences. The
R/D comparisons of heterogeneous metrics must be done
carefully, focusing not only on the absolute quality scores,
but also on the relative scoring between consecutive bitrates
as the differences between DMOSp values are perceptually
detected (or not) depending on the quality range. When
metrics are trained with the same training set, differences
in DMOSp values have the same perceptual meaning for all
the metrics, but this may not be true between heterogeneous
metrics. Normalizing the DMOSp scale when comparing
heterogeneous metrics helps to detect these differences.
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Figure 16: Detail from two consecutive long burst with incoming
packets between them.

We performed the comparison between metrics in two
environments: a compression environment and a packet loss
environment. We performed several subjective tests in order
to confirm that the analysis and the behavior of the metrics
were consistent with human perception. Our tests included
the comparisons of three encoders by replacing the PSNR
as distortion metric in their R/D curves with each of the
candidate metrics.

From our results of the compression environment, we
conclude that we can trust the quality provided by the VIF
metric, which is the one that obtains a better fit in terms of
DMOS during the calibration process and on how it ranks
the performance of the tested encoders for the bitrate range
under consideration. The NRJPEG2000 and the RRIQA
metrics break monotonicity for very high compression levels
when M-JPEG2000 is the evaluated encoder. For the rest of
the bitrates, all the other metrics show a monotonic behavior
for all the bitrate range and for all encoders.

The choice of a QAM to replace the traditional PSNR,
when working in a compression framework with no packet
losses, depends on the availability of the reference sequence.
In applications where the reference sequence is not available,
RRIQA is our choice because its behavior is similar to FRmet-
rics. If the reference sequence is available, the choice depends
on the weight given to the tradeoff between computational
cost and accuracy. If time is themost important parameter, we
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(a) (b) (c)

Figure 17: Decoded frames between two consecutive bursts: (a) original frame; reconstructed frames (b) 361 and (c) 362.

will choose DMOSp-PSNR followed by VQM andMSSIM. If
accuracy is more important, then the choice will be VIF and
MSSIM metrics.

In the loss-prone environment, we analyzed the metrics
behavior when measuring reconstructed video sequences
encoded and delivered through error prone wireless net-
works, likeMANETs. In order to obtain an accurate represen-
tation of delivery errors in MANETs, we adopted an HMM
model able to represent different MANET scenarios.

The results of our analysis are as follows. (a) NR metrics
are not able to properly detect and measure the sharp quality
drop due to the loss of several consecutive frames. (b) The
RRmetric has a nondeterministic behavior in the presence of
packet losses, having difficulties in identifying andmeasuring
this effect when the video is encoded with moderate to high
compression rates. (c) Concerning the othermetrics,MSSIM,
DMOSp-PSNR, and VIF show a similar behavior in all cases.
In summary, we consider that although they exhibit slight
differences in the packet loss framework, we propose the use
of the MSSIM metric as a tradeoff between a high quality
measurement process (resembling human visual perception)
and computational cost.
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