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Abstract

The majority of biological functions of any living being are related to Protein-
Protein Interactions (PPI). PPI discoveries are reported in form of research
publications whose volume grows day after day. Consequently, automatic PPI
information extraction systems are a pressing need for biologists. In this paper
we are mainly concerned with the named entity detection module of PPIES
(the PPT Information extraction system we are implementing) which recognizes
twelve entity types relevant in PPI context. It is composed of two sub-modules:
a dictionary look-up with extensive normalization and acronym detection, and
a Conditional Random Field classifier. The dictionary look-up module has been
tested with Interaction Method Task (IMT), and it improves by approximately
10% the current solutions that do not use Machine Learning (ML). The second
module has been used to create a classifier using the Joint Workshop on Natural
Language Processing in Biomedicine and its Applications (JNLPBA’04) data
set. It does not use any external resources, or complex or ad-hoc post-processing,
and obtains 77.25%, 75.04% and 76.13 for precision, recall, and Fl-measure,
respectively, improving all previous results obtained for this data set.

Keywords: Biomedical named entity recognition, Protein-Protein Interaction,
Dictionary look-up, Machine Learning

1. Introduction

The study of Protein-Protein Interactions (PPI) has become crucial for many
research topics in biology, since they are intrinsic to virtually every cellular pro-
cess ([1]). The majority of PPI information is available in the form of research
articles whose volume grows day after day. In order to provide biologists with
fast access to all this information, curators from various research institutes are
dedicated to extracting the most important descriptions from publications, and
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to storing the extracted data on Protein Interaction Databases, such as: the
Munich Information Center for Protein Sequence (MIPS) protein interaction
Database [2]; the Biomolecular Interaction Network Database (BIND) [3]; the
Database of Interacting Proteins (DIP) [4]; the Molecular Interaction Database
(MINT) [5]; the protein Interaction Database (IntAct) [6]; the Biological Gen-
eral Repository for Interaction Datasets (BioGRID) [7]; and the Human Protein
Reference Database (HPRD) [8].

Currently, the curation load is shared amongst all databases, and is built
on the MIMIx [9] (Minimum Information about a Molecular Interaction Ex-
periment) resources, part of the Proteomics Standards Initiative (PSI), of the
Human Proteome Organization (HUPO)!. The MIMIx resources are composed
by the MIMIx guidelines, the PSI-MI XML interchange format, and the corre-
sponding controlled vocabularies for molecular interaction description.

The curated data are regularly interchanged using the common standard
PSI-MI extensible markup language (XML). However, expert curators may need
a whole day to extract all the relevant information from an article?, and it is
estimated that about 5% of Pubmed articles are referred to PPI3. Therefore, a
semi-automatic processing of these papers is a pressing need for biologists and
a challenge for bioinformatics researchers.

Automatic PPI information extraction involves many tasks: article clas-
sification (as positive/negative according to the PPI subject), biology named
entity detection (especially for genes and proteins), normalization, and entity
relation identification (especially interacting genes/proteins), which have been
been extensively discussed, mainly during the BIOCREATIVE Challenges®.

In this paper we introduce the general architecture of our system for au-
tomatizing the process of PPI information extraction, PPIES, as well as its
module for named entity detection, and the results it obtains. The named entity
detection module allows the complete set of entities described by MIMIx to be
identified. It is a crucial step for the information extraction system and can also
alleviate the curator’s task, since all important detected entities can be high-
lighted, and the curator could go directly to extract the relevant information
around them. It is composed of a dictionary look-up and a Conditional Random
Field (CRF) classifier.

The dictionary look-up searches in a text for entities which can be associ-
ated to a relatively stable set of terms for organisms, interaction detection and
participant identification methods, interaction types, interactor types, biological
roles, and tissue types, using soft matching. To assess the performance of this
module is a difficult task, as there are no available corpora in the PPI context
tagged with all these entities. We have, however, used this module to solve the
IMT task of BIOCREATIVE III [10], which consists in the recognition of the

Thttp://www.psidev.info/

2Based on answer to query 26 at http://biocreative.sourceforge.net/ppi_questions.html.

3Based on motivation for ACT-BC-III at http://www.biocreative.org/tasks/biocreative-
iii/ppi/.

4http:/ /www.biocreative.org



interaction detection methods used in PPI discovery.

The CRF classifier searches for entities that cannot be described through a
dictionary, due to their incompleteness or inaccuracy (new molecules are dis-
covered day after day, new synonyms and acronyms for a specific entity can be
introduced and, depending on the data source, the list of names can be more
or less complete and the ambiguity more or less difficult to resolve), as in the
case of proteins, cell lines, cell types, DNA, and RNA molecules. In this sense
the JNLPBA’04 corpus [11] is the only available resource containing biomedical
texts tagged by these entity types.

In the following section a literature review related to our named entity de-
tection module is presented. A general overview of the PPIES system as well as
of the implementation details of the named entity detection module are given
in Section 3. Section 4 describes and discusses the obtained results. Finally, in
Section 5 conclusions are drawn and future work directions are discussed.

2. Background

The most important details related to the dictionary look-up systems are
highlighted below in Section 2.1. The JNLPBA’04 corpus and the solutions
described in the literature for the annotation of its entities are summarized in
Section 2.2.

2.1. Dictionary look-up

Dictionary look-up, a type of string matching [12] algorithm, is useful in
many Natural Language Processing applications, since it allows to retrieve terms
of a given controlled vocabulary (CV) from a raw text. Normally, this vocab-
ulary is formed by tuples of (Id,term, entity_type). The identifiers, Id, can be
used to normalize the recognized terms, which are also linked to entity types.
The accuracy of a dictionary look-up depends on the measure function that is
used to compute the matching score level between texts and terms. Examples
of soft matching measures are n-gram similarity, Levenshtein distance [13], and
the Jaro- Winkler measure [14]. More sophisticated approaches combine differ-
ent soft matching measures and/or learn the weights of their parameters from
the dictionary (e.g. [15], [16], [17], and [18]).

Various techniques that optimize the time searching and the similarity mea-
sures have been proposed for dictionary look-up (e.g. [19], [20], [21], [22,
23], [24]). Currently, search engines are used to create indexes of CV and/or of
texts and allow retrieve texts associated to terms entered by users. Many bib-
liographic databases, e.g. PubMed, PubMed Central, Science Citation Index
Expanded, ACM, Google Scholar, Citebase and Embase, uses such approach,
but only a few of them uses a CV for indexing texts.

PubMed and Embase are the most important examples, in the biomedical
area, using CV to index texts. Indexing texts with a CV implies that each
text is processed by a dictionary look-up algorithm to capture the mentioned
CV terms, and to maintain the recognized terms along with the texts in the



index. Embase [23] indexes texts using their own Emtree thesaurus, formed by
approximately 60,000 biomedical terms with a large coverage of chemicals and
drug terminology. Part of the database is automatically indexed, but the details
of the dictionary look-up algorithm are not provided.

PubMed is indexed using the NLM (National Library of Medicine®) Medical
Text Indexer (MTI) which in turn uses MetaMap (see [21] for an overview), a dic-
tionary look-up for UMLS Metathesaurus [25]. Other efforts for annotating texts
for UMLS and MeSH are MicroMeSH [26], CHARTLINE [27] CLARIT [2§],
SAPHIRE [29], KnowledgeMap [30], MGREP [31].

MetaMap is the best well-known technology, in the biomedical field for dictio-
nary look-up. It has merged in one tool all experiences for annotating biomedical
texts and outperforms almost all other similar systems (an exception is Knowl-
edgeMap in the context of biological process). Text processing in MetaMap is
carried out using a series of linguistic steps for obtaining a mapping between
segments of a text and concepts in UMLS: 1) tokenization, sentence boundary
determination and acronym/abbreviation identification; 2) part-of-speech tag-
ging; 3) lexical lookup of input words in the SPECIALIST lexicon; 4) a shallow
parser to identify phrases and their lexical heads; 5) each phrase is analysed for
obtaining different variations, and the Metathesaurus terms matching the input
text, called candidates, are selected and evaluated; 6) a mapping between text
phrases and a combination of the candidates is generated and evaluated. The
mapping is filtered, optionally disambiguated, and given as final result. It is
out of the scope of this paper to describe the whole complexity behind each of
these steps. The interested reader can refer to [21] for a deeper understanding.

Using MetaMap and adjusting it according to a particular use case is difficult.
One the one hand, it is open-source but uses SICStus Prolog which is not-
open source software. On the other hand, many parameters (e.g. the syntactic
analysis algorithms and /or models) cannot be configured at the level granularity
that a developer could desire. So, our goal is to construct a highly-configurable
CV lookup system with similar linguistic approach as in MetaMap for terms in
the context of PPI%, based only on open-source developments. The complete
description of the system is given in Section 3.1.

As previously mentioned, the dictionary lookup module will be used to solve
the IMT task of BIOCREATIVE III. IMT task consists in annotating full arti-
cles with the experimental methods that were used to detect a protein-protein
interaction (PPI), where the PSI-MI ontology is used to obtain the controlled
vocabulary that characterizes the experimental methods. The data given by the
organizers of the BIOCREATIVE III edition are summarized in Table 1. The
task was evaluated considering macro and micro observations, that is, consid-
ering only the documents for which a result was returned and considering all
documents in the test set, respectively.

Eight teams participated in this task [10]. Six of them used ML approaches

Swww.nlm.nih.gov
SHowever, we have not yet addressed the word disambiguation problem.



articles  paragraphs sentences words annotations
Training 2035 178523 2113785 15620104 4348 (in 2003 articles)
Test 305 137047 346974 2600373 528 (in 203 articles)

Table 1: Description of datasets for IMT at BIOCREATIVE III.

to perform the required task. Basically, they focused the task as a multi-label,
multi-class classification problem at document or chunk level based on bag-
of-words after a lexical analysis (a few teams used n-grams and named entity
recognition). The probability output of the classifiers was used to rank and select
the final list of experimental methods described in each article. Respect to the
macro values, the system described in [32] obtained the best overall performance
with 55.06 of Fl-measure, in 199 documents, with a precision of 62.46% and a
recall of 55.17%. Respect to the micro values, the best overall performance was
55.12 of Fl-measure, 52.30% of precision and 58.25% of recall, obtained by the
system described in [33]. In [32] a classification model was constructed for each
interaction detection method. In [33] in addition to the multi-label, multi-class
classifier, the authors converted the problem to a binary classification and in
both cases a rich set of features, including contextual text and named entity
recognition, was used. Multi-label, multi-class classifier was a 5% superior to
the binary classification. In an experiment, after the Challenge, the authors
describe an improvement by combining the results of both classifiers and using
Logistic regression instead of Support Vector Machine (SVM).

Two systems did not use any ML algorithm. Both used dictionary look-
up, but in different ways. The first system [34] used Lucene [35] to maintain
documents in the test set and a set of searches was performed (one for each
method term). The top 100 documents for each search were recovered, and a
method identifier was associated to a document if the score during the search
was above certain threshold. The second system [36], used an approach similar
to ours: they created a dictionary look-up with the method terms, and returned
the largest matching between an analysed text and a method name included
in the CV. The first system obtained, as best results, 29.10%, 45.04%, 33.60
for macro precision, recall, and F1-measure, respectively, in a set of 219 docu-
ments and 28.17%, 45.92%, 34.92 for the micro-measures. The second system
obtained 80.00%, 41.50%, 51.51 for macro precision, recall, and Fl-measure,
respectively, but returning results for only 30 documents. The results for the
micro-observation are 80.65%, 4.74%, 8.96 for precision, recall, and F1-measure,
respectively.

2.2. JNLPBA’0} corpus and current solutions

JNLPBA’04 Challenge [11] consisted in the annotation of biomedical texts
with a set of five entity types: protein, cell line, cell type, DNA and RNA. Its
corpus training dataset comes from the GENIA corpus, version 3.02, consisting
of 2,000 abstracts from a controlled search on MEDLINE using the MeSH terms
“human”, “blood cells”, and “transcription factors”. The test data was made



| Abst.  Sent.  Words | protein  DNA RNA cell type cell line

Training | 2000 20546 472006 30269 9533 951 6718 3830
Test 404 4260 96780 5067 1056 118 1921 500

Table 2: Training and test set description of JNLPBA’04 challenge.

up of 404 MEDLINE abstracts, most of which were retrieved using the same set
of MeSH terms as for training. A general description of the training and test
data is given in Table 2.

Eight systems participated in the challenge, obtaining up to 72.55 for the F1-
measure. Five of the eight systems used SVM (three of them in combination with
HMM and CRF); the other systems used MEMM, HMM, or CRF in isolation.
A large set of features was used by the systems, from the lexical (word) level up
to syntactic tags and external resources. Table 3 shows the set of features and
different approaches for the systems participating in the challenge, and those
developed later (separated by a horizontal line).

Lexical predominant features are word, affixes (prefixes and suffixes up to
6 letters), word shape (replacing capital letters by “A”, lowercase letters by
“a” and digits by “0”), brief word shape (replacing consecutive capital letters
by “A”, consecutive lowercase letters by “a” and consecutive digits by “07”)
and orthographic features (binary codes denoting when a word holds a specific
feature, i.e., is capitalized, numeric, a punctuation mark, is all in uppercase, is
all in lowercase, is a single character, is a special character, includes a hyphen,
includes a slash, etc. and a combination of them). Abbreviation detection,
word length, and DNA sequence detection have been less frequently used, and
the possible advantages of using these features have never been demonstrated.

Boundary error reduction is a problem that has been dealt with in different
ways by various systems. Head nouns were used in [37] and [38]; word lists
that are highly associated to classes are extracted as lexicons in [52]; keyword
lexicons are statistically computed in [39]; keyword and boundary lists in [50].

Part of speech (POS) has demonstrated to be a very useful feature and has
been used in the majority of the systems. Other syntactic features as chunk
and syntactic tags and the governor of a sentence are used with caution since
they could introduce errors obtained by the syntactic analysers into the entity
classifier. However, it has been demonstrated that, in general, syntactic features
improve the results of biomedical entity recognizers.

Six of the eight systems in the challenge used at least one type of external re-
sources: 1) corpora such as the British National Corpus, the MedLine abstracts
and the Penn Treebank for computing frequencies and trigger word extraction;
2) personalized gazetteers extracted from Swissport, LocusLink, Gene Ontology,
etc., for keyword identification; 3) specialized taggers to increase the accuracy of
certain types of entities (for example, in [52] two gene/protein taggers were used
even though the accuracy of protein type extraction was not highly improved
by this solution); 4) web searching of entity patterns was exploited by various
systems in order to compute lexicons and/or assign weights to words associated



Lexical features

P R F-1 A% A WS  Orth. Ab. WL ACTG K B

[37] 69.42  75.99 72.55 X X X X
[38] 71.62  68.56 70.06 X X b x
[39] 70.30 69.30 69.80 X X X X
[40] 67.80 64.80  66.30 x x x
[41]  62.98  69.41 66.04 X
[42] 67.40 60.10 64.00 X X X X
[43]  66.50  59.80 63.00 X X X X
[44] 50.80 47.60  49.10 x x
[45] 71.62 6860  70.10 X X X X
[46] 68.30  67.50 67.90 b b X
[47] 72.01 73.98 72.98 X X X X
[48] 70.16 7227 71.20 x x x
[49] 70.40  75.66 72.94 b X b X X
[50] 72.01 76.76 74.31 X X X X X
[51] 67.90 66.40  67.20 X X x

Syntactic features External resources

POS TR HN GOV ST C G BT W
[37] X X X x
[38] X X X X X X X
[39] X x x
[40] X x
[41] X
[42] x
[43] X X x x
[44] X X
[45] X X X X x x
[46] X
[47] X x
[48] X x
[49] X X
[50] X X x
51]

ML approach Post-processing

SVM HMM MMEM CRF Abr. CAS PH PRE NA POSE MAO PI
[37] X X X X X X X
[38] X X x x
[39] X X
[40] X X X
[41] X x
[42] X X X
[43] X
[44] x
[45] X
[46] X
[47] X X
[48] X
[49] x
[50] X X X X X
[51] X

Table 3: Most important results related to tthNLPBA’04 task.

W:word; A:affixes; WS:word shape; Orth: orth. features; Ab: abbreviations; WL: word
length; ACTG: DNA sequences; K: keywords; B: boundary word; TR: trigger words; HN:
head nouns; GOV: governor; ST: syntactic tags; C: corpus; G: gazetteers; BT: bio-tagger;
Abr: abbreviation detection and exclusion of short forms in training data; CAS: cascade
resolution for nested entities [37]; PH: parenthesis handling; PRE: previous detected entities;
NA: Name alias resolution; POSE: boundary entity detection expansion guided by POS tags;
MAO: Merge and/or (as in the JNLPBA guidelines); PI: Pattern induction.



to entities.

From the challenge, it was not clear which (set of) features, external re-
sources, or classification models really contributed to obtaining the best per-
formances. The systems developed in the following years did not use external
resources as extensively as in the challenge.

Pre- and post-processing such as abbreviation detection, cascaded entity
identification, parenthesis handling, and previously predicted entity tag were
also integrated in various systems. The three best systems in the challenge as
well as [50] have demonstrated the importance of such kind of processing.

Two of the three systems with the highest Fl-measure, [49] and [50], have
explored the cascaded classification approach for named entity detection. This
consists of dividing the task into two phases: segmentation, in which each word
is classified as being part or not being part of an entity; and classification, in
which each entity-segment is classified in one of the classes. This solution allows
to reduce the training time and also to improve the results. Its drawback is that
the improvements obtained might not justify the extra time needed for new
classifications.

The main insights that can be drawn from the bio-entity classification sys-
tems for the JNLPBA’04 data described in the literature are the following: 1)
word shape, suffixes, and prefixes are important features; 2) the deeper and more
accurate the text analysis, the more useful it is for entity recognition; 3) CRF
seems to be the preferred classifier model; 4) external resources do not improve
the performance by more than 2%; 5) some specific pre- and post-processing
such as abbreviation detection, expansion by parenthesis pairs, or noun phrase
detection are essential for increasing the accuracy of the recognizers.

Protein/gene taggers

Although JNLPBA’04 corpus contains protein/gene entities, we are inter-
ested in testing the performance of our JNLPBA’04 classifier for tagging pro-
teins in other protein/gene specific corpora, as obtaining the highest accuracy
of protein/gene detection is essential for the PPIES.

Over the last years one of the bio-entities that more attention has received
from the Bioinformatics Natural Language Processing community are the pro-
teins, and various corpora contain protein/gene annotations. In addition to
the JNLPBA’04 corpus, the GM_II [53], Penn-BiolE corpus [54], and Fsuprge-
6 [55] corpora are now publicly available, in IEXML format [56], a uniform
format for annotating biomedical corpora. BM_II corpus was released during
BioCreAtlve-II for the development of the gene mention (GM) task. It consists
on a collection of 4171 sentences in which human genes and proteins are anno-
tated. Penn-BiolE corpus is a selection of 1414 abstracts selected from a corpus
describing oncology diseases linked to oncology. Fsuprge corpus, contains 3236
abstracts covering immunogenetics and gene regulation events.

The task of tagging protein/gene has been addressed using two different
methodologies: by dictionary look-up strategies for searching protein names
described in protein databases, or by constructing a ML-model trained with a
protein/gene corpus. A detailed overview of the proposed solutions using each



Test Corpus System (train corpus) R P F1

GML_II BANNER(GM_II) 712 729 721
Fsuprge BANNER(GM II) 51.5  60.6 55.7
Penn-Bio IE BANNER(GM II) 482 564 520
JNLBPA’04 Abner (JNLBPA’04) 74.7  66.5 70.4

Table 4: Best overall results per protein/gene corpora, considering the available protein/gene
taggers. From: Figure 3 in [57].

of the above methods, as well as a comparison of all available taggers against
the same corpora set we are using here, can be found in [57]. Some of their
findings most relevant for this work are:

e ML approaches outperform dictionary approaches, when tested against
the same corpus for which the model was trained.

e BANNER system [58] obtained the best results across all corpora, except
for JNLPBA’04, in which the best performance was obtained when the
Abner system was trained with the JNLPBA’04 corpus. The summary of
their results is reproduced in Tabletab:reproducedResults.

e Using ML techniques for filtering false positives obtained by dictionary
approaches does improve their results (improving the precision and not
diminishing significantly the recall).

The reference tool in protein/gene taggers is the BANNER system. BAN-
NER is a CRF classifier, trained on a set of lexical and morphological syntactic
features that includes word shape, suffixes, and prefixes, lemma, word POS, bi-
grams and trigrams and combinations of these features. BANNER has achieved
the highest performance for the GM task of BIOCREATIVE II, with a recall
71.2%, precision of 72.9% and Fl-measure of 72.1. The classifier is publicly
available and this gives the advantage of testing new ideas/features on the al-
ready consolidated set of features, as well as testing its behaviour with different
corpora. With this respect, the interested reader can find details in sections 3.2
and 4.2.3.

3. Named entity detection

The general architecture of PPIES, the PPI information extraction system
we are implementing is depicted in Figure 1. At the base of the whole system are
the two modules for Natural Language Processing (NLP) and Machine Learning
(ML). LingPipe, Standford NLP, python NLTK, Lucene, Weka, libsvm, and
Mallet libraries have all been integrated in our framework. Above the base
modules are a set of modules placed horizontally on top of each other, and two
modules, text classification and domain knowledge integration located vertically,
as they can be used by any other component of the system to improve, asses,
or optimize intermediate results.



Figure 1: Architecture for PPIES.

Text classification can be performed without considering any named entity
detection process to make a coarse classification of biomedical articles. It can
also be used at paragraph/sentence level and considering disambiguated enti-
ties to classify paragraphs and sentences as a particular description of a PPI
detection sub-process.

Domain knowledge, expressed as an OWL knowledge base, is used to: 1)
reduce the complexity of some problems based on standardized rules, 2) review
collected information to avoid contradictions with well established knowledge,
3) express all extracted knowledge using the same format, which is useful for
interchange purposes.

Horizontal modules at higher levels use the information recognized by inferior
levels. Named entity detection module is in charge of detecting where named
entities (such as proteins, cells, organisms, interaction detection method, etc.)
are mentioned in texts. The identification of the exact term and its association
with a particular identifier in a biomedical resource is the goal of the entity
normalization or disambiguation module. Relations between such entities can
be solved with the relation detection module. Finally, at the highest level of the
architecture, the ontological instance generation module produces an ontological
representation, as much complete as possible, of the all mentioned concepts and
entities in a text. For doing this, we will follow the technique described in [59],
which produced satisfactory results in the archeology domain.

In this paper, we are mainly concerned with the named entity detection
module, since it is crucial for the information extraction system. Moreover,
highlighting of detected entities can simplify curators’ job, as they only need to
assess the accuracy of the shown detections by reading the text around them,
and then complete and link the missing information. A detailed description of
each sub-module that composes our named entity recognizer can be found in
sections 3.1 and 3.2, respectively. Finally, a description of a greedy and prelim-
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Bntity type # of ent. names _ Head examples Source

Organism 548838 virus, sp. NCBI taxonomy
Interact. detection meth. 326 assay, study psi-MI.obo
Participant ident. meth. 75 assay psi-MI.obo
Interaction type 97 reaction psi-MI.obo
Interactor type 62 complex, acid psi-MI.obo
Biological role 15 donor, aceptor psi-MI.obo

Cell 1178 cell, neuron, lymphocyte cell.obo®

Tissue 1985 cell, gland, carsinoma tisslist.txt?
Protein 672744 synthetase, protein, precursor Uniprot database

Table 5: Controlled Vocabulary description.

inary approach to merge the results of both sub-modules is given in Section 3.3.

3.1. Dictionary look-up module for bio-entities associated to protein interactions

Although the MIMIx guidelines are based on general molecular interactions,
in this work we limit our study to protein and gene molecules, leaving out
the recognition of chemical entity names (which could be obtained from the
PubChem or ChEBI databases) and nucleotide sequences (DDBJ, EMBL, or
GeneBank). However, we included cells, cell lines, and tissue types since they
could be useful for providing a complete experiment description concerning the
host system [9)].

In Table 5, each entity type that is included in our dictionary look-up is
described according to the number of terms it contains, the head noun examples
that are commonly used in an entity name, and the source from which the
entity names have been obtained. The head nouns of entities are important for
identifying the meaning with which the names are expected to be used. For
example, the phrase “binding studies” can be associated to detection methods
instead of recognizing “binding” as an interaction type. The majority of the
terms of our dictionary look-up come from the CV of PSI-MI: the psi-MI.obo
ontology”.

Figure 2 shows a graphic description of the dictionary look-up module, whose
functioning is divided in two stages: indexing and searching. During the index-
ing stage the terms of the CV are firstly inspected to discover acronyms and
expand the vocabulary with them; secondly, analysed to normalize them and ex-
tract head nouns; and finally, indexed using Lucene. During the searching stage,
when a text is examined, a syntactic analysis is performed and fuzzy queries'®
are constructed from the verbal and noun chunks. The terms in the CV that
are closest to the chunks, according to a similarity function, are returned as the
list of terms of the CV mentioned in the analysed text.

3.1.1. Indexing stage
Some issues are considered at indexing stage: a) normalization, to reduce
the variability due to differences in writing styles; b) acronym discovery, to

"http://psidev.sourceforge.net /mi/psi-mi.obo
Shttp://www.obofoundry.org/cgi-bin/detail.cgi?id=cell
Thttp:/ /expasy.org/txt/tisslist.txt

10Lucene fuzzy queries allow non-exact matching phrases to be recovered.
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Figure 2: Controlled Vocabulary look-up module.

capture entity names described by acronyms that are not explicit in the CV;
¢) head noun extraction, to reduce the ambiguity of the entity names found; d)
CV expansion considering morphological variations.

Normalization considers the transformation of Greek letters to a single for-
mat, Roman numbers to Latin numbers, uppercase letters to lower case letters
in non acronyms. Stopwords are removed, and diacritic marks are also removed
from letters, e.g., naive is converted to naive.

During indexing phase, acronyms are discovered by aligning the synonyms of
a term in the CV (e.g. BRET and bioluminescence resonance energy transfer)
and corroborating the acronym (short form of a term) for a long form a term
by searching in the web for expressions that associate large and short forms. To
this end, long names in the CV are used as input to the Google!* and Yahoo!?2
searching APIs and the retrieved texts are examined to identify analogue expres-
sions as those shown in Figure 3. Finally, all identified acronyms are maintained
in the index and are used to expand the CV with all possible combinations.

“<long form>

“<long form>, also called”
“<long form> (7

“ <short form>,"

“(” <short form>*)”

Figure 3: Expressions used for acronym discovery over the web.

A set of head nouns which permit to infer the meaning of an extracted phrase

https://developers.google.com/custom-search/vi/overview.
2http://developer.yahoo.com/boss/search/boss_api_guide/index.html.
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is also recovered from the CV. For this purpose, we define the head noun of a
term as the last word in the term, if it does not contain any preposition, or as
the last word before the preposition, otherwise. This approach is suitable to deal
with compound terms in our CV, such as: cytoplasmic complementation assay
whose head noun is assay; and colocalization by fluorescent probes cloning, whose
head noun is colocalization, and is similar to that previously used by [60, 61, 62].
Head nouns appearing in more than five different concepts of an entity type are
associated to it, and used during searching as explained below.

Finally, two morphological variations are considered: a) the stems of the
words are stored instead of the whole words; b) prefixes with length three or
more are used to expand the vocabulary with semantically equivalent variations,
e.g.: acetylglutamic acid is expanded into variations: acetyl-glutamic acid and
acety-L-glutamic acid.

3.1.2. Searching stage

A first step during the searching stage is acronym discovery. Using again
the expressions in Figure 3, acronyms are associated to their long forms, which
are then used to replace acronyms in the analysed texts, and to enrich the CV
as in the index stage.

The texts are then analysed using the same process as for indexing, and a
chunker!? is used to split the texts into phrases. Each phrase (chunk) is searched
for in the Lucene index, and the closest entity names are returned. The Lucene
query associated to each phase is computed as described in the algorithm in
Figure 4. The query states that numbers and words morphologically similar
to acronyms, should occur in the retrieved text with exact matching; the other
words should occur in the retrieved text with a minimum similarity of 0.8. This
guarantees that little variations, e.g. due to misspelling, do not prevent term
recovery.

Lucene uses the Levenshtein distance to solve fuzzy queries. We have modi-
fied the default Lucene similarity measure as described in Section 3.1.3, taking
into account the importance of each word in the different domains, and using
the Levenshtein distance as a parameter: d(w’, w).

8.1.8. Similarity function

The similarity function is used to assess the answers of the searcher. It
estimates the importance of the matching words in relation to the complete term,
considering relevant parameters that are usually disregarded, thus improving the
effectiveness of our dictionary look-up:

Zu/Ecw’ d(w/7 ’LU)ZOQ(%)

freq(w
EwEtUcw’ lOg( 1+f7"e(¢11(NL2w) )

(1)

Sim(phrase,t) =

13We have experimented with LingPipe and TreeTagger chunkers.
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Require: chunk: chunk retrieved from an analysed text.
Ensure: query: Lucene query associated to the chunk for recovering the closest terms.

{Following the semantics of Lucene API for BooleanQuery, FuzzyQuery and Oc-
cur.SHOULD.}
query = BooleanQuery()
for word, w € chunk do
if matches(w, (([A — Z][]?){,5}[0 — 9] + (.[0 — 9]+)?)) then
{the word is a number or an acronym}
query.add(new BooleanQuery(w), Occur.SHOULD)
else
query.add(new FuzzyQuery(w, 0.8), Occur.SHOULD)

return query

Figure 4: Algorithm for Lucene query construction.

where cw’ is the set of similar words between a chunk, phrase, of a text and the
term ¢ in the CV, w’ € phrase and w € t. Similar words are recognized by a
Levenshtein distance d(w’, w) < 0.2. freq(w) = n/N, with n being the number
of terms in the CV containing the word w and N being the total number of
terms in the CV. fregyp(w) is an estimation of word frequency in common
language, which is based on the Brown Corpus [63]. The cw’ set contains also
the head of the phrase if it belongs to the set of heads of the entity type of ¢.

The importance of a word is based on its frequency in the CV and in the
common language, and spelling errors are also taken into account, since the
distance matching factor has been introduced in the equation and in the fuzzy
part of the constructed query.

For the search processing, a threshold value, §, should be specified, and the
output of the dictionary look-up system is the set of pairs (phrase,t) that has
Sim(phrase,t) > 4.

8.1.4. Using the dictionary look-up for solving the IMT task

The dictionary look-up module was configured to detect the following enti-
ties: interaction detection method, participant identification method, organism,
interaction type, interactor type and biological role. However, the assessment
of the module was obtained only for the entity interaction detection method, as
no corpus in the context of PPI is available for the rest of the entities. In the
following, the treatment of the input datasets and the steps to obtain the results
for IMT are described.

IMT task consists in annotating full articles with the experimental methods
that were used to detect a protein-protein interaction (PPI), where the PSI-
MI ontology is used to obtain the controlled vocabulary that characterizes the
experimental methods. The data given by the organizers of the BIOCREATIVE
IIT edition are summarized in Table 1.
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We first preprocess the pdf articles to obtain the article texts, preserving
their original structure (title sections, paragraphs). This is done for two main
reasons. On the one hand, some authors have recognized a few clues that link
section names and words with specific detection methods (various examples
can be found in [10]). On the other, hand our final system should be able
to provide a friendly interface for obtaining feedback from users, in which the
article structure is used to make visualization and user interaction easier. The
pdf articles are first processed with pdf2htlm'* tool and, using the text visual
features (font type and size, uppercases, etc.) we recognize paragraphs, notes,
and titles, and identify their levels. Even though the conversion might be not
perfectly correct, it allows us to obtain better results and contains less mistakes
than the converted texts provided by the organizers of the Challenge.

For each converted article in the test dataset, we use our dictionary look-
up containing the experimental detection interaction methods of the psi-mi.obo
ontology and different configurations. The tested configurations were: two dif-
ferent shallow parsers (TreeTagger [64] and LingPipe [65], both using mod-
els generated from Genia Corpus), acronym detection module in indexing and
searching phases, different threshold values for filtering the matchings.

We also introduced the following post-processing phases in order to generate
the final list:

e filtering by parent concepts (FPC): this filters a term from the mention
list if it is a parent of other mentioned terms;

e filtering by negation context (FNC): this filters a term from the mention
list if it is preceded by a negative pronoun in a window of less than 5
words;

e filtering by reference mention (FRM): this filters a term from the mention
list if it is mentioned only in paragraphs containing references;

e adding relevant mentions (ARM): we notice that almost half of the false
positive corresponds to "MI:0019’ (coimmunoprecipitation), and half of the
false negatives were associated to any of "MI:0006’ (anti bait coimmuno-
precipitation) or 'MI:0007’ (anti tag coimmunoprecipitation). Therefore,
we substitute any "M1:0019’ for both "MI:0006’ and "MI:0007’.

The obtained results for the IMT task using our dictionary look-up module
are detailed in Section 4.1.

8.2. Classifier for proteins, cell lines, cell types, DNA and RNA entities

We use CRF for training, considering only the previous word to classify
the current one (order 1). Each sentence is considered as a sequence of words
(tokens) and is transformed into the IOB2 format [66]. Therefore, each word is
tagged as: B — ent if it is the first word of an entity name of type ent; I — ent

Mhttp: //pdftohtml.sourceforge.net/
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if it is not the first word of a entity name of type ent; O if it is not part of any
entity name.

Taking into account the previously well-tested set of features for the JNLPBA’04
corpus, we associated the following features to each token: a) word; b) word
shape as explained in the previous section; c) brief word shape; d) prefixes and
suffixes of length 3 and 4; e) POS; f) chunk tag.

In addition, we use word numeric normalization, substituting all integer
numbers by ’0’; since it was previously proposed and used satisfactorily in [50].
This allows some common name types to be normalized, e.g. IL — \d+ by
1L — 0, thereby increasing the generalization capability of a classifier. Words,
POS, and chunks are combined in bigrams and trigrams of (Feat,_1, Featy,),
and (Feat, 1, Feat,, Feat,;1), with Feat being the word, POS, or chunk tag
that is associated to an instance word.

Ezxtended set of classifier features. We also defined a set of experiments to find
other features to join satisfactorily with the previous ones (the basic configura-
tion). The following features were selected:

e cell line lexicon, since cell line is the entity that is more difficult to recog-
nize, we tried to improve its recognition using a lexicon that was extracted
from the Cell Line database!®. The lexicon is formed by the words in the
name, description, and morphology fields of the database that appear more
than 20 times. The cell line lexicon feature tells if a word appears in the
created lexicon;

e DNA sequence, a boolean feature which tells if a word represents a DNA
sequence;

e head noun, a boolean feature which tells if a word is a head of a phrase;
e distance, an integer measuring the distance to the head noun;

e greek, a boolean feature which tells if a word represents a Greek letter;

e roman, a boolean feature which tells if a word represents a Roman number;

e GWC, this feature substitutes the word shape feature, and is computed
as word shape by replacing any Greek letter by “G”;

e preferred class, this feature indicates the preferred class (entity type) of a
word, if it appears in the training data set and its preferred class exists.
The preferred class of a word in the training data is the entity type that is
more often associated to the word, and presenting a significant difference
of at least 95% with respect to the rest of associated entity types.

5 http: //bioinformatics.istge.it/cldb/cldb.php
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e previous tags, for each entity tag, a boolean feature is added representing
whether a word has been previously tagged in the same abstract as the
entity type.

o frequency tags, for each entity tag, a double is added representing the
frequency with which a word appears associated to the given entity type.

The experiments were designed in order to address the following hypotheses:

e An improvement in the results of the basic configuration can be obtained
by complementing it with the extended features, or their combinations.
To this end, we first train a CRF classifier with the basic set of fea-
tures (the basic configuration), and then the extended configurations are
constructed, and used to train new CRF classifiers, by adding extended
features to the basic set. We want to check if improvements in the overall
performance are obtained as a result of these additions.

e The CRF model of the best obtained classifier outperforms or obtains
comparable results as an analogue system trained with SVM algorithms.
The same set of features that achieve the best results were used to train
two SVM algorithms. The first one algorithm, multi-class SVM, uses the
classical SVM solution for multi-class classification problem'®; the second
algorithm, multi-class SVM HMM, uses the results described in [68]17
which considers the pattern structure of the training examples. In our
case, it is the information about the sequence of words that constitute
the sentences of the input texts. The results of both computations are
compared with those obtained using the CRF algorithm.

e The best obtained classifier can be used for tagging proteins with similar
results as obtained by the BANNER system. We have used the best
obtained classifier for tagging the proteins in corpora GM_II, Penn-BiolE,
Fsuprge-6, and compared its results with the best ones available in the
literature.

e The set of features included in the best obtained classifier could be com-
bined in the BANNER system to improve its current performance. We
have adapted BANNER for allowing the construction of a model with any
combination of the extended feature set, and tested its results when using
the set of features in the best classifier for the corpora GM_II, Penn-BiolE,
Fsuprge-6.

Answers to all the above questions can be found in Section 4.2.

16We use the libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) library.
"We use the SVM-hmm (http://www.cs.cornell.edu/people/tj/svm_light/svm_hmm.
html) software.
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8.83. Merging dictionary look-up and ML classifier results

Results obtained from the dictionary look-up and the ML classifier are
merged and returned to the user as a unique answer of the entity recognition
module. One the one hand, the dictionary look-up module returns the terms in
the CV with maximum similarity and longest matching for each noun phase of
an analysed text. On the other hand, the ML classifier returns the JNLPBA’04
entity type associated to text segments. In cases of ambiguity for a same text
segment, we have proceeded in the following way:

e entity types recognized by the ML classifier have priority over the entities
recognized by the CV, since the ML approach obtained a better perfor-
mance than the look-up approach;

e if two or more terms from the CV are assigned to the same text segment, all
the terms with three or more occurrences in the whole text are returned
to the user, assuming that the tool is being used for the recognition of
molecular interaction entity types in full research articles.

4. Results

The dictionary look-up module was configured to detect the following enti-
ties: interaction detection method, participant identification method, organism,
interaction type, interactor type and biological role. However, the assessment
of the module was obtained only for the entity interaction detection method,
as no corpus in the context of PPI is available for the rest of the entities. In
Section 4.1 below, the treatment of the input datasets as well as the obtained
results for the IMT are described. The results of the CRF classifier, for the
entities protein, cell line, cell type, DNA and RNA, is given in subsection 4.2.
The overall results of the whole named entity detection module are given in
subsection 4.3.

4.1. Results on the IMT task

Maintaining the positions where evidence for term annotation are found is
indispensable for verification purposes. We called this the “hold term evidence
position” principle and our solution is based on it. ML-approach can manage
the problem of discovering implicit mentions (textual, usually complex patterns
associated to terms) and therefore obtain better results than non-ML solutions.
However, they are unable to satisfy the “hold term evidence position” principle
and therefore cannot be used to highlight in the text the fragments associated
to a particular interaction method. This is a fundamental drawback, as it makes
the result validation more difficult. On the other hand, for obtaining competitive
results, a very rich set of features is required (e.g. named entity detection,
precomputed score per words and n-grams, and MeSH terms identification are
all required in [33]).

We investigate here the results of using various different configurations for
our dictionary lookup module and few simple post-processing steps to discard or
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Configuration P R F1

Dict. look-up, no filter by ¢ 5.76  100.00 10.89
+6=0.7 28.30 30.08  29.26
+Acronyms (searching) 32.30  39.00  35.33
+filterParentTerms (FPT) 35.07 37.76  36.36
+NegContext (FNC) + RefMention (FRM) 40.71 33.19  36.57
+AddRelevMentions (ARM) 36.8 58.11  45.06

Table 6: Results for IMT-task using non-ML approach, micro-observations. Dictionary look-
up module uses Lingpipe for shallow parser.

include specific detection methods, as were described in Section 3.1.4. We com-
pare our results with those obtained by non-ML approaches which can return
the term evidence position.

Using LingPipe parser the dictionary look-up recovered about 3% more enti-
ties that using TreeTagger, in all configurations. The use of acronym discovery
at indexing stage decreased the precision and was switched off. The filtering
threshold, §, was empirically obtained by testing different values in the training
and development datasets. The threshold for which the best results were ob-
tained, 0 = 0.7, was used for the test data, and the initial interaction method
mentioning list per article was obtained. Finally the post-processing steps were
executed, generating, in this way, the final list.

Table 6 summarizes the results of using our approach for micro-observations,
that is the global performance for the whole test set. As it could be expected,
without using the threshold value, our dictionary look-up find all mentioned
detection methods, but with a very low precision, as in the system described
in [67]. The optimum threshold found at 0.7 improved in more than 20.00 points
the precision but removed 70% of the previous findings. Discovering acronyms
defined in the text improved both precision (by 4%) and recall (by 9%), which
highlights the importance of acronym detection. The post-processing steps of
FPT, FNC and FRM all decrease recall but seems to improve precision and
overall F1 measure. Finally, the post-processing step ARM allows us to achieve
a 58.11% of recall and a 45.06 of F1. ARM is a basic heuristic that shows
the importance of considering semantic relations amongst recognized terms and
detection method popularity in order to select the correct one.

The above described post-processing steps allowed us to obtain a final pre-
cision, recall, and Fl-measure of 36.8%, 58.11%, and 45.06, respectively. This
increased by 10% the best results of the two systems that did not use any ML
algorithms, obtaining the same recall as the best solutions among those using
complex classifiers. The relatively low precision is a consequence of the large
number of significant words in the controlled vocabulary of interaction detec-
tion methods that can be used in a different context (i.e. immunoprecipitate,
phosphorylate). This could be, in part, because we searched for terms in the
dictionary in all of the paragraphs and titles of the full article, without making
any analysis of the article parts (some researchers have described the impor-
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tance of using only the title, abstract, and methods sections). Recall could be
higher with a more complete CV. Synonyms discovery could be useful for CV
expansion: we observed that 14 of 46 interaction detection methods in the test
dataset are discovered with a precision greater than 85%.

Our approach for the IMT task addresses the problem of acronym discovery,
which had never been considered before in this context, and satisfies the“hold
term evidence position” principle. It is also very fast (5 seconds per article, in
a normal PC), and easily extensible to new terms and domains. Combining the
learned-lessons from the ML classifiers described during and after the Challenge
and the insights drawn here should allow to further improve our current results
in the future.

4.1.1. Failures and successful examples

As can be noticed from the figures of precision, recall and F1-measure, the
most important problem is the high number of false positives. The most impor-
tant source of false positives is introduced by the ARM post-processing step,
which replaces any MI:0019 finding with both MI:0006 and MI:0007, and in
many cases (96, in case of test dataset) only one of both interaction methods is
used (see for example the articles with pubmed identifiers 19008223, 18337465
and 19864460).

Following this, MI:0096 (pull-down), MI:00248 (imaging technique) and MI:0051
(fluorescence technology) were the second source of false positives (80, 52 and 31
respectively). A possible explanation of such failures is the use of these terms in
contexts different from the interaction detection method description. For exam-
ple, in the article with PubMed identifier 19088068, a figure caption describes a
Western blotting analysis as: “The presence of H2AZ was detected using anti-
H2AZ. A, H2AZ binding of SWR1(1681) and SWR1(AN2) complexes. SDS-
PAGE (14% gel) and Western blotting analysis of H2AZ pull-down by SWRI1(1
681) or SWRI1(AN2) complexes at the 0.2 or 0.3 M KCI condition...”, not ac-
tually describing a pull-down assay for discovering a new interaction.

In the article with PubMed identifier 19933576, the green fluorescent protein
is used for the experiments, and the system has recognized “fluorescent” as a
highly important word for the CV domain (see the equation 1 in Section 3.1.3),
and tagged all mentions of “fluorescence” as a fluorescence technique.

Other false positives, a total of 39, were counted in less that 10 articles.

With respect to false negatives, MI:0416 (fluorescence microscopy) was un-
detected in 61 articles and MI:0019 (coimmunoprecipitation) in 51. Various
articles use fluorescence microscopy but either employ the prefix immuno, as in
article 18480411; or the matching between a nominal phrase in the text and
detection method name was not enough to exceed the prefixed threshold, as in
article 20467437.

In 22 articles, neither MI:0006 nor MI:0007 were found, as coimmunoprecip-
itation does not appear in the text, neither the variations included in the CV.
Other mistakes were introduced after using the post-processing step: 18 in the
case of MI:0096, 7 in MI:0405 (competition binding) and 5 for MI:0114 (x-ray
crystallography). In spite that these strategies improve the overall performance
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of the system, more sophisticated methods need to be used in order to reduce
the number of removed “good” findings. Other false negatives, a total of 57,
were counted in less that 5 articles.

The following three segments of paragraphs from article 20135654 show
examples of successful findings and the tagging made by the system:

e Using [1-ray crystallography — MI:011/], we show the structural basis for
titin-M10 interaction with obsll in a novel antiparallel Ig-Ig architecture
and unravel the molecular basis of titin-M10 linked myopathies.

o We investigated the importance of this particular side chain in both OL1
and O1 by [isothermal titration calorimetry (ITC) - MI:0065] and
[pull-down — MI:0096] assays.

o This single-chain M10-O(L)1 complex was then sandwiched between three
concatenated ubiquitin domains (scheme in Fig. 4JA), which serve as
handles for attachment to the cantilever and the surface of the [AFM -
MI:0872]. Notice that in this particular case, the acronym recognition
sub-module was used first to match the acronym AFM with its long form:
Atomic Force Microscopy, and then, recognize the term when mentioned
using its acronym.

4.2. Results on the JNLPBA 04 challenge dataset

The results we obtained on the JNLPBA’04 dataset with the basic config-
uration of our system are: 72.52%, 70.10% and 71.29, for recall, precision, and
F1l-measure respectively. This is the best result amongst the systems which do
not use any external resources, neither any post-processing steps, and it is three
points less with respect to the best Fl-measure result in the literature [50].

As usual for the JNLPBA’04 task evaluation, the results of the classification
are expressed in terms of recall, precision and F1l-measure, and consider three
matching types between a recognized entity and its corresponding entity in the
test dataset. A right (left) matching is achieved when the end (start) of a
recognized entity coincides with the end (start) of the corresponding entity in
the test dataset. A complete matching is achieved when both right and left
matching are observed. Details of the results per entity and for complete, right,
and left matching are given in Table 7. Protein was the entity for which the
classifier retrieved the highest percentage of names, and with the best balance
between recall and precision. Cell type was the best recognized entity. This is
not surprising, since protein and cell type entities are best represented in the
training set, providing more examples to detect them correctly.

Seven (cell line lexicon, DNA sequence, distance, roman, GWC, preferred
class, frequency tags) out of ten configurations do not improve the results of
the basic configuration. Only one configuration (previous tags, with 76.13 of
Fl-measure) produces a significant improvement of up to five points with re-
spect to the basic configuration, and approximately two points above the best
current result in the literature. Tests performed by combining the three fea-
tures (previous tags, head noun and greek) that improve the basic configuration
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Complete matching Right matching Left matching

R P F1i R P F1 R P

protein 78.07  69.57 7358  83.68 7457 7886 83.05  74.01
DNA 65.62  68.41 66.99 7235 7542 73.85 67.80 70.68
RNA 67.80  66.67  67.23  77.12 7583 7647 6949  68.33
cell_type 65.28 7852 71.29 73.09 8791 79.82  66.22  79.65
cell_line 59.80  54.86  57.22  69.60 63.85 66.60 63.00 57.80
[FALL-] 72.52 70.10 71.29 79.05 76.41 77.71 76.11 73.57

Table 7: Results of the basic configuration

result did not lead to further improvements. The set of features that produced
the best performance is summarized in Tabletab:featuresBestClassifier. So, the
final JNLPBA’04 classifier uses a model trained with a CRF and this set of
features.

For all measures, entities, and configurations, right matching shows better
results than left matching. Right matching is easier because in a large amount
of noun phrases the head noun is the last word of the phrase, summarizing
its meaning (in our context, its type). Left matching is especially difficult
for deciding whether an adjective should be included as part of a name. For
example, the adjective “human” appears in at the beginning of 657 cell types,
213 proteins and 354 DNA entities, but was missed in other 96 equivalent cases:
31 for cell types, 29 for proteins and 25 for DNAs. A description of other
inconsistences and annotation problems detected in the training set can be found
in [47] and [45].

Considering both recall and precision, the worst recognized entity is cell line.
Protein obtains the highest recall while cell type obtains the highest precision.
However, the Fl-measures for these two entity types are comparable (less than
2% of difference for complete and right matching; and 6% for left matching).
Entities DNA and RNA obtain similar values of recall and precision of about
65% for left and complete matching, and as much a 6% more for right matching.
The difficulty of classifying a biomedical phrase into one of the goal classes and
the trade-off between precision and recall cause the improvement of one measure
in one entity type to be related to the decrease of other measures and/or entity
types. This makes it difficult to find features that help to improve the overall
classification results.

As in other works, i.e. [39], the use of lexicons does not have a positive effect.
In our case, the three measures, all entities and configurations were negatively
affected by using this feature. Description field in the Cell Line Database details
the cell line growth and maintenance. References to cell types, organisms and
other biochemical entity types are frequent. Therefore, using all these terms as
a lexicon for cell line is inappropriate. In fact, without this lexicon the CRF is
able to capture cell line entities based, for example, on highly correlated words
appearing near the cell line entities (such as cultured).

Although we have observed certain trends that could suggest the opportunity
to use features such as DNA sequence, distance, roman, and preferred class, we
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Name
w

Lemma

POS

Chunk

wC

BriefWC
3Prefix; 4Prefix

3Sufix; 4Sufix
LemmaComb

POSComb

ChunkComb

Window_feature

previous tags_tag

Description

word in lowercase

Lemma of the word, according to stemming algorithm by M.F.
Porter, available at: http://snowball.tartarus.org/

POS tag of the word according to Lingpipe parser trained with
the GENIA corpus

Chunk tag of the word according to Lingpipe parser trained with
the GENIA corpus

WordClass of the word

Brief wordClass of the word

3 and 4 prefixes

3 and 4 prefixes

unigrams of the lemmas in positions -2, -1, 0, 1 and 2; bigrams
of the lemmas in positions [-2, 1], [-1, 0], [0, 1] and [1, 2] and
trigrams of the lemmas in positions [-2,-1, 0], [-1, 0, 1] and [0, 1,
2]

unigrams of the POS in positions -2, -1, 0, 1 and 2; bigrams of
the POS in positions [-2, 1], [-1, 0], [0, 1] and [1, 2] and trigrams
of the POS in positions [-2,-1, 0], [-1, 0, 1] and [0, 1, 2]

unigrams of the Chunk in positions -2, -1, 0, 1 and 2; bigrams of
the Chunk in positions [-2, 1], [-1, 0], [0, 1] and [1, 2] and trigrams
of the Chunk in positions [-2,-1, 0], [-1, 0, 1] and [0, 1, 2]

a combination of the features W, WC, BriefWC, prefixes and suf-
fixes, in a window of [-1, 2] respect to the word.

boolean representing whether a word has been previously tagged
in the same abstract as the entity type.

Table 8: Set of features with the best performance.

23



Complete matching

Right matching

Left matching

R P F1 R P F1 R P

protein 82.16  74.10 7792 8847 79.80 8391 86.20 77.75
DNA 70.27 7465 7239 76.33 81.09 78.63 7292 77.46
RNA 64.41 69.72 6696 T73.73 79.82 76.65 66.10 71.56
cell_type 71.94 83.00 77.08 79.59 91.83 8528 73.30 84.56
cell_line 65.60 61.89 63.69 73.80 69.62 71.65 69.20 65.28
[-ALL-] 77.25 75.04 76.13 83.98 81.58 82.76 80.47 78.17

Table 9: Performance of the best result for JNLPBA’04 task.

have not obtained good results using them.

Greek and head noun improve slightly the results obtained with our basic
configuration, with 72.56%, 70.16% and 71.34 and 72.27%, 71.34% and 71.80
of recall, precision and Fl-measure, respectively. While greek feature does not
show any particular pattern in the results obtained for entity types and mea-
sures, head noun feature improves the precision for all matching and entity
types. The DNA entity type obtains approximately five points of precision im-
provement, and only the F1-measure for the RNA class does not increase using
the head noun feature.

Table 9 shows the results obtained by using previous tags, with an overall
performance of 77.25%, 75.04% and 76.13 of recall, precision and F1-measure. It
is not only our best configuration, but also the current best result amongst the
described systems solving the JNLPBA’04 task. The previous best result [50]
with 76.76%, 72.01% and 74.31 of precision, recall and F1-measure, is also more
complex than ours, since it uses two classification models (one for biomedical
entity boundary detection and the other for classifying a biomedical term in a
specific class) and a post-processing step that is made up of 4 algorithms.

4.2.1. Failures and successful examples

The system outputs for the abstracts 21184079 and 21066742 are shown in
Figure 5. The annotations of the system are highlighted in the text, and the
correct annotations are underlined. The first example shows a large coincidence
between the correct annotations and those obtained by the system, both in type
and matching. The exception is the first appearance of AP, which was tagged
as a protein, but corresponds instead to cell type AP1 site. Our classifier is
less successful in the second example, especially when lists of entities appear. It
can be noticed that the identification of the correct left ending of the entities is
especially difficult.

In both examples, there are mistakes related with discrepancies in the anno-
tations when parentheses and conjunctions list of entities appear. The IeXML
format for entity corpora annotation can solve this type of mistakes, and in-
creased stability could be achieved by systems that consider entities with non-
adjacent words.

For a better understanding of the performance of our classifier, we have com-
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Human T-cell leukemia virus type 1 tax protein activates transcription through AP-1 site by inducing DNA binding activity in T cells. Human T-cell leukemia virus type 1
(HTLV-1) Tax protein induces the expression of various family members of the transcription factor AP-1, such as c-Jun, JunD, c-Fos, and Fra-1, at the level of RNA
expression in T cells. We examined the activity of Tax in transcription through SPSISbidifigsites ( APAISie) in T cells. Transient transfection studies showed that Tax
activated the expression of a [iigiférase/gene regulated by two copies of an in the FilARJURKANIECEIIIRE. Tax activates the expression of FiFalandcellular
BEREs through two different Efiliancers : a CANPTesponsive (CRE)like/element and a KappaB element. Two Tax mutants differentially activated expression of these
two elements. Tax703 preferentially activated the KAppaB elemenit but not the CRE-like one, whereas TaxM22 showed the reverse. In addition, Tax703 and Tax, but not
TaxM22, converted cell growth of a iBlSEIECEIINS from being interleukin (IL) -2: to being IL-2-i Unlike the wild-type Tax, Tax703 and TaxM22
only weakly activated the SPSIISif8 in the [EGSIMRE. Thus, Tax seems to activate the SPSISHE via mechanisms distinct from those of KippaBIOHCREJKSEISTHEnts, and
the activation of the independent growth of CTLL-2 . Electrophoretic mobility shift assays showed that Tax induced strong binding
activity to an APEISiEe in CTLL-2, whereas Tax703 did not, indicating that the induction of binding activity to the EPSIISif# is essential for the transcriptional activation
by Tax. The binding complex induced by Tax in CTLL-2 contained JunD and Fra-2. Other AP-1 proteins were undetectable. Activation of transcription through the
[EREEEEIS by JunD and/or Fra-2 was weak. c-Jun, JunB, and c-Fos activation was greater, although the level was still less than that with Tax. Thus, the induction
of [EESIERNE by Tax may not be sufficient for a complete activation of by Tax. Our results suggest that Tax activates the transcription of GElilFgenes with
[BP-1Sites by inducing the DNA-binding activity of AP-1 proteins in T cells, a mechanism distinct from those of EREike/andkappab elements. Copyright 2001 Academic
Press.

(a) Example 1 (article: 21184079)

The latency pattern of Epstein-Barr virus infection and viral IL-10 expression in cutaneous natural killer/T-cell The nasal type, natural killer or
T (NK/T) -cell lymphoma is usually associated with latent Epstein-Barr virus (EBV) infection. In order to elucidate the EBV gene expression patterns in vivo, we
examined eight patients with cutaneous EBV-related NK/T-cell lymphomas, including six patients with a NK-cell phenotype and two patients with a T-cell phenotype.
The implication of EBV in the skin lesions was determined by the presence of EBV-DNA, EBV-encoded nuclear RNA ( EBER) and a clonality of
containing the terminal repeats. Transcripts of EBVeenicodedigenes were screened by reverse transcription- polymerase chain reaction (RT-PCR), and confirmed by
Southern blot hybridization. The expression of EBV-related antigens was examined by i aining using paraffin-embedded tissue sections and cell pellets of
. Our study demonstrated that all samples from the patients contained EEiNUCEENGNHEEIEBNANSINA which was transcribed using the §
, whereas both the (UBEGIMOEE and another HpSiEeampromotes ( Cp/Wp) were used in EBVEpOSItve GEINNeS. Raji and Jiyoye. -
was detected in seven of eight patients and all EElligS, whereas EENESEMMSEREE were found only in the FEIERES. Immunostaining
showed no LMP-1, EBNA-2 or ZEBRA antigens in the paraffin-embedded tissue sections, although they were positive in the EEINFfEEelS. Latent FHNEITGSoHE
encoding bel-2 homologue and [FREMENSENPE encoding viral interleukin (vIL) -10 were detected in one and two of eight patients, respectively. A patient with NK-cell
lymphoma expressing both transcripts died of rapid progression of the illness. Our results indicate that the restricted expression of the [ifeTcy associated/ EBVIgenes
and the production of vIL-10 and bel-2 homologue may favour tumour growth, evading the host immune surveillance. Copyright 2001 Cancer Research Campaign.

(b) Example 2 (article: 21066742)

Protein DA BN cell type EEINRE
(c) Color legend

Figure 5: JNLPBA’04 classifier output examples

25



Real classification

protein DNA RNA cell_type cell_line

. protein 562(68.4) 162(19.61) 27(3.27) 51(6.17) 24 (2.91)
b DNA 64(37.43) 100(58.48) 4(2.34) 2(1.17) 1(0.58)
2 RNA  7(35.00) 0 13(65.00) 0 0
g cell_type 13(5.39) 0 0 181(75.10)  47(19.50)
cell line 11(5.67) 0 0 117(60.31) 66(34.02)

Table 10: Disagreement matrix. Between parenthesis the percentage in relation with the total
of false positive cases for the corresponding row.

puted a disagreement matriz (Table 10) which shows how many false positives
of an entity type correspond to true cases of each entity type.

The first consideration that can be drawn by observing Table 10 is that a
great part of the disagreement is due to incomplete matchings (one or more
words of the entity are not detected), especially for cell type, protein, and RNA
entity types. Incomplete matchings are shown on the diagonal of the matrix,
where the entity type for false positives and real classification coincides, and it
can be observed that all diagonal values are the highest of their columns. This
issue elicits a research question: are the current matching criteria reflecting the
relevance of the named entity set found? During the curation task, for example,
it is important to mark as many entities as possible, even if their complete names
are not well detected. In fact, by using incomplete matching, the overall results
of our classifier improve up to 84.96%, 85.77% and 85.36 for recall, precision and
Fl-measure. As future work, we plan to study more flexible matching criteria
and their inclusion in quality measures.

A second issue is related to the errors made by confusing pairs of different
entity types: all false positives of RNA type are classified as proteins; the 60.31%
of cell lines as cell types (19.50% of the cell types as cell lines); and 37.43% of
DNA as proteins (19.61% of the proteins as DNA). The reduced capabilities
of the current ML algorithms for dealing with imbalanced datasets is, in part,
responsible for these errors. However, we also think that the background knowl-
edge of curators has not been reflected in the features tested until now. Another
research question arises: How should background knowledge be integrated into
ML approaches? This is another future direction of our research.

4.2.2. Results using SVM algorithms

As described in Section 3.2, we use the set of features in Table 8 for training
the multi-class SVM and multiclass SVM-hmm algorithms, and the classification
processes were updated in order to consider the previously tagged entities in
an abstract. The resulting models do not improve the performance obtained
by using the CRF algorithm. Tables 11 and 12 show the performance of these
classifiers in terms of recall, precision and F1-measure for left, right and complete
matchings.

On the one hand, as expected, multi-class SVM is outperformed by both
multi-class SVM-hmm and CRF. This justifies the importance of using the word
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Complete matching

Right matching

Left matching

R P F1 R P F1 R P

protein 75.65 68.83 72.08 88.79 80.79 84.60 83.42 75.90
DNA 5871 60.19 59.44 77.27 7922 7824 67.33 69.03
RNA 5169 6559 5782 7797 98.92 8720 5593 70.97
cell_ type 60.59 72.66 66.08 79.85 9576 87.08 69.65 83.52
cell line 52.00 52.53 52.26 74.20 7495 7457 6140 62.02
-ALL- 68.55 67.56 68.05 84.41 83.19 83.80 76.76 75.65

Table 11: Results of the JNLPBA’04 classifier using the features in Table 8 and multi-class
SVM algorithm for training.

Complete matching

Right matching

F1
79.48
68.17
62.56
75.96
61.71

76.20

Left matching

R P F1 R P F1 R P

protein 73.95 70.35 7211 8283 7880 80.77 79.99 76.10
DNA 61.17 7591 67.75 7282 90.36 80.65 63.35 78.61
RNA 5085 6452 56.87 70.34 89.25 78.67 51.69 65.59
cell type 6590 81.84 73.01 79.07 98.19 87.60 69.08 85.78
cell line 53.20 6891 60.06 6740 87.31 76.07 5840 75.65
-ALL- 69.09 72.96 70.98 79.72 84.18 81.89 73.91 78.04

Table 12: Results of the JNLPBA’04 classifier using the features in Table 8 and multi-class
SVM-hmm algorithm for training.

sequence structure in NER, problems, as has been previously described (see [69]
for example). Both SVM-hmm and CRF algorithms consider the dependences
between the states in the HMM machine and between the states and the fea-
tures of the training examples. This brings advantage over the independent
words vision in SVM algorithm. SVM, however, slightly outperforms SVM-
hmm in both right and left matching. Once again, the inconsistencies in the
training samples in the endings of the recognized entities could justify that an
independent-structure provides some advantages when non-complete matching
is observed.

On the other hand, CRF outperforms the solution provided by SVM-hmm
in all matching types. Given that both algorithms have been executed with
identical set of features, and use the finite machine state model of HMM, the
difference on their performance could be expected to be smaller. However,
a subtitle implementation issue, associated with the use of different feature
functions to compare the HMM states, causes this problem : while the CRF
algorithm implemented in Mallet uses a second order forward functions, the
SVM-hmm implementation uses first order and token independent first and
second order functions, as was noticed and proved in [70].

4.2.8. Protein tagging with the CRF classifier
Considering our best solution for the JNLPBA’04 task (the CFR classifier
trained with the features in Table 8), we proceed to verify if its results are
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Corpus Recall Precision F1

GM_II 72.66 56.64 61.72
JNLPBA’04_proteins 81.67 75.00 78.19
Penn-BiolE 43.05 49.13 45.89

Fsuprge 54.43 58.54 56.41

Table 13: Results of our JNLPBA’04 classifier for the test dataset in protein corpus.

comparable to those obtained by classifiers trained with specialized protein cor-
pora. We fed our classifier with the test dataset of corpora: GM_II, Penn-BiolE,
Fsuprge and JNLPBA’04 tagged only for protein entities. In Table 13 the results
obtained by our classifier for complete matching are shown.

It can be observed that our classifier obtains significant better results than
the BANNER solution for the JNLPBA’04 corpus. This support the hypoth-
esis of a highly dependence between the tagging guidelines of the training sets
and the results obtained when testing the models with other corpus (same be-
haviour as observed in [57]). Notice that the training set used in our classifier
differentiates between proteins, DNA and RNA molecules, a differently from the
approach used in BC_II, Penn-BiolE, Fsuprge corpora in which DNA and RNA
molecules, are also considered as sometimes proteins, depending on the context.
We obtain also a slight improvement compared with the BANNER results for
the Fsuprge.

As the most beneficial feature for our system was previous tags, we wanted to
verify if the BANNER system could also benefit from its inclusion. We have also
tested frequency tags feature, as GM_II corpus is formed by sentences instead
of abstracts, and therefore previous tags feature is not applicable. frequency
tags has a similar aim as previous tags, but is applicable independently from
the length of the texts in the training dataset.

The details of the performance obtained by our version of BANNER, with
the four combination of using these two features are shown in Table 14, and
represented in Figure 6. As it can be noticed, none of the models seem to
improve their Fl-measure as a consequence of using using previous tags and
frequency tags features, while precision increase and recall decrease by similar
quantities. For the JNLPBA’04 corpus, however, the opposite behaviour is
observed (precision of 41.31%, and recall of 73.77%), which is compatible with
our results for the CRF classifier respect to protein entities, and with the results
in [57] for the BANNER system tested with the JNLPBA’04 corpus.

BANNER using FT
R P F1 R P F1
GM.II 7120 7290 72.04 71.99 84.85 77.89
JNLPBA proteins 60.30 59.50 59.90 73.77 41.31 52.96
Penn-BiolE  48.20 56.40 51.98 43.86 58.96 50.30
Fsuprge 51.50 60.60 55.68 46.88 63.55 53.96
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using PT using FT and PT

R P F1 R P F1

JNLPBA proteins 41.65 71.34 526 41.99 71.38 52.88
Penn-BiolE  48.39 54.96 51.47 46.23 58.39 51.60
Fsuprge 51.36 59.61 55.18 49.32 62.97 55.32

Table 14: Results of our version of BANNER using any combination of frequency tags and
previous tags features. FT: frequency tags; PT: previous tags.

50 20 20
80 80 80
70 70 70
60 80 80
50 50 50
40 a0 40
30 30 30
20 20 20
10 10 10
[ [ 0

GM_ll  JNLPBA_pmoteins PennBiolE Fsuprge GM_Il  JNLPBA_ prteins PennBiolE Fsuprge GM_Il  JNLPBA_pmteins Penn-BiolE Fsuprge

BANNER FT mPT BPTand FT BANNER FT mPT MPTand FT BANNER FT mpT WPTand FT

(a) Recall (b) Precision (c) F1
BANNER FT upPT WPTandFT
(d) Legend

Figure 6: Results of our version of BANNER using any combination of frequency tags and
previous tags features. FT: frequency tags; PT: previous tags.

4.8. Merging dictionary look-up and ML classifier results

The results obtained from the dictionary look-up and the ML classifier are
merged (giving priority to those obtained from the JNLPBA’04 classifier and
repeated at least three times in the text) and returned to the user as a unique
answer. In our experiments, only a 5% of the noun phrases presented the am-
biguity problem, and just the 2% of them needed the second strategy.

Given the way of merging the results, the performance of the system for
entity types proteins, DNA, RNA, cell type and cell line (from the JNLPBA’04
classifier) remained unchanged, as described in Table 9. The performance for
entity type interaction method detection after merging showed a 1.7 points de-
crease of recall, obtaining 35.10%; a slight improvement (0.31 points) in preci-
sion, achieving 58.32%; and an F1 measure of 43.82.

A demo of the system is available at: http://www.doc.ic.ac.uk/~rdanger/
cgi-bin/biochemicalER/biochem_demo/pcpal.cgi.

5. Conclusions

In this paper, we have described the architecture of PPIES, our PPI in-
formation extraction system, and detailed the named entity detection module,
formed by a dictionary look-up for standardized vocabulary and a ML classifier,
which allows the complete set of entities described by MIMIx to be identified.

Various techniques for normalization and for acronym detection were ex-
plored in the dictionary look-up system. The best results we obtained improves
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by about 10% the current solutions for the IMT task that do not use ML,
highlighting the advantage of using these two strategies. Automatic synonym
and term discovery will be addressed in the future to mitigate the effects of
vocabulary dynamism.

We developed a CRF classifier for protein, cell line, cell type, DNA and
RNA entities, based on the JNLPBA’04 data set, which contains a useful set
of well-tested features: word, word shape, POS and chunk, and we tested a
set of other features which have revealed to be not useful for this task. Our
best solution was obtained by adding a contextual feature at abstract level,
improving by approximately 5 points our basic configuration performance. The
obtained final results of 77.25%, 75.04% and 76.13 of recall, precision, and F1-
measure, respectively, outperform the results of all current available solutions
in the literature for the JNLPBA’04.

Two interesting conclusions have come from these experiments: 1) the need
to define new quality measures considering more flexible matching criteria; and
2) the difficulty of obtaining better results without integrating background do-
main knowledge into text processing. Combining natural language processing
with knowledge domain modeling, as in the PPIES architecture, could be a
way to obtain better results. In the case of dictionary look-up, a second phase
could use conceptual density, for example, to select a term that is described but
not mentioned. In the case of named entity recognition using machine learn-
ing algorithms, constraining the statistical computation with some background
knowledge could help to guide algorithms in selecting the appropriate feature
modeling. We plan to study these issues in future developments.

The most remarkable achievement of this work is the availability of a system
that harmoniously integrates a dictionary look-up and a CRF classifier modules,
highly configurable, for the most important PPI entity types, which obtains bet-
ter or comparable performances that the current available state of the art. Our
tool can be applied and was tested on different corpora and configurations. We
plan to employ the insights drawn from this work to perform new experiments,
in which the outputs of each module will be contextually taken into account,
for the mutual improvement and better integration of their results.
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