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Abstract 
 

Due to the large potential of electroactive materials in novel tissue engineering 

strategies, the aim of this work is to determine if the crystalline phase and/or the surface 

electrical charge of electroactive poly(vinylidene fluoride), PVDF, have influence on 

the biological response in monolayer cell culture. Non-polar α-PVDF and electroactive 

β-PVDF were prepared. The β-PVDF films were poled by corona discharge to show 

negative or positive electrical surface charge density. It has been concluded that 

hydrophilicity of the PVDF substrates depends significantly on crystalline phase and 

polarity. Further, by means of AFM and ELISA test it has been shown that positive or 

negative poling strongly influences the behaviour of β-PVDF supports with respect to 

fibronectin adsorption, varying the exhibition of adhesion ligands of adsorbed 

fibronectin. Culture of MC3T3-E1 pre-osteoeblasts proved that cell proliferation 

depends on surface polarity as well. These results open the viability of cell culture 

stimulation by mechanical deformation of a piezoelectric substrate that results in 

varying electrical charge densities on the substrate surface.     

PACS: 82.35.Pq; 87.85.J-; 77.84.-s; 87.17.-d 
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1. Introduction 
In the last decades, a wide variety of biomaterials with different properties have been 

studied and developed for biomedical applications. The cell/biomaterial interaction is a 

complex multi-step process that consists of several events. The first observable event in 

vivo or in a culture medium in vitro is the adsorption of proteins [1-2]. Then, cell 

adhesion is mediated by cell-surface receptors that interact with specific ligands 

recognized in the layer of proteins previously adsorbed on the biomaterial surface [3-4]. 

This protein layer is then reorganized and substituted by matrix proteins produced by 

the cells [5-7]. The quality of this first phase of cell/biomaterial interactions will 

influence the ability of the cells for proliferation and differentiation [8-9]. 

 

The adsorption of matrix proteins such as fibronectin (FN) on substrate surfaces has 

been shown to be of large importance when culturing a variety of cells in vitro [10-11]. 

The activity of adsorbed proteins (i.e. the distribution, concentration, conformation and 

motility) plays an important role in the biofunctionality of the biomaterial and allows 

understanding the biological response in cell culture in the laboratory [4, 10].  The 

surface characteristics such as chemical composition,  topography, viscoelastic 

properties, electric charge distribution and others determine how biological molecules 

will be absorbed by the surface and, more particularly, it will also determine the 

conformation of adsorbed molecules [8, 12]. In this way, the behavior of cells cultured 

on substrates is highly dependent on these characteristics.  

 

Previous studies have shown that electrically charged surfaces can influence cell 

behavior in different aspects such as growth, adhesion or morphology of cells. Beyond 

this, an electrically charged base for tissue engineering applications can be an 

interesting and promising approach [13]. Electroactive polymers, in particular 

piezoelectric polyvinylidenefluoride (PVDF), have attracted interest for biomedical 

applications in the fabrication of sensors and actuators and supports for cell culture. 

PVDF shows good biocompatibility, chemical resistance, and, in particular, excellent 
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electroactive properties, such as piezo-, pyro-, and ferroelectricity [14]. This polymer 

can be obtained in four different crystalline phases, known as α, β, γ and δ, depending 

on the processing conditions. The β-phase is the one with the best piezoelectric and 

pyroelectric properties [14-15]. 

The processing conditions optimizing the electroactive properties of β-PVDF have been 

previously studied both for films obtained from solvent evaporation [16-17] and for 

films obtained by mechanical stretching [18-19]. Particularly relevant for the present 

work are previous studies by scanning force microscopy in a piezoresponse mode on the 

variations in the topological morphology and piezoelectric surface response of PVDF 

[20]. The piezoelectric activity at a mesoscale reflects the semicrystalline nature of the 

polymer: the piezoelectric activity of the β-phase at a mesoscopic scale is formed by 

dispersed nanoregions instead of classical domains. Clear differences in the poled 

region distribution and size, as well as in the local piezoactivity, have been identified in 

the different forms of PVDF: in the poled β-PVDF samples, the piezoelectric activity is 

more evident than before poling, the piezoelectric activity of β-PVDF being 

independent of the processing method and morphology. No local piezoelectric activity 

is obtained in α-PVDF, corresponding to the nonpolarity of the macromolecule and the 

absence of macroscopic piezoelectric response.  

 

Due to the potential of electroactive materials in the biological and biomedical field, as 

they respond to electrical and mechanical solicitations, the aim of this work is to 

understand the role of the crystalline phase and polarity (i.e. surface charge) of 

electroactive supports on the cell response. With this purpose, the polymer with the 

largest electroactive response, β-phase PVDF, is investigated. As a first step fibronectin 

from human plasma was adsorbed on the different PVDF films from solutions of 

varying protein concentration. The surface density of adsorbed FN was quantified by 

the enzyme linked immunosorbent assay (ELISA) technique and the protein distribution 

and conformation was observed by Atomic Force Microscopy (AFM). Thereafter, the 

effect of polymer phase (α or β) and surface polarization on preosteoblasts morphology, 

viability and proliferation was studied. 

2. Materials and Methods 
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2.1 Preparation of polymer films 

Poly(vinylidene fluoride) films with thickness of around 30 µm were obtained by 

casting a 20% solution of PVDF (Solef 1010 from Solvay) in N,N-dimethyl formamide 

(DMF) on a glass slide, applying the procedure reported in [16, 18]. Briefly, a glass 

slide with the spread solution was kept inside an oven at a controlled temperature of 

120ºC for 60 min in order to assure the removal of the solvent and the isothermal 

crystallization of PVDF. After evaporation of the solvent, the sample was melted at 220 

ºC for 10 min. Then, the samples were removed from the oven, cooled to room 

temperature and removed from the glass. The polymer obtained by this procedure is 

predominantly α-PVDF. These films were then uniaxially drawn in a tensile machine at 

a stretching velocity of ~ 1 mm/min at a temperature of 80 ºC and a draw ratio (R = 

Lfnal/ Linitial) of 5. After this procedure, the β-phase content of the samples is maximised 

up to ~85% [18-19]. The α to β phase transformation is accompanied by a 

morphological transition from a spherulitic microstructure typical of the α- PVDF to a 

microfibrilar microstructure [18]. 

 

The electrical poling of the β-PVDF films was performed by a corona discharge inside 

of a home-made chamber and the piezoelectric response (d33) of the poled samples was 

analyzed with a wide range d33-meter (model 8000, APC Int Ltd). The obtained value of 

the piezoelectric d33 coefficient for the poled samples was ~ -32 pC/N [16]. 

For cell culturing, circular PVDF films with 11 mm diameter were cut from the 

prepared films and sterilized by immersing several times in 70% ethanol for 15 min. 

Before cell seeding, the samples were washed 5 times for 5 min in phosphate-buffered 

saline (PBS) solution.  

The films used in this study were α-PVDF, non-poled β-PVDF, “poled +” β-PVDF (cell 

culture on the positively charged side of the sample) and “poled –” β-PVDF (cell 

culture on the negatively charged side of the sample). 

 

2.2 Contact angle measurements 
The contact angle measurements (sessile drop in static mode) were performed at room 

temperature in a Data Physics OCA 20 device using distilled	  water as test liquid. All the 

micrographs were taken at the same focal distance (20 cm) and the volume of the drops 

was of 20 µl. The contact angles were determined after six repetitions for each sample 

by using an image analysis software (Image J) taking into account the entire drop shape. 
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2.3 Fibronectin adsorption  
FN distribution on the different substrates was observed by Atomic Force Microscopy. 

Fibronectin from human plasma (Sigma) was adsorbed on the different PVDF films (α-

PVDF, non-poled β-PVDF, “poled +” β-PVDF and “poled –” β-PVDF) by immersing 

the material sheets in FN solutions with different concentrations (1, 2 and 5µg.mL-1) in 

modified saline (0.4% NaCl) for 10min. After protein adsorption, the samples were 

rinsed in saline solution to eliminate the non-adsorbed protein. After that, the samples 

were dried by exposing their surface to a nitrogen flow for a few minutes. AFM 

experiments were performed in tapping mode in air immediately after sample 

preparation, using a Multimode AFM equipped with NanoScope IIIa controller from 

Veeco (Manchester, UK), at ambient conditions. Si-cantilevers with a constant force of 

2,8N/m and a resonance frequency of 75 kHz were used. All the samples were 

characterized using a set-point amplitude ratio of around 0.9.  The NanoScope 5.30r2 

software version was used for the simultaneous recording of the height, phase and 

amplitude magnitudes of the images.  

 

FN conformation was characterized by ELISA using monoclonal antibodies directed to 

cell adhesion domains. FN was adsorbed on all samples from a solution of 5µg.mL-1 for 

1h at 37ºC. The same samples without FN were used as controls. After FN adsorption, 

the surfaces of PVDF films were washed a few times in Dulbecco’s Phosphate Buffered 

Saline solution (DPBS) to remove non-adsorbed protein. After the FN adsorption, the 

nonspecific binding sites of the PVDF surface were blocked with DPBS++/BSA 1% for 

30 min at room temperature. Then, the samples were incubated in the presence of 

monoclonal antibody IgG1 (DSHB University of Iowa), directed against the synergic 

site, in the FN repeat III9,  in dilution 1:4000 for 1h at 37 ºC. Following the incubation, 

each substrate was washed a few times with DPBS++/Tween 20. After being rinsed, a 

secondary antibody, antimouse alkaline phosphatase (Jackson Immuno Research), in 

dilution 1:5000 was added to the PVDF substrates for 1h at 37 ºC and then washed 

again as described above. The 4-methylumbelliferyl phosphate (4MUP; Sigma) was 

added to the samples for 45min at 37 ºC. The optical density (absorbance) of the wells 

at a wavelength of 465nm was measured using a standard plate reader (Victor III, 

Perkin Elmer). Each experiment was performed in triplicate.   
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2.4 Cell Adhesion and overall morphology 

MC3T3-E1 cells (Riken cell bank, Japan) were cultivated in Dulbecco’s modified 

Eagle’s medium (DMEM) 1g/L glucose (Gibco) containing 10% Fetal Bovine Serum 

(FBS) (Fisher) and 1% penicillin/streptomycin (P/S) at 37ºC in CO2 incubator. To 

investigate the initial cell adhesion and overall cell morphology, osteoblast-like cells 

suspended in 400µL of serum-free DMEM were seeded on the substrates (PVDF 

samples disks and control glass covers) in 24-well TC plates at a cell density of 

1×104cells/well. All samples (three repetitions per sample) were previously coated with 

FN (20µg.mL-1) for 1h at 37°C. After 2h of incubation, the cells were rinsed with DPBS 

and fixed with formalin solution 10%, neutral buffered (Sigma-Aldrich) (1h at 4ºC). 

After that, the substrates were washed with DPBS, permeabilized with Triton X-100 (5 

min at room temperature) and incubated with a monoclonal mouse antibody against 

vinculin (Sigma-Aldrich) (1:400 in 1% DPBS/BSA, at room temperature for 1h in 

agitation). The samples were rinsed a few times with 0.5% DPBS/Tween 20. Thereafter, 

it was added Alexa Fluor 633-conjugated rabbit anti-mouse secondary antibody 

(Invitrogen) (1:200 in 1% DPBS/BSA, at room temperature for 1h in agitation) and, at 

the same time, Bodipy FL Phallacidin (Invitrogen) for actine cytoskeleton 

(10µL/sample). At last, the substrates were washed with 0.5% DPBS/Tween 20 and 

mounted with Vectashield containing DAPI. Focal adhesions were visualized by 

immune-fluorescence staining of vinculin. Images of adhered cells were taken with a 

fluorescence microscope (Leica DM6000B). Cytoplasma observed by cytoskeleton 

images were processed and analyzed using an in house software developed under 

MATLAB R2009b (The MathWorks, Inc., Natick, MA, USA). Mean cell area was 

calculated for every sample.  

To determine the area covered by each cell, the processing of the cytoplasm images 

consisted firstly in grayscaling and equalization. Afterwards, the images were binarized 

using the Otsu’s method [21] and the existing gaps were filled using an erosion 

morphological operator followed by a dilation one, using both a diamond structuring 

element of size 3. The resulting image was size-filtered using an opening morphological 

operator to eliminate remaining isolated pixels. In this way, a binary image stating the 

cytoplasm coverage was obtained, allowing the calculation of the total area covered by 

the cells or the mean area covered by each cell. 
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2.5 Cell viability and proliferation 
For the study of cell viability and proliferation, the cells were seeded in 24-well TC 

plates with PVDF films and glass covers used as control at a cell density of 

104cells/well for 3 days and 7 days, and incubated at 37ºC and 5% CO2. All samples 

(three repetitions for each sample) were previously immersed in a fibronectin solution 

20 µg mL-1 for 1h at 37 ºC. After washing all samples with DPBS, cells were suspended 

in DMEM without serum and seeded in the samples for 2h at 37 ºC and 5% CO2. 

Finally, medium was replaced with DMEM containing 10% FBS. 

 

For the quantification of cell viability and proliferation, MTS (3-(4,5-dymethylthiazol-

2-yl)-5-(3-carboxymethoxyphenyl)-2(4-sulfopheny)-2H tetrazolium) assay (CellTiter 

96TM Aqueous One Solution Cell Proliferation Assay, Promega) was carried out. In this 

assay, the samples were washed a few times with DPBS. Then, 600 µL of MTS solution 

(prepared with DMEM-LG without FBS, in a relation 1:5) was added to the substrates 

and it was incubated for 3h at 37 ºC in a 5% CO2 incubator. At the end of the incubation 

period, 100 µL of each sample were transferred (in triplicate) into a 96 well-plate. 

Finally, the absorbance at 490 nm, representing the proportion of viable cells, was 

measured by an optical spectrometer (Victor III, Perkin Elmer).   

 

For cell number quantification, after fixation with a formalin buffered solution, the cell 

–supports constructs were mounted with Vectashield containing DAPI for fluorescence 

microscopy (Leica DM6000B). For cell counting, the previously described software 

was used. Cell nuclei images were firstly grayscaled and equalized, providing an output 

grayscale image with its intensity values evenly distributed throughout the intensity 

range. These new images were then binarized through the Otsu’s method and size-

filtered using an opening morphological operator. The cell nuclei were finally labeled 

and counted. Thus, cell number per mm2 was calculated. 

 

 

2.6 Statistical Analysis 
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The results were expressed in mean ± standard deviation. Statistical comparisons were 

made by analysis of variance (ANOVA) and F-tests were used for the evaluation of 

different groups. The differences were considered significant when p<0.05. 

3 .Results  
3.1 Contact angle measurements 
Surface wettability (generally referred to as hydrophobicity/hydrophilicity) is one of the 

most important parameters affecting the biological response. According to the literature, 

wettability affects protein adsorption and cell adhesion [22-23]. The wettability of the 

different PVDF film surfaces was determined showing that (Figure 1) the non-poled β-

PVDF film is the more hydrophobic, with a contact angle of 76.8º, significantly higher 

than that measured in α-PVDF. Corona treatment produces an increase of the 

wettability of the β-PVDF films surface. The “poled +” β-PVDF film is the most 

hydrophilic material with a contact angle of 31.8 °C, lower than that of the negatively 

charged surface. 

 

 
 

 

Fig. 1 – Evaluation of water contact angle of different PVDF films (Alfa, Beta non-

poled, poled + and poled -). 
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3.2 Surface topography 
The processing conditions of PVDF influence the phase content, morphology and 

electroactivity [20]. PVDF adopts an spherulitic morphology in the α phase [15], that 

can be observed in the AFM pictures (Figure 2 a, b). Crystal lamellae are apparent both 

in amplitude and phase images. The α-PVDF is a non-electroactive phase and the mean 

roughness measured in 2 x 2 microns surface areas (average of 3 measurements) was 

around 68.5 nm. The topography of β-PVDF is quite different, being characterized by 

an oriented microfibrilar microstructure [18] (Figure 2 c, d). When the β-PVDF sample 

is poled there are no significant differences in morphology. With the AFM analysis of 

the local piezoresponse data of the non-poled β-PVDF and poled samples, it is shown 

[20] that a clear piezoresponse signal exists in both samples, being therefore the domain 

contrast more pronounced in the poled samples. The mean roughness of the non-poled 

β-PVDF is approximately 42 nm. The poling process does not affect the topography of 

the samples which maintain the same mean roughness [20]. The analysis of the line 

profiles of the topographic image and the corresponding domain contrast image confirm 

that there is no relationship between the surface piezoelectric response and the 

topography [20]. 
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Fig. 2 – AFM images recorded in a 1 x 1 µm area of α-PVDF (a, b) and non-poled β-
PVDF (c, d) surfaces. Phase (a, c) and amplitude (b, d) pictures are shown.     
   
3.3 Protein adsorption 
The distribution of fibronectin adsorbed on the substrate can be observed by AFM 

provided the surface density of protein molecules is low enough. If the amount of 

protein adsorbed is too high, a continuous coating is formed preventing the observation 

of single protein molecules as well as their distribution at the material interface. This is 

the reason why FN was adsorbed on the substrates from aqueous solutions of varying 

concentration. Figure 3 shows AFM images (height, phase and amplitude) of non-poled 

β-PVDF films after FN adsorption from a 2µg.mL-1 solution. 
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Fig. 3 – AFM images of non-poled β-PVDF with fibronectin adsorbed form a solution 

with a concentration of 2µg.mL-1. a) Height, b) phase and c) amplitude magnitudes 

respectively. 

 

Figure 4 shows the AFM images of the adsorbed proteins on the different PVDF films. 

FN distribution and organization on the surface depends significantly on the type of 

substrate and the concentration of the protein solutions.  

The influence of the crystalline phase of the polymers is quite apparent when comparing 

α-PVDF and non poled β-PVDF films. In both cases at the lower solution 

concentrations (1 - 2µg.mL-1), homogeneously distributed FN molecules on the 

substrates are observed. When FN was adsorbed from a 2µg.mL-1 solution, a well 

defined fibrillar distribution is found on β-PVDF, with the incipient formation of a 

protein network. On the other hand, a more homogeneous FN distribution is found on α-

PVDF. Higher concentration of the FN solution (5µg.mL-1) gives rise to the formation 

of a FN continuous protein coating that, in the case of α-PVDF, completely covers the 

spherulitic topography of the polymer. Likewise, α- and β-PVDF surfaces display 

similar appearance when they are completely covered by the protein layer.  

In the poled β-PVDF films, the situation is quite different: a dense coating is formed 

already when FN is adsorbed from the 1 µg.mL-1 solution. By increasing FN 

concentration, some changes in the topography of the protein surface are observed with 

no observable differences between the “poled +” and “poled –” β-PVDF substrates. 
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Fig. 4 – Fibronectin distribution as observed by the amplitude magnitude in AFM on the 

different substrates (α−PVDF, β-PVDF non poled, “poled +” β-PVDF and “poled –“ β-

PVDF). Fibronectin was adsorbed for 10 min from solutions of different concentrations 

(1µg mL-1, 2µg mL-1, 5µg mL-1). 
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Single molecules could not be distinctly observed by AFM even in smaller scans 

areas. However, it can be inferred from FN adsorption from solution of concentration 2 

µg mL-1 that approximately the same amount of FN is adsorbed on the different 

surfaces. Further,  the differences in protein distribution observed at the lower 

concentrations suggest surface-induced changes in FN conformation [24]. Thus, an 

ELISA assay was performed to quantify differences in FN conformation, using 

antibodies against adhesion related domains, in order to obtain information about 

domain exposition. Figure 5 shows the results of the ELISA experiments for the 

different PVDF films and the control substrate. These results confirm that adhesion 

domains in poled β-PVDF films are more available for cell adhesion than in either non 

poled β-PVDF or α-PVDF films. These domains are significantly masked in non poled 

β-PVDF. Nevertheless, the difference between positively or negatively charged surfaces 

is not significant.  

 

 

 

 
 

Fig. 5 – Monoclonal antibody binding for HFN7.1 monoclonal antibody on the different 

PVDF samples after FN adsorption from a solution of concentration 5 µg/mL.  

 * Significantly different (p<0.05) PVDF samples. 
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3.4 Cell attachment and cell proliferation 
The overall morphology of the cells after 2h is observed in Figure 6. With respect to cell 

morphology and cell area, no significant differences were detected between poled and 

non-poled films, as well as between films in different phases and the control glass. 

 

 

  

Fig. 6 – Cell culture with pre-osteoblast cells during 2 hours in negative poled β-PVDF 

film (DAPI stained nuclei are shown in (a), vinculin expression in (b) and F-actin 

staining in (c), overlay (d)) For comparison the overlay images of α-PVDF film and 

control glass are shown in (e) and (f) respectively. The scale bar (100µm) is valid for all 

the images. 

 

Figure 7 shows the viability of the attached osteoblast cells in PVDF films and control 

after 3 and 7 days of culture. For all substrates, the number of viable cells increased 

with cell culture time. The substrates that seem to promote more active proliferation are 

α-PVDF and both positive and negative poled β-PVDF films, with no significant 

differences with respect to the control and among them. Cell viability is significantly 

lower in the case of non poled PVDF as shown by the MTS test. Nevertheless, when 

cell nuclei were stained with DAPI and counted from fluorescence microscopy images 

no significant differences in cell density between poled and non-poled β-PVDF 

substrates was found (Figure 8).   
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The shapes of the cells attached on the different substrates are quite similar to each 

other and also similar to the control, as shown in Figure 6. Cells are extended on the 

substrates and form well defined and developed actin cytoskeleton. Using image 

analysis, the average surface covered by a cell was found to be 4475 ± 349 µm2 with no 

significant differences among the substrates.  

 

 

 
 

Fig. 7 – MTS absorbance results after cells seeded for 3 and 7 days on different PVDF 

films and control substrate. * Significantly different (p<0.05) PVDF samples. 

 

Cell density on the different substrates is represented in Figure 8. After 3 days, all 

samples show low number of cells. After 7 days of cell culture, the samples show 

significant differences in the number of cells. Also, it can be also observed that the cell 

distribution in the samples is not uniform. The control substrate shows the highest 

number of cells/mm2, but comparing just the different PVDF films, the non poled  β-

PVDF films show the lowest cell number and the poled α -PVDF films the highest 

number, with no significant differences with both poled β-PVDF, positive and negative .  
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Fig. 8. Cell density after for 3 and 7 days on different PVDF films and control substrate. 

* Significantly different (p<0.05) PVDF samples. 

 

 

 

4. Discussion 
The surface properties of PVDF are influenced by its crystalline phase, not only because 

of the different arrangement of crystal lamellae that, as shown in Figure 2, leads to a 

different roughness and surface topography, but also due to a different surface energy 

leading to a quite hydrophobic material in the case of non poled β-PVDF and to a more 

hydrophilic one in the case of α-PVDF. The reason for these differences is related to the 

different ordering of the permanent dipoles along the polymer chains in one and another 

crystalline order. The configuration of PVDF chains crystallized in α phase is a non-

polar trans-gauche-trans-gauche’, TGTG’, configuration, leading the consecutive 

permanent dipoles of the monomer units to orient in opposite directions, resulting in no 

net dipole per unit cell [14, 25]. The crystalline β-phase has an all trans planar zigzag 

configuration, TTT, which confers to this crystalline phase the highest resulting 
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permanent dipolar moment and consequently the best electroactive properties [14, 25]. 

Notice nevertheless, that the non-poled β-phase PVDF shows a random distribution of 

the dipolar moments, and therefore, the overall surface charge will be zero. Just by 

poling the samples and alignment of the dipolar moments and an overall surface 

distribution will be achieved [20]  

 

FN adsorption has been studied on different synthetic substrates. A straightforward 

correlation between substrate hydrophilicity and FN adsorption does not exist since 

other surface properties such as surface chemistry [26-27], the presence of particular 

functional groups [28], roughness or the presence of patterning cues [27], have also an 

important effect on FN adsorption. While many studies have shown that larger amounts 

of protein adsorbs on hydrophobic surfaces than on  hydrophilic ones,  as it is the case 

with other matrix proteins as laminin, fibrinogen or vitronectin [29-30], the literature 

also shows many important examples of higher activity of FN on hydrophilic surfaces 

[31-32].  On the other hand, the conformation of FN on the substrate is also highly 

influenced by other surface characteristics. It seems that an important characteristic of 

FN with respect to cell adhesion is its ability to intermolecular linkage forming a 

fibrillar structure (fibrillogenesis) or a protein network. Cell activity seems to be 

essential for fibrillogenesis but it has been observed in some synthetic substrates in 

absence of cells. This is the case of hydrophobous poly(ethyl acrylate) substrates [33-

34].  

When the electroactive β-PVDF is poled by corona discharge, introducing a positive or 

negative electric charge density, the wettability of the surface increase significantly as 

shown in Figure 1. 

 

In the PVDF substrates of this work the observed behavior by adsorbed fibronectin is 

peculiar in some aspects. Although the AFM images of Figure 4 give no quantitative 

information about protein adsorption, they suggest that adsorbed protein quantity is 

higher in poled β-PVDF than in non poled β-PVDF or in α-PVDF but only when 

adsorbed from low FN concentration solutions. When FN is adsorbed from a 5µg ml-1, 

the FN layer observed in all samples looks similar. When dispersed protein domains are 

observed, the images suggest differences in distribution. The visual aspect in non-poled 

β-PVDF is clearly different than in α-PVDF when immersed in the same FN solution. 
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Association in fibrils seems to appear only in non-poled β-PVDF, which can be related 

to the lower hydrophilicity of its surface. Randomly distributed FN aggregates can be 

observed in α-PVDF or in the poled samples at very low FN concentration. 

 

Data from the ELISA experiments complement the information obtained from the AFM 

images. ELISA experiments were performed on samples after adsorption from a 

5µg.mL-1 FN solution in which the surface appearance in AFM is that of a 

homogeneous coating of the PVDF surface (Figure 4). The exposition of cell adhesion 

domains is significantly higher in the poled β-PVDF samples with respect to non poled 

samples and also with respect to the control. It seems that the presence of a surface 

distribution of electric charges overcomes the effect of other surface properties. On the 

one hand exposition of adhesion ligands in poled samples is higher than in non-poled β-

PVDF, that shows the same topography, despite the later having much lower wetability. 

In the same way, it is higher than in α-PVDF. 

 

 

MC3T3-E1 pre-osteoblasts were seeded on the substrates previously coated with 

fibronectin and in a culture medium in absence of serum in order to avoid the 

modification of the protein layer adsorbed on the substrate. In order to allow long-term 

culture, medium with FBS was added after initial adhesion. Cells adhere to all the 

substrates, develop focal adhesions and organize the actin cytoskeleton. The shape of 

the cells and the average surface covered per cell for the shortest times of cell culture 

seems to be equal in the four substrates under study. Some of the differences in 

MC3T3-E1 pre-osteoblasts are just shown after several days of culture and are in 

accordance with the differences shown in protein adsorption and conformation. The low 

absorbance in MTS experiments at three days culture does not allow us to detect 

significant differences among the different samples due to the small signal, the 

absorbance being much lower than in the control surface. Nevertheless, the cell numbers 

counted from fluorescence microscope images clearly show that cell numbers are higher 

in the poled β-PVDF samples what correlates with availability of cell adhesion 

sequences of the adsorbed fibronectin, as determined by ELISA tests. At seven days 

culture the cell number and MTS absorbance in non-poled β-PVDF sample seems still 

to be smaller than in the samples with a surface density of electric charges. MC3T3-E1 
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are highly proliferative cells, reaching confluence in few days in tissue culture 

polystyrene or in the glass slides used as controls in our experiments. This is shown by 

the high cell numbers and MTS signal after 3 days culture in the controls in contrast 

with the slower culture proliferation in all the PVDF substrates. Nevertheless, after 

relatively short times of culture cells reach confluence in all substrates and at 7 days 

culture the cell numbers and MTS signal tends to be the same in the α and positively or 

negatively poled β-PVDF samples and also nearly the same as that of the controls. Only 

non-poled β-PVDF shows significantly smaller MTS absorbance and small mean cell 

numbers than the rest culture surfaces at day 7. For longer culture time this sample 

shows the same cell number than the others. 

 

These experiments show that the presence of electrical charge on the surface of the 

piezoelectric material influence the distribution and conformation of adsorbed protein 

layers on the material surface and in turn on cell adhesion. In this sense it is particularly 

significant the difference between poled and non-poled states of the electroactive β 

phase of PVDF. If this material is deformed by the action of mechanical forces, the 

piezoelectric effect will produce the variation of the electrical charge density at the 

interfaces with the biological tissue. Thus, this type of substrate can be used for 

simultaneous mechanical and electric stimulation of cells in culture. 

   

5. Conclusions 
It is shown that polarization of a PVDF electroactive crystalline phase to create both a 

negative or positive electrical charge surface density modifies the conformation of 

adsorbed fibronectin at the material surface and therefore cell adhesion on the FN-

coated substrates. As a consequence, cell numbers on the substrate are significantly 

higher in poled than in non-poled samples. Differences in fibronectin adsorption 

between α and non-poled β crystalline phases due to different surface topography, 

wettability and ordering of polymer chain groups are detectable but can be considered 

less important. In this way, these results open the possibility of developing active 

substrates for cell culture and tissue engineering, influencing cell response through 

variation of the surface electrical charge density when a mechanical solicitation is 

applied. 
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