
Escola Tècnica Superior d’Enginyeria Informàtica
Universitat Politècnica de València

Statistical analysis of user-created
game levels

Trabajo Final de Grado

Grado en Ingeniería Informática

Author: Álvaro Marco Añó

UPV supervisor: Roberto Paredes Palacios

ETH supervisor: Mubbasir Kapadia and Severin Klingler

September 3, 2014

Als que sempre han estat ahí.

Abstract

In some videogames, players have an enormous amount of maps to choose, the
question that this thesis tries to answer is, what are the differences between
a “good” map and a “bad” map? In this project a machine learning scheme
was designed to try to answer this question for Minecraft maps.

Keywords: Machine learning, Data mining, Regression analysis, Game studies,
Minecraft.

Resumen

En algunos videojuegos, los jugadores tienen a su alcance una enorme canti-
dad de mapas entre los que elegir, la pregunta que este TFG trata de respon-
der es, ¿cuáles son las diferencias entre un “buen” mapa y un “mal” mapa?
En este proyecto un esquema de aprendizaje automático se ha diseñado y
aplicado para responder a esta pregunta en los mapas de Minecraft.

Palabras clave: Aprendizaje automático, Minería de datos, Análisis de la regresión,
Ludología, Minecraft.

CONTENTS

1. Introduction 1
1.1. Aim and motivation . 2
1.2. Minecraft . 2

2. Popularity prediction for Minecraft 7
2.1. The pipeline . 7
2.2. Acquiring the data . 9

2.2.1. The data . 11
2.3. Features . 13

2.3.1. Low-level features . 13
2.3.2. High-level features . 16

2.4. Learning . 18

3. Results 21
3.1. Analysis of the results . 21

4. Conclusions 25
4.1. Future work . 25

Bibliografía 27

i

LIST OF FIGURES

1.1. Automatically generated world in survival mode. 3
1.2. NBTExplorer, a tool for reading and writing NBT files (to be

introduced later) showing the general structure of a world. . . 4

2.1. Diagram displaying the pipeline used during in the analysis of
features. 8

2.2. Diagram displaying the standars approach followed adopted
for dealing with machine learning problems. 9

2.3. Screenshot of the website http://www.minecraftworldmap.
com/. 10

2.4. Barchart of normalized number of downloads (left) and bar-
chart of number of maps with less than 201 downloads (right). 12

2.5. Screenshots of a village with NPCs (on the left) and different
types of biomes (on the right). 15

2.6. A map rendered in Google Maps. 16
2.7. Heat maps of height (left) and logs (zoomed, right) of the

world in figure 2.6. 17
2.8. Scheme of the weka learning process used. 18

3.1. Average prediction error of the RBF kernel using different val-
ues of γ and C. 24

4.1. Screenshots of user-created levels with complex constructions. 26

iii

http://www.minecraftworldmap.com/
http://www.minecraftworldmap.com/

LIST OF TABLES

2.1. Distribution of the number of downloads. 12

3.1. SVM regression with polynomial kernel. 22
3.2. SVM regression with RBF kernel. 23
3.3. 10-fold results for the RBF kernel with C=0.01 and γ = 0.001. 23

v

CHAPTER 1
INTRODUCTION

This thesis was developed in collaboration of the CGL group1 of ETH
Zürich and Disney Research Zürich, its final purpose is to find out if it pos-
sible to predict the popularity of user-created videogame levels and obtain
conclusions about user preferences on those levels. For the research project,
Minecraft has been chosen as a game to analyze; but the idea is to generalize
this work in the future.

The programming language used during the development of the project
is Java and some external libraries were used as well. Octave was used for
plotting purposes.

In this first chapter the aim and motivation of the thesis are presented,
then in the second section context and features about Minecraft are de-
scribed.

1 Computer Graphics Laboratory

1

http://graphics.ethz.ch/
https://www.ethz.ch/en.html
https://www.ethz.ch/en.html
http://www.disneyresearch.com/

1.1. Aim and motivation Chapter 1. Introduction

1.1. Aim and motivation
Nowadays videogames have a huge impact in society culturally and eco-

nomically, this market generates billions of dollars of revenues worldwide
and there are even professional videogame leagues in some countries. Be-
cause of this, analyzing videogames components such as maps, elements that
form the maps, different artificial intelligence approaches for enemies, game
modes, players behaviour and players interaction between them becomes a
very interesting field [Bai07].

Game studies have applications in many areas such as computer science,
psychology, anthropology, communications, etc. As a concrete example imag-
ine the case in that videogame contents are analyzed so that they can be im-
proved; this can lead to higher profits to videogame companies among many
other applications.

More concretely, in this thesis a machine learning pipeline has been de-
veloped to try to predict the popularity of Minecraft levels. Analyzing which
maps are popular and which maps are not gives us the possibility to detect
the features that define a popular map. This information is very useful since
it can be used to develop assistants for level cration, or even more, generating
levels of high quality from scratch.

As previously said, Minecraft has been chosen for this thesis, but why?
The reasons are presented in the next section.

1.2. Minecraft
Minecraft2 is an open world videogame, in which players have consider-

able freedom in terms of what actions to perform and and what to do in
general. Due to the freedom that the game provides it is a perfect piece of
analysis since it does not limit the player in terms of where to go or what
to do while playing. Even more, due to this characteristic, the results of the
analysis could even be used for more freedom-limited videogames as well as
other open world games (e.g. Disney Infinity).

However, even though the game was release in 2009 it is still under de-
velopment and new features and improvements are added regularly (in fact

2 released on 2009 and developed by Mojang AB.

2

https://mojang.com/

Chapter 1. Introduction 1.2. Minecraft

the last update, version 1.8, was released on September 2, 2014).

But how does Minecraft work? In the game everything is shaped as a
block (or cube) and players can explore the map, destroy blocks (mine) for
gathering resources, craft new items (tools, materials, furniture, weapons,
etc. more than 100 items can be crafted), combat, build constructions and
much more. As it can be seen in [Yee], a good crafting system is found
important for many players. Like so, players interested in building, fighting,
exploring or a mix of everything can also find a motivation in playing the
game.

Figure 1.1: Automatically generated world in survival mode.

Mojang’s game is the best selling PC game of all time, it has sold more
than 16 million copies only on its PC/Mac version, for this reason there is
a huge community of players and fans playing and creating content which
leads to a perfect situation for analyzing the game. On the internet there
are thousands of websites dedicated to the Minecraft and hundreds of them
sharing user-created content.

Since the game was released, a lot of people was interested on how the

3

1.2. Minecraft Chapter 1. Introduction

game worked and at this point there are a lot of resources available in this
sense. The community did apply techniques such as reverse engineering to
know the functioning of the game, but also Mojang developers post fre-
quently in a blog and give crutial information about the game mechanics.
There are tools available for rendering and visualizing maps (both in 2D and
3D), libraries for reading and writing Minecraft formats, map editors, map
generators, texture editors, backup utilities and so on.

Figure 1.2: NBTExplorer, a tool for reading and writing NBT files (to be
introduced later) showing the general structure of a world.

On the “player-side” there exist websites with even more than 30000 maps
freely available for downloading, websites dedicated to mods that change the
mechanics of the game, free servers for online gaming and an ongoing list of
material. Moreover Mojang has always encouraged the creation and sharing
of this type of materials and they even planned to release a Plugin API to
allow developers to easily add new content to the game, nonetheless this API
is still under development, but when available it will allow the creation of
plugins without modifying the minecraft.jar executable.

Minecraft has five different game modes (without the use of any mod):
adventure, survival, hardcore, creative and spectator. Each one of this modes

4

Chapter 1. Introduction 1.2. Minecraft

has different objectives, for instance in the creative mode access to an infinite
amount of almost all blocks is provided, blocks can be destroyed instantly
and players are invulnerable (they cannot die). In survival mode players have
to acquire resources to build, craft and gain experience and also they have
to maintain their health and hunger bars. Adventure mode is very similar to
survival mode but in this mode blocks can only be broken with the correct
tools and there are even blocks that cannot be destroyed to avoid spoiling
the adventure map. This thesis is focused on the analysis of advenutre maps.

In the game, worlds can be automatically generated by using a seed and a
level generator. Another widespread option is to generate an automatic map
and then build structures on it, locally or collaboratively online, and finally
share the map through one of the many websites on the Internet dedicated
to this aim. This thesis analyzes user-created game levels available on the
Internet.

For all of these reasons Minecraft was chosen to be analyzed in this thesis.

5

CHAPTER 2
POPULARITY PREDICTION FOR

MINECRAFT

In this chapter the machine learning pipeline used for the popularity pre-
diction of Minecraft levels is detailed.

In the first section, an overview of the pipeline is given and in each of
the following sections one of the components of the pipeline is introduced.
The second section describes the process for acquiring the Minecraft maps
and shows statistics on the collected data; in the third section the designed
features are detailed and finally in the last section the learning process is
presented.

2.1. The pipeline
The pipeline followed during the development of the analysis covers the

entire process of a machine learning schema and is formed by three main
components, which are subdivided as well into smaller subcomponents. This
problem does not have such a big research investment so far as other prob-
lems, such as speech recognition or OCR1. In these other mentioned problems

1Optical Character Recognition

7

2.1. The pipeline Chapter 2. Popularity prediction for Minecraft

with many years of research there exist a clear set of features that are well-
known and work well for their analysis and classification, however this is not
the case of the problem presented in this thesis. For this reason, the main
effort of the research project was put on the design and modelling of the
features.

The first implemented step in the pipeline consists in the acquisition (and
preprocessing) of a set of Minecraft maps for their further analysis. Next,
maps are parsed and features extracted from them. The last step consists
on applying learning techniques to predict the popularity of the maps. After
that, iterations over this last two steps are needed to check how well the
predictions are functioning and devise new features to improve the results.

The diagram in figure 2.1 pictures the described pipeline.

Data acquisition Feature design
and modelling Learning

Figure 2.1: Diagram displaying the pipeline used during in the analysis of
features.

Moreover, some of this stages are subdivided into smaller substages, but
this substages will be presented in the corresponding section.

Once the features provide consistent results the pipeline in figure 2.2 may
be used. This is the standard machine learning approach, in which a model
is built using a training set and afterwards this model is used for performing
predictions on the testing or “real-world” data.

In the next sections the elements of the pipeline are described in detail.

8

Chapter 2. Popularity prediction for Minecraft 2.2. Acquiring the data

Data acquisition Feature extraction Learning

Data acquisition Feature extraction

Model

Classification/
Regression

Prediction

Training

Testing

Figure 2.2: Diagram displaying the standars approach followed adopted for
dealing with machine learning problems.

2.2. Acquiring the data
Even though Minecraft has a huge community of people behind it Mojang

does not offer an official website for sharing the worlds, mods, textures or
plugins created by the users. Recently, Minecraft Realms was released but
this service only offers players to create and manage their own private server
and there is not a world-sharing service so far. However there exist lots of
unofficial websites, some of them with tons of material and some of them
(most) with not that much.

There is not a clear structure among these unofficial websites in terms
of the meta-information that they provide. The meta-information provided
in the websites varies from one website to another but this is a short list of
some of the offered data:

Number of downloads and comments

Raw comments

Author of the map

Upload and update date

Map version

Description of the map

Topics

Map size

9

2.2. Acquiring the data Chapter 2. Popularity prediction for Minecraft

Ratings, likes, favorites and other social-network-related information

Screenshots

. . .

When choosing a website for downloading the levels two considerations
were taken into account. First the website needed a quite big amount of
levels, and second the maps had to be directly available for download from
that website. Many websites do not allow a direct download, but they offer
a link to an upload server from where you can download the level. This sit-
uation is problematic because it complicates the automatic download of the
levels (each website has a different procedure for downloading: waiting one
minute, captchas, etc). A website that fulfills both requirements is the web-
site http://www.minecraftworldmap.com/ which was the one finally chosen
for downloading the levels.

Figure 2.3: Screenshot of the website http://www.minecraftworldmap.
com/.

The selected website has more than 30000 maps available for download
and also is quite meta-information rich. However it does not provide any

10

http://www.minecraftworldmap.com/
http://www.minecraftworldmap.com/
http://www.minecraftworldmap.com/

Chapter 2. Popularity prediction for Minecraft 2.2. Acquiring the data

API or system to allow an easy download of the maps and meta-information,
consequently a web crawler was developed in order to download the maps
and its corresponding information. The crawler works as follows: it down-
loads a webpage, opens each world link in that webpage and stores the world
and its meta-data. In this way, a big number of levels can be downloaded in
an easy way just by iterating over the sections in the website. The library
jsoup was used as a help for parsing the html files.

Each uploaded level has the following associated information available
directly on the website: number of downloads, number of comments, raw
comments, author, upload date, size, description, topics and a render of the
map navigable through Google Maps. However not every piece of this in-
formation can be used easily, for example comments need to be parsed and
analyzed separately and the results of doing this work are uncertain. Due to
that the information stored is: number of downloads, number of comments,
author, upload date and size.

For storing the meta-information a database was designed and imple-
mented using SQLite. In this database not only the meta-information is
stored, but also the features extracted from the worlds.

In the next subsection some descriptive statistics on the downloaded lev-
els are presented.

2.2.1. The data

When downloading the maps some preprocessing was made to check that
the downloaded file was alright and actually contained the map (uncompress-
ing the file, checking the existance of the files, etc). After this preprocessing a
total of 1717 were downloaded (all the levels that do not contain errors in the
category “adventure” of the website). This is a total of 19.5 GB, with an av-
erage file size of 10 MB and with the “biggest” level with a weight of 420 MB.

Table 2.1 shows how the number of downloads is distributed among the
levels: the first column is the number of downloads, the second column the
number of levels that have at least that number of downloads and the third
column the percentage of the total number of levels that were downloaded
at least that given number of times.

11

2.2. Acquiring the data Chapter 2. Popularity prediction for Minecraft

Table 2.1: Distribution of the number of downloads.

Number of downloads Number of levels Percentage
1 136 7.9 %
10 773 45.0 %
50 1278 74.4 %
80 1379 80.3 %
100 1419 83.0 %
200 1537 89.5 %
500 1623 94.5 %
1000 1660 96.7 %
10000 1711 99.7 %
100000 1717 100.0 %

Not surprisingly, there are a lot of maps that have very few downloads
(three quarters of the worlds have 50 or less downloads!) and a few fraction
of the maps receives most of the attention. This can also be seen in figure 2.4.

Figure 2.4: Barchart of normalized number of downloads (left) and barchart
of number of maps with less than 201 downloads (right).

A similar situation occurs with the number of comments; most maps
have only a few comments, but now the case is more extreme since 1696
maps (98.7%) have 5 or less comments. For this reason the focus is put in
the number of downloads because the comments on the used website are not
extensively used.

12

Chapter 2. Popularity prediction for Minecraft 2.3. Features

On the other hand, the topic tagging system of the website does not im-
pose any restictions on the number or format of these topics. Due to this
reason, things like worlds without any topic, worlds with 20 topics or topics
like “minecraft” or “asdfasdfasdf” are common. This leads to a similar situ-
ation as in the raw comments, in order to take some advantage of the topic
system some preprocessing has to be done first for filtering and mapping the
topics. This context is almost identical to the raw comments one, therefore
the topics were not considered when downloading the meta-data.

2.3. Features
To extract the features out of the Minecraft levels, they must be read

and parsed; Minecraft has its own file format for the various files in which
it stores the data. This file format is the NBT2 format and it is formed by
a tree structure made up of various tags [Per]. Moreover this information is
arranged in a way that makes easier the compression of the files (which is
made in the gzip format). The library jnbt was used for parsing the NBT
files and some other tools were developed as well to facilitate this task.

In this section the designed features are listed and described detailedly.
First the low-level features, which are more simple are introduced; after that
the high-level features are presented.

2.3.1. Low-level features
The low-level features are features contained in the world file structure

itself or features that are easy to obtain after parsing a map (e.g. counts, or
averages).

Here it is an extensive list of the low-level features extracted from the
meta-information files:

Generator of the level
The features obtained from the generator of the level:

Generator type
Possible values are: default, flat, largeBiomes, amplified or cus-
tomized. Each one of them produces a different kind of level.

2 Named Binary Tag

13

2.3. Features Chapter 2. Popularity prediction for Minecraft

Generator version
Generator options

A set of extra options can be specified for the generator of the
level.

Map features
If structures such as villages, strongholds and mineshafts should
be placed or not.

Game rules
This includes some predefined behavior in the game. Rules for con-
trolling if mobs (enemies) spwan naturally and wether the player keeps
the inventory when dying are some of the possible rules among many
others.

Seed
The seed used for the level generation.

The game mode
Survival, creative, spectator. . .

Difficulty
Four different difficulty levels are available and also whether the diffi-
culty is locked.

Village-related features
Villages and other map features (temples, strongholds, mineshafts. . .)
have its own information. As a way of illustration, villages have the
next features that were stored for each village:

Number of golems in the village
Number of iron golems that protect the village from hostile ene-
mies.

Number of villagers
Number of villagers (NPC3 characters that can trade items with
the player).

Location of the village
x, y, z coordinates of the center of the village.

Radius of the village
i.e. how big the village is.

3 Non-player character

14

Chapter 2. Popularity prediction for Minecraft 2.3. Features

Number of doors in the village
Which is an approximation of the number of buildings.

A part from that meta-information other low-level features are extracted
from the block information directly. These features include:

Count of each type of block
In practice it is normalized divided over the number of total blocks in
the world.

Entropy of each type of block

Count of each type of biome
Biomes are areas in Minecraft worlds with varying geographical fea-
tures: height, temperature, flora, etc. Examples of biomes are: plains,
forests, beaches, rivers, jungles, oceans. . .

Total number of blocks

Figure 2.5: Screenshots of a village with NPCs (on the left) and different
types of biomes (on the right).

This information is extracted for each one of the three dimensions that
may exist in a Minecraft level: The Overworld (“normal” game world), The
Nether (hell-like dimension) and The End (a dimension formed by a single
floating island). Also notice that every block is identified by 8 bits and so
there are 256 (28) types of blocks. This leads to a big amount of features, in
the same way there are also 256 possible types of biomes.

After the design and implementation of the mentioned low-level features
new more complex high-level features were proposed and implemented with
the aim to improve the predictor performance. These features are described
in the next subsection.

15

2.3. Features Chapter 2. Popularity prediction for Minecraft

2.3.2. High-level features
In the current section, high-level features are described. In contrast to

low-level features, high level features require more work to get and think
about.

The first designed high-level features consist on extracting high-level in-
formation from the blocks. For example finding geographical elements in a
map, such as mountains, forests, oceans or deserts, and its corresponding
features: height of a mountain and materials that form it, number of trees in
a forest, ocean deepness, etc. For some of this features the problem can be
simplified from 3 dimensions to 2 dimensions, this is the case of mountains
and forests for example.

Figure 2.6: A map rendered in Google Maps.

The approach used for doing this 3D to 2D transformation consists on
parsing each (x, z) coordinate of a map from top to bottom until finding the
desired block type. Logs can be the goal when looking for a forest, the first
“ground” block when looking for mountains, etc. An example is presented
next.

16

Chapter 2. Popularity prediction for Minecraft 2.3. Features

The map in figure 2.6 contains a big island with forests, beaches, moun-
tains, rivers and a few small islands surrounding the big one. After applying
the described procedure to a map, heat maps can be obtained as the ones in
figure 2.7.

Figure 2.7: Heat maps of height (left) and logs (zoomed, right) of the world
in figure 2.6.

Once we have a 2-dimensional representation of a map, other algorithms
can be applied for further feature extraction. In the case of finding forests
the K -means algorithm can be executed, nonetheless this is not as easy as
that because the number of clusters K has to be specified to the algorithm,
and it is unknown beforehand.

Finally, some of the extracted high-level features are listed below:

Variance of the height of terrain
This can be a hint of how “accessible” is the map.

Number of forests in a world

Average number of trees in a forest

17

2.4. Learning Chapter 2. Popularity prediction for Minecraft

Variance of the number of trees on each forest

After describing the features designed and implemented, it is time to see
how the learning was modelled.

2.4. Learning
Once we have the data and a set of features to begin with it is time for

building a model that predicts the popularity of a level. The popularity of
a level is defined as the normalized number of downloads that the level has.
To normalize the popularity this formula is used:

normalized_popularity = number_downloads
upload_day − today

(2.1)

Note: the number of downloads must be updated to today’s date!

Another possible approach is to introduce intervals for “good”, “medium”
and “bad” quality worlds, tag each sample accordingly depending on its num-
ber of downloads and transform the regression problem into a classification
problem.

Now that the prediction objective has been introduced the learning scheme
will be presented. For this task the machine learning library weka for Java has
been used, a library with more than twelve years of development [HFH+09].

The whole weka learning scheme is sketched in figure 2.8, and is described
in the next paragraphs step by step.

Features and
instances

preparation

Dimensionality
reduction Build model Validation

Figure 2.8: Scheme of the weka learning process used.

First of all a set of feature must be declared, for this purpose an array of
Attributes has to be created and each element of this array will be a level

18

Chapter 2. Popularity prediction for Minecraft 2.4. Learning

feature with one of the weka types: numeric, nomintal, date, string or rela-
tional. In this problem only numeric and nominal types are used. When the
Attributes are set up a object of the class Instances is declared. Then, an
iterative process is carried out and on each step a new Instance is added to
the Instances object; in our case each Instance or sample is composed by
the features described in the previous chapter and it represents a Minecraft
world. At the poing in which each Instance is created convenient prepro-
cessing and normalization are introduced, when apply.

After the instances are prepared, dimensionality reduction is performed.
The dimensionality reduction is done using the PCA4 algorithm implemented
in weka in the PrincipalComponents class. This step is essential, since the
number of features is very large originally and it must be reduced in order
to avoid the “curse of dimensionality” that arises when analyzing data in
high-dimensional spaces.

Once the samples are prepared and the dimensinality has been reduced a
model can be built. Weka disposes of several classifiers, regressors and many
other tools [FHH+05]. Different learning models were tried for learning a
regression predictor from the dataset. Classes like LinearRegression and
SMOreg from the weka library were tested. The class SMOreg which imple-
ments SVMs5 for regression models is of special interest [SS98]. Different
parameters and kernels were testes were tested too.

Next, in order to validate the built model k-fold cross-validation is per-
formed on the data. This method consist in splitting the data in k-folds,
train the model in k − 1 folds and test the trained model in the remaining
1-fold set of samples; consequently k models are trained. In our scenario k is
set to 10 [Koh95].

The results obtained out of this process are presented in the next chapter.

4 Principal Component Analysis
5 Support Vector Machine

19

CHAPTER 3
RESULTS

The results obtained after applying the process described in the second
chapter of this document are analyzed in the following section.

3.1. Analysis of the results
As previously mentioned, different regressors were tested for solving the

problem. The regressor that obtained the best results is the SVM with a
huge difference. Using this regressor, different parameters need to be set,
such as the kernel function or the regularization paramters.

Two different kernel functions were tried: the polynomial kernel (PolyKernel)
and the RBF1 kernel (RBFKernel).

The polynomial kernel is defined as:

K(x, y) =< x, y >p (3.1)

And it has as a parameter the exponent and the regularization parameter
C.

1 Radial Basis Function

21

3.1. Analysis of the results Chapter 3. Results

On the other hand, the RBF kernel function is defined in this way:

K(x, y) = e−(γ<x−y,x−y>2) (3.2)

The two parameters of this kernel function are γ and the regularization
parameter C.

First, the polynomial kernel was tested with different values for the ex-
ponent (and some variations for C); clearly the best exponent was 1. Table
3.1 contains the results obtained.

Table 3.1: SVM regression with polynomial kernel.

Total error Average error Variance C Exponent
5726.065 58.900 2046447.385 1 1
2665.579 27.441 527407.587 0.1 1
163.163 1.669 140.656 0.01 1
330.996 3.403 5131.735 0.001 1

72482417.220 747222.895 5.39E+9 0.1 2
1239.186 12.760 117844.233 0.01 2

It can be seen in the table 3.1 that the best model trained with the poly-
nomial kernel got an average prediction error on the number of downloads
per day of 1.669 and it has a variance of 140.656.

After observing and analyzing the results of the polynomial kernel, the
RBF kernel was tested. As in the case of the polynomial kernel, the best
results come when finding the appropiate values for the parameters. Table
3.2 shows the results obtained with this kernel function.

22

Chapter 3. Results 3.1. Analysis of the results

Table 3.2: SVM regression with RBF kernel.

Total error Average error Variance C γ

68.62669971 0.702951778 5.01650386 1 0.1
60.04567207 0.615084691 5.02906642 0.1 0.1
57.30524711 0.587013491 5.14551194 0.001 0.1
57.01203592 0.584006570 5.20180667 0.0001 0.1
62.20121474 0.637095065 5.08452111 1 0.01
59.15346329 0.605910599 5.13774146 0.1 0.01
57.17557337 0.585678120 5.19795612 0.001 0.01
62.20121474 0.637095065 5.08452111 0.0001 0.01
60.08830397 0.615470567 5.17649649 1 0.001
57.16230031 0.585541728 5.20004569 0.1 0.001
56.94613503 0.583329872 5.22294997 0.001 0.001
56.99820582 0.583864299 5.23160565 0.0001 0.001

It can be observed in the table that the best model was obtained using
the parameters C=0.01 and γ = 0.001. Figure 3.1 plots the values on table
3.2.

The results obtained for the best model on each one of the folds of the
cross-validation is presented in the table 3.3.

Table 3.3: 10-fold results for the RBF kernel with C=0.01 and γ = 0.001.

fold Total error Average error Variance
1 20.59717227 0.210175227 0.193403736
2 133.4066447 1.361292293 17.95626855
3 31.13547913 0.317708970 0.508038573
4 55.72015753 0.568573036 3.963004249
5 46.62647497 0.475780356 1.248203319
6 36.74163923 0.374914686 1.317500484
7 31.64706606 0.322929245 0.890236494
8 69.29391184 0.714370225 5.768442868
9 92.87732111 0.957498155 18.17760173
10 51.41548349 0.530056530 2.206799699

23

3.1. Analysis of the results Chapter 3. Results

Figure 3.1: Average prediction error of the RBF kernel using different values
of γ and C.

To conclude with this chapter and after studying the data presented, it
can be stated that for this problem the best regression predictor is clearly a
SVM regressor with an RBF kernel.

24

CHAPTER 4
CONCLUSIONS

In this work the problem of predicting the goodness of Minecraft lev-
els was introduced and a machine learning scheme was designed and imple-
mented to accomplish the goal. Finally the results obtained were analyzed
carefully. The task of predicting the popularity of user-created game levels
is quite complex, however the results obtained were quite good.

In the following section future work to be done is presented briefly.

4.1. Future work
Future research work for continuing the project could include the design

of new high-level features. Some examples are given in the next paragraphs.

A good starting point could be implementing other high-level features
that take into account not only 2D structures but also 3D ones. For example
extracting features of caves in the worlds or even automatize and generalize
the process of feature extraction could be done. However a smart preprocess-
ing should probably be done before applying any learning technique because
the number of blocks in some maps is enormous, in the order of hundreds of
millions, but even higher in some worlds.

25

4.1. Future work Chapter 4. Conclusions

As a way of illustration, another completely different set of high-level fea-
tures could be obtained by performing diffs between the downloaded levels
and the corresponding “original” ones, that may be generated using the seed
of the level. By doing this operation the position and kind of the blocks that
were placed, changed or removed can be known. In this way, the “work”
done by the players can be used as a new set of features.

Figure 4.1: Screenshots of user-created levels with complex constructions.

Finally, parsing the raw comments and the topics of a world using NLP1

tools would provide a good set of features to be tested as well. After doing
this, conclusions as knowing if the players take into account the topics for
downloading a world or if “zombie” maps are more popular could be obtained.

On the other hand, an obvious next step to perform is to generalize the
scheme, try it with other videogames and observe the results.

1 Natural Language Processing

26

BIBLIOGRAPHY

[Bai07] William S. Bainbridge. The scientific research potential of virtual
worlds. Science, 317(5837):472–476, July 2007.

[FHH+05] E. Frank, M. A. Hall, G. Holmes, R. Kirkby, B. Pfahringer, and
I. H. Witten. Weka: A machine learning workbench for data min-
ing., pages 1305–1314. Springer, Berlin, 2005.

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,
Peter Reutemann, and Ian H. Witten. The weka data mining soft-
ware: An update. SIGKDD Explor. Newsl., 11(1):10–18, Novem-
ber 2009.

[Koh95] Ron Kohavi. A study of cross-validation and bootstrap for accu-
racy estimation and model selection. In Proceedings of the 14th
International Joint Conference on Artificial Intelligence - Volume
2, IJCAI’95, pages 1137–1143, San Francisco, CA, USA, 1995.
Morgan Kaufmann Publishers Inc.

[Per] Markus Alexej “Notch” Persson. Named binary tag specification.
http://web.archive.org/web/20110723210920/http://www.minecraft.net/docs/NBT.txt.
[Online; accessed 31-August-2014].

[SS98] A.J. Smola and B. Schoelkopf. A tutorial on support vector re-
gression. Technical report, 1998. NeuroCOLT2 Technical Report
NC2-TR-1998-030.

[Yee] Nick Yee. Crafting and trading from “The Daedalus Project”.
http://www.nickyee.com/daedalus/archives/001629.php. [On-
line; accessed 2-September-2014].

27

	Introduction
	Aim and motivation
	Minecraft

	Popularity prediction for Minecraft
	The pipeline
	Acquiring the data
	The data

	Features
	Low-level features
	High-level features

	Learning

	Results
	Analysis of the results

	Conclusions
	Future work

	Bibliografía

