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‘‘Doctor Internacional’’.

Y para que ası́ conste en cumplimiento de la
legislación vigente presentamos y apadrinamos ante
la Escuela de Doctorado de la Universitat Politècnica
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Resumen

La presente memoria “Medidas fuertemente mezclantes y subconjuntos in-
variantes en dinámica lineal” se estructura en tres partes. En el Caṕıtulo
0 se introducen la notación, definiciones y resultados básicos que se nece-
sitarán a lo largo de la tesis. La primera parte consta de dos caṕıtulos, los
Caṕıtulos 1 y 2, donde estudiamos la relación entre el Criterio de Hiper-
ciclicidad Frecuente y la existencia de medidas de probabilidad borelianas
fuertemente mezclantes. La segunda parte la compone el Caṕıtulo 3, donde
centramos nuestra atención en el estudio de la hiperciclicidad frecuente de
los C0-semigrupos de traslación. En la última parte, consistente en los
Caṕıtulos 4 y 5, estudiamos propiedades dinámicas que satisfacen los sis-
temas dinámicos lineales autónomos y no autónomos sobre ciertos subcon-
juntos invariantes. A continuación proporcionamos una breve descripción
de cada caṕıtulo:

En el Caṕıtulo 1, construimos medidas de probabilidad borelianas fuerte-
mente mezclantes y T -invariantes con soporte total para operadores definidos
en F - espacios que satisfacen el Criterio de Hiperciclicidad Frecuente. Ade-
más, proporcionamos ejemplos de operadores que verifican este criterio y
mejoramos el resultado en el caso de operadores backward shifts unilat-
erales y caóticos con la obtención de medidas exactas. Los contenidos de
este caṕıtulo han sido publicados en [88] y [12].

En el Caṕıtulo 2, demostramos que el Criterio de Hiperciclicidad Frecuente
para C0-semigrupos, obtenido por Mangino y Peris en [82], asegura la ex-
istencia de medidas invariantes fuertemente mezclantes con soporte total.
Proporcionaremos diversos ejemplos que ilustran este resultado y que vaŕıan
desde el modelo de nacimiento y muerte hasta la ecuación de Black-Scholes.
Todos los resultados de este caṕıtulo han sido publicados en [86].
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En el Caṕıtulo 3, centramos nuestra atención en uno de los C0-semigrupos
más importantes, el semigrupo traslación. Inspirados en el trabajo de Ba-
yart y Ruzsa [22] que caracteriza la hiperciclicidad frecuente de los ope-
radores backward shifts con pesos, caracterizamos los semigrupos traslación
frecuentemente hiperćıclicos en los espacios Cρ0 (R) y Lρp(R). En primer lu-
gar, repasamos los resultados ya existentes sobre la dinámica de los semi-
grupos traslación. A continuación, obtenemos una caracterización de la
hiperciclicidad frecuente para operadores pseudo-shifts con pesos en función
de los mismos, que se usará más tarde para caracterizar el C0-semigrupo
traslación en Cρ0 (R). Finalmente, estudiamos el caso de Lρp(R). También
estableceremos una analoǵıa entre el estudio de la hiperciclicidad frecuente
para el semigrupo traslación en Lρp(R) y el operador backward shift en es-
pacios de sucesiones con pesos. Los contenidos de este caṕıtulo han sido
incluidos en [81].

En el Caṕıtulo 4 hemos estudiado la hiperciclicidad, el caos de Devaney
y las propiedades de tipo mezclante tanto en el sentido topológico como
en el medible para operadores definidos en espacios vectoriales topológicos
que presentan subconjuntos invariantes. Hemos establecido relaciones en-
tre el hecho de que un operador satisfaga las propiedades dinámicas so-
bre ciertos subconjuntos invariantes y que las satisfaga sobre la envoltura
lineal cerrada del propio subconjunto o sobre la unión de subconjuntos
invariantes. Además, proporcionamos condiciones sobre el operador (o C0-
semigrupo), que aseguren que al restringirlo sobre el subconjunto inva-
riante, satisface ciertas propiedades dinámicas. En particular, centraremos
nuestra atención en el caso de operadores positivos y semigrupos positivos
definidos en ret́ıculos, y el cono positivo. Los contenidos de este caṕıtulo
han sido publicados en [85].

En el último caṕıtulo, motivados por el trabajo de Balibrea y Oprocha
[4], donde obtuvieron resultados sobre propiedades mezclantes y caos para
sistemas discretos no autónomos sobre compactos, estudiamos propiedades
mezclantes para sistemas dinámicos lineales no autónomos sobre ciertos
subconjuntos invariantes. Todos los resultados de este caṕıtulo han sido
publicados en [87].



Resum

La tesi “Mesures fortament mesclants i subconjunts invariants en dinàmica
lineal” s’estructura en tres parts. En el Caṕıtol 0 s’introdueix la notació,
definicions i resultats bàsics que es necessitaran al llarg de la tesi. La
primera part de la tesi consta de dos caṕıtols, els Caṕıtols 1 i 2, on estudiem
la relació entre el Criteri d’Hiperciclicitat Freqüent i l’existència de mesures
de probabilitat borelianes fortament mesclants. La segona part la compon
el Caṕıtol 3, on centrem la nostra atenció en l’estudi de la hiperciclicitat
freqüent dels C0-semigrups de translació i l’última part consistent en els
Caṕıtols 4 i 5, on estudiem propietats dinàmiques que satisfan els sistemes
dinàmics lineals autònoms i no autònoms sobre certs subconjunts invari-
ants. A continuació proporcionem una breu descripció de cada caṕıtol:

En el Caṕıtol 1, constrüım mesures de probabilitat borelianes fortament
mesclants i T -invariants amb suport total per a operadors definits en F -
espais que satisfan el Criteri d’Hiperciclicitat Freqüent. A més, propor-
cionem exemples d’operadors que verifiquen aquest criteri i millorem aquest
resultat en el cas d’operadors backward shifts unilaterals i caòtics. Els con-
tinguts d’aquest caṕıtol han sigut publicats en [88] i [12].

En el Caṕıtol 2, mostrem que el Criteri d’Hiperciclicitat Freqüent per a C0-
semigrups, obtingut per Mangino i Peris en [82], assegura l’existència de
mesures invariants fortament mesclants amb suport total. Proporcionarem
diversos exemples que il·lustren aquest resultat i que varien des del model
de naixement i mort fins a l’equació de Black-Scholes. Tots els resultats
d’aquest caṕıtol han sigut publicats en [86] .

En el Caṕıtol 3, centrem la nostra atenció en un dels C0-semigrups més
importants, el semigrup translació. Inspirats en el treball de Bayart i
Ruzsa [22] que caracteritza la hiperciclicitat freqüent dels operadors back-
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ward shifts amb pesos, caracteritzem els semigrups translació freqüentment
hiperćıclics en els espais Cρ0 (R) i Lρp(R). En primer lloc, repassem els resul-
tats ja existents sobre la dinàmica dels semigrups translació. A continuació,
obtenim una caracterització de la hiperciclicitat freqüent per a operadors
pseudo-shifts amb pesos en funció dels mateixos que s’usarà més tard per a
caracteritzar el C0-semigrup translació en Cρ0 (R). Finalment, estudiem el
cas de Lρp(R). També establirem una analogia entre l’estudi de la hiperci-
clicitat freqüent per al semigrup translació en Lρp(R) i l’operador backward
shift en espais de successions amb pesos. Els continguts d’aquest caṕıtol
han sigut inclosos en [81].

En el Caṕıtol 4 hem estudiat la hiperciclicitat, el caos de Devaney i les
propietats de tipus mesclant tant en el sentit topològic com en el mesurable
per a operadors definits en espais vectorials topològics que presenten sub-
conjunts invariants. Hem establit relacions entre el fet que un operador
satisfaça les propietats dinàmiques sobre certs conjunts invariants i que les
satisfaà sobre l’embolcall lineal tancat del propi subconjunt o sobre la unió
de subconjunts invariants. A més, donem condicions a l’operador (o C0-
semigrup), que asseguren que en restringir-ho sobre el subconjunt invariant,
satisfaà certes propietats dinàmiques. En particular, centrarem la nostra
atenció en el cas d’operadors positius i semigrups positius definits en reti-
cles i el con positiu. Els continguts d’aquest caṕıtol han sigut publicats en
[85].

En l’últim caṕıtol, motivats pel treball de Balibrea i Oprocha [4], on van
obtenir resultats sobre propietats mesclants i caos per a sistemes discrets
no autònoms en conjunts compactes, estudiem propietats mesclantes per a
sistemes dinàmics lineals no autònoms sobre certs subconjunts invariants.
Tots els resultats d’aquest caṕıtol han sigut publicats en [87].



Summary

The Ph.D. Thesis “Strong mixing measures and invariant sets in linear dy-
namics” has three differenced parts. Chapter 0 introduces the notation,
definitions and the basic results that will be needed troughout the thesis.
There is a first part consisting of Chapters 1 and 2, where we study the
relation between the Frequent Hypercyclicity Criterion and the existence of
strongly-mixing Borel probability measures. A third chapter, where we fo-
cus our attention on frequent hypercyclicity for translation C0-semigroups,
and the last part corresponding to Chapters 4 and 5, where we study dy-
namical properties satisfied by autonomous and non-autonomous linear dy-
namical systems on certain invariant sets. In what follows, we give a brief
description of each chapter:

In Chapter 1, we construct strongly mixing Borel probability T -invariant
measures with full support for operators on F -spaces which satisfy the
Frequent Hypercyclicity Criterion. Moreover, we provide examples of op-
erators that verify this criterion and we also show that this result can be
improved in the case of chaotic unilateral backward shifts. The contents of
this chapter have been published in [88] and [12].

In Chapter 2, we show that the Frequent Hypercyclicity Criterion for C0-
semigroups, which was given by Mangino and Peris in [82], ensures the
existence of invariant strongly mixing measures with full support. We will
provide several examples, that range from birth-and-death models to the
Black-Scholes equation, which illustrate these results. All the results of this
chapter have been published in [86].

In Chapter 3, we focus our attention on one of the most important tests
C0-semigroups, the translation semigroup. Inspired in the work of Ba-
yart and Ruzsa in [22], where they characterize frequent hypercyclicity of
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weighted backward shifts we characterize frequently hypercyclic transla-
tion C0-semigroups on Cρ0 (R) and Lρp(R). Moreover, we first review some
known results on the dynamics of the translation C0-semigroups. Later we
state and prove a characterization of frequent hypercyclicity for weighted
pseudo shifts in terms of the weights that will be used later to obtain a
characterization of frequent hypercyclicity for translation C0-semigroups
on Cρ0 (R). Finally we study the case of Lρp(R). We will also establish an
analogy between the study of frequent hypercyclicity for the translation
C0-semigroup in Lρp(R) and the corresponding one for backward shifts on
weighted sequence spaces. The contents of this chapter have been included
in [81].

Chapter 4 is devoted to study hypercyclicity, Devaney chaos, topological
mixing properties and strong mixing in the measure-theoretic sense for op-
erators on topological vector spaces with invariant sets. More precisely, we
establish links between the fact of satisfying any of our dynamical proper-
ties on certain invariant sets, and the corresponding property on the closed
linear span of the invariant set, or on the union of the invariant sets. Vicev-
ersa, we give conditions on the operator (or C0-semigroup) to ensure that,
when restricted to the invariant set, it satisfies certain dynamical property.
Particular attention is given to the case of positive operators and semi-
groups on lattices, and the (invariant) positive cone. The contents of this
chapter have been published in [85].

In the last chapter, motivated by the work of Balibrea and Oprocha [4],
where they obtained several results about weak mixing and chaos for nonau-
tonomous discrete systems on compact sets, we study mixing properties for
nonautonomous linear dynamical systems that are induced by the corre-
sponding dynamics on certain invariant sets. All the results of this chapter
have been published in [87].
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Introduction

This Ph.D Thesis treats different aspects about linear dynamics. In the
first part of the thesis we focus our attention on frequent hypercyclicicity
and its connection with measurable dynamics, i.e. ergodic theory. Ergodic
theory was first used for the dynamics of linear operators by Rudnicki [94]
and Flytzanis [56] and during the last years it has deserved special attention
thanks to the work of Bayart and Grivaux [18, 17].

In 2005, motivated by Birkhoff’s Theorem, Bayart and Grivaux introduced
in [18] the notion of frequently hypercyclic operators, trying to quantify how
“often” an orbit meets non-empty open sets. Moreover, they also gave the
first version of a Frequent Hypercyclicity Criterion which ensures that an
operator T defined on an F - space is frequently hypercyclic. Later, some
new versions of this criterion were stated such as a probabilistic version
given by Grivaux in [66], and the most usual one was given by Bonilla an
Grosse-Erdmann in [33].

If an operator T turns out to be ergodic with respect to some T - invariant
Borel probability measure with full support, then T is frequently hyper-
cyclic by Birkhoff’s Ergodic Theorem. Accordingly, it is desirable to find
conditions ensuring the existence of such types of measures.

The starting point of the first chapter is motivated by the work of Bayart
and Matheron that gave very general conditions, expressed on eigenvector
fields associated to unimodular eigenvalues, under which an operator T
admits a T -invariant strongly mixing measure with full support [21]. In
order to obtain their results, they work with Gaussian measures.

In our case, we show that under the hypothesis of the Frequent Hypercyclic-
ity Criterion, we can ensure the existence of T -invariant strongly mixing
measures with full support on F -spaces. Actually, on the one hand our
results can be deduced from [21] in the context of complex Fréchet spaces,
and on the other hand we only need rather elementary tools. Also, although
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2 Introduction

our measures are not Gaussian, they have certain different properties which
have been used recently by Bayart [15].

Moreover, in this first chapter we provide examples that illustrate our re-
sults and we show that they can be improved by obtaining the existence of
exact measures in the case of chaotic unilateral weighted backward shifts.

We also show that Devaney chaos is therefore a sufficient condition for the
existence of strongly mixing measures within the framework of weighted
shift operators on sequence F -spaces, and that in some natural spaces such
as `p it is even a characterization of this fact.

The contents of this chapter have been published in [88] and [12].

Motivated by our work in Chapter 1, we wonder whether if it was also pos-
sible to obtain some conditions to ensure the existence of strongly-mixing
measures with full suppport for C0-semigroups. In parallel with the the-
ory for linear operators, since the seminal paper by Desch, Schappacher
and Webb [45], many researchers turned their attention to the chaotic be-
haviour of strongly continuous semigroups. Actually hypercyclicity appears
in solution semigroups of evolution problems associated with “birth and
death” equations for cell populations, transport equations, first order par-
tial differential equations, Black and Sholes equations, diffusion operators
as Ornstein-Uhlenbeck operators [6, 7, 9, 31, 82, 37].

In [82], Mangino and Peris obtained a continuous version of the Frequent
Hypercyclicity Criterion based on the Pettis integral. We show that this
criterion suffices for the existence of invariant Borel probability measures
on X that are strongly mixing and have full support.

In contrast with the chaotic behavior in the topological sense, which is
trivial to pass from the discrete to the continuous case, while difficult or
false to go in the other direction (see, e.g., [38] for hypercyclicity and fre-
quent hypercyclicity, and [16] for Devaney chaos), the measure-theoretic
properties are not trivially passed from the discrete to the continuous case,
especially because of the requirement of Tt-invariance for every t > 0. This
is why we need to construct explicitly the strongly mixing measures for
C0-semigroups, and they cannot be obtained from the main result in [88].

In [82] some conditions, expressed in terms of eigenvector fields for the in-
finitesimal generator of the C0-semigroup, were given to ensure that the
assumptions of the Frequent Hypercyclicity Criterion are satisfied. In con-
sequence we also obtain the stronger result of existence of invariant strongly
mixing measures under the same conditions. A different argument for the
existence of invariant strongly mixing measures for C0-semigroups has been



Introduction 3

obtained by Bayart and Matheron in [21] under weaker assumptions on the
eigenvector fields for the generator.

We finish the chapter by presenting several applications of the previous
results to the (chaotic) behaviour of the solution C0-semigroup to certain
linear partial differential equations and infinite systems of linear differen-
tial equations. These examples range from birth-and-death models to the
Black-Scholes equation.

All the results of this chapter have been published in [86].

In Chapter 3 we focus our attention on one of the most important tests
C0-semigroups, the translation semigroup. The role of “test” class, which
is played by weighted shifts in the setting of discrete linear dynamical sys-
tems, is covered by translation semigroups in the setting of continuous
linear dynamical systems. These semigroups have been widely studied by
many authors. In [45] hypercyclic translation semigroups were character-
ized. Mixing and chaotic properties were studied by Bermúdez et alt. in
[24] and by Matsui et alt. in [84], respectively.

Inspired in the work of Bayart and Ruzsa in [22], where frequent hyper-
cyclicity of weighted backward shifts is characterized, we characterize fre-
quently hypercyclic translation C0-semigroups on Cρ0 (R) and Lρp(R).

Firstly, we state and prove a characterization of frequent hypercyclicity
for weighted pseudo shifts in terms of the weights that will be used later
to obtain a characterization of frequent hypercyclicity for translation C0-
semigroups on Cρ0 (R). Moreover, we prove that in Cρ0 (R) chaos implies
frequent hypercyclicity but the converse is not true.

Finally we study the case of Lρp(R). We complete the results obtained by
Mangino in Peris in [82] by showing that for translation C0-semigroups on
Lρp(R) chaos is equivalent to frequent hypercyclicity.

We will also establish an analogy between the study of frequent hyper-
cyclicity for the translation C0-semigroup and the corresponding one for
backward shifts on weighted sequence spaces as Barrachina and Peris stud-
ied for distributional chaos in [11].

The contents of this chapter have been included in [81].

Chapter 4 is devoted to study hypercyclicity, Devaney chaos, topological
mixing properties and strong mixing in the measure-theoretic sense for op-
erators on topological vector spaces with invariant sets. Although chaotic
properties for linear operators are usually considered in the context of F -
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spaces, more general topological vector spaces have also attracted the at-
tention in recent years (see, e.g.,[32], [99] and Chapter 12 of [72]).

In the first section of the chapter our framework are operators defined on
topological vector spaces. We provide several conditions under which a
dynamical property can pass from an invariant set (or a countable family
of invariant sets) of the operator to the closure of its linear span (or to the
union of the invariant sets). In [13] analogous results have been given for
backward shift operators and the specification property.

These results allow us to provide some surprising examples that show the in-
terplay between non-linear finite-dimensional dynamics and linear (infinite-
dimensional) dynamics.

There are well-known criteria of chaos [62, 25], mixing [62, 75] and weak
mixing [59, 27] properties for operators. In section 4.3 we derive some
criteria under which an operator restricted to an invariant set satisfies these
properties.

In the last section we will give several criteria for operators and C0-semigroups
that allow certain dynamical properties when restricted to invariant sets.
Special attention is devoted to positive operators on Fréchet lattices and
C0-semigroups of positive operators on Banach lattices when the invariant
set is the positive cone. By following the ideas that we developed in [88]
and [86], respectively, we show that certain “positive” versions of frequent
hypercyclicity criteria ensure the existence of T -strongly mixing measures
supported on the positive cone of a Fréchet lattice, and the existence of
(Tt)t-invariant strongly mixing Borel probability measures supported on
the positive cone of a Banach lattice, where T is a positive operator and
(Tt)t≥0 is a C0-semigroup of positive operators, respectively. In this last
case, the results are relevant in connection with applications since, for in-
stance, the chaotic behaviour of certain solutions to differential equations
make sense only when they are positive. This provides partial answers to
questions of Banasiak, Desch and Rudnicki.

The contents of this chapter have been published in [85].

In the last chapter we study mixing properties (topological mixing and
weak mixing of arbitrary order) for nonautonomous linear dynamical sys-
tems that are induced by the corresponding dynamics on certain invariant
sets. The type of nonautonomous systems that we consider can be defined
by a sequence (Ti)i∈N of linear operators Ti : X → X on a topological vec-
tor space X such that there is an invariant set Y for which the dynamics
restricted to Y satisfies certain mixing property. We then obtain the cor-
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responding mixing property on the closed linear span of Y . We also prove
that the class of nonautonomous linear dynamical systems that are weakly
mixing of order n contains strictly the corresponding class with the weak
mixing property of order n+ 1.

Chaotic behaviour for nonautonomous discrete systems has been studied
by several authors [35, 36, 77, 78, 76].

While the study of dynamics of nonautonomous discrete systems is usually
more complex and demanding than the same studies in the setting of au-
tonomous systems (i.e. systems given by a pair (X,T ) where T is a linear
operator) such studies became more popular each year. The reason is that,
they are more flexible tools for the description of real world processes and
also because the variety of dynamical behavior that can be represented by
such systems is much richer. Very often nonautonomous discrete dynami-
cal systems arise in a natural way as a solution of differential equation. A
particular example is the dynamics of evolution of a population modeled by
(one or multi-dimensional) difference equations, like forced Pielou equation,
periodically forced Beverton-Holt equation, etc. (see for example [42]).

Our work has its starting point in [4], where Balibrea and Oprocha ob-
tained several results about weak mixing and chaos in nonautonomous dis-
crete systems on compact sets. Some of their results will be used to induce
the corresponding dynamical behavior on linear nonautonomous systems.
The theory of linear dynamics is well established in the case of iterations
of a single operator (autonomous dynamical system). The case of nonau-
tonomous linear dynamics is not yet developed, although a more general
concept of universality of a sequence of operators (Tn)n∈N where the orbits
are defined as {Tnx ; n ∈ N}, x ∈ X, has been treated by several authors
(See, e.g., [24, 26, 27, 64, 79]).

All the results of this chapter have been published in [87].





Chapter 0

Preliminaries

This chapter is devoted to introduce the notation, definitions and the basic
results that we will use throughout the thesis. Most of the results related
to linear dynamics can be found in [20] and [72].

0.1 Topological dynamics

Dynamical systems appear naturally in the study of the behavior of evolving
systems. Let X be a set of elements that describes the different acceptable
states of a system. If xn ∈ X is the state of the system at time n ≥ 0,
then its evolution will be given by a linear map T : X → X such that
xn+1 = T (xn).

Definition 0.1.1 (Discrete dynamical system) Let X be a metric space
and let T be a continuous map T : X → X. A discrete dynamical sys-
tem is a pair (X,T ). We define the orbit of a point x ∈ X as the set
Orb(x, T ) = {Tnx : n ∈ N0}, where Tn denotes the n-th iterate of a map
T . We will often simply say that T or T : X → X is a dynamical system.

Definition 0.1.2 Let S : Y → Y and T : X → X be dynamical systems.

1. Then T is called quasi-conjugate to S if there exists a continuous
map φ : Y → X with dense range such that T ◦ φ = φ ◦ S; that is, the

7
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following diagram commutes.

Y
S−→ Y

↓Φ ↓Φ
X

T−→ X

2. If φ can be chosen to be a homeomorphism, then S and T are called
conjugates.

Definition 0.1.3 We say that a property ℘ for dynamical systems is pre-
served under (quasi-)conjugacy if the following holds: if a dynamical system
S : Y → Y has property ℘ then every dynamical system T : X → X that is
(quasi-) conjugate to S also has property ℘.

Definition 0.1.4 Let T : X → X be a dynamical system. Then Y ⊂ X is
called T -invariant or invariant under T if T (Y ) ⊂ Y .

Definition 0.1.5 We say that x ∈ X is a fixed point for the dynamical
system T : X → X if Tx = x, and we say that x ∈ X is a periodic point
for the dynamical system T if Tnx = x for some n ∈ N0. The set of
all periodic points is denoted by Per(T ). If x ∈ Per(T ) then the smallest
positive integer n such that Tnx = x is called a primary period of x.

Definition 0.1.6 Let T : X → X be a dynamical system. For any pair of
nonempty open sets U, V we denote by N(U, V ) = {n ∈ N0 : Tn(U) ∩ V 6=
∅}. Then we have that (X,T ) is:

(i) topologically transitive if for any pair of nonempty open sets U ,V ⊂ X
N(U, V ) 6= ∅;

(ii) weakly mixing if the map T × T is topologically transitive;

(iii) mixing if for any pair of nonempty open sets U ,V ⊂ X N(U, V ) is
cofinite.

(iv) topologically ergodic if for any pair of nonempty open sets U ,V ⊂ X
N(U, V ) is syndetic, that is, there exists p ∈ N, such that {n, n +
1, . . . , n+ p} ∩N(U, V ) 6= ∅ for any n ∈ N0.

A result due to Furstenberg [58] is the following:

Theorem 0.1.7 Let T : X → X be a weakly mixing dynamical system.
Then the n-fold product T × . . .× T is weakly mixing for each n ≥ 2.
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Remark 0.1.8 For any linear dynamical system,

mixing =⇒ topologically ergodic

=⇒ weakly mixing =⇒ topologically transitive.

In 1989 Robert L. Devaney proposed the first good definition of chaos; see
[46]. This concept reflects the unpredictability of chaotic systems because
the definition contains a sensitive dependence on initial conditions, i.e.:

Definition 0.1.9 Let X be a metric space without isolated points. Then
the dynamical system T : X → X is said to have sensitive dependence on
initial conditions if there exists some δ > 0 such that, for every x ∈ X and
ε > 0, there exists some y ∈ X with d(x, y) < ε such that, for some n ≥ 0,
d(Tnx, Tny) > δ. The number δ is called a sensitivity constant for T .

Definition 0.1.10 (Devaney chaos) A dynamical system T : X → X is
called chaotic in the sense of Devaney if it satisfies the following properties:

(i) T is topologically transitive,

(ii) Per(T ) is dense in X,

(iii) T has sensitive dependence on initial conditions.

However, Banks, Brooks, Cairns, Davis and Stacey proved in 1992 ([10]),
that one can drop sensitive dependence from Devaney’s definition because
it is implied by the other two conditions.

Theorem 0.1.11 ([10]) Let X be a metric space without isolated points.
If a dynamical system T : X → X is topologically transitive and has a dense
set of periodic points then T has sensitive dependence on initial conditions
with respect to any metric defining the topology of X.

Proposition 0.1.12 The following properties are preserved by quasi-conjugacy:

(i) Topological transitivity.

(ii) The property of having a dense orbit.

(iii) The property of having a dense set of periodic points.

(iv) Devaney Chaos.

(v) The mixing property.
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(vi) The weak-mixing property.

(vii) Topological ergodicity.

0.2 Hypercyclic and chaotic operators

Dynamical systems are defined by continuous maps on metric spaces. For
linear dynamical systems, the underlying space must in addition have a
linear structure, as is the case for Hilbert spaces and Banach spaces. We
will give definitions of linear dynamical systems on spaces of a more general
type, topological vector spaces.

Definition 0.2.1 Let ||.|| : X → R+ be a functional on a vector space X
that satisfies:

(i) ||x+ y|| ≤ ||x||+ ||y||

(ii) ||λx|| ≤ ||x|| if |λ| ≤ 1

(iii) limλ→0 ||λx|| = 0

(iv) ||x|| = 0 implies that x = 0.

Then ||.|| : X → R+ is called an F -norm. If (X, ||.||) is complete under the
induced metric d(x, y) = ||x− y||, then X is an F -space.

A particular case of F -spaces are Fréchet spaces.

Definition 0.2.2 A Fréchet space is a vector space X, endowed with a
separating increasing sequence (pn)n of seminorms, which is complete under
the metric given by

d(x, y) :=

∞∑
n=1

1

2n
min(1, pn(x− y)).

Definition 0.2.3 Let X and Y be topological vector spaces. Then a con-
tinuous linear map T : X → Y is called an operator. The space of all
operators is denoted by L(X,Y ). If Y = X we say that T is an operator
on X, with L(X) = L(X,X).

A link between chaos theory and linear operator theory was established by
Birkhoff’s Transitivity Theorem in 1922. In this theorem, he showed that
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topological transitivity was equivalent to the notion of hypercyclicity that
Beauzamy established in 1987.

Definition 0.2.4 ([23]) An operator T : X → X is said to be hypercyclic
if there is some x ∈ X whose orbit under T is dense in X. In that case,
x is called a hypercyclic vector for T . The set of hypercyclic vectors is
denoted by HC(T ).

Theorem 0.2.5 (Birkhoff Transitivity theorem, [29]) An operator T
is hypercyclic if and only if it is topologically transitive. If one of these
conditions holds then, the set HC(T ) of hypercyclic vectors is a dense Gδ-
set; i.e., HC(T ) is a countable intersection of open dense sets.

In 1991 Godefroy and Shapiro adopted Devaney’s definition for linear chaos.

Definition 0.2.6 ([62]) An operator T : X → X is called chaotic in the
sense of Devaney if:

(i) T is hypercyclic.

(ii) Per(T ) is dense in X.

Example 0.2.7 The first examples of hypercyclic operators were found by
G.D.Birkhoff in 1929 [30], G.R. Maclane in 1952 [80] and S.Rolewickz in
1969 [91].

(i) (Birkhoff’s operators) The translation operators given by

Taf(z) = f(z + a), a 6= 0.

on the space H(C) of entire functions are hypercyclic for all a 6= 0.

(ii) (MacLane’s operator) The differentiation operator:

D : f → f ′

on H(C) is hypercyclic.

(iii) (Rolewicz’s operators) On the spaces X = `p, 1 ≤ p < ∞, or
X = c0 we consider the multiple

T = λB : X → X, (x1, x2, x3 . . .)→ λ(x2, x3, x4, . . .)

of the backward shift, where λ ∈ K. T is hypercyclic whenever |λ| > 1.
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Moreover, these operators are chaotic. We first need the following results.

Proposition 0.2.8 Let T be a linear map on a complex vector space X.
Then the set of periodic points of T is given by

Per(T ) = span{x ∈ X;Tx = eαπix for some α ∈ Q}

Let eλ denotes the exponential function eλ(z) = eλz.

Lemma 0.2.9 Let Λ ⊂ C be a set with an accumulation point. Then the
set

span{eλ;λ ∈ Λ}
is dense in H(C).

The lemma allows us to show that Birkhoff’s and MacLane’s operators are
chaotic on H(C).

Example 0.2.10 For the differentiation operator D, any function eλ is an
eigenvector of D to the eigenvalue λ. Thus, since the subspace

span{eλ;λ = eαπi, for some α ∈ Q}

is dense in H(C) by lema 0.2.9, proposition 0.2.8 tells us that Per(T ) is
dense. Since we already know that D is hypercyclic, it is also chaotic.

For the translation operators Ta, a ∈ C\{0}, any function eλ is an eigen-
vector of Ta to the eigenvalue eaλ. Thus, since the subspace

span{eλ; eaλ = eαπi, for some α ∈ Q} = span{eλ;λ =
α

a
iπ, α ∈ Q}

is also dense in H(C), we conclude as before that each Ta is chaotic.

0.3 Measure-theoretic properties

The theory of dynamical systems has its roots in topological dynamics
but there is also a parallel theory of measurable dynamics, which is better
known under the name of ergodic theory. Ergodic theory was first used
for the dynamics of linear operators by Rudnicki [94] and Flytzanis [56].
During the last years it has deserved special attention thanks to the work of
Bayart and Grivaux [17, 18]. For instance, the papers [3, 19, 21, 43, 67, 95]
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contain recent advances on the subject. In this section we present some ba-
sic measure-theoretic properties that linear dynamical systems have. These
results can be found in [102].

Let T be an operator on a topological vector space X. In order to look at
T from the point of view of ergodic theory we need to define a probability
measure µ on X. It is natural to assume that µ is defined on the Borel
σ-algebra B(X), that is the smallest σ-algebra containing the open subsets
of X.

Definition 0.3.1 • A measure µ has full support if for all non-empty
open set U ⊂ X µ(U) > 0.

• A measurable map T : (X,B(X), µ)→ (X,B(X), µ) is called a measure-
preserving transformation, or in other words, µ is T -invariant, if
µ(T−1(A)) = µ(A) for all A ∈ B(X).

• T : (X,B(X), µ) → (X,B(X), µ) is an E-system if there exists a
T -invariant probability measure µ with full support.

• A measurable map T : (X,B(X), µ)→ (X,B(X), µ) is called ergodic
if it is measure-preserving and satisfies one of the following equivalent
conditions:

(i) Given any measurable sets A,B with positive measures, one can
find an integer n ≥ 0 such that Tn(A)

⋂
B 6= ∅;

(ii) if A ∈ B(X) satisfies T (A) ⊂ A, then µ(A)(1− µ(A)) = 0.

(iii) if A ∈ B(X) satisfies T−1(A) = A, then µ(A)(1− µ(A)) = 0.

• A measurable map T : (X,B(X), µ) → (X,B(X), µ) is said to be
strongly mixing with respect to µ if

limn→∞µ(A ∩ T−n(B)) = µ(A)µ(B) (A,B ∈ B(X)).

• T is said to be exact if given A ∈
⋂∞
n=0 T

−nB(X) then µ(A)(1 −
µ(A)) = 0.

Proposition 0.3.2 For any operator T : X → X,

exact =⇒ strongly mixing =⇒ ergodic.
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0.4 Hypercyclic criteria

The main purpose of this section is to show several criteria under which an
operator is chaotic, mixing or weakly mixing. In this section we show these
criteria. This first criterion is due to Godefroy Shapiro and it is contained
implicitly in their paper [62] and was isolated by Bernal [25].

Theorem 0.4.1 (Godefroy-Shapiro criterion, [62] ) Let T be an op-
erator. Suppose that the subspaces

X0 := span{x ∈ X; Tx = λx for some λ ∈ K with |λ| < 1}

Y0 := span{x ∈ X; Tx = λx for some λ ∈ K with |λ| > 1}
are dense in X.
Then T is mixing, and in particular hypercyclic.

If, moreover, X is a complex space and the subspace

Z0 := span{x ∈ X; Tx = λx for λ ∈ C, |λ|n = 1 for some n ∈ N}

is dense in X, then T is chaotic.

Example 0.4.2 Rolewicz’s operators
Let T = µB, with |µ| > 1, be the multiple of the backward shift on any
space X = `p, 1 ≤ p < ∞ or X = c0. Let us consider the complex case.
One easily determines the eigenvectors of B as the nonzero multiples of the
sequences

eλ := (λ, λ2, λ3, . . .), |λ| < 1

with corresponding eigenvalue λ. Therefore, eλ is an eigenvector of T = µB
corresponding to the eigenvalue µλ. For any subset Λ of the unit disk that
has an accumulation point inside the disk, the set span{eλ;λ ∈ Λ} is dense
in X. By the Hahn-Banach theorem it suffices to show that any continuous
linear functional x∗ on X that vanishes on each eλ, λ ∈ Λ vanishes on X.
Since x∗ ∈ X∗, via the canonical representation it is given by a sequence
(yn)n ∈ `q for a certain q, with 1 ≤ q ≤ ∞ , we have that

x∗(eλ) =< eλ, x
∗ >=

∞∑
n=1

ynλ
n if |λ| < 1.

The identity theorem for holomorphic functions implies that each yn is zero
and therefore x∗ = 0. In particular, the subspace

X0 = span{x ∈ X;Tx = ηx for η ∈ K, |η| < 1} = span{eλ; |λ| < 1

|µ|
}
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is dense in X, as the suspaces Y0 and Z0 of the Godefroy- Shapiro criterion;
note that 1

|µ| < 1. This implies that Rolewicz’s operators are mixing and

chaotic.

The earliest forms of the Hypercyclicity Criterion were found independently
by Kitai [75] and by Gethner and Shapiro [59]. In its general form it is due
to Bés and Peris [27].

Theorem 0.4.3 (Kitai’s criterion, [75]) Let T be an operator. If there
are dense subsets X0, Y0 ⊂ X and a map S : Y0 → Y0 such that, for any
x ∈ X0, y ∈ Y0:

(i) Tnx→ 0,

(ii) Sny → 0,

(iii) TSy = y,

then T is mixing.

Example 0.4.4 (i) (Rolewicz’s operators) Taking X0 = Y0 the set
of finite sequences, which is dense in X, and for S : Y0 → Y0 the
map S = 1

λF where F is the forward shift operator F : (x1x2, . . .)→
(0, x1, x2, . . .) the conditions of Kitai’s criterion are clearly satisfied.

(ii) (MacLane’s operators) In this case we take for X0 = Y0 the set
of polynomials, which is dense in H(C), and for S we consider the
integral operator Sf(z) =

∫ z
0 f(ζ)dζ. While conditions (i) and (iii)

are obvious, we note that condition (ii) is sufficient to be verified by
monomials, and Sn(zk) = k!

(k+n)!z
k+n → 0 as n → ∞, uniformly on

compact sets, as required.

(iii) (Birkhoff’s operators) It is sufficient to prove that T1f(z) = f(z+1)
on H(C) is mixing. For X0 = Y0 we choose the set of functions fp,α,ν =

p(z)e−α(z−ν)2 , where p is a polynomial and α > 0, ν ∈ N0. Since
fp,α,ν → p in H(C) as α→ 0, this set is dense in H(C). Moreover, for
S we consider the translation operator Sf(z) = f(z − 1). Now if z =

x+iy with |y| ≤ 1
2 |x| then we have that |e−αz2 | = e−α(x2−y2) ≤ e−

3

4
αx2

.
This implies, that for any p, α and ν, fp,α,ν(z ± n)→ 0 uniformly on
compact sets as n → ∞, which shows that conditions (i) and (ii) of
Kitai’s criterion hold, while condition (iii) is trivial.
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Theorem 0.4.5 (Gethner-Shapiro criterion, [59]) Let T be an oper-
ator. If there are dense subsets X0, Y0 ⊂ X, an increasing sequence (nk)k
of positive integers, and a map S : Y0 → Y0 such that, for any x ∈ X0,
y ∈ Y0:

(i) Tnkx→ 0,

(ii) Snky → 0,

(iii) TSy = y,

then T is weakly mixing.

Theorem 0.4.6 (Hypercyclicity criterion, [27]) Let T be an operator.
If there are dense subsets X0, Y0 ⊂ X, an increasing sequence (nk)k of
positive integers, and maps Snk : Y0 → X, k ≥ 1 such that, for any x ∈ X0,
y ∈ Y0:

(i) Tnkx→ 0,

(ii) Snky → 0,

(iii) TnkSnky → y,

then T is weakly mixing, and in particular hypercyclic.

0.5 Weighted shifts

In this section we include some basic results about weighted shifts, which
make up an important class of hypercyclic and chaotic operators. Due
to its simple structure, the class of weighted shifts is a favorite testing
ground for operator-theorists. Salas([96]) characterized hypercyclic and
weakly mixing unilateral and bilateral weighted shifts on `2 and `2(Z),
respectively. The characterizations for more general sequence spaces and
chaos characterizations are due to Grosse-Erdmann [70].

Definition 0.5.1 The basic model of all shifts is the backward shift

B(x1, x2, x3, . . .) = (x2, x3, x4, . . .).

Another shift is the weighted backward shift which is defined as:

Bw(x1, x2, x3, . . .) = (w2x2, w3x3, w4x4, . . .),
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where w = (wn)n is called a weight sequence. The weights wn will be
assumed to be non-zero.

These operators can be defined on an arbitrary sequence space X, that
is, a linear space of sequences or, in other words, a subspace of w = KN.
Moreover, X should carry a topology that is compatible with the sequence
space structure of X. We interpret this as demanding that convergence in
X should imply coordinatewise convergence. A Banach (Fréchet, F-) space
of this kind is called a Banach (Fréchet, F-) sequence space.

Theorem 0.5.2 Let X be a Fréchet sequence space in which (en)n (where
en = (0, . . . , 0, 1︸︷︷︸

n

, 0, . . .)) is a basis. Suppose that the backward shift B is

an operator on X. Then the following assertions are equivalent:

(i) B is hypercyclic;

(ii) B is weakly mixing;

(iii) there is an increasing sequence (nk)k of positive integers such that
enk → 0 in X as k →∞.

Example 0.5.3 Let

`vp = {(xn)n;

∞∑
n=1

|xn|pvn <∞},

with 1 ≤ p < ∞, be a weighted `p-space, where v = (vn)n is a positive
weight sequence. Then B is an operator on `vp if and only if there is an
M > 0 such that, for all x ∈ `vp( ∞∑

n=1

|xn+1|pvn

) 1

p

≤M

( ∞∑
n=1

|xn|pvn

) 1

p

which is equivalent to supn∈N
vn
vn+1

< ∞. Theorem 0.5.2, tells us that

hypercyclicity of B is characterized by infn∈N vn = 0.

The same conditions also characterize the continuity and hypercyclicity of
the backward shift B on the weighted c0-space

cv0 = {(xn)n; lim
n→∞

|xn|vn = 0}.

The following Theorem provides a charcaterization of mixing backward
shifts.
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Theorem 0.5.4 Let X be a Fréchet sequence space in which (en)n is a
basis. Suppose that the backward shift B is an operator on X. Then the
following assertions are equivalent:

• B is mixing;

• en → 0 in X as n→∞.

In order to show the following results we first need the definition of uncon-
ditional convergence.

Definition 0.5.5 Let X be a Fréchet space. Then the following assertions
are equivalent:

(i)
∑∞

n=1 xn is unconditionally convergent;

(ii) for any 0-1-sequence (εn)n,
∑∞

n=1 εnxn converges;

(iii) for any bounded sequence (αn)n of scalars,
∑∞

n=1 αnxn converges;

(iv) for any ε > 0 there is some N ∈ N such that for any finite set F ⊂
{N,N + 1, N + 2, . . .} we have that∥∥∥∥∥∑

n∈F
xn

∥∥∥∥∥ < ε;

(v) for any ε > 0 there is some N ∈ N such that for any 0-1-sequence
(εn)n,

∑∞
n=1 εnxn converges and∥∥∥∥∥∥

∑
n≥N

εnxn

∥∥∥∥∥∥ < ε;

(vi) for any ε > 0 there is some N ∈ N such that whenever supn≥1 |αn| ≤ 1
then

∑∞
n=1 αnxn converges and∥∥∥∥∥∥

∑
n≥N

αnxn

∥∥∥∥∥∥ < ε;

Definition 0.5.6 A sequence (en)n in a Fréchet space X is called an un-
conditional basis if it is a basis such that, for every x ∈ X, the representa-



0.5 Weighted shifts 19

tion

x =

∞∑
n=1

anen

converges unconditionally.

Theorem 0.5.7 Let X be a Fréchet sequence space in which (en)n is an
unconditional basis. Suppose that the backward shift B is an operator on
X. Then the following assertions are equivalent:

(i) B is chaotic;

(ii)
∑∞

n=1 en converges in X;

(iii) the constant sequences belong to X;

(iv) B has a non-trivial periodic point.

It is easy to transfer results to weighted shifts by a conjugacy. Let Bw be
a weighted shift on some sequence space X. We define vn by

vn =

(
n∏
ν=1

wν

)−1

, n ≥ 1

and consider the sequence space

Xv = {(xn)n; (xnvn)n ∈ X}.

The map Φv : Xv → X, (xn)n → (xnvn)n is a vector space isomorphism
and Bw ◦ Φv = Φv ◦B, that is the following diagram commutes:

Xv
B−−−−→ Xv

φv

y yφv
X

Bw−−−−→ X

Thus Bw : X → X and B : Xv → Xv are conjugate operators.

Theorem 0.5.8 Let X be a Fréchet sequence space in which (en)n is a
basis. Suppose that the weighted shift Bw is an operator on X.

1. The following assertions are equivalent:

(i) Bw is hypercyclic;
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(ii) Bw is weakly mixing;

(iii) there is an increasing sequence (nk)k of positive integers such that(
nk∏
ν=1

wν

)−1

enk → 0

in X as k →∞.

2. The following assertions are equivalent:

(i) Bw is mixing;

(ii) we have that (
n∏
ν=1

wν

)−1

en → 0

in X as n→∞;

3. Suppose that the basis (en)n is unconditional. Then the following as-
sertions are equivalent:

(i) Bw is chaotic;

(ii) the series
∞∑
n=1

(
n∏
ν=1

wν

)−1

en

converges in X;

(iii) the sequence ( n∏
ν=1

wν

)−1

n

belongs to X;

(iv) Bw has a non-trivial periodic point.

Example 0.5.9 A weighted backward shift Bw is an operator on a se-
quence space `p, 1 ≤ p <∞, or c0 if and only if the weights wn are bounded.
The respective characterizing conditions for Bw to be hypercyclic mixing
or chaotic on `p are

sup
n≥1

n∏
ν=1

|wν | =∞, limn→∞

n∏
ν=1

|wν | =∞,
∞∑
n=1

1∏n
ν=1 |wν |p

<∞.
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The first condition also characterizes when Bw is hypercyclic on c0 and the
second when it is mixing or equivalently chaotic on c0. In particular for
Rolewicz’s operator T = λB, |λ| > 1, we have that

∏n
ν=1 |wν | = λn, which

implies that this operator is chaotic.

We can also study shifts on sequence spaces indexed over Z. The bilateral
backward shift is given by

B(xn)n∈Z = (xn+1)n∈Z

and the bilateral weighted backward shifts are given by

Bw(xn)n∈Z = (wn+1xn+1)n∈Z

where w = (wn)n is called a weight sequence.

Theorem 0.5.10 Let X be a Fréchet sequence space in which (en)n∈Z is
a basis. Suppose that the bilateral shift B is an operator on X.

1. The following assertions are equivalent:

(i) B is hypercyclic;

(ii) B is weakly mixing;

(iii) there is an increasing sequence (nk)k of positive integers such that
for any j ∈ Z, ej−nk → 0 and ej+nk → 0 in X as k →∞.

2. The following assertions are equivalent:

• B is mixing;

• e−n → 0 and en → 0 in X as n→∞.

3. The following assertions are equivalent:

(i) B is chaotic;

(ii)
∑∞

n=−∞ en converges in X;

(iii) The constant sequences belong to X;

(iv) B has a nontrivial periodic point.
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Using a suitable conjugacy this result can be generalized immediately to
weighted shifts. The conjugacy is given by:

Xv
B−−−−→ Xv

φv

y yφv
X

Bw−−−−→ X

where
Xv = {(xn)n∈Z; (xnvn)n ∈ X}

and Φv : Xv → X, (xn)n∈Z → (xnvn)n∈Z with

vn =

(
n∏
ν=1

wν

)−1

for n ≥ 1, vn =

0∏
ν=n+1

wν for n ≤ −1, v0 = 1.

Theorem 0.5.11 Let X be a Fréchet sequence space over Z in which (en)n∈Z
is a basis. Suppose that the weighted shift Bw is an operator on X.

1. The following assertions are equivalent:

(i) Bw is hypercyclic;

(ii) Bw is weakly mixing;

(iii) there is an increasing sequence (nk)k of positive integers such
that, for any j ∈ Z j∏

ν=j−nk+1

wν

 ej−nk → 0 and

 j+nk∏
ν=j+1

wν

−1

ej+nk → 0

in X as k →∞.

2. The following assertions are equivalent:

(i) Bw is mixing;

(ii) we have(
0∏

ν=−n+1

wν

)
e−n → 0 and

(
n∏
ν=1

wν

)−1

en → 0

in X as n→∞.
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3. Suppose that the basis (en)n is unconditional. Then the following as-
sertions are equivalent:

(i) Bw is chaotic;

(ii) the series

0∑
n=−∞

(
0∏

ν=n+1

wν

)
en +

∞∑
n=1

(
n∏
ν=1

wν

)−1

en

converges in X;

(iii) the sequence (xn)n∈Z with

xn =

0∏
ν=n+1

wν(n ≤ 0), xn =

(
n∏
ν=1

wν

)−1

(n ≥ 1)

belongs to X;

(iv) Bw has a nontrivial periodic point.

Remark 0.5.12 A weighted backward shift Bw is an operator on a se-
quence space `p(Z), 1 ≤ p < ∞, if and only if the weights wn, n ∈ Z
are bounded. Such an operator is then hypercyclic, mixing or chaotic if
and only if the following conditions, respectively, are satisfied. There exists
(nk)k such that for all j ∈ Z:

lim
k→∞

j∏
ν=j−nk+1

wν = 0 and lim
k→∞

j+nk∏
ν=j+1

|wν | =∞;

lim
n→∞

0∏
ν=−n+1

wν = 0 and lim
n→∞

n∏
ν=1

|wν | =∞;

∞∑
n=0

0∏
ν=−n+1

|wν |p <∞ and

∞∑
n=1

1∏n
ν=1 |wν |p

<∞.

In particular, a symmetric weight (that is, one with w−n = wn for all n ≥ 0)
never defines a hypercyclic weighted shift Bw on these spaces.
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0.6 Weighted pseudo-shifts

In this section we study a more general kind of operators, the weighted
pseudo-shifts operators.

Definition 0.6.1 Let X,Y be topological sequence spaces over countable
sets I and J . Then a continuous linear operator T : X → Y is called a
weighted pseudo-shift if there is a sequence (bj)j∈J of non-zero scalars and
an injective mapping Φ : J → I such that

T (xi)i∈I = (bjxΦ(j))j∈J

for (xi) ∈ X. We then write T = Tb,Φ, and (bj)j∈J is called the weight
sequence.

Remark 0.6.2 Every unilateral or bilateral weighted backward shift is a
weighted pseudo-shift with bn = an+1 and Φ(n) = n+ 1, and every bilateral
weighted forward shift is a weighted pseudo-shift with bn = an−1 and Φ(n) =
n− 1.

Some well-known results about hypercyclicity of weighted pseudo-shifts will
be shown. First of all, we need to recall that the family (ei)i∈I of unit
vectors is called an M -basis in a topological sequence space X over I if
span{ei : i ∈ I} is a dense subspace of X [100]. We shall call (ei)i∈I an
OP -basis if it is an M -basis and if the family of coordinate projections
x→ xiei(i ∈ I) on X is equicontinuous.

Definition 0.6.3 ([69]) We recall that a sequence (Tn)n∈N0
of continuous

mappings Tn : X → Y between topological spaces X and Y is called univer-
sal if there is an element x ∈ X such that the set {Tnx : n ∈ N0} is dense
in Y . The element x is called universal for (Tn)n∈N0

.

Definition 0.6.4 A sequence (Φn)n∈N0
of mappings Φn : J → I is called

a run-away sequence if for each pair of finite subsets I0 ⊂ I and J0 ⊂ J
there exists an n0 ∈ N0 such that, for every n ≥ n0, Φn(J0) ∩ I0 = ∅

In [70], the author characterizes the universality of sequences of weighted
pseudo-shifts.

Theorem 0.6.5 ([70]) Let X and Y be F -sequence spaces over I and J ,
respectively, in which (ei)i∈I and (ej)j∈J are OP -bases. Let Tn = Tbn,Φn :
X → Y (n ∈ N0) be weighted pseudo-shifts with weights bn = (bn,j)j∈J . If
(Φn)n is a run-away sequence, then the following assertions are equivalent:
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(i) the sequence (Tn) has a dense set of universal elements;

(ii) there exists an increasing sequence (nk) of positive integers such that

b−1
nk,j

eΦnk (j) → 0 in X, j ∈ J

bnk,Φ−1
nk

(i)eΦ−1
nk

(j) → 0 in Y, i ∈ I

as k →∞.

Clearly, an operator T : X → X is hypercyclic if and only if the sequence
(Tn)n is universal.

Theorem 0.6.6 ([70]) Let X be an F -sequence space over I in which
(ei)i∈I is an OP -basis. Let T = Tb,Φ : X → X be a weighted pseudo-shift.
Then the following assertions are equivalent:

(i) T is hypercyclic;

(ii) (1) the mapping Φ : I → I has no periodic points;

(2) there exists an increasing sequence (nk) of positive integers such
that, for every i ∈ I,(

nk−1∏
ν=0

bΦν(i)

)−1

eΦnk (i) → 0

(
nk∏
ν=1

bΦν(i)

)
eΦnk (i) → 0

in X, as k →∞.

0.7 C0-semigroups

In this section we study dynamical properties of strongly continuous semi-
groups of operators on Banach spaces, that is, for C0-semigroups. They can
viewed as the continuous-time analogue of the discrete-time case of iterates
of a single operator. All these results about C0-semigroups can be found in
the books of Engel and Nagel ([53] and [52]) and in [72].

Definition 0.7.1 A one-parameter family (Tt)t≥0 of operators on a Ba-
nach space X is called a strongly continuous semigroup of operators if the
following three conditions are satisfied:
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(i) T0 = I

(ii) TtTs = Tt+s for all t, s ≥ 0

(iii) lims→t Tsx = Ttx for all x ∈ X and t ≥ 0

One also refers to it as a C0-semigroup.

A systematic study of the dynamical properties of semigroups, was started
by Desch, Schappacher and Webb [45]. In particular they introduced the
notions of hypercyclicity and chaos for semigroups.

Definition 0.7.2 Let (Tt)t≥0 be a C0-semigroup on X.

(i) The semigroup is hypercyclic if there is some x ∈ X whose orbit
Orb(x, Tt) = {Ttx; t ≥ 0} is dense in X. In such a case, x is called a
hypercyclic vector for (Tt)t≥0.

(ii) The semigroup is called topologically transitive if for any pair U, V of
nonempty open sets of X, there exists some t0 ≥ 0 such that Tt0(U)∩
V 6= ∅.

(iii) The semigroup is mixing if, for any pair U, V of nonempty open sets
of X, there exists some t0 ≥ 0 such that Tt(U) ∩ V 6= ∅ for all t ≥ t0.

(iv) The semigroup is weakly mixing if (Tt⊕Tt)t≥0 is topologically transi-
tive on X ⊕X.

(v) A point x ∈ X is called a periodic point of (Tt)t≥0 if there is some
t0 > 0 such that Tt0x = x.

(vi) The semigroup is said to be chaotic if it is hypercyclic and its set of
periodic points is dense in X.

(vii) Let (St)t≥0 be a C0-semigroup on a Banach space Y . Then (Tt)t≥0

is called quasiconjugate to (St)t≥0 if there exists a continuous map
Φ : Y → X with dense range such that Tt ◦ Φ = Φ ◦ St for all t ≥ 0.
If Φ can be chosen to be a homeomorphism then (Tt)t≥0 and (St)t≥0

are called conjugate.

Proposition 0.7.3 Hypercyclicity, mixing, weak mixing and chaos for a
C0-semigroup are preserved under quasiconjugacy.

Now, we give some measure-theoretic properties properties related to C0-
semigroups defined on a probability space (X,B, µ), where X is a Banach
space and B denotes the σ-algebra of Borel subsets of X.
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Definition 0.7.4 (i) A C0-semigroup is called measure-preserving, or in
other words, µ is Tt-invariant, if µ(A) = µ(T−1

t (A)) for all t ≥ 0 and
for all A ∈ B.

(ii) A C0-semigroup is strongly mixing with respect to µ if it is measure-
preserving and

lim
t→∞

µ(A ∩ T−1
t (B)) = µ(A)µ(B) (A,B ∈ B).

(iii) A C0-semigroup is ergodic with respect to µ if it is measure-preserving
and satisfies one of the following equivalent conditions:

(i) Given any measurable sets A,B with positive measures, there ex-
ists t0 ≥ 0 such that Tt0(A)

⋂
B 6= ∅;

(ii) if A ∈ B(X) satisfies Tt(A) ⊂ A for all t ≥ 0, then µ(A)(1 −
µ(A)) = 0.

0.7.1 Criteria for hypercyclicity and chaos of C0-semigroups

The first criteria for hypercyclicicty of C0-semigroups were found by Desch,
Schappacher and Webb [45]. In the form that we give, the Hypercyclicity
criterion is due to Conejero and Peris [39] and El Mourchid [49], while the
criterion for mixing, is due to Bermúdez, Bonilla, Conejero and Peris [24].

Theorem 0.7.5 (Hypercyclicity Criterion for semigroups ([39],[49]))
Let (Tt)t≥0 be a C0-semigroup on X. If there are dense subsets X0, Y0 ⊂ X,
a sequence (tn)n ∈ R+ with tn → ∞, and maps Stn : Y0 → X,n ∈ N, such
that, for any x ∈ X0, y ∈ Y0,

(i) Ttnx→ 0,

(ii) Stny → 0,

(iii) TtnStny → y,

then (Tt)t≥0 is weakly mixing, and in particular hypercyclic.

If in the Hypercyclicity criterion one has convergence along the whole real
line then we obtain a criterion for mixing.
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Theorem 0.7.6 ([24]) Let (Tt)t≥0 be a C0-semigroup on X. If there are
dense subsets X0, Y0 ⊂ X, and maps St : Y0 → X, t ≥ 0, such that, for any
x ∈ X0, y ∈ Y0,

(i) Ttx→ 0,

(ii) Sty → 0,

(iii) TtSty → y,

then (Tt)t≥0 is mixing.

Now let (Tt)t≥0 be an arbitrary C0-semigroup on X. It can be shown that

Ax := lim
t→0

1

t
(Ttx− x)

exists on a dense subspace of X; the set of these x, the domain of A is
denoted by D(A). Then A, or rather (A,D(A)), is called the infinitesimal
generator of the semigroup. Moreover Tt(D(A)) ⊂ D(A) with ATtx =
TtAx, for every t ≥ 0 and x ∈ D(A), see for instance [104]. Another
important property is provided by the point spectral mapping theorem for
semigroups. If X is a complex Banach space then, for every x ∈ D(A) and
λ ∈ C,

Ax = λx⇒ Ttx = eλtx

for every t ≥ 0.

Sometimes the Hypercyclicity Criterion is hard to be applied. In many sit-
uations we can obtain the infinitesimal generator of a semigroup although
we do not have the explicit representation of its operators. Desch, Schap-
pacher, and Webb gave a criterion which permits us to state Devaney chaos
(and hypercyclicity) of a C0-semigroup in terms of the abundance of eigen-
vectors of the infinitesimal generator [45].

Theorem 0.7.7 ([45]) Let X be a complex separable Banach space, and
(Tt)t≥0 a C0-semigroup on X with generator (A,D(A)). Assume that there
exists an open connected subset U and weakly holomorphic functions fj :
U → X, j ∈ J , such that

(i) U
⋂
iR 6= ∅,

(ii) fj(λ) ∈ Ker(λI −A) for every λ ∈ U ; j ∈ J ,

(iii) for any x∗ ∈ X∗, if 〈fj(λ), x∗〉 = 0 for all λ ∈ U and j ∈ J then
x∗ = 0,



0.8 Frequent Hypercyclicity 29

then the semigroup (Tt)t≥0 is mixing and chaotic.

A more general version of this criterion can be found in [50].

Theorem 0.7.8 Let X be a complex separable Banach space, and (Tt)t≥0

a C0-semigroup on X with generator (A,D(A)). Assume that there are
a < b and continuous functions fj : [a, b]→ X, j ∈ J , such that

(i) fj(s) ∈ Ker(isI −A) for every s ∈ [a, b], j ∈ J ,

(ii) span{fj(s); s ∈ [a, b], j ∈ J} is dense in X,

then the semigroup (Tt)t≥0 is mixing and chaotic.

0.8 Frequent Hypercyclicity

The concept of frequent hypercyclicity was introduced by Bayart and Gri-
vaux [18] inspired by Birkhoff’s Ergodic Theorem.

Theorem 0.8.1 (Birkhoff’s Ergodic Theorem, [28]) Let T be an op-
erator on a Fréchet space X ergodic respect to µ then, for any µ-integrable
function f on X, its time average with respect to T coincides with its space
average; more precisely

1

N + 1

N∑
n=0

f(Tnx)→
∫
X
fdµ

for µ-almost all x ∈ X as N →∞.

First of all we recall the following definition:

Definition 0.8.2 The lower density of a subset A ⊂ N0 is defined as

dens(A) = lim inf
N→∞

card{0 ≤ n ≤ N ;n ∈ A}
N + 1

.

Definition 0.8.3 An operator T on a Fréchet space X is called frequently
hypercyclic if there is some x ∈ X such that, for any nonempty open subset
U of X,

dens{n ∈ N0;Tnx ∈ U} > 0.

In this case, x is called a frequently hypercyclic vector for T . The set of
frequently hypercyclic vectors of T is denoted by FHC(T ).
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Proposition 0.8.4 A vector x is frequently hypercyclic for T if and only
if, for any nonempty open subset U of X, there is a strictly increasing
sequence (nk)k of positive integers such that

Tnkx ∈ U for all k ∈ N, and nk = O(k).

By contrast, T is hypercyclic if and only if the same is true for some (nk)k,
not necessarily of order O(k).

Definition 0.8.5 We recall that a sequence (Tn)n of continuous mappings
between topological spaces X and Y is called frequently universal if there
exists x ∈ X such that for every non-empty open set U ⊆ Y ,

dens{n ∈ N0 : Tnx ∈ U} > 0.

In this case, x is called a frequently universal vector for (Tn)n∈N0
.

The first ones that used ergodic theory for the dynamics of linear operators
were Rudnicki [94] and Flytzanis [56]. The notion of frequent hypercyclicity
was extended to C0-semigroups in [3]. We recall the corresponding notion
of lower density for a subset of R+.

Definition 0.8.6 The lower density of a measurable set M ⊂ R+ is defined
by

Dens(M) := lim inf
N→∞

λ(M
⋂

[0, N ])

N
,

where λ is the Lebesgue measure on R+.

Definition 0.8.7 A C0-semigroup (Tt)t≥0 is said to be frequently hypercyclic
if there exists x ∈ X such that Dens({t ∈ R+ ; Ttx ∈ U}) > 0 for any
non-empty open set U ⊂ X.

Proposition 0.8.8 Frequent hypercyclicity is preserved by quasiconjugacy.

0.9 Lattices

In this section we remind some basic definitions about lattices, that will be
very useful in chapter 4. All these results can be found in [57] and [97].

Definition 0.9.1 A lattice is a non-empty set M with an order ≤ such that
every pair of elements x, y ∈M has both a supremum and an infimum.
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Definition 0.9.2 An ordered vector space is a real vector space E which
is also an ordered space with the linear and order structures such that:

• If x, y, z ∈ E and x ≤ y then x+ z ≤ y + z.

• If x, y ∈ E, x ≤ y and 0 ≤ α ∈ R then αx ≤ αy.

The set E+ = {x ∈ E : x ≥ 0} is termed the positive cone in E and
its elements are termed positive. An ordered vector space which is also a
lattice is a vector lattice.

Definition 0.9.3 If E and F are vector lattices then T : E → F is positive
if x ≥ 0 implies Tx ≥ 0.

Definition 0.9.4 (i) A normed lattice is a normed space which is also
a vector lattice in which x ≤ y implies ‖x‖ ≤ ‖y‖. A normed lattice
which is also a Banach space is called a Banach lattice.

(ii) A Fréchet lattice is a Fréchet space that is a vector lattice and carries
an increasing sequence of seminorms (pn)n such that x ≤ y implies
pn(x) ≤ pn(y) for all n ∈ N.

0.10 Pettis Integral

In this section we recall the main definitions and results about Pettis inte-
grability. The proofs of all these results can be found in [47] for the case of
a finite measure space, but they easily extend to σ-finite measure spaces.
Let X be a Banach space and (Ω, µ) a σ-finite measure space.

Definition 0.10.1 (i) A function f : Ω → X is said to be weakly µ-
measurable if the scalar function ϕ ◦ f is µ-measurable for every ϕ ∈
X∗, where X∗ denotes the topological dual of X

(ii) f is said to be µ-measurable if there exists a sequence (fn)n of simple
functions such that limn→∞‖fn − f‖ = 0 µ-a.e.

Lemma 0.10.2 (Dunford’s lemma) Let f be weakly µ-measurable and
ϕ ◦ f ∈ L1(Ω, µ) for every ϕ ∈ X∗, then for every measurable E ⊆ Ω there
exists xE ∈ X∗∗ such that

xE(ϕ) =

∫
E
ϕ ◦ fdµ,

for every ϕ ∈ X∗.
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Definition 0.10.3 (i) If f : Ω→ X is weakly µ-measurable and ϕ ◦ f ∈
L1(Ω, µ) for every ϕ ∈ X∗, then f is called Dunford integrable. The
Dunford integral of f over a measurable E ⊆ Ω is defined by the
element xE ∈ X∗∗ such that xE(ϕ) =

∫
E ϕ ◦ fdµ, for every ϕ ∈ X∗.

(ii) In the case that xE ∈ X for every measurable E, then f is said to
be Pettis integrable and xE is called the Pettis integral of f over E,
which is denoted by (P )−

∫
E fdµ.

(iii) If ‖f‖ is integrable on Ω, then f is said to be Bochner integrable on
Ω.

Clearly the Dunford and Pettis integrals coincide if X is a reflexive space,
and if f is Bochner integrable, then it is Pettis integrable. Some basic and
useful results to characterize Pettis integral are the following:

Theorem 0.10.4 If f is Pettis integrable, then for every sequence (En)n
of disjoint measurable sets in Ω∫

⋃
n∈N En

fdµ =
∑
n∈N

∫
En

fdµ,

where the series converges unconditionally.

As a consequence,

Corollary 0.10.5 If f : [0,+∞[→ X is Pettis integrable on [0,+∞[, then
for every ε > 0 there exists N > 0 such that for every compact set K ⊂
[N,+∞) ∥∥∥∥∫

K
f(t)dt

∥∥∥∥ < ε.



Chapter 1

Strong mixing measures for linear
operators and frequent
hypercyclicity

1.1 Introduction

In this chapter we construct strongly mixing invariant measures with full
support for operators on F -spaces which satisfy the Frequent Hypercyclicity
Criterion. In order to obtain this results we need to use ergodic theory
( see section 0.3). The contents of this chapter have been published in [88].

First of all, we recall the different versions of the Frequent Hypercyclicity
Criterion. Bayart and Grivaux gave the definition of a frequently hyper-
cyclic operator (see 0.8) but they also gave the first version of the Frequent
Hypercyclicity Criterion.

Theorem 1.1.1 ([18]) Let T be an operator on a separable F -space X
and d a translation invariant metric which makes it complete. If there is
a dense sequence (xl)l≥1 of vectors of X and a map S defined on X such
that,

(i)
∑

k≥1 d(T kxl, 0) is convergent for every l ≥ 1,

(ii)
∑

k≥1 d(Skxl, 0) is convergent for every l ≥ 1, and

(iii) TS = I ,
33
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then T is frequently hypercyclic.

Another (probabilistic) version of it was given by Grivaux .

Theorem 1.1.2 ([66]) Let (Ω,F, µ) be a probabilistic space, and let (gk)k≥0

be a sequence of independent real-valued standard Gaussian random vari-
ables. Let T be an operator on a infinite dimensional real or complex Ba-
nach space X. If there is a dense sequence (xl)l≥1 of vectors of X and a
map S defined on X such that,

(i) for every l ≥ 1, the series
∑

k≥1 gk(ω)T kxl converges almost every-
where,

(ii) for every l ≥ 1, the series
∑

k≥1 gk(ω)Skxl converges almost every-
where, and

(iii) TS = I,

then T is frequently hypercyclic.

In order to obtain our main result we will consider the formulation of Bonilla
and Grosse-Erdmann for operators on separable F -spaces.

Theorem 1.1.3 ([33]) Let T be an operator on a separable F -space X. If
there is a dense subset X0 of X and a sequence of maps Sn : X0 → X such
that, for each x ∈ X0,

(i)
∑∞

n=0 T
nx converges unconditionally,

(ii)
∑∞

n=0 Snx converges unconditionally, and

(iii) TnSnx = x and TmSnx = Sn−mx if n > m,

then T is frequently hypercyclic.

This theorem allows us to show that some of the classical hypercyclic opera-
tors such as MacLane’s and Rolewicz’s operators are frequently hypercyclic.

Example 1.1.4 (MacLane’s operator) The differentiation operator D
on H(C) is frequently hypercyclic. Let X0 be the set of polynomials and
S the operator Sf(z) =

∫ z
0 f(ζ)dζ. Condition (i) of the Frequent Hyper-

cyclicity Criterion is satisfied since any finite series converges uncondition-
ally, and (iii) is trivial. For (ii) we need only consider the monomial, for
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which we find that
∑∞

n=0 S
n(zk) = k!

∑∞
n=0

1
(k+n)!z

k+n, which converges

uniformly and unconditionally on any compact set.

1.2 Invariant measures and the frequent hypercyclicity
criterion

In this section under the hypothesis of Bonilla and Grosse-Erdmann cri-
terion we derive a stronger result by showing that a T -invariant mixing
measure can be obtained.

For the existence of strong mixing measures with full support, certain Can-
tor subsets of NN , with either N = N or N = Z, will be needed. Actually
they will be of the form C =

∏
n∈N Fn, where the cardinalities of the finite

sets Fn tend to infinity as n→∞.

From now on, T will be an operator defined on a separable F -space X.

We are now ready to present our main result.

The idea behind the proof is to construct, given T an operator on a sepa-
rable F -space X satisfying the hypothesis of Theorem 1.1.3,

1. a “model” probability space (Z, µ) and

2. a Borel measurable map Φ : Z→ X with dense range,

where

• σ is the Bernoulli shift defined as

σ(. . . , n−1, n0, n1, . . . ) = (. . . , n0, n1, n2, . . . ),

• Z ⊂ NZ is a σ-invariant subset of the space NZ of bilateral sequences
with the product topology,

• µ is a σ−1-invariant strongly mixing measure with full support, and

• Φσ−1 = TΦ on Z.

As a consequence, the Borel probability measure µ on X defined by µ(A) =
µ(Φ−1(A)), A ∈ B(X), is T -invariant, strongly mixing and has full support.
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Theorem 1.2.1 Let T be an operator on a separable F -space X. If there
is a dense subset X0 of X and a sequence of maps Sn : X0 → X such that,
for each x ∈ X0,

(i)
∑∞

n=0 T
nx converges unconditionally,

(ii)
∑∞

n=0 Snx converges unconditionally, and

(iii) TnSnx = x and TmSnx = Sn−mx if n > m,

then there is a T -invariant strongly mixing Borel probability measure µ on
X with full support.

Proof.

We suppose X0 = {xn ; n ∈ N} with x1 = 0 and Sn0 = 0 for all n ∈ N.
Let (Un)n be a basis of balanced open 0-neighbourhoods in X such that
Un+1 + Un+1 ⊂ Un, n ∈ N. By (i) and (ii), there exists an increasing
sequence of positive integers (Nn)n with Nn+2−Nn+1 > Nn+1−Nn for all
n ∈ N such that∑

k>Nn

T kxmk
∈ Un+1 and

∑
k>Nn

Skxmk
∈ Un+1,

if mk ≤ 2l, for Nl < k ≤ Nl+1, l ≥ n. (1.1)

Actually, this is a consequence of the completeness of X and the fact that,
for each 0-neighbourhood U and for all l ∈ N, there is N ∈ N such that∑

k∈F T
kx ∈ U and

∑
k∈F Skx ∈ U for any finite subset F ⊂ [N,+∞) and

for each x ∈ {x1, . . . , x2l}.

Indeed, by the definition of unconditional convergence 0.5.5, for each εn =
1

(2n)2n+2 , there exists Nn such that:∥∥∥∥∥∥
∑

k∈F⊂[Nn,∞)

T kx

∥∥∥∥∥∥ < εn and

∥∥∥∥∥∥
∑

k∈F⊂[Nn,∞)

Skx

∥∥∥∥∥∥ < εn

for every finite set F and every x ∈ {x1, . . . , x2n}. Let ||.|| denotes the
F -norm defined on the space. Without loss of generality we can select the
sequence (Nn)n such that Nn+2 −Nn+1 > Nn+1 −Nn for all n ∈ N.
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In 1.1 we have that:∑
k>Nn

T kxmk
=

∞∑
j=n

∑
Nj<k≤Nj+1

T kxmk
and

∑
k>Nn

Skxmk
=

∞∑
j=n

∑
Nj<k≤Nj+1

Skxmk
(1.2)

So we have for each j ≥ n:∥∥∥∥∥∥
∑

Nj<k≤Nj+1

T kxmk

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥

∑
Nj<k≤Nj+1

T kx1

∥∥∥∥∥∥
+ . . .+

∥∥∥∥∥∥
∑

Nj<k≤Nj+1

T kx2j

∥∥∥∥∥∥ ≤
(

2j∑
i=1

εj

)
≤ 1

2j+2

Analogously, we get : ∥∥∥∥∥∥
∑

Nj<k≤Nj+1

Skxmk

∥∥∥∥∥∥ ≤ 1

2j+2
.

Finally in 1.2: ∥∥∥∥∥ ∑
k>Nn

T kxmk

∥∥∥∥∥ ≤
∞∑
j=n

1

2j+2
=

1

2n+1
and

∥∥∥∥∥ ∑
k>Nn

Skxmk

∥∥∥∥∥ ≤
∞∑
j=n

1

2j+2
=

1

2n+1

and we conclude the result in 1.1.

1.-The model probability space (Z, µ).

We define the space K =
∏
k∈Z Fk, which is compact when endowed with

the product topology inherited from NZ, where

Fk = {1, . . .m} if Nm < |k| ≤ Nm+1, m ∈ N, and Fk = {1}, if |k| ≤ N1.

Let K(s) := σs(K), s ∈ Z, where σ : NZ → NZ is the backward shift. K(s)
is a subspace of NZ, s ∈ Z.
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We consider in NZ the product measure µ =
⊗

k∈Z µk, where µk({n}) = pn
for all n ∈ N and µk(N) =

∑∞
n=1 pn = 1, k ∈ Z. The values of pn ∈]0, 1[

are selected such that, if

βj :=

(
j∑
i=1

pi

)Nj+1−Nj

, j ∈ N, then

∞∏
j=1

βj > 0.

Let Z =
⋃
s∈ZK(s), which is a countable union of Cantor sets, invariant

under the shift, and satisfies

µ(Z) ≥ µ(K) =
∏
|k|≤N1

µk({1})
∞∏
l=1

 ∏
Nl<|k|≤Nl+1

µk({1, . . . , l})


= p2N1+1

1

( ∞∏
l=1

βl

)2

> 0.

It is well-known [102] that µ is a σ−1-invariant strongly mixing Borel prob-
ability measure. Since σ(Z) = Z, Z has positive measure, and every strong
mixing measure is ergodic (0.3.2), we necessarily have that µ(Z) = 1.

2.-The map Φ.

Given s ∈ Z we define the map Φ : K(s)→ X by

Φ((nk)k∈Z) =
∑
k<0

S−kxnk + xn0
+
∑
k>0

T kxnk . (1.3)

Φ is well-defined since, given (nk)k∈Z ∈ K(s) and for l ≥ |s|, we have
nk ≤ 2l if Nl < |k| ≤ Nl+1, which shows the convergence of the series in
(1.3) by (1.1).

Φ|K(s) is also continuous for each s ∈ Z. Indeed, let (α(j))j be a sequence
of elements of K(s) that converges to α ∈ K(s) and fix any n ∈ N with
n > |s|. We will find n0 ∈ N such that Φ(α(j))−Φ(α) ∈ Un for j ≥ n0. To
do this, by definition of the topology in K(s) there exists n0 ∈ N such that

α(j)k = αk if |k| ≤ Nn+1 and j ≥ n0.

By (1.1) we have

Φ(α(j))−Φ(α) =
∑

k<−Nn+1

S−k(xα(j)k−xαk)+
∑

k>Nn+1

T k(xα(j)k−xαk) ∈ Un
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for all j ≥ n0. This shows the continuity of Φ : K(s)→ X for every s ∈ Z.

The map Φ is then well-defined on Z, and Φ : Z → X is measurable (i.e.,
Φ−1(A) ∈ B(Z) for every A ∈ B(X)).

3.-The measure µ on X.

Let us define L(s) := Φ(K(s)), s ∈ Z, and Y :=
⋃
s∈Z L(s) = Φ(Z) is a

T -invariant Borel subset of X because it is a countable union of Cantor
sets and Φσ−1 = TΦ. Indeed, let (nk)k be a sequence of K(s), then:

TΦ((nk)k) =
∑
k<0

TS−kxnk + Txn0
+
∑
k>0

T k+1xnk =∑
k<−1

S−k−1xnk + xn−1
+
∑
k≥0

T k+1xnk = Φσ−1((nk)k).

We then define on X the measure µ(A) = µ(Φ−1(A)) for all A ∈ B(X).
Since we know that µ is strongly mixing on Z we have that µ is well-
defined and it is a T -invariant strongly mixing Borel probability measure.
It is T -invariant because given A ∈ B(X), we have that µ(T−1(A)) =
µ(Φ−1T−1(A)) = µ(σΦ−1(A)) = µ(Φ−1(A)) = µ(A). Finally, it is strongly-
mixing, because given A,B ∈ B(X) we have:

lim
n→∞

µ(A ∩ T−n(B)) = lim
n→∞

µ(Φ−1(A ∩ T−n(B)))

= lim
n→∞

µ(Φ−1(A) ∩ Φ−1(T−n(B))) = lim
n→∞

µ(Φ−1(A) ∩ σn(Φ−1(B)))

= µ(Φ−1(A))µ(Φ−1(B)) = µ(A)µ(B).

The proof is completed by showing that µ has full support. Indeed, given a
non-empty open set U in X, we pick n ∈ N satisfying xn + Un ⊂ U . Thus,
µ(U) is greater than :

µ({x = xn +
∑
k>Nn

T kxmk
+
∑
k>Nn

Skxmk
; mk ≤ 2l;Nl < k ≤ Nl+1, l ≥ n})

≥ µ0({n})
∏

0<|k|≤Nn

µk({1})
∞∏
l=n

 ∏
Nl<|k|≤Nl+1

µk({1, . . . , 2l})


≥ pnp2Nn

1

( ∞∏
l=n

β2l

)2

> 0
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and we obtain that µ has full support. 2

Recently, Bayart and Matheron gave very general conditions expressed on
eigenvector fields associated to unimodular eigenvalues under which an op-
erator T admits a T -invariant mixing measure [21]. A T-eigenvectors field
for T is a map E : ∧ → X defined on some set ∧ ⊂ T, such that

TE(λ) = λE(λ)

for every λ ∈ ∧.

A complex Borel measure µ on T is said to be Rajchman, if lim|n|→+∞ µ̂(n) =

0, where µ̂(n) =
∫
e−inxdµ, n ∈ Z. A set ∧ ⊂ T is called a set of extended

uniqueness if for every positive Rajchman measure µ we have µ(∧) = 0.
Recall also that a closed set ∧ ⊂ T is perfect if it has no isolated points
or, equivalently, if V ∩∧ is uncountable for any open set V ⊂ T sucht that
V ∩ ∧ 6= ∅. Analogously, a closed set ∧ ⊂ T is U0-perfect if V ∩ ∧ is not a
set of extended uniqueness for any open set V such that V ∩ ∧ 6= ∅.
Given any property ℘ relative to measure-preserving transformations, an
operator T has property ℘ in the Gaussian sense if there exists some Gaus-
sian probability measure µ on X with full support with respect to which T
has ℘.

Theorem 1.2.2 ([21]) Let X be a separable complex Fréchet space, and
let T be an operator on X. Assume that one has at hand a family of
continuous T-eigenvectors fields (Ei)i∈I for T , where Ei : ∧i → X is defined
on some closed set ∧i ⊂ T, such that span(∪Ei(∧i)) is dense in X.

• If each ∧i is a perfect set, then T is weakly mixing in the Gaussian
sense.

• If each ∧i is a U0-perfect set, then T is strongly mixing in the Gaussian
sense.

Indeed, the argument of É. Matheron is the following:

Let T : X → X be an operator on a separable complex Fréchet space X
satisfying the hypothesis of the Frequent Hypercyclicity Criterion given in
Theorem 1.2.1, and suppose X0 = {xn ; n ∈ N}. We define the following
family of continuous T-eigenvector fields for T

Em(λ) =
∑
n∈N0

λ−nTnxm +
∑
n∈N

λnSnxm, λ ∈ T, m ∈ N.
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They span X since, for any functional x∗ that vanishes on Em(λ) for each
λ ∈ T and m ∈ N, the equality 〈x∗, Em(λ)〉 = 0 for fixed m and for all
λ ∈ T implies that 〈x∗, Tnxm〉 = 0 for every n ∈ N0. Thus, 〈x∗, xm〉 = 0
for each m ∈ N, and by density x∗ = 0.

Actually, on the one hand our results can be deduced from [21] in the
context of complex Fréchet spaces, and on the other hand we only need
rather elementary tools.

1.3 Consequences

The previous theorem can be applied to different classes of operators. A
distinguished one is the class of weighted shifts on F -sequence spaces.

Corollary 1.3.1 Let T : X → X be a chaotic bilateral weighted backward
shift on an F -sequence space X in which (en)n∈Z is an unconditional basis.
Then there exists a T -invariant strongly mixing Borel probability measure
on X with full support.

Proof. First of all, since T is a chaotic weighted backward shift by 0.5.11,
the series

0∑
n=−∞

(
0∏

ν=n+1

wν

)
en +

∞∑
n=1

(
n∏
ν=1

wν

)−1

en

converges unconditionally in X. We choose as X0 as the set of finite se-
quences, which is dense by assumption, and for Sn = Fw

n, where Fw(xn)n∈Z =(
1
wn
xn−1

)
n∈Z

. It is clear that Bw ◦ Fw = Id.

By linearity we need to check hypothesis (i) and (ii) of theorem 1.2.1 for
the sequences ek, k ∈ Z. But then:

∞∑
n=0

Fnwek =

∞∑
n=0

ek+n

wk+1 · · ·wk+n
=

(
k∏
ν=1

wν

) ∞∑
n=0

(
k+n∏
ν=1

wν

)−1

ek+n

and

∞∑
n=0

Bn
wek =

∞∑
n=0

ek−n(wk · · ·wk−n+1) =

0∑
n=−∞

ek+n

(
k∏

ν=k+n+1

wν

)
,

and by hypothesis these series converge unconditionally. The hypotheses of
theorem 1.2.1 are satisfied and then, there exists a Bw-invariant strongly
mixing Borel probability measure on X with full support. 2
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Remark 1.3.2 The preceding result can be improved if T is a unilateral
weighted backward shift operator on a sequence F -space. In that case,
there exists a T -invariant exact Borel probability measure on X with full
support.

Theorem 1.3.3 Let T : X → X be a chaotic unilateral weighted backward
shift on an F -sequence space X in which (en)n∈N is an unconditional basis.
Then there exists a T -invariant exact measure on X with full support.

Proof.

We fix a countable set M = {zn ; n ∈ N} of pairwise different scalars
which form a dense set in K with z1 = 0, and a basis (Un)n of balanced
open 0-neighbourhoods in X such that Un+1 +Un+1 ⊂ Un, n ∈ N. We will
consider as Un the 0-neighbourhood of radius 1

2n . Again, since T is chaotic,∑∞
n=1 (

∏n
ν=1wν)−1 en converges unconditionally ( see 0.5.8), so there exists

an increasing sequence of positive integers (Nn)n with Nn+2 − Nn+1 >
Nn+1 −Nn for all n ∈ N such that

∑
k>Nn

αk

(
k∏
ν=1

wν

)−1

ek ∈ Un+1,

if αk ∈ {z1, . . . , z2m}, for Nm < k ≤ Nm+1, m ≥ n. (1.4)

Indeed, by the definition of unconditional convergence (0.5.5), for each
εn = 1

(1+
∑2n
i=1 |zi|)2n+2 ,n ∈ N, there exists Nn such that:∥∥∥∥∥∥

∑
k∈F⊂[Nn,∞)

(
k∏
ν=1

wν

)−1

ek

∥∥∥∥∥∥ < εn

for every finite set F . Let ||.|| denotes the F -norm defined on the space.
Without loss of generality we can select the sequence (Nn)n such that
Nn+2 −Nn+1 > Nn+1 −Nn for all n ∈ N.

In 1.4 we have that:

∑
k>Nn

αk

(
k∏
ν=1

wν

)−1

ek =

∞∑
j=n

∑
Nj<k≤Nj+1

αk

(
k∏
ν=1

wν

)−1

ek (1.5)
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So we have for each j ≥ n:∥∥∥∥∥∥
∑

Nj<k≤Nj+1

αk

(
k∏
ν=1

wν

)−1

ek

∥∥∥∥∥∥ ≤ |z1|

∥∥∥∥∥∥
∑

αk=z1,Nj<k≤Nj+1

(
k∏
ν=1

wν

)−1

ek

∥∥∥∥∥∥
+ . . .+ |z2j |

∥∥∥∥∥∥
∑

αk=z2j ,Nj<k≤Nj+1

(
k∏
ν=1

wν

)−1

ek

∥∥∥∥∥∥ ≤
(

2j∑
i=1

|zi|

)
εj ≤

1

2j+2

Finally in 1.5:∥∥∥∥∥∥
∑
k>Nn

αk

(
k∏
ν=1

wν

)−1

ek

∥∥∥∥∥∥ ≤
∞∑
j=n

1

2j+2
=

1

2n+1
.

and we conclude the result in 1.4.

We define the compact space K =
∏
k∈N Fk where

Fk = {1, . . .m} if Nm < k ≤ Nm+1, m ∈ N, and Fk = {1}, if 1 ≤ k ≤ N1.

Let K(s) := σs(K), s ∈ N0, where σ : NN → NN is the backward shift.
K(s) is a subspace of NN, s ∈ N0.

We consider in NN the product probability measure µ =
⊗

k∈N µk, where
µk({n}) = pn for all n ∈ N and µk(N) =

∑∞
n=1 pn = 1, k ∈ N. The values

of pn ∈]0, 1[ are selected such that, if

βj :=

(
j∑
i=1

pi

)Nj+1−Nj

, j ∈ N, then

∞∏
j=1

βj > 0.

Let Z =
⋃
s∈N0

K(s), which is a countable union of Cantor sets, invariant
under the shift, and satisfies

µ(Z) ≥ µ(K) =

N1∏
k=1

µk({1})
∞∏
l=1

 ∏
Nl<k≤Nl+1

µk({1, . . . , l})


= pN1

1

( ∞∏
l=1

βl

)
> 0.

It is known [102] that µ is a σ-invariant exact Borel probability measure.
We set Z =

⋃
s≥0K(s). Since σ(Z) = Z, Z has positive measure and every

exact measure is ergodic 0.3.2, we necessarily have that µ(Z) = 1 .
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Now we define the map Φ : K(s)→ X given by

Φ((nk)k∈N) =

∞∑
k=1

αnk

(
k∏
ν=1

wν

)−1

ek.

Φ is well-defined for each s ≥ 0 by 1.4. Indeed, given (nk)k∈N ∈ K(s) and
for l ≥ s, we have nk ≤ 2l if Nl < k ≤ Nl+1, which shows the convergence

of the series
∑∞

k=1 αnk

(∏k
ν=1wν

)−1
ek by (1.4).

Φ|K(s) is also continuous for each s ∈ N0. Indeed, let (ρ(j))j be a sequence
of elements of K(s) that converges to ρ ∈ K(s) and fix any n ∈ N with
n > s. We will find n0 ∈ N such that Φ(ρ(j)) − Φ(ρ) ∈ Un for j ≥ n0. To
do this, by definition of the topology in K(s) there exists n0 ∈ N such that

ρ(j)k = ρk if 1 ≤ k ≤ Nn+1 and j ≥ n0.

By (1.4) we have

Φ(ρ(j))−Φ(ρ) =
∑

k>Nn+1

αρ(j)k

(
k∏
ν=1

wν

)−1

ek −
∑

k>Nn+1

αρk

(
k∏
ν=1

wν

)−1

ek.

And Φ(ρ(j)) − Φ(ρ) ∈ Un for all j ≥ n0. This shows the continuity of
Φ : K(s)→ X for every s ∈ N0.

The map Φ is then well-defined on Z, and Φ : Z → X is measurable (i.e.,
Φ−1(A) ∈ B(Z) for every A ∈ B(X)).

L(s) := Φ(K(s)) is compact in X, s ≥ 0, and Y :=
⋃
s≥0 L(s) = Φ(Z) is a

Bω-invariant Borel subset of X because it is a countable union of Cantor
subsets of X and Φσ = BωΦ. Indeed, let (nk)k be a sequence of K(s),
then:

Φσ((nk)k∈N) =

∞∑
k=1

αnk+1

(
k∏
ν=1

wν

)−1

ek = BωΦ((nk)k∈N).

We then define on X the measure µ(A) = µ(Φ−1(A)) for all A ∈ B(X).
As in Theorem 1.2.1, we conclude that µ is well-defined on X, it is Bω-
invariant and exact. Indeed, given A ∈

⋂∞
n=0B

−n
ω B(X), we have for each

n ∈ N0 that A = B−nω (An), with An ∈ B(X). Then we have that

Φ−1(A) ∈
∞⋂
n=0

σ−nB(Φ−1(X)).
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By the exactness of µ, necessarily µ(Φ−1(A)) = 0 or µ(Φ−1(A)) = 1 and
then µ(A) = 0 or 1.

Now it only remains to show that µ has full support. Indeed, given a non-
empty open set U , we pick y = Φ((nk)k) ∈ Y such that y + Un ⊂ U and
then µ(U) is greater than:

µ {y +
∑
k≥Nn

αk∏k
ν=1wν

ek : αk ∈ {z1, . . . z2m}, Nm < k ≤ Nm+1,m ≥ n}

≥
Nn∏
k=1

µk({nk})
∞∏
l=n

 ∏
Nl<k≤Nl+1

µk({1, . . . , 2l})

 ≥ Nn∏
k=1

pnk

( ∞∏
l=n

β2l

)
> 0.

2

Devaney chaos is therefore a sufficient condition for the existence of strongly
mixing measures within the framework of weighted shift operators on se-
quence F -spaces. In some natural spaces it is even a characterization of
this fact. For instance, F. Bayart and I. Z. Ruzsa [22] recently proved that
weighted shift operators on `p, 1 ≤ p < ∞, are frequently hypercyclic if,
and only if, they are Devaney chaotic. It turns out that this is equivalent
to the existence of an invariant strongly mixing Borel probability measure
with full support on `p. Also, for the space ω, every weighted shift oper-
ator is chaotic [70]. In particular, for the unilateral case we obtain exact
measures.

Example 1.3.4 Every unilateral weighted backward shift operator on ω =
KN admits an invariant exact Borel probability measure with full support
on ω.





Chapter 2

Strong mixing measures for
C0-semigroups and frequent
hypercyclicity

2.1 Introduction

In this chapter, our purpose is to obtain a very effective and general method
to prove that certain C0-semigroups admit invariant strongly mixing mea-
sures.

More precisely, we show that the Frequent Hypercyclicity Criterion for C0-
semigroups ensures the existence of invariant strongly mixing measures with
full support. We will provide several examples, that range from birth-and-
death models to the Black-Scholes equation, which illustrate these results.

As we mentioned in Chapter 1, there exists a criterion that gives a sufficient
condition to ensure when an operator is frequently hypercyclic. In the case
of C0- semigroups there also exists a continuous version of this criterion.

In [82], Mangino and Peris obtained a sufficient condition for frequent hy-
percyclicity. This frequent hypercyclicity criterion is based on the Pettis
integral.

Theorem 2.1.1 ([82]) Let (Tt)t≥0 be a C0-semigroup on a separable Ba-
nach space X. If there exist X0 ⊂ X dense in X and maps St : X0 → X0,
t > 0, such that

47
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(i) TtStx = x, TtSrx = Sr−tx, t > 0, r > t > 0 for all x ∈ X0,

(ii) t→ Ttx is Pettis integrable on [0,∞) for all x ∈ X0,

(iii) t→ Stx is Pettis integrable on [0,∞) for all x ∈ X0,

then (Tt)t≥0 is frequently hypercyclic.

Our purpose is to show that this criterion suffices for the existence of in-
variant Borel probability measures on X that are strongly mixing and have
full support.

In contrast with the chaotic behavior in the topological sense, which is
trivial to pass from the discrete to the continuous case, while difficult or
false to go in the other direction (see, e.g., [38] for hypercyclicity and fre-
quent hypercyclicity, and [16] for Devaney chaos), the measure-theoretic
properties are not trivially passed from the discrete to the continuous case,
especially because of the requirement of Tt-invariance for every t > 0. This
is why we need to construct explicitly the strongly mixing measures for
C0-semigroups, and they cannot be obtained from the main result in [88].
All the results of this chapter have been published in [86].

2.2 Invariant measures and the frequent hypercyclicity
criterion

Now, we are allowed to present our main result.

Theorem 2.2.1 Let (Tt)t≥0 be a C0-semigroup on a separable Banach
space X. If there exist, X0 ⊂ X dense in X and maps St : X0 → X0,
t > 0 such that :

(i) TtStx = x, TtSrx = Sr−tx, t > 0, r > t > 0 for all x ∈ X0,

(ii) t→ Ttx is Pettis integrable on [0,∞) for all x ∈ X0,

(iii) t→ Stx is Pettis integrable on [0,∞) for all x ∈ X0,

then there is a (Tt)t≥0-invariant strongly mixing Borel probability measure
µ on X with full support.

The idea behind the proof is to construct, given a C0-semigroup (Tt)t≥0 on
a separable Banach space X satisfying the hypothesis of Theorem 2.1.1,
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1. a “model” probability space (Z, µ) and

2. a Borel measurable map Φ : Z→ X with dense range,

where

• (Rt)t∈R is the translation group defined as Rtf(x) = f(x− t),

• Z ⊂ C(R) is a (Rt)t∈R-invariant subset of the space C(R) of continuous
functions on the real line, endowed with its natural Fréchet space
compact-open topology,

• µ is a (Rt)t∈R-invariant strongly mixing measure with full support,
and

• ΦRt = TtΦ on Z for all t ≥ 0.

As a consequence, the Borel probability measure µ on X defined by µ(A) =
µ(Φ−1(A)), A ∈ B(X), is (Tt)t≥0-invariant, strongly mixing, and has full
support. Proving the measure µ is (Tt)t≥0-invariant and strongly mixing is
simple. Showing µ has full support will take a little work.

Proof. We suppose X0 = {xn;n ∈ N} with x1 = 0. Let Un = B(0, 1
2n ), the

open ball of radius 1/2n centered at 0. By conditions (ii) and (iii) we can
obtain an increasing sequence {Nn}n ∈ N with Nn+2−Nn+1 > Nn+1−Nn

for all n ∈ N such that, for any sequence (Ck)k of mutually disjoint compact
sets with Ck ⊂ [k/2,+∞[, k ∈ N, we have that

if mk ≤ 2l, for Nl < k ≤ Nl+1, l ≥ n, n ∈ N,

then ∑
k≥Nn

∫
Ck

Ttxmk
dt ∈ Un+1 and

∑
k≥Nn

∫
Ck

Stxmk
dt ∈ Un+1. (2.1)

Indeed, by 0.10.5 for each εn = 1
2n2n ,n ∈ N, there exists Nn such that for

every compact set K ⊂ [Nn,∞),∥∥∥∥∫
K
Ttx

∥∥∥∥ < εn and

∥∥∥∥∫
K
Stx

∥∥∥∥ < εn

for every x ∈ {x1, . . . , x2n}. Without loss of generality we can select the
sequence (Nn)n such that Nn+2 −Nn+1 > Nn+1 −Nn for all n ∈ N.
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In 2.1 we have that:∑
k>Nn

∫
Ck

Ttxmk
=

∞∑
j=n

∑
Nj<k≤Nj+1

∫
Ck

Ttxmk
and

∑
k>Nn

∫
Ck

Stxmk
=

∞∑
j=n

∑
Nj<k≤Nj+1

∫
Ck

Stxmk

So we have for each j ≥ n:∥∥∥∥∥∥
∑

Nj<k≤Nj+1

∫
Ck

Ttxmk

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥

∑
Nj<k≤Nj+1

∫
Ck

Ttx1

∥∥∥∥∥∥
+ . . .+

∥∥∥∥∥∥
∑

Nj<k≤Nj+1

∫
Ck

Ttx2j

∥∥∥∥∥∥ ≤
(

2j∑
i=1

εj

)
≤ 1

2j+2

Analogously we get: ∥∥∥∥∥∥
∑

Nj<k≤Nj+1

∫
Ck

Stxmk

∥∥∥∥∥∥ ≤ 1

2j+2
.

Finally in 2.2: ∥∥∥∥∥ ∑
k>Nn

∫
Ck

Ttxmk

∥∥∥∥∥ ≤
∞∑
j=n

1

2j+2
=

1

2n+1
and

∥∥∥∥∥ ∑
k>Nn

∫
Ck

Stxmk

∥∥∥∥∥ ≤
∞∑
j=n

1

2j+2
=

1

2n+1

and we conclude the result in 2.1.

1.-The model probability space (Z, µ).

First of all, we define the following set A ⊂ C(R) of continuous functions:
f ∈ A if there exist a sequence (si)i∈Z of real numbers such that

(a) . . . s−4 < s−2 < 0 ≤ s0 < s2 < s4 < . . . ,

(b) |s2i+2 − s2i − 1| ≤ 1
2 , and
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(c) s2i+1 = (s2i + s2i+2)/2, i ∈ Z;

and a sequence of natural numbers (ni)i∈Z such that

(d) f(s2i) = ni,

(e) f(s2i+1) = 0, and

(f) f ′′|]si,si+1[ ≡ 0 for all i ∈ Z.

We write f(s2k,nk)k to denote the continuous function f associated with
sequences (s2k)k∈Z and (nk)k∈Z given above.

Figure 2.1: Graph of a typical function f ∈ A

A is a closed subset of C(R), where C(R) is endowed with the compact-
open topology (that is, the topology of uniform convergence on compact
subsets of R), therefore a complete separable metric space.
Indeed, if (fj)j is a sequence of functions in A that converges to certain
f ∈ C(R), then each fj has associated sequences (s2k(j))k∈Z and (nk(j))k∈Z
satisfying conditions (a)–(f) above. From the convergence with respect to
the compact-open topology we deduce that there exist the limits limj s2k(j)
and limj nk(j) for each k ∈ Z.
Now, we either have limj s−2(j) < 0, so that s2k := limj s2k(j) and nk :=
limj nk(j), k ∈ Z, define the sequences that make f ∈ A, or we have
limj s−2(j) = 0, that yields s2k := limj s2k−2(j) and nk := limj nk−1(j),
k ∈ Z, the defining sequence for f ∈ A.
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We will introduce a measure on A. Let us consider λ the Lebesgue measure
on R, and let p be the probability measure defined on N such that p({j}) =
pj , with 0 < pj < 1, p(N) =

∑∞
j=1 pj = 1 and, if

βj :=

(
j∑
i=1

pi

)Nj+1−Nj

, j ∈ N, then

∞∏
j=1

βj > 0. (2.2)

We define the map Ψ : A→ (R×N)Z given by Ψ(f(s2j ,nj)j∈Z) = (s2j , nj)j∈Z.
The map Ψ is continuous on A \A0, where

A0 := {f = f(s2j ,nj)j ∈ A ; s0 = 0}.

Let (f(sk2j ,n
k
j )j )k be a sequence that converges to f(s2j ,nj)j ∈ A with s0 > 0.

Then, for any compact set C ⊂ R, we have that

lim
k→∞

sup
x∈C

∣∣∣f(sk2j ,n
k
j )j (x)− f(s2j ,nj)j (x)

∣∣∣ = 0.

In particular, for any N ∈ N and ε > 0, there exists k0 ∈ N such that,

if |j| ≤ N and k ≥ k0, then nkj = nj and |sk2j − s2j | < ε. (2.3)

Then we have that (sk2j , n
k
j )j)k converges to (s2j , nj)j and this shows the

continuity of Ψ on A.
Analogously, Ψ is also continuous on A0, thus Ψ is Borel measurable.

Let Πn : (R×N)Z → (R×N)2n+1 be the projection onto the corresponding

coordinate space centered at index 0 and define the measure λ̃n = (λ ⊗
p)2n+1 on Πn(Ψ(A)). We have

Π1(Ψ(A)) =
{

((s−2, n−1), (s0, n0), (s2, n1)) ∈ (R× N)3 ;

s0 ≥ 0, s−2 < 0,
1

2
≤ s2i − s2i−2 ≤

3

2
, i = 0, 1

}
,

and its associated measure is

λ̃1(Π1(Ψ(A))) =

∫ 0

− 1

2

(∫ s−2+ 3

2

s−2+ 1

2

(∫ s0+ 3

2

s0+ 1

2

ds2

)
ds0

)
ds−2

+

∫ − 1

2

− 3

2

(∫ s−2+ 3

2

0

(∫ s0+ 3

2

s0+ 1

2

ds2

)
ds0

)
ds−2 =

1

2
+

1

2
= 1.
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Analogously, λ̃n(Πn(Ψ(A))) = 1 for all n ∈ N.

λ̃n(Πn(Ψ(A))) =∫ s−2n−2+ 3

2

s−2n−2+ 1

2

. . .

(∫ 0

− 1

2

(∫ s−2+ 3

2

s−2+ 1

2

(∫ s0+ 3

2

s0+ 1

2

. . . ds2

)
ds0

)
ds−2

)
ds−2n

+

∫ s−2n−2+ 3

2

s−2n−2+ 1

2

. . .

(∫ 1

2

− 3

2

(∫ s−2+ 3

2

0

(∫ s0+ 3

2

s0+ 1

2

. . . ds2

)
ds0

)
ds−2

)
ds−2n = 1.

Let Bn be the σ-algebra of Borel subsets of Πn(Ψ(A)). We consider
A :=

⋃
n∈N Π−1

n (Bn), which is an algebra consisting of Borel subsets of

Ψ(A) since Π−1
n (Bn) ⊂ Π−1

n+1(Bn+1) for all n ∈ N. Also, the σ-algebra

generated by A coincides with the family B̃ of all Borel subsets of Ψ(A)
because A contains the open subsets of Ψ(A).

For each n ∈ N and B ∈ Π−1
n (Bn), we define λ̃(B) = λ̃n(Πn(B)). λ̃ is a

well-defined probability measure on A with full support since λ̃n(Πn(B)) =

λ̃n+1(Πn+1(B)) for every B ∈ Π−1
n (Bn), n ∈ N. There is a unique extension

of λ̃ to B̃, for which we keep the same notation (see, e.g., [73]).
Now, since A is a complete separable metric space and Ψ : A → (R × N)Z

is an injective measurable map, we have that the family of Borel sets of

A equals Ψ−1(B̃) (see, e.g., Corollary 3.3 in [73]), and we obtain that

µ := λ̃ ◦Ψ is a Borel probability measure on A with full support.

Moreover, A is Rt-invariant for any t ∈ R, where (Rt)t∈R is the trans-
lation C0-group, since given f(s2j ,nj)j ∈ A we have that Rt(f(s2j ,nj)j ) =
f(t+s2j+2k,nj+k)j ∈ A, where

k := min{j ∈ Z ; t+ s2j ≥ 0}. (2.4)

The definition of µ easily yields that µ is (Rt)t∈R-invariant.

We also note that µ is strongly mixing with respect to the translation C0-
group (Rt)t∈R. Actually, it suffices to prove it on a basis of open sets of
A.

Let us define, for each

α = ((s2j)
m
j=−n, (nj)

m
j=−n, ε) ∈ Rn+m+1 × Nn+m+1×]0, 1/4[

with s−2n < · · · < s−2 < 0 ≤ s0 < s2 < · · · < s2m, 1
2 ≤ s2j+2 − s2j ≤ 3

2 ,
j = −n, . . . ,m− 1, the set

Aα = {f ∈ A ; ∃t2j ∈]s2j − ε, s2j + ε[ with f(t2j) = nj , f(t2j+1) = 0 for
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t2j+1 :=
t2j + t2j+2

2
, j = −n, . . . ,m−1, f ′′|]ti,ti+1[ ≡ 0, i = −2n, . . . , 2m−1}.

They form a basis of open sets in A as a topological subspace of C(R)
endowed with the compact-open topology. Let Aα and Aα′ be two elements
from the above basis, where

α = ((s2j)
m
j=−n, (nj)

m
j=−n, ε) and α′ = ((s′2j)

m′

j=−n′ , (n
′
j)
m′

j=−n′ , ε
′).

If t is large enough then [s−n−ε, sm+ε]
⋂

[t+s′−n′−ε′, t+s′m′+ε′] = ∅ and
because of the definition of µ and the empty intersection of the previous
intervals we have:

µ(Aα ∩Rt(Aα′)) = µ(Aα)µ(Aα′).

Let us consider the subset of A given by

H = {f(s2k,nk)k ∈ A ; nk = f(s2k) ∈ {1, . . . ,m} if Nm < |k| ≤ Nm+1,

m ∈ N, f(s2k) = 1 for |k| ≤ N1}.
Clearly, H is a closed subset of A which is bounded in C(R). An easy argu-
ment shows that the subsets of A that are bounded in C(R) are relatively
compact, thus H is compact.

Let (f(sk2j ,n
k
j )j )k, be a sequence in H and fix n ∈ N. We will show that,

there exists a Cauchy subsequence (f
(s
ki
2j ,n

ki
j )j

)ki with respect to the uniform

convergence in [−n, n]. By the selection of (s2j)j , we have that s2j(k) /∈
[−n, n] for every j ∈ Z with |j| > 2n+ 1 and for each k ∈ N. We select an
increasing sequence (ki)i in N such that there exists

s2j = lim
i→∞

s2j(ki)

and
nj = lim

i→∞
nj(ki),

for |j| ≤ 2n + 2. We conclude, by definition of the elements of A that
(f

(s
ki
2j ,n

ki
j )j

)ki is a Cauchy sequence with respect to the uniform convergence

in [−n, n]. Since n ∈ N was arbitrary, we have found a subsequence of
(f(sk2j ,n

k
j )j )k that is Cauchy in H, therefore convergent since H is closed,

and we get that H is compact.

Let Z =
⋃
t∈RRt(H) =

⋃
j∈ZRj(H), therefore a Borel subset of A.
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This last equality is clear because

Rt(f(s2j ,nj)j ) = f(t+s2j+2k,nj+k)j = f([t]+h+s2j+2k,nj+k)j = R[t](f(h+s2j ,nj)j )

where
k := min{j ∈ Z ; t+ s2j ≥ 0} (2.5)

and t = [t] + h, where [t] denotes the integer part of t.

We easily get

µ(Z) ≥ µ(H) = (p1)2N1+1

( ∞∏
l=1

βl

)2

> 0.

The last inequality is obtained by using Fubini’s theorem again.

Since Z is Rt-invariant, it has positive measure and µ is strongly mixing
and then ergodic, µ(Z) = 1.

2.-The map Φ.

We define the map Φ : Z → X by

Φ(f(s2j ,nj)j ) =
∑
j≤−2

∫ s2j+2

s2j

S−txnjdt+

∫ 0

s−2

S−txn−1
dt

+

∫ s0

0
Ttxn−1

dt+
∑
j≥0

∫ s2j+2

s2j

Ttxnjdt. (2.6)

Φ is well defined since, given f(s2j ,nj)j ∈ Rt0(H), t0 ∈ R, and for l ≥ |t0|,
we have that nk ≤ 2l if Nl < |k| ≤ Nl+1, which shows the convergence of
the series in (2.6) by (2.1).

Let us see that Ta ◦ Φ = Φ ◦ Ra for any a > 0. We will distinguish two
cases:

Case 1 s−2 < −a < 0:
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Ta ◦ Φ(f(s2j ,nj)j ) =∑
j≤−2

∫ s2j+2

s2j

TaS−txnj +

∫ 0

s−2

TaS−txn−1
+

∫ s0

0
TaTtxn−1

+
∑
j≥0

∫ s2j+2

s2j

TaTtxnj =
∑
j≤−2

∫ s2j+2

s2j

S−(t+a)xnj +

∫ −a
s−2

TaS−txn−1

+

∫ 0

−a
TaS−txn−1

+

∫ s0

0
Tt+axn−1

+
∑
j≥0

∫ s2j+2

s2j

Tt+axnj

=
∑
j≤−2

∫ s2j+2+a

s2j+a
S−txnj +

∫ −a
s−2

S−t−axn−1
+

∫ 0

−a
Ta+txn−1

+

∫ s0+a

a
Ttxn−1

+
∑
j≥0

∫ s2j+2+a

s2j+a
Ttxnj =

∑
j≤−2

∫ a+s2j+2

a+s2j

S−txnj

+

∫ 0

a+s−2

S−txn−1
+

∫ a+s0

0
Ttxn−1

+
∑
j≥0

∫ a+s2j+2

a+s2j

Ttxnj

= Φ(f(a+s2j ,nj)j ) = Φ ◦Ra(f(s2j ,nj)j ).

since, in this case, 0 = min{j ∈ Z ; a+ s2j ≥ 0}.

Case 2 s2k < −a ≤ s2k+2, for some k ∈ Z−, k ≤ −2:
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Ta ◦ Φ(f(s2j ,nj)j ) =∑
j≤−2

∫ s2j+2

s2j

TaS−txnj +

∫ 0

s−2

TaS−txn−1
+

∫ s0

0
Ta+txn−1

+
∑
j≥0

∫ s2j+2

s2j

Ta+txnj =
∑
j<k

∫ s2j+2

s2j

S−t−axnj +

∫ −a
s2k

TaS−txnk

+

∫ s2k+2

−a
TaS−txnk +

∑
k<j<−1

∫ s2j+2

s2j

Ta+txnj +

∫ a

s−2+a
Ttxn−1

+

∫ s0+a

a
Ttxn−1

+
∑
j≥0

∫ a+s2j+2

a+s2j

Ttxnj =
∑
j<k

∫ s2j+2+a

s2j+a
S−txnj

+

∫ 0

s2k+a
S−txnk +

∫ s2k+2

−a
Ta+txnk +

∑
k<j<−1

∫ s2j+2+a

s2j+a
Ttxnj

+

∫ a

s−2+a
Ttxn−1

+

∫ s0+a

a
Ttxn−1

+
∑
j≥0

∫ a+s2j+2

a+s2j

Ttxnj =

∑
j<k

∫ a+s2j+2

a+s2j

S−txnj +

∫ 0

a+s2k

S−txnk +

∫ a+s2k+2

0
Ttxnk

+
∑
j>k

∫ a+s2j+2

a+s2j

Ttxnj = Φ(f(a+s2j+2k+2,nj+k+1)j ) = Φ ◦Ra(f(s2j ,nj)j )

since, in this case, k + 1 = min{j ∈ Z ; a+ s2j ≥ 0}.

Also, Φ is continuous almost everywhere on Rt0(H) for any t0 ∈ R. Indeed,
let (f(sk2j ,n

k
j )j )k be a sequence in Rt0(H) that converges to f(s2j ,nj)j ∈ Rt0(H)

with s0 > 0. Then, for any compact set C ⊂ R, we have that

lim
k→∞

sup
x∈C

∣∣∣f(sk2j ,n
k
j )j (x)− f(s2j ,nj)j (x)

∣∣∣ = 0.

In particular, for any N ∈ N and ε > 0, there exists k0 ∈ N such that,

if |j| ≤ N and k ≥ k0, then nkj = nj and |sk2j − s2j | < ε. (2.7)

Fix n > |t0| andN = Nn. Let ε > 0 such that ‖
∫
I S−txnjdt‖+‖

∫
J Ttxnjdt‖ <

(3(N + 1)2n+1)−1 whenever I ⊂] −∞, 0] and J ⊂ [0,+∞[ are intervals of
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length less than ε and |j| ≤ N . By (2.7) and (2.1), there exists an integer
k0 such that for every k ≥ k0,

∥∥∥Φ(fk(sk2j ,nkj )j
)− Φ(f(s2j ,nj))

∥∥∥ ≤
∥∥∥∥∥∥
∑

j<−Nn

∫ sk2j+2

sk2j

S−tx
k
nj

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∑
j>Nn

∫ sk2j+2

sk2j

Ttx
k
nj

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑

j<−Nn

∫ s2j+2

s2j

S−txnj

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∑
j>Nn

∫ s2j+2

s2j

Ttxnj

∥∥∥∥∥∥+
∑

−Nn≤j≤−2

∥∥∥∥∥
∫ max (sk2j ,s2j)

min (sk2j ,s2j)
S−txn2j

∥∥∥∥∥
+

∑
−Nn≤j≤−2

∥∥∥∥∥
∫ max (sk2j+2,s2j+2)

min (sk2j+2,s2j+2)
S−txnj

∥∥∥∥∥+

∥∥∥∥∥
∫ max (sk−2,s−2)

min (sk−2,s−2)
S−txn−1

∥∥∥∥∥
+

∥∥∥∥∥
∫ max (sk0 ,s0)

min (sk0 ,s0)
Ttxn−1

∥∥∥∥∥+
∑

0≤j≤Nn

∥∥∥∥∥
∫ max (sk2j ,s2j)

min (sk2j ,s2j)
Ttxnj

∥∥∥∥∥
+

∑
0≤j≤Nn

∥∥∥∥∥
∫ max (sk2j+2,s2j+2)

min (sk2j+2,s2j+2)
Ttxnj

∥∥∥∥∥ <
1

2n+1
+

1

2n+1
+

1

2n+1
+

1

2n+1
+

1

3(Nn + 1)2n+1
+

2(Nn − 2)

3(Nn + 1)2n+1

+
2(Nn + 1)

3(Nn + 1)2n+1
=

1

2n−1
+

1

2n
.

This shows the continuity almost everywhere of Φ : Rt(H) → X for every
t ∈ R. The map Φ is well-defined on Z, and Φ : Z → X is Borel measurable.

3.-The measure µ on X.

L(s) := Φ(Rs(H)) is a countable union of compact sets in X for each s ∈ R.
Indeed,

Φ(Rs(H)) =

Φ({f(s2j ,nj) ∈ Rs(H) ; s0 = 0}) ∪
⋃
n∈N

Φ({f(s2j ,nj) ∈ Rs(H) ; s0 ≥
1

n
}).
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We then have that Y :=
⋃
s∈R+ L(s) =

⋃
n∈N L(n) is a countable union of

compact sets, thus a Tt-invariant Borel subset of X because Φ◦Rt = Tt ◦Φ,
t > 0.

We then define in X the measure µ(B) = µ(Φ−1(B)) for all B ∈ B(X).
Obviously, µ is well-defined and it is a (Tt)t-invariant strongly mixing Borel
probability measure. The proof is completed by showing that µ has full
support. In the proof of Theorem 2.2 in [82] it was shown that, for uk :=∫ 1

0 Ttxkdt, k ∈ N, the set {uk ; k ∈ N} is dense in X. Thus, given a
non-empty open set U in X, we pick n ∈ N and ε > 0 satisfying∫ s2

s0

Ttxndt+ Un ⊂ U

for any s0 ∈ [0, ε], s2 ∈ [1, 1 + ε]. Together with (2.1), this implies

µ(U) ≥ µ
({

Φ(f(s2j ,nj)j ) ; f(s2j ,nj)j ∈ Z, s0 ∈ [0, ε], s2 ∈ [1, 1 + ε],

n0 = n, nk = 1 if 0 < |k| ≤ Nn, nk ≤ 2l, for Nl < |k| ≤ Nl+1, l ≥ n})

≥ . . .
∫ ε− 3

2

− 3

2

p1

(∫ s−2+ 3

2

0
pn

(∫ 1+ε

1
p1 . . . ds2

)
ds0

)
. . .

+ . . .

∫ − 1

2

ε− 3

2

p1

(∫ ε

0
pn

(∫ 1+ε

1
p1 . . . ds2

)
ds0

)
ds−2 . . .

+ . . .

∫ ε− 1

2

− 1

2

p1

(∫ ε

s−2+ 1

2

pn

(∫ 1+ε

1
p1 . . . ds2

)
ds0

)
ds−2 . . .

≥ ε2pn(p1)2Nn

∞∏
l=n

 ∏
Nl<|k|≤Nl+1

2l∑
r=1

pr

 ≥ ε2pn(p1)2Nn

∞∏
l=n

(β2l)
2 > 0

2

Remark 2.2.2 There exists an alternative way of defining the measure on
the space of continuous functions, by using Brownian motions (for more
details see [92],[93]). We denote by B = B(C([0,∞))), the σ-algebra of
Borel subsets of C([0,∞)). Let ωt, t ≥ 0, be a Brownian motion defined on
a probability space (Ω,F, µ). Assume that the sample functions of ωt are
continuous. Setting ξt = etωe−2t for t ≥ 0, then ξt is a stationary Gaussian
process with mean value Eξt = 0 and correlation function Eξtξt+h = e−|h|.
Then the measure on B = B(C([0,∞))) induced by ξt is strongly mixing
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with full support. The details of the construction of the measure can be
found in [93].

In Corollary 2.3 in [82] some conditions, expressed in terms of eigenvector
fields for the infinitesimal generator of the C0-semigroup, were given which
ensure that the assumptions of Theorem 2.2.1 are satisfied. In consequence
we also obtain the stronger result of existence of invariant strongly mixing
measures under the same conditions. A different argument for the exis-
tence of invariant strongly mixing measures for C0-semigroups has been
obtained in [21] under weaker assumptions on the eigenvectors fields for
the generator.

Corollary 2.2.3 Let X be a separable complex Banach space and let (Tt)t≥0

be a C0-semigroup on X with generator A. Assume that there exists a fam-
ily (fj)j∈Γ of locally bounded measurable maps fj : Ij → X such that Ij is an
interval in R, fj(Ij) ⊂ D(A), where D(A) denotes the domain of the gener-
ator, Afj(t) = itfj(t) for every t ∈ Ij, j ∈ Γ and span{fj(t) : j ∈ Γ, t ∈ Ij}
is dense in X. If either

(i) fj ∈ C2(Ij , X), j ∈ Γ
or

(ii) X does not contain c0 and 〈ϕ, fj〉 ∈ C1(Ij), ϕ ∈ X ′, j ∈ Γ,

then there is a (Tt)t≥0-invariant strongly mixing Borel probability measure
µ on X with full support.

2.3 Applications

In this section we will present several applications of the previous results to
the (chaotic) behavior of the solution C0-semigroup to certain linear partial
differential equations and infinite systems of linear differential equations.

Example 2.3.1 Let us consider the following linear perturbation of the
one-dimensional Ornstein-Uhlenbeck operator

Aαu = u′′ + bxu′ + αu,

where α ∈ R, with domain

D(Aα) =
{
u ∈ L2(R) ∩W 2,2

loc (R) ; Aαu ∈ L2(R)
}
.
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We know that, if α > b/2 > 0, then the semigroup generated byAα in L2(R)
is chaotic [37] and frequently hypercyclic [82]. Actually, it was shown that
the C0-semigroup satisfies the hypothesis of Corollary 2.2.3 [82]. Therefore,
we also obtain that it admits an invariant strongly mixing measure with
full support.

Example 2.3.2 Rudnicki [95] recently showed the existence of invariant
strongly mixing measures for some C0-semigroups generated by a partial
differential equation of population dynamics. More precisely, he reduced
the equation to

∂u

∂t
+ x

∂u

∂x
= au(t, x) + bu(t, 2x),

whose formal solution, given the initial condition u(0, x) = u0(x), is

u(t, x) := eat
∞∑
n=0

(bt)n

n!
u0(2ne−tx).

He considered the space

X = Xα,β :=
{
u ∈ C(]0,∞[) ; lim

x→0
xα|u(x)| = 0, lim

x→∞
xβ|u(x)| = 0

}
endowed with the norm ‖u‖ := supx∈]0,∞[ |u(x)|ρ(x), where ρ(x) = xα if

x ≤ 1 and ρ(x) = xβ if x > 1. If 2ab log 2 < e−1, β < log2 b+log2(log 2), and
α > α0, where α0 satisfies (a+α0)2α0 = b, then there exists a Borel strongly
mixing probability measure µ on X with full support which is invariant
under the solution C0-semigroup generated by the above equation as it is
proved in Theorem 1 of [95]. Actually, this fact was shown by reducing the
problem to the translation flow (Rt)t∈R on the space

Y :=

{
g ∈ C(R) ; lim

|x|→∞

g(x)

x
= 0

}
,

of weighted continuous functions with the norm

‖g‖Y = sup
x∈R

|g(x)|
1 + |x|

.

The corresponding generator is A = D, the derivative operator. We can ap-
ply directly our Corollary 2.2.3 to the map f : R→ Y given by [f(t)](x) :=
eitx, which is a C2-map, and we obtain the same result since span{f(t) ; t ∈
R} is the set of trigonometric polynomials, which is dense in Y .

Example 2.3.3 The chaotic behaviour associated to birth-and-death pro-
cesses has been widely studied by Banasiak et al [5, 6, 7, 9]. We will consider
three cases that are shown to admit invariant strongly mixing measures.



62 Strong mixing measures for C0-semigroups and frequent hypercyclicity

1. In [9], Banasiak and Moszynski studied the following “birth-and-death”
model with constant coefficients:

df1
dt = (Lf)1 = af1 + df2,

dfn
dt = (Lf)n = bfn−1 + afn + dfn+1, n ≥ 2.

(2.8)

Among other things, they studied the chaotic behaviour of the solution
C0-semigroup.

Theorem 2.3.4 ([9]) Let a, b, d ∈ R satisfy 0 < |b| < |d| and |a| <
|b+ d|. Then the solution C0-semigroup to the Cauchy problem (2.8)
is Devaney chaotic on `p.

Actually, to show this result they used a spectral criterion (see [8] and
[45]) which is less general than the criterion of Corollary 2.2.3. In
consequence, we obtain that the solution C0-semigroup to the Cauchy
problem (2.8) admits an invariant strongly mixing measure on `p with
full support.

2. In [2], Aroza and Peris studied the same model with coefficients de-
pending on N,

df1
dt = a1f1 + d1f2,

dfn
dt = bnfn−1 + anfn + dnfn+1, n ≥ 2.

(2.9)

with an, bn, dn ∈ R and the infinite matrix

L =


a1 d1

b2 a2 d2

b3 a3 d3

b4 a4
. . .

. . .
. . .

 .

They intended to obtain sub-chaos (i.e., Devaney chaos on a subspace)
results for birth-and-death type models with proliferation in a wide
range of coefficients depending on N. They considered the Banach
space X = X(γ) on which the operator associated with L generates a
C0-semigroup. Given 1 ≤ p <∞, let

X(γ) :=

{
f ∈ `p : Lnf ∈ `p, ∀n ∈ N, ||f || :=

∞∑
n=0

||Lnf ||pγ−n <∞

}
.
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If the sequences (an)n, (bn)n and (dn)n are bounded, L has an asso-
ciated bounded operator Sp on `p, with spectral radius r(Sp) < ∞,
and X(γ) = `p for γ > r(Sp). If any of the sequences (an)n, (bn)n and
(dn)n is unbounded, we have that the operator SX associated with L is
a bounded operator on X and, therefore, it generates a C0-semigroup
TX on X. They obtained the following result:

Theorem 2.3.5 ([2]) Let (an), (bn) and (dn)n be sequences of real
numbers such that dn 6= 0 for all n ∈ N, 1 ≤ p < ∞, and γ > 0.
Assume that either

1. limn→∞ an = a, limn→∞ bn = b, limn→∞ dn = d 6= 0 with |b| < |d|
and |a| < |b+ d| or

2. limn→∞
an
dn

= α, limn→∞
bn
dn

= β, limn→∞ dn = ∞ with α2 6= 4β,

|β| < 1 and |α| < |1 + β|

then the C0-semigroup TX is sub-chaotic on X(γ). Moreover, in case
1, Sp generates a sub-chaotic C0-semigroup Tp on `p.

Actually, to show this result they proved that the solution C0-semigroup
satisfies the spectral criterion of [8], in particular the conditions of
Corollary 2.2.3 on a certain subspace Y . Thus, we obtain that the cor-
responding solution C0-semigroup admits an invariant strongly mixing
measure µ on X(γ) whose support is Y .

3. Let us consider the death model with variable coefficients
∂fn
∂t = −αnfn + βnfn+1, n ≥ 1,

fn(0) = an, n ≥ 1
(2.10)

where (αn)n and (βn)n are bounded positive sequences and (an)n ∈ `1
is a real sequence. Considering X = `1, and the map A given by

Af = (−αnfn + βnfn+1)n for f = (fn)n ∈ X,

since A is a bounded operator on `1, it generates a C0-semigroup
(Tt)t≥0 which is solution of (2.10). It is shown in [72], that if

sup
n≥1

αn < lim inf
n→∞

βn

then the semigroup (Tt)t≥0 satisfies the hypothesis of the spectral
criterion [45], and then we can ensure the existence of an invariant
strongly mixing measure with full support on X.
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Example 2.3.6 Let us consider the solution semigroup (etA)t≥0 of the
hyperbolic heat transfer equation problem:

τ ∂
2u
∂t2 + ∂u

∂t = α∂
2u
∂x2 ,

u(0, x) = ϕ1(x), x ∈ R,

∂u
∂t (0, x) = ϕ2(x), x ∈ R

(2.11)

where ϕ1 and ϕ2 represent the initial temperature and the initial variation
of temperature, respectively, α > 0 is the thermal diffusivity, and τ > 0 is
the thermal relaxation time. We can represent it as a C0-semigroup on the
product of a certain function space with itself. We set u1 = u and u2 = ∂u

∂t .
Then the associated first-order equation is :

∂
∂t

(
u1

u2

)
=

(
0 I

α
τ
∂2

∂x2
−1
τ I

)(
u1

u2

)
.

(
u1(0, x)
u2(0, x)

)
=

(
ϕ1(x)
ϕ2(x)

)
, x ∈ R

(2.12)

We fix ρ > 0 and consider the space

Xρ =

{
f : R→ C; f(x) =

∞∑
n=0

anρ
n

n!
xn, (an)n≥0 ∈ c0

}

endowed with the norm ||f || = supn≥0 |an|.

Since

A :=

(
0 I

α
τ
∂2

∂x2
−1
τ I

)
. (2.13)

is an operator on X := Xρ⊕Xρ, we have that (etA)t≥0 is the C0-semigroup
solution of 2.11. We know from [40] and [72] that, given α, τ and ρ such
that ατρ > 2, the solution semigroup (etA)t≥0 defined on Xρ ⊕Xρ satisfies
the hypothesis of the spectral criterion [45], and we conclude the existence
of an invariant strongly mixing measure with full support on Xρ ⊕Xρ.

Example 2.3.7 In [31], Black and Scholes proved that under some as-
sumptions about the market, the value of a stock option u(x, t), as a func-
tion of the current value of the underlying asset x ∈ R+ = [0,∞) and time,
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satisfies the final value problem:
∂u
∂t = −1

2σ
2x2 ∂2u

∂x2 − rx∂u∂x + ru in R+ × [0, T ]
u(0, T ) = 0 for t ∈ [0, T ]
u(x, T ) = (x− p)+ for x ∈ R+

where p > 0 represents a given strike price, σ > 0 is the volatility and r > 0
is the interest rate. Let v(x, t) = u(x, T − t), then it satisfies the forward
Black-Scholes equation defined for all time t ∈ R+ by

∂v
∂t = 1

2σ
2x2 ∂2v

∂x2 + rx ∂v∂x − rv in R+ × R+

v(0, T ) = 0 for t ∈ R+

v(x, 0) = f(x) for x ∈ R+

with

f(x) = (x− p)+ =

{
x− p if x > p
0 if x ≤ p.

In order to express this problem in an abstract form , we define Dν = νx ∂
∂x ,

where ν = σ√
2

and B = (Dν)2 + γ(Dν) − rI, with γ = r
ν − ν. Then the

problem can be reformulated as:
∂v
∂t = Bv,
v(0, T ) = 0,
v(x, 0) = f(x) for x ∈ R+.

Recently in [63], the authors gave a simple explicit representation of the
solution of the Black-Scholes equation and this representation holds in the
spaces Y s,τ . Let

Y s,τ =

{
u ∈ C((0,∞)) ; lim

x→∞

u(x)

1 + xs
= 0, lim

x→0

u(x)

1 + x−τ
= 0

}
be endowed with the norm

||u||Y s,τ = sup
x>0

∣∣∣∣ u(x)

(1 + xs)(1 + x−τ )

∣∣∣∣.
It is shown that the C0-semigroup solution of the Black-Scholes equation
can be represented by Tt := f(Dν), where

f(z) = etg(z) with g(z) = z2 + γz − r and Dν = νx
∂

∂x
.
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For more information and details see [31].

In [51], it is proved that the Black-Scholes semigroup is strongly continuous
and chaotic for s > 1, τ ≥ 0 with sν > 1. We will see that, with a
little more work, the Black-Scholes semigroup satisfies the spectral criterion
in [45] under the same restrictions on the parameters and, therefore, the
hypothesis of Corollary 2.2.3.

Let s > 1
ν , 0 < ν < 1 and s > 1. Let Ss = {λ ∈ C ; 0 < Reλ < sν}.

By Lemma 3.5 in [51], we have that g(Ss) ∩ iR 6= ∅. Then there exists an
open ball U ⊂ g(Ss) such that U ∩ iR 6= ∅ and such that U ∩ R = ∅. In
particular, we find an inverse g−1 well defined (and holomorphic) on U .
We set F = L ◦ g−1, F : U → Y s,τ , where L : Ss → Y s,τ is defined as
L(λ) = hλ

ν
, with hλ(x) = xλ. It is clear that F is weakly holomorphic since

L is weakly holomorphic [51].

Finally, AF (λ) = g
(
ν g
−1(λ)
ν

)
F (λ) = λF (λ) for any λ ∈ U , where (A,D(A))

is the generator of the Black-Scholes semigroup, and the equality 〈F (λ), ψ〉 =
0 for a fixed ψ ∈ (Y s,τ )∗ and for every λ ∈ U necessarily implies ψ = 0. All
the details are proved in Theorem 3.6 in [51].
Thus, the spectral criterion in [45] is satisfied and the Black-Scholes semi-
group admits an invariant strongly mixing Borel probability measure on
Y s,τ with full support by Corollary 2.2.3.



Chapter 3

Frequently hypercyclic translation
C0-semigroups

This chapter is divided in three sections. In the first one we review some
known results on the dynamics of the translation C0-semigroups, later we
state and prove a characterization of frequent hypercyclicity for weighted
pseudo-shifts in terms of the weights that will be used in the last section
to obtain a characterization of frequent hypercyclicity for translation C0-
semigroups on Cρ0 (R). Finally, in the third one, we establish a character-
ization of frequently hypercyclic translation C0-semigroups on Cρ0 (R) and
Lρp(R). Moreover, we establish an analogy between the study of frequent
hypercyclicity for the translation C0-semigroup and the corresponding one
for backward shifts on weighted sequence spaces. The contents of this chap-
ter have been included in [81].

For linear discrete dynamical systems, shift operators on sequence spaces
are one of the most important test operators. In the continuous case
this role is played by the translation semigroup. Firstly, let us intro-
duce the spaces of functions where we are going to consider translation
C0-semigroups. These spaces are denoted by Lρp(R), with 1 ≤ p < ∞ and
Cρ0 (R) and ρ is an admissible weight function.

Definition 3.0.8 ([45]) We recall that by an admissible weight function
on R, we mean a measurable funtion ρ : R→ R such that:

• ρ(t) > 0 for all t ∈ R and

67
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• there exist M ≥ 1 and ω ∈ R such that ρ(τ) ≤ Meωtρ(τ + t) for all
τ ∈ R and all t > 0.

We recall the following useful property for admissible weight functions.

Lemma 3.0.9 ([45]) Let ρ be an admissible weight function on R. For
each l > 0 there are constants 0 < A < B such that for each σ ∈ R and
each τ ∈ [σ, σ + l], we have Aρ(σ) ≤ ρ(τ) ≤ Bρ(σ + l).

We consider the following function spaces

Lρp(R) = {f : R→ R ; f is measurable and ‖f‖p <∞},

where ‖f‖p = (
∫∞
−∞ |f(t)|pρ(t)dt)

1

p and

Cρ0 (R) = {f : R→ R ; f is continuous and lim
x→∞

f(x)ρ(x) = 0},

with ‖f‖∞ = supt∈R f(t)ρ(t). If X is any of the spaces above, the trans-
lation semigroup (Tt)t≥0 defined as Ttf(x) = f(x + t) is a well defined
C0-semigroup .

3.1 Existing results on the dynamics of translation
C0-semigroups

In this section, we have compiled some characterizations of hypercyclic,
mixing and Devaney chaotic translation C0-semigroups in terms of the
weight function in order to establish a relation between these concepts and
being frequently hypercyclic.

Theorem 3.1.1 ([45]) Let X be one of the spaces Lρp(R) or Cρ0 (R) with
ρ an admissible weight function. The translation C0-semigroup (Tt)t≥0 is
hypercyclic on X if and only if for all σ ∈ R

lim inf
x→∞

ρ(x+ σ) = lim inf
x→∞

ρ(−x+ σ) = 0.

Theorem 3.1.2 ([24]) Let X be one of the spaces Lρp(R) or Cρ0 (R) with
ρ an admissible weight function. The translation C0-semigroup (Tt)t≥0 is
mixing on X if and only if

lim
x→∞

ρ(x) = lim
x→∞

ρ(−x) = 0.
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Theorem 3.1.3 ([84]) Let X be the space Cρ0 (R) with ρ an admissible
weight function. The translation C0-semigroup (Tt)t≥0 is chaotic on X if
and only if

lim
x→∞

ρ(x) = lim
x→∞

ρ(−x) = 0.

Theorem 3.1.4 ([84]) Let X be the space Lρp(R) with ρ an admissible
weight function. The translation C0-semigroup (Tt)t≥0 is chaotic on X if
and only if for every ε, σ > 0 there exists P > 0:

∞∑
n∈Z\{0}

ρ(σ + nP ) < ε.

Theorem 3.1.5 ([44]) Let X be the space Lρp(R) with ρ an admissible
weight function. The following are equivalent:

(i) The translation C0-semigroup (Tt)t≥0 is chaotic on X;

(ii)
∫∞
−∞ ρ(s)ds <∞;

(iii) sup{ν ∈ R;
∫∞
−∞ e

νsρ(s)ds <∞} > 0;

(iv) T1 has a non-trivial periodic point;

(v) T1 is chaotic.

Theorem 3.1.6 ([82]) Let X be the space Lρp(R) with ρ an admissible
weight function. The translation C0-semigroup (Tt)t≥0 is chaotic on X if
and only if it satisfies the Frequent Hypercyclicity Criterion for semigroups.

Theorem 3.1.7 ([82]) Let X be the space Cρ0 (R) with ρ an admissible
weight function. If

∫∞
−∞ ρ(s)ds < ∞, then the translation C0-semigroup

(Tt)t≥0 satisfies the Frequent Hypercyclicity Criterion for semigroups.

Proposition 3.1.8 ([82]) Let X be the space Lρp([0,∞)) with ρ an ad-
missible weight function and (Tt)t≥0 the translation C0-semigroup on X. If
(Tt)t≥0 is frequently hypercyclic, then for every ε > 0 there exists a sequence
(nk)k ∈ N with positive lower density such that

∑
k>i ρ(nk − ni) < ε for all

i ∈ N. Moreover, ρ is bounded.
If (Tt)t≥0 is a frequently hypercyclic translation semigroup on Cρ0 ([0,∞))
then for every ε > 0 there exists a sequence (nk)k ∈ N with positive lower
density such that ρ(nk − ni) < ε for all i ∈ N and k > i.
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3.2 Frequently hypercyclic weighted pseudo-shifts

The concept of weighted pseudo-shift was introduced in section 0.6. We
will be interested in weighted pseudo-shifts acting on spaces of vanishing
sequences. More precisely, given a countable set I, we consider the space

c0(I) = {(xi)i∈I : ∀ε > 0, ∃ J ⊂ I, J finite : ∀i ∈ I \ J |xi| < ε},

endowed with the norm ||(xi)i∈I || = supi∈I |xi|.

The first result that we prove is a characterization of frequently univer-
sal sequences of weighted pseudo-shifts on c0(I). In order to prove this,
we will follow the idea of Bayart and Ruzsa in [22] for proving frequent
hypercyclicity of weighted backward shifts on c0(Z). We first recall the
characterization they obtained.

Theorem 3.2.1 Let (wi)i∈Z be a bounded and bounded below sequence of
positive integers. Then Bw is frequently hypercyclic on c0(Z) if and only if
there exist ( for all) a sequence (M(p))p∈N of positive real numbers tending
to ∞ and a sequence (Ep)p∈N of subsets of Z+ such that

(a) For any p ≥ 1, dens(Ep) > 0.

(b) For any p, q ≥ 1, p 6= q, (Ep + [−p, p]) ∩ (Eq + [−q, q]) = ∅.

(c) limn→∞,n∈Ep w1 . . . wn =∞.

(d) For any p, q ≥ 1, n ∈ Ep, m ∈ Eq, n 6= m:


w1 . . . wm−n ≥M(p)M(q), if m > n

w(m−n)+1 . . . w−1w0 ≤ 1
M(p)M(q) , if m < n. (3.1)

Now, we obtain a characterization for weighted pseudo-shifts on c0(I).

Theorem 3.2.2 Let (Tn)n be a sequence of weighted pseudo-shifts on c0(I)
defined by Tn[(xi)i∈I ] = (bni xφn(i))i∈I , where bni are positive real numbers.
Assume that:

(i) (φn)n is a run-away sequence, i.e. for each pair of finite subsets
I0, J0 ⊂ I there exists an n0 ∈ N such that, for every n ≥ n0,
φn(J0) ∩ I0 = ∅,
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(ii) there exists ρ > 1 such that 1
ρ|n−m| ≤

bns
bmt

for all n,m ∈ N, s, t ∈ I such

that φn(s) = φm(t),

(iii) there exists g : I → R such that |n−m| ≤ |g(s)−g(t)| for all n,m ∈ N,
s, t ∈ I such that φn(s) = φm(t).

Then (Tn)n is frequently universal on c0(I) if and only if there exist a
sequence (M(p))p∈N of positive real numbers tending to ∞, a sequence
(Ep)p∈N of subsets of N, and an increasing sequence (Wp)p∈N of finite sub-
sets of I with I =

⋃∞
p=1Wp, such that:

(a) For any p ≥ 1, dens(Ep) > 0.

(b) For any p, q ≥ 1, p 6= q, n ∈ Ep,m ∈ Eq, φn(Wp) ∩ φm(Wq) = ∅.

(c) For every p ≥ 1 and every s ∈Wp: limn→∞,n∈Ep b
n
s =∞.

(d) For any p, q ≥ 1, n ∈ Ep, m ∈ Eq, n 6= m, t ∈ Wq and s ∈ I such
that φn(s) = φm(t) :

bns
bmt
≤ 1

M(p)M(q)
.

Proof.

”⇒”: Let x ∈ c0(I) be a frequently universal vector for (Tn)n. Let (αp)p∈N
be a strictly increasing sequence of positive real numbers such that α1 = 2
and for all p ≥ 2, αp > 4αp−1ρ

2Ψ(p), where Ψ(p) = max{|g(t)| : t ∈ Wp}
and define

Ep =

n ∈ N : ||Tnx− αp
∑
i∈Wp

ei|| <
1

p

 .

Clearly dens(Ep) > 0. In order to prove (b), fix p 6= q, with p < q,
n ∈ Ep,m ∈ Eq and assume by contradiction, that there exist s ∈ Wp and
t ∈ Wq such that φn(s) = φm(t). The s-th coefficient of Tnx is bnsxφn(s),
then

|bnsxφn(s)| ≤ ‖Tnx− αp
∑
i∈Wp

ei‖+ αp‖
∑
i∈Wp

ei‖ <
1

p
+ αp < 2αp.

The t-th coefficient of Tmx is bmt xφm(t) and

|bmt xφm(t)| ≥ αq−|bmt xφm(t)−αq| ≥ αq−‖Tnx−αp
∑
i∈Wp

ei‖ ≥ αq−
1

q
≥ αq

2
.

(3.2)
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Then we get

1

ρ2Ψ(q)
≤ 1

ρ|n−m|
≤
|bnsxφn(s)|
|bmt xφm(t)|

≤ 2αp
2

αq
≤ 4

αq−1

αq

, contraddicting the choice of (αp)p.

Now let p ≥ 1 and s ∈ Wp; for every n ∈ Ep the s-th coefficient of Tnx is
bnsxφn(s) and, with the same argument as in (3.2), we get that its modulus

is greater or equal than αp
2 . Let M > 0. Given ε = αp

2M , since x ∈ c0(I),
there exists J ⊂ I finite such that |xi| < ε for all i ∈ I \ J . As φn is a
run-away sequence there exists n0 ∈ N such that for all n ∈ Ep, n > n0 and
for all s ∈Wp, φn(s) /∈ J , and then |xφn(s)| < ε. As a result, for all n ∈ Ep,
n ≥ n0:

|bns | ≥
αp

2|xφn(s)|
≥ αp

2ε
= M.

So, we have proved (c).

Finally, let n ∈ Ep, m ∈ Eq, t ∈ Wq, s ∈ I such that φn(s) = φm(t); then
by (b) s /∈Wp and

bns
bmt

=
|bnsxφn(s)|
|bmt xφm(t)|

≤ 1

p

2

αq
≤ 1

p

1

q
.

Hence (d) holds with M(p) = p.

”⇐”: Observe that if properties (a) to (d) hold true for some sequence
(M(p)), then they are also satisfied for any subsequence of it, passing to a
subsequence of (Ep)p if necessary. Therefore we may assume that, for any
p ≥ 1, M(p) ≥ ρ4p. Moreover, observe that Ep ∩ Eq = ∅ if p 6= q. Indeed,
assume p < q; if there exists n ∈ Ep ∩ Eq, then for any s ∈ Wp ⊂ Wq, one
would have φn(s) ∈ φn(Wp) ∩ φn(Wq), contraddicting (b).

We set
E′p = Ep \

⋃
s∈Wp

{n ∈ N : bns ≤ ρ4p}.

By (c), E′p is a cofinite subset of Ep, hence dens(E′p) > 0. If E′p = {npk |
k ∈ N}, where (npk)k is an increasing sequence natural numbers, we consider
Fp = {np(2[Ψ(p)]+3)k | k ∈ N} where [Ψ(p)] is the integer part of Ψ(p). Fp
has positive lower density and moreover the distance between two different
elements of Fp is greater than 2Ψ(p).
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Let (yp)p≥0 be a dense sequence in c0(I) such that supp(yp) ⊂ Wp and
||yp|| < ρp. We define x ∈ RI by setting

xi =


1
bns
yp(s), if i = φn(s), n ∈ Fp, s ∈Wp

0 otherwise.
(3.3)

This definition is well posed, because if i = φn(s) = φm(t), with n ∈ Fp,
s ∈ Wp, m ∈ Fq, t ∈ Wq, then, by (b), p = q and, by the assumption (iii),
|n−m| ≤ |g(s)− g(t)| ≤ 2Ψ(p), hence, by the definition of Fp, n = m and
hence s = t, by the injectivity of φn.

It holds that that x ∈ c0(I). Indeed, given ε > 0, there exists p0 ∈ N such
that for p ≥ p0 and n ∈ Fp, s ∈Wp:

|xi| ≤
ρp

ρ4p
≤ ε.

If p ≤ p0:

|xi| ≤
ρp0

bns
→ 0, n→∞.

We finally show that x is a frequently hypercyclic vector by proving that
for all p ≥ 1, n ∈ Fp, ||Tnx− yp|| < ε(p) with ε(p)→ 0 as p→∞. We have
that

||Tnx− yp|| = sup
s/∈Wp

|bnsxφn(s)|.

The terms which appear in the modulus do not vanish if and only if φn(s) =
φm(t),m ∈ Fq, t ∈ Wq. It holds that n 6= m, otherwise n ∈ Fp ∩ Fq, hence
p = q and, by the inyectivity of φn, s = t ∈ Wp = Wq, while s /∈ Wp.
Hence, we can apply (d) to get that

|bnsxφn(s)| =
∣∣∣∣ bnsbmt yq(t)

∣∣∣∣ ≤ ρq

M(p)M(q)
≤ ρq

ρpρq
=

1

ρp
.

2

As a corollary, we obtain a characterization of frequent hypercyclicity for
weighted backward shifts operators defined on c0(I), in the case that I ⊆ R
is any countable set such that I + Z ⊂ I, I =

⋃∞
p=1Wp, where (Wp)p is an

increasing sequence of finite subsets.
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Corollary 3.2.3 Let (wi)i∈I be a bounded and bounded below sequence of
positive integers. The operator T : c0(I) → c0(I) defined by T (xi)i∈I =
(wi+1xi+1)i∈I is frequently hypercyclic on c0(I) if and only if there exist
( for all) a sequence (M(p))p∈N of positive real numbers tending to ∞ and
a sequence (Ep)p∈N of subsets of Z+ such that

(a) For any p ≥ 1, dens(Ep) > 0.

(b) For any p, q ≥ 1, p 6= q, (Ep +Wp) ∩ (Eq +Wq) = ∅.

(c) limn→∞,n∈Ep,s∈Wp
ws+1 . . . ws+n =∞.

(d) For any p, q ≥ 1, n ∈ Ep, m ∈ Eq, n 6= m and t ∈Wq:

wm−n+t+1 . . . wm+t

wt+1 . . . wt+m
≤ 1

M(p)M(q)
.

Proof. This corollary is a particular case of Theorem 3.2.2 when we consider
Tn = Tn with

T (xi)i∈I = (wi+1xi+1)i∈I ,

bns = ws+1ws+2 . . . ws+n, φ(s) = s + 1, φn = φn and g : I → R defined by
g(s) = s. 2

Remark 3.2.4 Observe that condition (d) is equivalent to say that for any
p, q ≥ 1, n ∈ Ep, m ∈ Eq, n 6= m and t ∈Wq:

wt+1 . . . wt+m−n ≥M(p)M(q), if m > n

wt+(m−n)+1 . . . wt−1wt ≤ 1
M(p)M(q) , if m < n. (3.4)

and we obtain similar conditions as the ones obtained in 3.2.1.

3.3 Frequently hypercyclic translation semigroups

Our main purpose is to obtain a characterization of frequent hypercyclicity
for translation semigroups on Cρ0 (R) and Lρp(R).

To treat the case of continuous functions, we will first need to recall some
known results about the construction of a Schauder basis in C0(R), referring
for more details to [98].
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Let D̃ be the set of dyadic numbers, that is D̃ =
⋃∞
n=0Dn whereD0 = {0, 1}

and, if n ≥ 1,

Dn =

{
2k − 1

2n
: k = 1, . . . , 2n−1

}
.

For any τ ∈ Dn, set τ− = τ − 2−n and τ+ = τ + 2−n.

Let φ(x) = max(0, 1 − |x|), x ∈ R and define φk+τ (x) = φ(2n(x − k − τ))
where k ∈ Z, τ ∈ Dn, τ 6= 1. Observe that φk+τ (x) = φτ (x− k) where φτ is
the Faber-Schauder dyadic function with peak at τ .

Set I = Z+D̃ and consider the partition I = V0∪V1∪. . . where V0 = {0, 1},
and

Vn = {−n+ h+Dh|h = 1, . . . , n} ∪ {h+Dn−h|h = 0, 1, . . . , n}. (3.5)

We define an order on I assuming that the elements of Vk are earlier that
the elements of Vn if 0 ≤ k < n, and within each Vn keep the usual order.

The system (φi)i∈I , is a Schauder basis in C0(R). More precisely, if f ∈
C0(R) then f =

∑
k+τ∈Z+D̃ ak+τφk+τ where ak = f(k), for k ∈ Z and

ak+τ = f(k + τ)− 1
2(f(k + τ−) + f(k + τ+)) for k ∈ Z, τ ∈ D̃.

Lemma 3.3.1 Let ρ be an admissible weight function on R such that ρ(x) =
ρ([x]) for any x ∈ R and let T1 : Cρ0 (R)→ Cρ0 (R) be the translation operator
defined as T1f(x) = f(x + 1). Then the weighted backward shift operator

Bw : c0(Z + D̃)→ c0(Z + D̃) defined by

Bw((xk+τ )k+τ∈Z+D) = (wk+τxk+τ+1)k+τ∈Z+D

where wk+τ = ρ(k)
ρ(k+1) , k + τ ∈ Z + D̃ is quasi conjugated to T1.

Proof.

Given f ∈ Cρ0 (R), we define Q(f(x)) = (ak+τ )n+τ∈Z+D̃ where

f(x)ρ(x) =
∑

k+τ∈Z+D̃

ak+τφk+τ (x).

Clearly Q : Cρ0 (R)→ c0(Z + D̃) is a continuous linear operator and

Bw ◦Q(f) = Bw(ak+τ )k+τ∈Z+D̃ =

(
ρ(k)

ρ(k + 1)
ak+τ+1

)
k+τ∈Z+D̃

.
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On the other hand, Q ◦ T1(f(x)) = Q(f(x + 1)) = (bk+τ )k+τ∈Z+D̃, where

f(x+ 1)ρ(x) =
∑

k+τ∈Z+D̃ bk+τφk+τ (x). We have that:

bk+τ =



f(k + 1)ρ(k) = ak+1
ρ(k)
ρ(k+1) , if τ = 0

(f(k + 1 + τ)− 1
2(f(k + 1 + τ−) + f(k + 1 + τ+))ρ(k)

= ak+τ+1
ρ(k)
ρ(k+1) , if τ 6= 0.

(3.6)

for k ∈ Z, τ ∈ D̃, taking into account that ρ(k + τ) = ρ(k + τ−) = ρ(k +

τ+) = ρ(k) for all k ∈ Z, τ ∈ D̃. Then

Q ◦ T1(f(x)) =

(
ρ(k)

ρ(k + 1)
ak+τ+1

)
k+τ∈Z+D̃

= Bw ◦Q(f).

So the diagram

Cρ0 (R)
T1−→ Cρ0 (R)

↓Q ↓Q
c0(Z + D̃)

Bw−→ c0(Z + D̃)

is commutative and we conclude the result. 2

Theorem 3.3.2 Let (Tt)t≥0 be the translation semigroup on Cρ0 (R), where

ρ is an admissible weight function and supk∈Z
ρ(k+1)
ρ(k) < ∞. (Tt)t≥0 is fre-

quently hypercyclic on Cρ0 (R) if and only if there exist a sequence (M(p))p∈N
of positive real numbers tending to ∞ and a sequence (Ep)p∈N of subsets of
Z+ such that:

(a) For any p ≥ 1, dens(Ep) > 0.

(b) For any p, q ≥ 1, p 6= q, (Ep +Wp) ∩ (Eq +Wq) = ∅.

(c) limn→∞,n∈Ep,k∈[−p,p+1] ρ(k + n) = 0.

(d) For any p, q ≥ 1, for any n ∈ Ep and any m ∈ Eq, n 6= m and for all
k ∈ [−q, q + 1] :

ρ(k +m− n+ 1) ≤ 1

M(p)M(q)
, (3.7)
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where Wp =
⋃p
k=0 Vk defined in (3.5).

Proof. (Tt)t is frequently hypercyclic if and only if T1 is frequently hyper-
cylic [38, 82]. Let us point out that if ρ is an admissible weight function

then sup ρ(k)
ρ(k+1) <∞.

By hypothesis we have sup ρ(k+1)
ρ(k) = M < ∞, then there exist constants

0 < A < B such that

Aρ(k) ≤ ρ(x) ≤ Bρ(k + 1) ≤ BMρ(k).

Then if we define ρ̃(x) = ρ(x) for x ∈ [k, k + 1[, there exist constants
M1,M2 > 0 such that

M1||f ||ρ̃∞ ≤ ||f ||ρ∞ ≤M2||f ||ρ̃∞.

We conclude the result combining Corollary 3.2.3 and Lemma 3.3.1. 2

Remark 3.3.3 Let ρ be an admissible weight function on R such that

supk∈Z
ρ(k+1)
ρ(k) < ∞ and set wk = ρ(k)

ρ(k+1) , k ∈ Z. If Bw is frequently hy-

percyclic on c0(Z), the corresponding translation semigroup is frequently
hypercyclic on Cρ0 (R).

Let (Ep) be a sequence of subsets of N such that for any p, q ≥ 1, p 6= q,
(Ep + [−p, p]) ∩ (Eq + [−q, q]) = ∅.

Choosing Fp = Ep+1, we get that (Fp+Wp)∩ (Fq +Wq) = ∅ if p 6= q, where
the sets Wp are defined as in the assumptions of Theorem 3.3.2. Indeed, if

n ∈ Fp, s ∈ [−p, p + 1], σ ∈ D̃, σ = 2u−1
2h , m ∈ Fq, t ∈ [−q, q + 1], τ ∈ D̃,

τ = 2v−1
2k are such that

n+ s+ σ = m+ t+ τ,

we have that τ − σ ∈ Z. Thus straightforward calculations give that h = k
and |u− v| = a2h−1 with a ∈ Z+.
On the other hand |u − v| < 2h−1, hence a = 0. Therefore τ = σ and so
n+ s = m+ t. Now the assertion follows by the properties of the set Ep.

As an immediate consequence using Theorem 3.2.1 hypothesis (c) and (d)
of Theorem 3.3.2 are verifed and we get that if ρ is an admissible weight

function on R such that supk∈Z
ρ(k+1)
ρ(k) < ∞ and we set wk = ρ(k)

ρ(k+1) , k ∈
Z, if Bw is frequently hypercyclic on c0(Z), the corresponding translation
semigroup is frequently hypercyclic on Cρ0 (R).
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Proposition 3.3.4 Let (Tt)t≥0 be a mixing (equivalently chaotic) transla-
tion C0-semigroup on Cρ0 (R). Then (Tt)t≥0 is frequently hypercyclic.

Proof. As it is shown in 3.1.3 and 3.1.2, chaos and mixing are equivalent
properties for the translation C0-semigroup on Cρ0 (R), and this happens if
and only if limx→∞ ρ(x) = limx→∞ ρ(−x) = 0.
Consider a sequence (Ep) of subsets of Z+ such that for any p ≥ 1,
dens(Ep) > 0 and for any p, q ≥ 1, p 6= q, (Ep+[−p, p])∩(Eq+[−q, q]) = ∅.
(see e.g. the constructions in [20]). It is clear that hypothesis (c) of 3.3.2
will be verified trivially, while (b) is satisfied by Remark 3.3.3.
Moreover, given n ∈ Ep,m ∈ Eq and k ∈ [−q, q+ 1], we can define for each
i ∈ N:

M(i) = min
k∈[−q,q+1]

{
1

sup|n|≥i{ρ(k + n+ 1)}

}
.

It is clear that for n ∈ Ep,m ∈ Eq, |m− n| ≥ max(p, q), and

ρ(k +m− n+ 1) ≤ sup|s|≥1 ρ(k + s+ 1) ≤ 1
M(i) ,m < n, i = p, q,

(3.8)

So, we have for each k ∈ [q, q + 1]:

ρ(k +m− n+ 1) ≤ 1√
M(p)

1√
M(q)

,
(3.9)

and hypothesis (d) is satisfied by the sequence M ′(p) =
√
M(p) and there-

fore (Tt)t≥0 is frequently hypercyclic. 2

Remark 3.3.5 The converse of the previous proposition does not hold.
Indeed, let (wk)k∈Z be one of the sequence of weights constructed in [22,
19] such that Bw is frequently hypercylic on c0(Z) and w1 . . . wk = 1 for
infinitely many k. Define ρ(k) = (w1 . . . wk−1)−1 if k ≥ 1 and ρ(k) =
wk · wk+1 · · · · · w0 if k ≤ 0 and ρ(x) = ρ([x]) for any x ∈ R. Then,
by Remark 3.3.3, the translation semigroup is frequently hypercyclic on
Cρ0 (R), while clearly it is not mixing, since ρ(k) = 1 for infinitely many k.

Now we will be devoted to characterize frequent hypercyclicity for transla-
tion semigroups on Lρp(R). In order to do this, we will establish a relation
between the discrete and the continuous case. The relation between the
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discrete and continuous case for Devaney chaos was studied in [16] and
distributional chaos in [11].

First of all, we recall the characterization of frequent hypercyclicity for
weighted backward shifts on `p given in [22].

Theorem 3.3.6 Let 1 ≤ p < ∞ and let w = (wn)n∈Z be a bounded se-
quence of positive real numbers. Then Bw is frequently hypercyclic on `p(Z)
if and only if the series

∑
k≥1

1
(w1...wk)p and

∑
k<0(w−1 . . . wk)

p are conver-
gent.

The following lemma follows immediately by the conjugacy of the backward

shift on `vp and the weighted backward shift Bw on `p where wk =
(
vk−1

vk

) 1

p

,

k ∈ Z and Theorem 3.3.6.

Lemma 3.3.7 Let v = (vk)k∈Z be a sequence of strictly positive weights
such that (vk−1

vk
)
k

is bounded. Then the backward shift operator B is fre-

quently hyperyclic on `vp if and only if
∑

k∈Z vk <∞.

Proof.

Let us define T : `p → `vp as T (xk)k =

(
xk

vp
−1

k

)
k

,

T−1 ◦B ◦ T (xk)n = T−1 ◦B

. . . , x−1

vp
−1

−1

,
x0

vp
−1

0︸︷︷︸
0

,
x1

vp
−1

1

, . . .

 =

. . . , v
p−1

−1 x0

vp
−1

0

,
vp
−1

0 x1

vp
−1

1︸ ︷︷ ︸
0

,
vp
−1

1 x2

vp
−1

2

, . . .

 = Bw(xn)n

where wk =
(
vk−1

vk

) 1

p

. We have that B is frequently hyperyclic in `vp if and

only if Bw is frequently hypercyclic. By 3.3.6, this happens if and only
if
∑

k≥1
1

(w1w2...wk)p < ∞ and
∑

k<0(w−1 . . . wk)
p < ∞. As a result, B is

frequently hyperyclic on `vp if and only if
∑

k∈Z vk <∞. 2
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Theorem 3.3.8 Let (Tt)t≥0 be the translation semigroup defined on Lρp(R).
If (Tt)t≥0 is frequently hypercyclic, then the backward shift operator B is fre-
quently hypercyclic on `vp, where vk = ρ(k) for all k ∈ Z.

Proof. Since ρ is an admissible function by 3.0.9 there exists A,B ≥ 0 such
that for all t ∈ [k, k+ 1], Aρ(k) ≤ ρ(t) ≤ Bρ(k+ 1). If (Tt)t≥0 is frequently
hypercyclic, then T1 is frequently hypercyclic [38]. Hence there exists f ∈
Lρp such that for all g ∈ Lρp and for all ε > 0, dens{n ∈ N : ||Tn1 f − g|| <
ε} > 0. Since f ∈ Lρp we have that |f |ρ

1

p ∈ Lp([k, k + 1]) ⊂ L1([k, k + 1])
for every k ∈ Z. Being ρ a strictly positive continuous function we get that

f ∈ L1([k, k + 1]) for all k ∈ Z. Therefore we can define xk =
∫ k+1
k f(t)dt

for all k ∈ Z. We have that:∑
k∈Z
|xk|pρ(k) =

∑
k∈Z

∣∣∣∣∫ k+1

k
f(t)dt

∣∣∣∣pρ(k) ≤
∑
k∈Z

∫ k+1

k
|f(t)|pρ(k)dt ≤

1

A

∑
k∈Z

∫ k+1

k
|f(t)|pρ(t)dt =

1

A
||f ||p <∞.

So x = (xk)k∈Z ∈ `pv with vk = ρ(k).
Let y = (0, . . . , y−N , . . . , y0, . . . , yM , . . . , 0) and let ε > 0.

Set g =

M∑
k=−N

ykχ[k,k+1] ∈ Lρp(R). We show that:

{n ∈ N : ||Tn1 f − g|| < A
1

p ε} ⊂ {n ∈ N : ||Bnx− y|| < ε}

and therefore
dens{n ∈ N : ||Bnx− y|| < ε} > 0

because f is a frequently hyperciclic vector. We have:

||Bnx−y||p =
∑
k∈Z
|xn+k−yk|pρ(k) ≤ 1

A

∑
k∈Z

∫ k+1

k
|f(t+n)−g(t)|pρ(t) ≤ 1

A
Aεp.

By the density of finite sequences in `vp we get that B is frequently hyper-
cyclic. 2

Finally we are able to characterize frequently hypercyclic translation semi-
groups in Lρp(R).
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Proposition 3.3.9 Let (Tt)t≥0 be the translation semigroup defined on
Lρp(R) and ρ and admissible weight function on R. The following asser-
tions are equivalent:

(1) (Tt)t≥0 is frequently hypercyclic.

(2)
∑

k∈Z ρ(k) <∞.

(3)
∫∞
−∞ ρ(t)dt <∞.

(4) (Tt)t≥0 is chaotic.

(5) (Tt)t≥0 satisfies the Frequent Hypercyclicity Criterion.

Proof. Observe that
(
ρ(k−1)
ρ(k)

)
k

is bounded by the admissibility of the func-

tion ρ. By Theorem 3.3.8 and Lemma 3.3.7, (1) =⇒ (2), while (2) =⇒
(3) =⇒ (4) =⇒ (5) =⇒ (1) are proved in [82]. 2
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Chapter 4

Chaotic behavior on invariant sets
of linear operators

4.1 Introduction

In this chapter we study hypercyclicity, Devaney chaos, topological mixing
properties and strong mixing in the measure-theoretic sense for operators
on topological vector spaces with invariant sets. More precisely, our pur-
pose is to establish links between the fact of satisfying any of our dynamical
properties on certain invariant sets, and the corresponding property on the
closed linear span of the invariant set, or on the union of the invariant sets.
Viceversa, we give conditions on the operator (or C0-semigroup) to ensure
that, when restricted to the invariant set, it satisfies certain dynamical
property. Particular attention is given to the case of positive operators and
semigroups on lattices, and the (invariant) positive cone. We also present
examples that illustrate these results.

Although chaotic properties for linear operators are usually considered in
the context of F -spaces, more general topological vector spaces have also
attracted the attention in recent years (see, e.g.,[32], [99] and Chapter 12
of [72]). In the first section we deal with operators T on general topological
vector spaces X. We will provide several conditions under which a dynami-
cal property can pass from an invariant set (or a countable family of invari-
ant sets) of the operator to the closure of its linear span (or to the union of
the invariant sets). In [13] analogous results have been given for backward
shift operators and the specification property. Some examples include an

83
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interplay between finite-dimensional and infinite-dimensional dynamics.

In the last section we will give several criteria for operators and C0-semigroups
that allow certain dynamical properties when restricted to invariant sets.
Special attention is devoted to positive operators on Fréchet lattices and
C0-semigroups of positive operators on Banach lattices when the invariant
set is the positive cone. In this case the results are relevant in connection
with applications since, for instance, the chaotic behavior of certain solu-
tions to differential equations make sense only when they are positive. This
provides partial answers to questions of Banasiak, Desch and Rudnicki.

The contents of this chapter have been published in [85].

4.2 Topological dynamics and invariant sets

In this section we plan to study dynamical properties, in the topological
sense, of operators that admit invariant sets, supposed that the correspond-
ing properties are satisfied when the operators are restricted to the invariant
sets. We will show that these properties can be extended to the closed span
of the corresponding invariant sets.

Our first result is rather general and does not need linearity. Although it is
almost immediate, we include a proof of it from the sake of completeness.

Proposition 4.2.1 Let T : X → X be an operator, (Kn)n an increasing

sequence of T -invariant sets, and Y =
⋃∞
n=1Kn. Then:

(i) If T |Kn is transitive for all n ∈ N then T : Y → Y is transitive.

(ii) If T |Kn is mixing for all n ∈ N then T : Y → Y is mixing.

(iii) If T |Kn is weakly-mixing for all n ∈ N then T : Y → Y is weakly-
mixing.

(iv) If T |Kn is chaotic for all n ∈ N then T : Y → Y is chaotic.

(v) If T |Kn is topologically ergodic for all n ∈ N then T : Y → Y is
topologically ergodic.

Proof. It is sufficient to show that T |⋃∞
n=1Kn

satisfies these properties since
the property trivially extends to Y by density.
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(i) Let U, V be non-empty open sets of
⋃∞
n=1Kn. Then there exist U ′, V ′

non-empty open sets of X such that

U = U ′ ∩ (

∞⋃
n=1

Kn) 6= ∅ and V = V ′ ∩ (

∞⋃
n=1

Kn) 6= ∅.

Since U and V are non-empty there exist n1, n2 ∈ N such that U ′ ∩
Kn1

6= ∅ and V ′ ∩Kn2
6= ∅. Without loss of generalization, suppose

that n1 ≤ n2. Thus, Kn1
⊂ Kn2

, and then U ′ ∩Kn2
6= ∅.

By hypothesis T |Kn2
is transitive and there exists an n ∈ N such that

Tn(U ′ ∩Kn2
) ∩ (V ′ ∩Kn2

) 6= ∅.

Since

U ′ ∩Kn2
⊆ U ′ ∩ (

∞⋃
n=1

Kn) and V ′ ∩Kn2
⊆ V ′ ∩ (

∞⋃
n=1

Kn),

then

Tn(U ′ ∩ (

∞⋃
n=1

Kn)) ∩ (V ′ ∩ (

∞⋃
n=1

Kn)) = Tn(U) ∩ V 6= ∅.

(ii) Let U, V be non-empty open sets of
⋃∞
n=1Kn. Then there exist U ′, V ′

non-empty open sets of X such that

U = U ′ ∩ (

∞⋃
n=1

Kn) 6= ∅ and V = V ′ ∩ (

∞⋃
n=1

Kn) 6= ∅.

Since U and V are non-empty there exist n1, n2 ∈ N such that U ′ ∩
Kn1

6= ∅ and V ′ ∩Kn2
6= ∅. Suppose that n1 ≤ n2 then Kn1

⊂ Kn2

and U ′ ∩Kn2
6= ∅.

By hypothesis T |Kn2
is mixing and there exists an n0 ∈ N such that

for all n ≥ n0,
Tn(U ′ ∩Kn2

) ∩ (V ′ ∩Kn2
) 6= ∅.

Since

U ′ ∩Kn2
⊆ U ′ ∩ (

∞⋃
n=1

Kn) and V ′ ∩Kn2
⊆ V ′ ∩ (

∞⋃
n=1

Kn),
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we have

Tn(U ′∩(

∞⋃
n=1

Kn))∩(V ′∩(

∞⋃
n=1

Kn)) = Tn(U)∩V 6= ∅ for all n ≥ n0.

(iii) Let U1, U2, V1, V2 be non-empty open sets of
⋃∞
n=1Kn. Then there

exist U ′1, U
′
2, V

′
1 , V

′
2 non-empty open sets of X such that

Ui = U ′i ∩ (

∞⋃
n=1

Kn) 6= ∅ and Vi = V ′i ∩ (

∞⋃
n=1

Kn) 6= ∅

for i = 1, 2.

Since Ui and Vi are non-empty there exist n1, n2, n3, n4 ∈ N such that
U ′1 ∩Kn1

6= ∅ U ′2 ∩Kn2
6= ∅, V ′1 ∩Kn3

6= ∅ and V ′2 ∩Kn4
6= ∅.

Let n0 = max{n1, n2, n3, n4}; so, Kni ⊂ Kn0
.

Then U ′i ∩ Kn0
6= ∅ and Vi ∩ Kn0

6= ∅. By hypothesis, T |Kn0
is

weakly-mixing, so there exists an n ∈ N such that

Tn(U ′1∩Kn0
)∩ (V ′1 ∩Kn0

) 6= ∅ and Tn(U ′2∩Kn0
)∩ (V ′2 ∩Kn0

) 6= ∅.

Then

Tn(U ′i ∩ (

∞⋃
n=1

Kn)) ∩ (V ′i ∩ (

∞⋃
n=1

Kn)) = Tn(Ui) ∩ Vi 6= ∅

for i = 1, 2.

(iv) By part (i), it follows that T :
⋃∞
n=1Kn →

⋃∞
n=1Kn is transitive.

On the other hand the set of periodic points Per(T |Kn) ⊂ Per(T |⋃∞
n=1Kn

)
for each n ∈ N, then the set Per(T |⋃∞

n=1Kn
) will be dense in X and

then T |⋃∞
n=1Kn

is chaotic.

(v) Let U, V be non-empty open sets of
⋃∞
n=1Kn. Then there exist U ′, V ′

non-empty open sets of X such that

U = U ′ ∩ (

∞⋃
n=1

Kn) 6= ∅ and V = V ′ ∩ (

∞⋃
n=1

Kn) 6= ∅.
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Since U and V are non-empty there exist n1, n2 ∈ N such that U ′ ∩
Kn1

6= ∅ and V ′ ∩Kn2
6= ∅. Suppose that n1 ≤ n2, then Kn1

⊂ Kn2

and U ′ ∩Kn2
6= ∅.

By hypothesis T |Kn2
is topologically ergodic, then N(U ′ ∩Kn2

, V ′ ∩
Kn2

) is syndetic and N(U ′∩Kn2
, V ′∩Kn2

) ⊂ N(U, V ), which implies
that N(U, V ) is syndetic too and T |Y is topologically ergodic.

2

If we have a T -invariant subset K ⊂ X which is absolutely convex, then
nK ⊂ mK when n ≤ m and span(K) =

⋃
nK. Therefore, an easy appli-

cation of Proposition 4.2.1 yields the following result.

Corollary 4.2.2 Let T : X → X be an operator and let K be an absolutely
convex T -invariant set such that T |K is transitive (respectively weakly-
mixing, mixing, chaotic, topologically ergodic), then T |span(K) is transitive

(respectively weakly-mixing, mixing, chaotic, topologically ergodic). In par-

ticular, if span(K) = X, then the property is inherited by T on the whole
space X.

Absolute convexity of the invariant set is not needed if we assume, at least,
the weak mixing property for T |K . A version of the following result, except
chaos, will be given for non-autonomous dynamical systems in the last
chapter.

Theorem 4.2.3 Let T : X → X be an operator and let K be a T -invariant
set such that 0 ∈ K. Then:

(i) If T |K is weakly mixing, then T |span(K) is weakly mixing.

(ii) If T |K is mixing, then T |span(K) is mixing.

(iii) If T |K is weakly mixing and chaotic, then T |span(K) is weakly mixing

and chaotic.

Proof.

(i) It will be sufficient to prove that T |span(K) is weakly mixing. Let
Uj , Vj ⊂ span(K), j = 1, 2, be non-empty open sets. We fix λi,j , λ

′
i,j ∈

K and xi,j , x
′
i,j ∈ K, i = 1, . . . , n, j = 1, 2, such that xj :=

∑n
i=1 λi,jxi,j ∈
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Uj and x′j :=
∑n

i=1 λ
′
i,jx
′
i,j ∈ Vj , j = 1, 2. Let Ui,j , Vi,j ,W ⊂ K be rel-

atively open sets in K with 0 ∈W , xi,j ∈ Ui,j , x′i,j ∈ Vi,j , i = 1, . . . , n,
j = 1, 2, and

n∑
i=1

λi,jUi,j +

n∑
i=1

αiW ⊂ Uj ,
n∑
i=1

λ′i,jVi,j +

n∑
i=1

αiW ⊂ Vj ,

for any αi ∈ {λ1,1, . . . , λn,2, λ
′
1,1, . . . , λ

′
n,2}, i = 1, . . . , n. Since T |K is

weakly mixing, by Furstenberg’s result [58], there are yi,j ∈ Ui,j , zi,j ∈
W , and n ∈ N such that Tnyi,j ∈ W, and Tnzi,j ∈ Vi,j , i = 1, . . . , n,
j = 1, 2. By the above selection, yj :=

∑n
i=1(λi,jyi,j + λ′i,jzi,j) ∈ Uj

and Tnyj ∈ Vj , j = 1, 2.

(ii) Let U, V ⊂ span(K), be non-empty open sets. We fix λi, λ
′
i ∈ K

and xi, x
′
i ∈ K, i = 1, . . . , n, such that x :=

∑n
i=1 λixi ∈ U and

x′ :=
∑n

i=1 λ
′
ix
′
i ∈ V . Let Ui, Vi,W ⊂ K be relatively open sets in K

with 0 ∈W , xi ∈ Ui, x′i ∈ Vi, i = 1, . . . , n, and

n∑
i=1

λiUi +

n∑
i=1

αiW ⊂ U,
n∑
i=1

λ′iVi +

n∑
i=1

αiW ⊂ V,

for any αi ∈ {λ1, . . . , λn, λ
′
1, . . . , λ

′
n}, i = 1, . . . , n. Since T |K is mix-

ing, there are yi ∈ Ui, zi ∈ W , and n0 ∈ N such that Tnyi ∈ W ,
and Tnzi ∈ Vi, i = 1, . . . , n, for all n ≥ n0. By the above selection,
y :=

∑n
i=1(λiyi + λ′izi) ∈ U and Tny ∈ V .

(iii) It is sufficient to show that Per(T |span(K)) = span(K) in order to
prove that T |span(K) is chaotic. Let x ∈ span(K) and let U be a neigh-

bourhood of x, with x =
∑m

i=1 αixi, and xi ∈ K. Let U1, U2 . . . Un be
neighbourhoods of xi respectively such that

∑n
i=1 αiUi ⊂ U . For

each xi there exists yi ∈ Per(T |K) ∩ Ui. Let us denote by n =
m.c.m.{ni; i = 1, . . . , n} where ni is the period of yi for all i = 1, . . . , n.
We have that Tn(

∑m
i=1 αiyi) =

∑m
i=1 αiyi, that is y =

∑m
i=1 αiyi ∈

Per(T |span(K)) ∩ U .

2

Actually, we know that every chaotic operator T on a general topological
vector space is weakly mixing as it is proved in corollary 3 in [71].
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The previous Theorem allows us to provide some surprising examples that
show the interplay between non-linear finite-dimensional dynamics and lin-
ear (infinite-dimensional) dynamics. The first example is inspired by [90],
where a procedure known as Carleman linearization is indicated. The sec-
ond example was given by Feldman [54], who showed that there exists a
universal chaotic operator “containing” the dynamics of every continuous
map on a compact metric space.
We also consider in the third example the so-called Lipschitz-free Banach
spaces (or Arens-Eells spaces) generated by a metric space (see [61],[74]).
Note that free spaces were also used in [99] in the context of hypercyclic-
ity. Finally, the Frobenius-Perron operator on the space of measures is also
considered in [14].

Examples 4.2.4 (1) Logistic map
Let p : [0, 1] → [0, 1] be the logistic polynomial p(x) := 4x(1 − x), which is
chaotic and mixing ([72]). We will embed [0, 1] in a locally convex space X
via a map φ, and we will give an operator T : X → X such that T ◦φ = φ◦p
and span(φ[0, 1]) = X. An application of Theorem 4.2.3 will yield that T
is mixing and chaotic. To do so we set

X = {(xi)i ∈ CN ; ∃r > 0 such that sup
i∈N
|xi| ri <∞}.

The space X can be identified with H(0), the space of holomorphic germs at
0, if we associate to each function the coefficients of its Taylor expansion.
X is endowed with its natural inductive topology. We refer the reader to,
e.g., [48] for the details.

We define the embedding φ : I → X as φ(x) = (x, x2, x3, . . . ). It is clear
that φ is injective and it is well defined. Given x ∈ [0, 1], we fix r ≤ 1 and

||φ(x)|| = sup
i∈N
|x|iri ≤ |x|r <∞.

The operator T : X → X is defined by

T (x1, x2, . . . )k = 4k
k∑
j=0

(−1)j
(
k

j

)
xj+k, k ∈ N.

The selection of the sequence space X easily gives that T is a well-defined
operator on X. Indeed, let (xj)j ∈ X, that is there exists R > 0 such that

|xj+k| ≤ Rk+j, for all j, k ∈ N. Then, we have that |T (x1, x2, . . . )k| ≤
4k(R+R2)k, for all k ∈ N.
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Also, a simple computation shows that T ◦ φ = φ ◦ p. Let Y := φ[0, 1]. We
observe that span(Y ) is dense in X by the Hahn-Banach theorem. Indeed,
since the dual of X is

X∗ = {(yi)i ∈ CN ;

∞∑
i=1

|yi|Ri <∞ for all R > 0},

which can be identified with the space of entire functions, we have that
〈φ(x), (yi)i〉 =

∑
i yix

i = 0 for some (yi)i ∈ X∗ and for all x ∈ I, implies
yi = 0 for every i ∈ N. The hypothesis of Theorem 4.2.3 are satisfied, and
hence T is mixing and chaotic. This example can be generalized to many
classes of maps that satisfy certain chaotic properties on subsets of R or C.

(2) Universal Hilbert-space operator
In [54] Feldman constructed a Hilbert space operator which is universal, in
the sense that it “represents” all possible dynamics on a compact metric
space.

Let f : M → M be a continuous map on a compact metric space M for
which we additionally suppose that there exists z ∈ M such that f(z) = z.
Given a countable dense subset {xn ;n ∈ N} of M , we fix h : M → `2

defined by

h(x) =

∞∑
i=1

d(x, xi)− d(z, xi)

2i
ei, x ∈M,

where (ei)i is the canonical basis of `2. It is clear that h is well defined, be-

cause given x ∈M h(x) <
∑∞

i=1
d(x,z)

2i ei ∈ `2. It is continuous because given

(yn)n such that yn → y, we have that ||h(yn)− h(y)|| <
∑∞

i=1
|d(yn,y)|2

2i+1 < ε.

Let X := `2(`2) and Φ : M → X defined by

Φ(x) =

(
h(x),

h(f(x))

2
,
h(f2(x))

22
, . . .

)
, x ∈M.

Φ is well defined. Notice that x, h◦f(x), h◦f2(x) . . . are all vectors in `2 and
since Orb(h◦f, x) ⊂ h(f(M)) and h(f(M)) is a bounded set in `2 it follows
easily that ||Φ(x)|| <∞. Thus Φ does map M into X. It is clear that it is
injective and let us see that Φ is continuous. So, suppose that x0 ∈M and
ε > 0. Let d > 0 be the diameter of h(f(M)), that is ‖h(f(x))−h(f(y))‖ ≤
d for all x, y ∈ M . Now we choose an m ≥ 1 such that

∑∞
k=m

d2

4k ≤
ε2

4 .

Since h, h◦f1, h◦f2, . . . , h◦fm are all continuous at x0, there exists δ > 0
such that if ‖x − x0‖ < δ, then ‖h(fk(x)) − h(fk(x0))‖ < ε

2
√

(m+1)
for all
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k ∈ {0, . . . ,m}. Thus if ‖x− x0‖ < δ, then

‖Φ(x)− Φ(x0)‖2 =
m∑
k=0

‖h(fk(x))− h(fk(x0))‖2

4k
+

∞∑
k=m+1

‖h(fk(x))− h(fk(x0))‖2

4k

≤
m∑
k=0

ε2

4(m+ 1)
+

∞∑
k=m+1

d2

4k
≤ ε2

4
+
ε2

4
=
ε2

2
< ε2.

Thus ‖Φ(x) − Φ(x0)‖ < ε. Hence Φ is continuous. Also, since it is clear

that ‖Φ(x) − Φ(y)‖ ≥ ‖h(x) − h(y)‖ ≥ d(x,y)
2 we have that Φ−1 : Φ(M) →

M is also continuous. Thus Φ is an homeomorphism onto its image. If
we set T : X → X, T (v1, v2, . . . ) := (2v2, 2v3, . . . ), then f and T |K are
topologically conjugated via Φ,that is Φ ◦ f = T |K ◦ Φ, where K := Φ(M).
By Theorem 4.2.3 we obtain that T |span(K) is weakly mixing (respectively,

mixing, weakly mixing and chaotic) if f is so.

(3)Lipschitz-free spaces
Given a metric space (K, d) with a distinguished point 0 ∈ K, one can
consider the space of Lipschitz maps on K that annihilate on 0

Lip0(K) = {f : K → R ; f(0) = 0, f Lipschitz}

endowed with the norm

‖f‖L := sup

{
|f(x)− f(y)|

d(x, y)
; x 6= y ∈ K

}
.

Let δ : K → Lip0(K)∗ be the evaluation map 〈δx, f〉 = f(x), x ∈ K. δ is
an isometry and the Lipschitz-free Banach space generated by K is

F(K) := span{δx ; x ∈ K}.

Actually, F(K) is a predual of Lip0(K). Moreover, if L : K → K is a
Lipschitz map with L(0) = 0, then it induces an operator TL on F(K) such
that TLδ = δL( [103],[61]). Theorem 4.2.3 yields that, when L is weakly
mixing (respectively, mixing, weakly mixing and chaotic), so is TL.

(4) Frobenius-Perron operator
Let T : K → K be a continuous map defined on a compact metric space K.
Let us denote by M(K) the space of Borel probability measures defined on
K endowed with the weak topology. T induces a map TM : M(K)→M(K),
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defined by (TMµ)(A) = µT−1(A) ( µ ∈ M(K), A ∈ B(K) Borel set). TM
is known as the Frobenius-Perron operator on measures associated with T .
Actually, by Riesz representation theorem, TM is the adjoint operator of
the composition operator f 7→ f ◦ T on the space of continuous functions
C(K). From now on we will consider that TM is defined on C(K)∗.

Suppose that T admits a fixed point x ∈ K, and let us consider the translated
compact set K ′ = M(K) − δx, where δx is the Dirac measure associated
with x. It is clear that 0 ∈ K ′, and K ′ is TM -invariant, due to the fact that
T (x) = x. In [14], the authors prove that if T is mixing or weakly mixing
then so is TM |M(K). It is easy to see, that if TM |M(K) satisfies one of the
previous properties, then so does TM |K′.

Finally, we have that span(K ′) = {µ ∈ C(K)∗ ; < 1, µ >= 0}, where 1 is
the constant function on K. By Theorem 4.2.3, TM |span(K′) is also mixing

or weakly mixing, respectively.

Theorem 4.2.5 Let T : X → X be an operator and let Y be an absolutely
convex T -invariant set such that (Y, T ) is an E-system and span(Y ) = X,
then T is topologically ergodic.

Proof. Every E-system is topologically ergodic (see [60]), so (Y, T ) is topo-
logically ergodic, and by corollary 4.2.2, T is topologically ergodic. 2

The following result shows that one can even improve, in some sense, the
dynamical properties of the operator from the invariant sets to the corre-
sponding closure of their union.

Theorem 4.2.6 Let T : X → X be an operator and (Kn)n an increas-
ing sequence of T -invariant bounded sets such that T |Kn is topologically

transitive and
⋃∞
n=1Kn = X. Then T is weakly mixing.

Proof. We will apply the following result which can be found in [71] (see
[65] for the original version on Banach spaces):
If T : X → X is a transitive operator such that there exists a dense subset
X0 ⊂ X with Orb(x, T ) bounded for all x ∈ X0, then T is weakly-mixing.

By Proposition 4.2.1, T : X → X is transitive. If we take X0 =
⋃∞
n=1Kn,

then every x ∈ X0 has a bounded orbit, and we conclude the result.
2
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Let (Y, T ) be a dynamical system with Y compact and let U be a finite
cover. We let r(U) denote the minimal cardinality of a subcover of U and
set c(n) = c(U , n) := r(Un0 ) where, Un0 = U ∪ T−1U ∪ . . . ∪ T−nU . We call
c(4,U) the complexity function of the cover U . Given (X,T ) a dynamical
system we will define the complexity function c(X) of X as the supremum
of all the complexity functions of the covers of all invariant compact sets
contained in X.

Theorem 4.2.7 Let T : X → X be an operator and let Y ⊂ X be a
compact T -invariant set such that T |Y is sensitive to initial conditions,
then the complexity function of X is unbounded.

Proof. As (Y, T ) is sensitive to initial conditions, it is not equicontinuous
and by lemma 6.1 of [60], for all open cover U of Y , C(U , n) is unbounded.
So the complexity function of X is unbounded. 2

4.3 Dynamics on invariant sets and positive operators

There are well-known criteria of chaos, mixing and weak mixing properties
for operators (section 0.4). Our next goal is to derive some criteria under
which an operator restricted to an invariant set is mixing or weakly mixing.

Proposition 4.3.1 Let T : X → X be an operator and let K be a T -
invariant set. If there are dense subsets X0, Y0 ⊂ K, an increasing sequence
(nk)k of positive integers, and a sequence of maps Snk : Y0 → X, k ∈ N,
such that, for any x ∈ X0, y ∈ Y0,

(i) Tnkx→ 0,

(ii) Snky → 0,

(iii) TnkSnky → y,

(iv) for all x ∈ X0 and y ∈ Y0 there exists a k0 such that x + Snky ∈
K for all k ≥ k0,

then T |K is weakly mixing. Moreover, if nk = k for all k ∈ N, then T |K is
mixing.

Proof. Let U1, U2, V1 and V2 be non-empty open sets of K. By assumption
we can find vectors xj ∈ Uj ∩X0 and yj ∈ Vj ∩ Y0, j=1,2. Then by (i) and
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(iii),
Tnk(xj + Snkyj)→ yj , j = 1, 2.

It follows from (ii) and (iv) that, for sufficiently large k, xj + Snkyj ∈ Uj
for j = 1, 2. This shows that T |K is weakly mixing.

The mixing case is analogous. Let U and V be non-empty open sets of K.
By assumption we can find vectors x ∈ U ∩X0 and y ∈ V ∩ Y0. Then by
(i) and (iii),

T k(x+ Sky)→ T kx+ y.

It follows from (ii) and (iv) that there exists an k0 such that for k ≥ k0,
x+ Sky ∈ U . This proves that T |K is mixing. 2

The following two examples illustrate how the previous result can be ap-
plied.

Example 4.3.2 We consider a hypercyclic weighted backward shift T :=
Bw on `p. We define

K = {x ∈ `p ; |xk|
k∏
j=1

wj ≤ 1, ∀k ≥ 1},

with w1 = 1, which is T -invariant. Let X0 = Y0 be the space of finite
sequences in K. If we consider the weighted forward shift S : Y0 → Y0 with

S(x1, x2, . . .) = (0, w−1
2 x1, w

−1
3 x2, . . .),

Since Bw is hypercyclic, there is an increasing sequence of integers (nk)k
such that limk→∞

∏nk
j=1wj = +∞ (see 0.5.8). We fix Snk = Snk , k ∈ N. It

is clear that TSy = y for all y ∈ Y0, and that Tnkx→ 0, x ∈ X0, Snky → 0,
y ∈ Y0, so that (i), (ii) and (iii) in Proposition 4.3.1 are satisfied. With
respect to condition (iv), we just have to observe that, if x, y ∈ K have
disjoint supports, then z := x + y ∈ K. Thus, given x ∈ X0 and y ∈ Y0,
for sufficiently large k we get that x and Snky have disjoint support, so
x+ Snky ∈ K. We conclude that T |K is weakly mixing.

Example 4.3.3 We consider a hypercyclic weighted backward shift T :=
Bw on `p and the subset K defined as

K = {x ∈ `p ; |xk|
k∏
j=1

wj ∈ {0, 1}, ∀k ≥ 1}.



4.3 Dynamics on invariant sets and positive operators 95

Let X0 = Y0 be the space of finite sequences in K. By following the
proof of the previous example we clearly have that all the conditions in
Proposition 4.3.1 are satisfied, and T |K is weakly mixing.

Remark 4.3.4 It is worth noting that the fourth condition of Proposi-
tion 4.3.1 is necessary. Suppose, for instance, that T := Bw is a chaotic
weighted backward shift on `p and let us define K ′ as

K ′ = {x ∈ `p ;
∑
k≥1

 k∏
j=1

wj

p

|xk|p ≤ 1,∀k ≥ 1},

with w1 = 1. It is clear that K ′ is T -invariant. Although the first three
conditions are satisfied, T |K′ is not even transitive. Given x ∈ K ′, since T

is chaotic we have limk→∞
∏k
j=1wj = ∞ (for more details see 0.5.8) and

there exists λ > 0 such that
∏k
j=1wj ≥ λ > 0 for all k ∈ N. Then

λp||Tnx||p ≤
∑
k≥1

k+n∏
j=1

wj

p

|(Tnx)k|p =
∑
k>n

 k∏
j=1

wj

p

|xk|p → 0,

which excludes the possibility of x having dense orbit inK ′ for every x ∈ K ′.

In the case that X is a complex space, we can offer a sufficient condition
for the chaotic behavior of T |K on an invariant set K.

Corollary 4.3.5 Let T : X → X be an operator with X complex, and let
K ⊂ X be a T -invariant set. If T |K satisfies conditions of Proposition 4.3.1
and the subset

span{x ∈ X ; Tx = λx for some λ ∈ C λn = 1 for some n ∈ N}∩K

is dense in K, then T |K is chaotic.

Proof. By 0.2.8 the set before corresponds to the set of periodic points of
an operator, then if this set is dense and T |K is transitive, we have that
T |K is chaotic. 2

As a direct consequence of Proposition 4.3.1 we have:

Proposition 4.3.6 Let T : X → X be a positive operator defined on a
Fréchet lattice X. If there are dense subsets X0, Y0 ⊂ X+, an increasing
sequence of integers (nk)k, and a sequence of maps Snk : Y0 → X+, k ∈ N,
such that, for any x ∈ X0, y ∈ Y0,
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(i) Tnkx→ 0,

(ii) Snky → 0,

(iii) TnkSnky → y,

then T |X+ is weakly mixing. If, moreover, nk = k for all k ∈ N, then T |X+

is mixing.

Example 4.3.7 Given a weighted backward shift T := Bw on X := `p

with limk→∞
∏k
j=1wj = +∞, we consider X0 = Y0 be the space of finite se-

quences in X+ and the weighted forward shift S : Y0 → Y0, S(x1, x2, . . .) =
(0, w−1

2 x1, w
−1
3 x2, . . .). If we set Sk = Sk, k ∈ N, then we have that all the

conditions in Proposition 4.3.6 are satisfied, so T |X+ is mixing.

By following the ideas that we developed in [88] and [86], respectively, we
show that certain “positive” versions of frequent hypercyclicity criteria en-
sure the existence of T -strongly mixing measures supported on the positive
cone of a Fréchet lattice, and the existence of (Tt)t-invariant strongly mix-
ing Borel probability measures supported on the positive cone of a Banach
lattice, where T is a positive operator and (Tt)t≥0 is a C0-semigroup of
positive operators, respectively. Combined with the previous results, we
have at the same time mixing and chaos, in the topological sense, on the
positive cone.

Theorem 4.3.8 Let T be a positive operator on a separable Fréchet lattice
X. If there are, a dense subset X0 of X+, and a sequence of maps Sn :
X0 → X+, n ∈ N, such that, for each x ∈ X0,

(i)
∑∞

n=0 T
nx converges unconditionally,

(ii)
∑∞

n=0 Snx converges unconditionally,

(iii) TnSnx = x and TmSnx = Sn−mx for n > m,

then T |X+ is mixing, chaotic, and there is a T -invariant strongly mixing
Borel probability measure µ on X+ whose support is equal to X+.

Proof. The fact that T |X+ is mixing is a consequence of Proposition 4.3.6.
Concerning chaos, we just need to observe that, for each x ∈ X0 and k ∈ N,
we can construct the vector

yk :=

∞∑
n=0

Snkx+ x+

∞∑
n=0

Tnkx ∈ X+.
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By (i) and (ii) both series converge and by (iii) we have that T kyk = yk, so
that each yk is a periodic point for T . Moreover, it follows from (i) and (ii)
that yk → x as k → ∞. Since X0 is dense we get that the set of periodic
points is dense and as T |X+ satisfies the Frequent Hypercyclicity Criterion
it is hypercyclic and hence T |X+ is chaotic. Finally, for the existence of
the strong mixing measure, we just have to follow step by step the proof of
Theorem 1.2.1 in Chapter 1. 2

Before giving the result for C0-semigroups, we would like to recall the con-
cept of sub-chaos of Banasiak and Moszyński [8], which requires the exis-
tence of a (Tt)t-invariant subspace Y ⊂ X such that (Tt|Y )t≥0 is chaotic
(see also [9],[2]). Here we are interested in the case of the invariant positive
cone for semigroups of positive operators, mainly because of its applications
to certain differential equations.

Theorem 4.3.9 Let (Tt)t≥0 be a C0-semigroup of positive operators on a
separable Banach lattice X. If there exist X0 ⊂ X+ dense in X+ and maps
St : X0 → X+, t > 0 such that

• TtStx = x, TtSrx = Sr−tx, t > 0, r > t > 0,

• t→ Ttx is Pettis integrable in [0,∞) for all x ∈ X0,

• t→ Stx is Pettis integrable in [0,∞) for all x ∈ X0,

then (Tt|X+)t≥0 is mixing, each operator Tt|X+ with t > 0 is chaotic, and
there is a (Tt)t-invariant strongly mixing Borel probability measure µ on
X+ whose support is equal to X+.

Proof. For the mixing property of (Tt)t≥0, one can easily check hypotheses
of theorem 0.7.6 for (Tt|X+)t≥0. Given t > 0, we can show that Tt|X+ is
chaotic by following exactly the same argument as in Proposition 2.6 of
[82]. Also, the existence of the strong mixing measure supported on X+ is
a consequence of the proof of Theorem 2.2.1 in chapter 2. 2

Remark 4.3.10 It seems that the above criteria for the existence of mixing
measures supported on the positive cone can only be derived from the
type of constructions given in [88] and [86] since other general criteria,
like the ones in ([17],[21]), are for complex spaces and depend strongly
on the existence of certain eigenvectors to unimodular eigenvalues, which
cannot induce measures supported on the positive cone. Also, the measures
obtained in [17, 21] are Gaussian, so their support is a closed subspace which
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can never be included in the positive cone. Recent results on the existence
of invariant measures with ergodic properties in linear dynamics can be
found in [68].

We finally present examples of some C0-semigroups of positive operators
where we can apply Theorem 4.3.9.

Example 4.3.11 Let X = Lρp([0,∞)), and we consider the translation
C0-semigroup (Tt)t≥0 defined by Ttf(x) = f(x + t). We assume that∫∞

0 ρ(s)ds < ∞. In these spaces, X+ = {f ∈ X ; f(x) ≥ 0, for all x ∈
[0,∞)}. Let X0 be the positive span of the space generated by the char-
acteristic functions of bounded intervals of [0,∞[, which is clearly dense
in X+. By Propositions 3.3 and 3.4 in [82], we have that the translation
semigroup satisfies the hypothesis of Theorem 4.3.9 and, in particular, we
can define a Tt-invariant strongly mixing Borel probability measure µ on
X+ whose support is X+.

Example 4.3.12 In [101] Takeo studied the solution semigroup (Tt)t≥0 on
X, a certain function space defined on an interval I of R, associated with
the following partial equation

∂u
∂t = ∂u

∂x + h(x)u,

u(0, x) = f(x),
(4.1)

where h is a bounded function on I and f ∈ X. We consider X =
Lp([0,∞),R). The semigroup (Tt)t≥0 defined as

Ttf(x) = e
∫ x+t
x

h(s)dsf(x+ t)

is the solution semigroup to the equation (4.1). Now we consider the

translation semigroup (T̃t)t≥0 on X̃ = Lρp([0,∞),R), where ρ is the ad-

missible weight function e−
1

p

∫ x
0
h(s)ds. The operator φ : X̃ → X given by

φ(g)(x) = ρ(x)g(x), for g ∈ X̃ and for x ∈ I is an isometric isomorphism

and φ ◦ T̃t = Tt ◦ φ (for more details see [101]). Since ρ(x) > 0, it is clear

that φ : X̃+ → X+ is also an isomorphism. We have that, if h(t) = a
t+1

with a > 1/p, then
∫∞

0 ρ(s)ds < ∞ [101], thus by Example 4.3.11 (T̃t)t≥0

satisfies satisfies the hypothesis of Theorem 4.3.9, and so does (Tt)t≥0 by
conjugacy.

Example 4.3.13 We consider X = {f ∈ C([0, 1],R) : f(0) = 0} with the
sup norm. In [83] (see also [1] for more general recent results) the authors
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consider the following initial value problem of a partial differential equation:
∂u
∂t = γx∂u∂x + h(x)u,

u(0, x) = f(x)
(4.2)

where γ < 0, h ∈ C([0, 1],R) and f ∈ X. Then the solution semigroup

(Tt)t≥0, Ttf(x) = e
∫ t
0
h(eγ(t−s)x)dsf(eγtx) to the equation (4.2) is a strongly

continuous semigroup on X. We will see that if min{h(x) : x ∈ [0, 1]} is
positive, then (Tt)t≥0 satisfies the conditions of Theorem 4.3.9. Indeed, let
X0 = {f ∈ C([0, 1],R+) ; f(x) = 0,∀x ∈ [0, ε], for some ε > 0}. It is clear
that X0 is dense in X+. We define the family of maps St : X+ → X+ as

Stf(x) = e−
∫ t
0
h(e−γsx)dsf(e−γtx).

Given r ≥ t, we have that

Tt(Srf)(x) = e
∫ t
0
h(eγ(t−s)x)dsSrf(eγtx)

= e
∫ t
0
h(eγ(t−s)x)dse−

∫ r
0
h(e−γseγtx)f(eγ(t−r)x) = Sr−tf(x).

It remains to check that t 7→ Stf and t 7→ Ttf are Pettis integrable on
[0,+∞) for all f ∈ X0. Actually, we will show that they are Bochner
integrable on [0,+∞). In the first case, it is sufficient to prove that∫∞

0 ‖Stf‖dt < ∞ for a given f ∈ X0, we denote by M = max{f(x) ; x ∈
[0, 1]}. Thus∫ ∞

0
sup
x∈[0,1]

|e−
∫ t
0
h(e−γsx)dsf(e−γtx)|dt ≤M

∫ ∞
0

sup
x∈[0,1]

e−
∫ t
0
h(e−γsx)dsdt

≤
∫ ∞

0
e−

∫ t
0
adsdt =

∫ ∞
0

e−at <∞,

where a = min{h(x) ; x ∈ [0, 1]} > 0.

For the second case, given f ∈ X0 and ε > 0 such that f |[0,ε] ≡ 0, there

exists t0 > 0 such that eγt < ε for all t ≥ t0. Then we have Ttf = 0 for all

t ≥ t0, and
∫∞

0 ‖Ttf‖dt =
∫ t0

0 ‖Ttf‖dt <∞, which concludes the result.





Chapter 5

Mixing properties for
nonautonomous linear dynamics

In this chapter we study mixing properties (topological mixing and weak
mixing of arbitrary order) for nonautonomous linear dynamical systems
that are induced by the corresponding dynamics on certain invariant sets.
The type of nonautonomous systems considered here can be defined by a se-
quence (Ti)i∈N of linear operators Ti : X → X on a topological vector space
X such that there is an invariant set Y for which the dynamics restricted
to Y satisfies certain mixing property. We then obtain the corresponding
mixing property on the closed linear span of Y . We also prove that the
class of nonautonomous linear dynamical systems that are weakly mixing
of order n contains strictly the corresponding class with the weak mixing
property of order n+ 1. All the results of this chapter have been published
in [87].

5.1 Introduction

Some basic definitions related to nonautonomous systems are the following:

Definition 5.1.1 (i) Given a sequence of operators Ti : X → X, i ∈ N,
defined on a topological vector space X we consider the corresponding
nonautonomous discrete system (NDS) (X,T∞) = (X, (Tn ◦Tn−1 . . .◦
T1)n∈N)

101
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(ii) The orbit of an element by a NDS is denoted by

Orb(x, T∞) = {T (k)x ; k ≥ 0}, x ∈ X, where T (k) := Tk ◦ · · · ◦ T1,

k ∈ N, T (0) = IdX .

(iii) Y ⊂ X is an invariant set for the NDS (X,T∞) if Tn(Y ) ⊂ Y for all
n ∈ N.

(iv) A NDS (X,T∞) is weakly mixing of order n if, for any nonempty
open sets U1, . . . , Un, V1, . . . , Vn and for any N > 0 there is k > N
such that T (k)(Ui)

⋂
Vi 6= ∅ for i = 1, . . . , n. If (X,T∞) is weakly

mixing of order n for every n ≥ 2 then we say that it is weakly mixing
of all orders.

(v) (X,T∞) is said to be mixing if for any nonempty open sets U, V ⊂ X
there exists N > 0 such that T (k)(U)

⋂
V 6= ∅ for all k ≥ N .

Very recently, Balibrea and Oprocha [4] obtained several results about weak
mixing and chaos in nonautonomous discrete systems on compact sets.
Some of their results will be used to induce the corresponding dynamical
behavior on linear nonautonomous systems. The theory of linear dynamics
is well established in the case of iterations of a single operator (autonomous
dynamical system). The case of nonautonomous linear dynamics is not yet
developed, although a more general concept of universality of a sequence of
operators (Tn)n∈N where the orbits are defined as {Tnx ; n ∈ N}, x ∈ X,
has been treated by several authors (See, e.g., [24, 26, 27, 64, 79]).

A type of linear universality which has attracted the attention in recent
years is the dynamics of tuples of operators introduced by Feldman [55].
More precisely, given a commuting tuple (T1, . . . , Tn) of operators defined
on a certain topological vector space X, he studied the existence of (some-

where) dense orbits {(T knn ◦ · · · ◦ T
k1
1 )x ; ki ≥ 0}. The subsystems that

correspond to increasing sequences in Nn, with its natural order, can be
written as nonautonomous discrete systems.

We will essentially follow the notation of [4] and we will denote a NDS as
(X,T∞). These notions can be extended naturally to a system (X, (Tk)k)

of sequences of maps Tk : X → X, k ∈ N, by substituting T (k) by Tk.
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5.2 Mixing properties on linear NDS induced by invariant
sets

The purpose of this section is, given a linear NDS (X,T∞), where X is a
topological vector space, with an invariant set Y ⊂ X, to obtain mixing
properties on the closure of span(Y ), the linear span of Y , induced by
the corresponding ones in (Y, T∞|Y ). Actually, the main result in this
section will be given for sequences of operators, so that we will obtain as a
consequence the results for linear NDS and for tuples of operators.

Theorem 5.2.1 Let X be a topological vector space and let the system
(X, (Tn)n), where {Tn : X → X ; n ∈ N} is a sequence of operators such
that Tn(Y ) ⊂ Y for every n ∈ N and for certain Y ⊂ X with 0 ∈ Y . We

consider Z := span(Y ).

(i) If (Y, (Tn|Y )n) is weakly mixing of all orders then (Z, (Tn|Z)n) is also
weakly mixing of all orders.

(ii) If (Y, (Tn|Y )n) is mixing then (Z, (Tn|Z)n) is also mixing.

Proof.

(i) Suppose then that (Y, (Tn|Y )n) is weakly mixing of all orders. Given
any m ∈ N, we have to show that (Z, (Tn|Z)n) is weakly mixing of
order m.
Let Uj , Vj ⊂ Z be nonempty open sets, j = 1, . . .m. We find n ∈ N,
αi,j , βi,j ⊂ K and ui,j , vi,j ∈ Y , i = 1, . . . , n, j = 1, . . . ,m, such that
uj :=

∑n
i=1 αi,jui,j ∈ Uj and vj :=

∑n
i=1 βi,jvi,j ∈ Vj , j = 1, . . .m.

There are nonempty open sets Ui,j , Vi,j ,W ⊂ Y with 0 ∈ W , ui,j ∈
Ui,j , vi,j ∈ Vi,j , i = 1, . . . , n, j = 1, . . . ,m, such that

n∑
i=1

αi,jUi,j +

n∑
i=1

γiW ⊂ Uj ,
n∑
i=1

βi,jVi,j +

n∑
i=1

γiW ⊂ Vj

for any γi ∈ {αi,j , i = 1, . . . , n, j = 1, . . . ,m} ∪ {βi,j , i = 1, . . . , n, j =
1, . . . ,m}, i = 1, . . . , n, j = 1, . . . ,m.
Since (Y, (Tn|Y )n) is weakly mixing of all orders there are yi,j ∈ Ui,j ,
wi,j ∈ W , and k ∈ N such that Tk(yi,j) ∈ W and Tk(wi,j) ∈ Vi,j ,
i = 1, . . . , n, j = 1, . . . ,m.
The above conditions yield that yj :=

∑n
i=1(αi,jyi,j + βi,jwi,j) ∈ Uj

and Tkyj ∈ Vj , j = 1, . . . ,m.
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(ii) Let U, V ⊂ Z be nonempty open sets. We find n ∈ N, αi, βi ⊂ K
and ui, vi ∈ Y , i = 1, . . . , n, such that u :=

∑n
i=1 αiui ∈ U and

v :=
∑n

i=1 βivi ∈ V . There are nonempty open sets Ui, Vi,W ⊂ Y
with 0 ∈W , ui ∈ Ui, vi ∈ Vi, i = 1, . . . , n, such that

n∑
i=1

αiUi +

n∑
i=1

γiW ⊂ U,
n∑
i=1

βiVi +

n∑
i=1

γiW ⊂ V

for any γi ∈ {αi, i = 1, . . . , n} ∪ {βi, i = 1, . . . , n}, i = 1, . . . , n. Since
(Y, (Tn|Y )n) is mixing, there exists N > 0, such that for all k ≥ N :

Tk(Ui) ∩W 6= ∅ and Tk(W ) ∩ Vi 6= ∅.

For each k ≥ N , there are yi ∈ Ui, wi ∈ W , such that Tk(yi) ∈ W
and Tk(wi) ∈ Vi, i = 1, . . . , n. The above conditions yield that yk :=∑n

i=1(αiyi + βiwi) ∈ U and Tkyk ∈ V , then Tk(U) ∩ V 6= ∅ for all
k ≥ N .

2

The result for linear NDS follows now from Theorem 5.2.1.

Corollary 5.2.2 Let X be a topological vector space and let (X,T∞) be a
linear NDS with an invariant set Y ⊂ X such that 0 ∈ Y . We consider
Z := span(Y ).

(i) If (Y, T∞|Y ) is weakly mixing of all orders then (Z, T∞|Z) is also
weakly mixing of all orders.

(ii) If (Y, T∞|Y ) is mixing then (Z, T∞|Z) is also mixing.

Now we recall the notion of somewhere and everywhere dense sets.

Definition 5.2.3 A set is called somewhere dense if its closure contains
a nonempty open set. Moreover, a set is said to be everywhere dense if its
closure is the whole space.

In [55] examples were given of somewhere dense orbits for tuples of opera-
tors that are not dense.

Example 5.2.4 ([55]) For each 1 ≤ i ≤ n let Ai be the n ∗ n diagonal
matrix with ones in the main diagonal except in the (i, i) position which
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is 2. Also let Bi be the n ∗ n diagonal matrix with ones in the main
diagonal except in the (i, i) position which is 1

3 . Then the 2n-tuple T =
(A1, . . . , An, B1, . . . , Bn) on Rn has somewhere dense orbits which are not
dense.

Moreover, sufficient conditions under which a somewhere dense orbit under
a tuple of operators must be everywhere dense were obtained.

Theorem 5.2.5 ([55]) Let T = (T1, . . . , Tn) be a tuple of operators on a
real or complex locally convex space X. If A∗ has no eigenvalues for every
A ∈ {(T knn ◦ · · · ◦T

k1
1 ); ki ≥ 0}, then any orbit of T that is somewhere dense

in X will be dense in X. In particular, if T is a n-tuple of matrices on Ck,
then every somewhere dense orbit of T must be dense in Ck.

We recall that, for linear autonomous systems, no extra assumptions are
needed to show that somewhere dense orbits are everywhere dense, as it
was shown by Bourdon and Feldman [34] answering a question in [89] (see
also [41] for the corresponding version for C0-semigroups).

Theorem 5.2.6 (Bourdon-Feldman, [34]) Let T be an operator on a
Fréchet space X and x ∈ X. If Orb(x, T ) is somewhere dense in X, then
it is dense in X.

Now we derive new conditions implying that, when there is a somewhere
dense orbit, it must be everywhere dense.

Corollary 5.2.7 Let T = (T1, . . . , Tn) be a commuting tuple of operators
defined on a topological vector space X. Let x ∈ X such that Orb(x, T ) :=

{(T knn ◦· · ·◦T k11 )x ; ki ≥ 0 for all i} is somewhere dense in X. Let (Rn)n∈N
be an enumeration of {T knn ◦ · · · ◦ T

k1
1 ; ki ≥ 0 for all i} and let Y :=

Orb(x, T ). If (Y, (Rn|Y )n) is weakly mixing of all orders then Orb(x, T ) is
everywhere dense.

Proof. By Theorem 5.2.1, (X, (Rn)n) is weakly mixing of all orders since
span(Y ) = X because Y contains a non-empty open set. In particular,
given an arbitrary non-empty open set V ⊂ X and a non-empty open set
U ⊂ Orb(x, T ), there exists k ∈ N such that Rk(U)∩V 6= ∅. By continuity,

we find a non-empty open set Ũ ⊂ U such that Rk(Ũ) ⊂ V . Let j1, . . . , jn ≥
0 such that (T jnn ◦· · ·◦T j11 )x ∈ Ũ , and j′1, . . . , j

′
n ≥ 0 with Rk = T

j′n
n ◦· · ·◦T j

′
1

1 .
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For ki := ji + j′i, i = 1, . . . , n, we get (T knn ◦ · · · ◦ T
k1
1 )x ∈ V , so Orb(x, T )

is everywhere dense. 2

The following example links the nonlinear dynamics in dimension 1 with
the linear infinite-dimensional dynamics. The idea follows what is called
Carleman linearization, and it is inspired in [90].

Example 5.2.8 Let {pn : I → I ; n ∈ N} be a sequence of polynomials
on an interval I that contains 0 such that pn(0) = 0, n ∈ N, and the corre-
sponding generated NDS (I, p∞) is weakly mixing of order 3. By [4, Thm
11] we know that (I, p∞) is weakly mixing of all orders.

We will embed (I, p∞) in a linear NDS (X,T∞) via a map φ such that

Tn ◦ φ = φ ◦ pn for every n ∈ N and span(φ(I)) = X. To do so we set

X = {(xi)i ∈ CN ; ∃r > 0 such that sup
i
|xi| ri <∞}.

X is endowed with the natural topology as inductive limit. We refer the
reader to, e.g., [48] for the details. This space has also been considered in
1 of 4.2.4.

We define the embedding φ : I → X as φ(x) = (x, x2, x3, . . . ). Given n ∈ N,
we set the operator Tn : X → X such that the k-th coordinate of Tnx is

Tn(x1, x2, . . . )k =

kmn∑
j=k

αk,jxj , k ∈ N, x = (x1, x2, . . . ) ∈ X,

where mn = deg(pn) and pn(x)k =
∑kmn

j=k αk,jx
j . The selection of the se-

quence space X easily gives that Tn is a well-defined operator on X.

Let (xj)j ∈ X, that is, there exists r > 0 such that ||(xj)j ||r = supi∈N |xj | rj <
∞. Then we have by the multinomial formula there exists a positive con-
stant A such that |αk,j | < Ak for all k, j ∈ N. Now let us distinguish two
cases:
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• When r < 1 we take s = rmn
A and we check that Tn((xj)j) ∈ X:

sup
k∈N
|Tn(x1, x2, . . . )k|sk ≤ sup

k∈N

kmn∑
j=k

|αk,j ||xj |sk

≤ ||(xj)j ||r sup
k∈N

kmn∑
j=k

rkmn−j < C||(xj)j ||r.

• When r ≥ 1 we take s = 1
2A and we check that Tn((xj)j) ∈ X:

sup
k∈N
|Tn(x1, x2, . . . )k|sk ≤ sup

k∈N

kmn∑
j=k

|αk,j ||xj |sk

≤ ||(xj)j ||r sup
k∈N

kmn∑
j=k

1

rj2k
< C||(xj)j ||r.

Then we have that Tn is a well-defined operator.

Also, a simple computation shows that Tn ◦φ = φ ◦ pn. Let Y := φ(I). We
observe that span(Y ) is dense in X by the Hahn-Banach theorem. Indeed,
since the dual of X is

X∗ = {(yi)i ∈ CN ;

∞∑
i=1

|yi|Ri <∞ for all R > 0},

which can be identified with the space of entire functions, we have that
〈φ(x), (yi)i〉 =

∑
i yix

i = 0 for some (yi)i ∈ X∗ and for all x ∈ I, implies
yi = 0 for every i ∈ N because an entire function that is annihilated on a
set with accumulation points should be identically 0. The hypotheses of
Corollary 5.2.2 are satisfied and (X,T∞) is weakly mixing of all orders.

5.3 Weak mixing property of different orders

In this last section we will prove that it is possible to obtain examples of
linear NDS which show the strict inclusion of the different orders for the
weak mixing property. This fact contrasts with the case of nonautonomous
interval maps, where it was shown that there are examples which are weakly
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mixing of order 2 which are not weakly mixing of order 3 as it is shown
in Theorem 9 in [4], but once an interval NDS is weakly mixing of order
3, then it follows immediately that it is of arbitrary order n ≥ 2 as it is
proved in Theorem 11 in [4].

Theorem 5.3.1 Given any n ≥ 2 there is a linear NDS (`2, T∞) defined
on the Hilbert space `2 which is weakly mixing of order n, but it is not
weakly mixing of order n+ 1.

Proof. We consider an arbitrary mixing operator on `2 like, for instance,
the weighted backward shift T := 2B, T (x1, x2, . . . ) = (2x2, 2x3, . . . ).
Since every mixing map is weakly mixing of all orders, given n ∈ N, let
(w1, . . . , wn) ∈ `2× · · · × `2 be a vector whose orbit is dense in `2× · · · × `2
for the operator T × · · · × T .

For any k ≥ 0, let Xk := span{T kw1, . . . , T
kwn} and let Pk : `2 → Xk

be the corresponding orthogonal projection. We observe that dim(Xk) =
n for every k ≥ 0 since, otherwise, there would be k0 ≥ 0 such that
dim(Xk) ≤ dim(Xk0) < n for all k ≥ k0, which avoids the fact that
{(T kw1, . . . , T

kwn) ; k ≥ k0} is dense in the n-product of `2. We set
T1 = P0 and Tk+1 = Pk ◦ T , k ∈ N.

The linear NDS (`2, T∞) is clearly not weakly mixing of order n+1. Indeed,
let V1, . . . , Vn+1 be non-empty open sets of `2 such that any n + 1-tuple
(v1, . . . , vn+1) ∈ V1 × · · · × Vn+1 are linearly independent. Then, since
(Tk ◦ · · · ◦ T1)(`2) is n-dimensional, it cannot intersect all the Vi’s, i =
1, . . . , n+ 1, and therefore (`2, T∞) is not weakly mixing of order n+ 1.

On the other hand, given any collection Ui, Vi ⊂ `2 of non-empty open sets,
i = 1, . . . , n, since P0 is an orthogonal projection, thus an open mapping,
we find vectors ui ∈ Ui, i = 1, . . . , n, such that

{T1u1, . . . , T1un} = {P0u1, . . . , P0un}

is linearly independent. Let P0ui =
∑n

j=1 αi,jwj , i = 1, . . . , n. By definition
of the Tk’s we obtain

(Tk+1 ◦ · · · ◦ T1)ui =

n∑
j=1

αi,jT
kwj , i = 1, . . . , n,

for all k ∈ N. We consider the matrix A := (αi,j)i,j , which is invertible
since the P0ui’s are linearly independent. Let B = A−1 = (βi,j)i,j . We fix
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vi ∈ Vi, i = 1, . . . , n, and a 0-neighbourhood W such that

vi +

n∑
j=1

αi,jW ⊂ Vi, i = 1, . . . , n.

By the selection of the wi’s, there is k ∈ N such that T kwi ∈
∑n

j=1 βi,jvj +

W , i = 1, . . . , n. Therefore, since B = A−1, we have

T
(k+1)
1 ui =

n∑
j=1

αi,jT
kwj ∈ vi +

n∑
j=1

αi,jW ⊂ Vi, i = 1, . . . , n,

and we conclude that (`2, T∞) is weakly mixing of order n. 2

Remark 5.3.2 It is known that a system (Tn)n of commuting operators
that is weakly mixing of order 2 is necessarily weakly mixing of all orders
[26, 27].
In particular, sequences of operators generated by commuting tuples of op-
erators [55] and discretizations of C0-semigroups of operators, which are
weakly mixing of order 2, immediately happen to be weakly mixing of all
orders.
This means that there is no hope to find examples like the one in Theo-
rem 5.3.1 within this framework. We do not know whether it is possible to
obtain this type of counterexamples for non artificially constructed linear
NDS.
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[8] J. Banasiak and M. Moszyński. A generalization of Desch-
Schappacher-Webb criteria for chaos. Discrete Contin. Dyn. Syst.,
12(5):959–972, 2005.
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