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ii. Abstract 
 
Functional Magnetic Resonance Imaging (fMRI) is a modern technique for 

neuroimaging that has the ability of localizing neural activity with a high spatial 

resolution. The fMRI technique utilizes local blood oxygenation changes, which are 

reflected as small intensity changes in a special type of Magnetic Resonance 

images. Its ability to detect changes in function in the healthy and unhealthy brain 

and localization of abnormal function makes it an ideal technique in the treatment 

follow-up of many neural illnesses and lesions. It has already been applied 

clinically for the localization of functional areas affected by tumours, pre- and post-

operatively. 

Schizophrenia, a major illness, present in more than the one percent of the 

whole population, is an illness that has been recently studied with functional 

neuroimaging, with more than 300 peer-reviewed journal papers about fMRI and 

schizophrenia. Understanding the neural substrates of schizophrenia requires a 

precise determination of the extent and distribution of abnormalities in brain 

anatomy and function. Due to the widespread distribution of symptoms, a defined 

phenomenological approach to this disease should be used in order to precisely 

relate abnormalities, symptoms and prognosis. Patients with dominant positive 

symptoms, such as auditory hallucinations and delusions, may have different brain 

abnormalities than those with marked negative symptoms. Thus, presence of 

auditory hallucinations in schizophrenic patients is taken in this study as the 

criterion for the selection of a homogeneous group of auditory hallucinatory 

schizophrenic patients. 

This thesis presents the application of fMRI to study the schizophrenia 

illness. Finally, a new method for filtering fMRI data, NL-means, has been 

proposed, and it is suggested to be used as part of the pre-processing in fMRI 

studies. 
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iii. Resumen 
La Resonancia Magnética funcional (RMf) es una técnica moderna de 

neuroimagen que permite la localización de actividad neuronal con una alta 

resolución espacial. La técnica de RMf emplea los cambios locales de oxigenación 

en la sangre, reflejados como pequeños cambios en la intensidad en un tipo 

concreto de imagen de Resonancia Magnética. La habilidad de esta técnica en la 

detección de cambios en la función en el cerebro sano y enfermo, y la localización 

de función anormal convierte a la RMf en una técnica ideal para el tratamiento de 

numerosas enfermedades y lesiones neuronales. Ya se ha aplicado clínicamente 

en la localización de áreas funcionales afectadas por tumores, pre- y post-

operativamente. 

La esquizofrenia, una vasta enfermedad que se encuentra presente en el 

uno por cien de la población global, es una dolencia que se ha estudiado 

recientemente mediante técnicas de neuroimagen funcional, con más de 300 

estudios publicados en revistas sobre esquizofrenia y RMf. La comprensión de los 

sustratos neuronales de la esquizofrenia requiere una determinación precisa de la 

extensión y la distribución de anormalidades en la función y anatomía cerebrales. 

Ya que los síntomas tienen una distribución dispersa, se debería emplear una 

aproximación fenomenológica a esta enfermedad  para relacionar anormalidades, 

síntomas y prognosis con precisión. Los pacientes que tienen principalmente 

síntomas positivos, tales como alucinaciones auditivas y delirios, pueden tener 

anomalías cerebrales diferentes a aquellos que tienen síntomas negativos 

pronunciados. Por tanto, en el presente estudio se ha seleccionado un síntoma 

positivo, la presencia de alucinaciones auditivas en pacientes esquizofrénicos, 

como el criterio de selección de un grupo homogéneo de pacientes 

esquizofrénicos auditivos. 

Esta tesis presenta la aplicación de la RMf al estudio de la enfermedad de 

la esquizofrenia. Finalmente, un nuevo método de filtrado de datos de RMf, el NL-

means, se ha propuesto y se sugiere su uso como parte del pre-proceso en 

estudios de RMf. 
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iv. Resum 
La Ressonància Magnètica funcional (RMf) és una tècnica moderna de 

neuroimatge que permet la localització d'activitat neural amb una alta resolució 

espacial. La tècnica de RMf servix els canvis locals d'oxigenació en la sang, 

reflectits com a menuts canvis en la intensitat en un tipus concret d'imatge de 

Ressonància Magnètica. L'habilitat d'esta tècnica en la detecció de canvis en la 

funció en el cervell sa i malalt, i la localització de funció anormal convertix la RMf 

en una tècnica ideal per al tractament de nombroses malalties i lesions neurals. Ja 

s'ha aplicat clínicament en la localització d'àrees funcionals afectades per tumors, 

pre- i post-operativament. 

L'esquizofrènia, una vasta malaltia que es troba present en l'u per cent de 

la població global, és una malaltia que s'ha estudiat recentment per mitjà de 

tècniques de neuroimatge funcional, amb més de 300 estudis publicats en revistes 

sobre esquizofrènia i RMf. La comprensió dels substrats neurals de l'esquizofrènia 

requerix una determinació precisa de l'extensió i la distribució d'anormalitats en la 

funció i anatomia cerebrals. Ja que els símptomes tenen una distribució dispersa, 

s'hauria d'emprar una aproximació fenomenològica a esta malaltia  per a relacionar 

anormalitats, símptomes i prognosi amb precisió. Els pacients que tenen 

principalment símptomes positius, com ara al·lucinacions auditives i deliris, poden 

tindre anomalies cerebrals diferents d'aquells que tenen símptomes negatius 

pronunciats. Per tant, en el present estudi s'ha seleccionat un símptoma positiu, la 

presència d'al·lucinacions auditives en pacients esquizofrènics, com el criteri de 

selecció d'un grup homogeni de pacients esquizofrènics auditius. 

Esta tesi presenta l'aplicació de la RMf a l'estudi de la malaltia de 

l'esquizofrènia. Finalment, un nou mètode de filtrat de dades de RMf, el NL-means, 

s'ha proposat i se suggerix el seu ús com a part del preprocés en estudis de RMf. 
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  1.  Introduction 
 

"There is no scientific study more vital to man than the study of the human 

brain.  Our entire view of the universe depends on it." --Frances H.C. Crick, 1979 

1.a - Joint multidisciplinary research preamble 
 

This dissertation involves the application of functional magnetic resonance 

(MR) imaging (fMRI) to schizophrenia research. 

fMRI is a technique that consists in the use of MRI to measure the 

haemodynamic response related to neural activity in the central nervous system, in 

humans or animals. It is one of the most recently developed forms of 

neuroimaging. fMRI is a non-invasive technique that measures brain activation, 

with high spatial and temporal resolution. 

On the other hand, schizophrenia is a major psychiatric illness, which 

affects around 1% of the world population. Language, thought and social disorders 

are symptoms present in schizophrenia. fMRI is currently being used to investigate 

how the neural networks in the unhealthy brain activate when the subject is 

performing a task or being stimulated. fMRI has been successfully used to study 

the way that different stimuli engage brain activation, such as visual, auditory, 

language-processing, language-recognition, olfactory, working memory, emotional, 

and many other different kinds of stimuli.  

How the brain works is still mostly unknown nowadays. Advanced 

knowledge of the technique is needed, so that brain activation, haemodynamics 

and schizophrenia illness are jointly evaluated. A proper paradigm should be 

created that generated the expected haemodynamic response related to neural 

activity; many other experimental variables should be taken into account, like 

stimuli delivery rate (since subjects will get used to the presentation of stimuli), task 

performance or movement related to task. Interpretation of the fMRI results is 

difficult too. Care should be taken when making inferences from fMRI results (i.e. 

fMRI activation maps). 
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A project that studies schizophrenia by means of fMRI involves 

researchers from different areas. Engineers have to supply their skills for the highly 

complex acquisition and analysis processes involved. Psychiatrists look at the 

symptoms in schizophrenia. MR images are to be obtained and therefore 

radiologists are also involved. A psychophysiology background is also needed. 

Hence a clear hypothesis can be proposed and tested. This hypothesis will be 

about the areas that are activated when the subject is stimulated and what 

differences should be expected in the activation between schizophrenic patients 

and healthy subjects. All these fields generate, and work with, very different and 

multispectral information. Furthermore, a specific terminology is employed 

differently by radiologists, psychologists, psychiatrists, engineers, etc. so the 

combination of the different work fields must be active. The synergy of work should 

be done by computer science engineers that could relate all information sources. 

The PhD candidate has been involved in a schizophrenia research project, 

that started in 2003. The project consists of the study of schizophrenia by clinical 

assessment, by neuroimaging (structural MR imaging, fMRI, Magnetic Transfer 

imaging, Diffusion Weighted imaging and spectroscopy) and genetic 

characterization of a) a group of schizophrenic patients with auditory hallucinations; 

b) a group of schizophrenic patients without hallucinations; and c) a group of 

healthy subjects. The project has been funded since 2005 until 2008 by the Carlos 

III Institute of the Spanish Health Ministry, Ministerio de Sanidad y Consumo. 

Neuroimaging, genetic and clinical data have been acquired from more than ninety 

subjects since 2003. 

As a concluding remark, it is worth noting that fMRI is a very promising 

non-invasive technique that can shed light to our knowledge regarding 

schizophrenia. However there are some complex topics that affect fMRI studies. A 

suitable paradigm should be designed with a correct acquisition sequence; the 

haemodynamic-related-to-neural activation signal should not be lost but it should 

not be saturated either; the paradigm should maximize neural activity detection. 

Acquisition is also potentially problematic. Movement due to the task, e.g. in an 

overt-speaking paradigm, would spoil all the acquired data. Analysis of the 

acquired fMRI data comprises many different steps; as an example, movement 

should be corrected even in the case that it was lower than 0.5 mm during the fMRI 

acquisition. Finally, interpretation of the results should be carefully assessed. 
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A schizophrenia brain activation estimation project has been carried out 

with all the aforementioned variables taken into account and its results are 

presented in this dissertation, along with different processes that are proposed to 

enhance the fMRI studies. 

1.b - fMRI technique for non-invasive brain function 
monitoring 

 
fMRI is a non-invasive technique. The main goal in fMRI is to locate brain activity. 
fMRI uses an MRI specific sequence, typically an Echo Planar Imaging (EPI) 
sequence (conceived by Mansfield, 1977). The first fMRI reports were given by 
Ogawa et al. (1990, 1993), first in rodents and then in human subjects. After those 
initial results, an ever growing interest in this technique has been shown.  
 

Figure 1. fMRI papers present in the PubMed database. Search performed with 
the sentence “fMRI” or “functional MRI”. 
 

Figure 1 illustrates the growth in number of scientific papers, which has 

increased exponentially since 1990 (for a more detailed review of the growth in the 

field, see Bandettini, 2007). The reasons for this outburst in fMRI research are 

many, but two of them are particularly important. First, fMRI is a non-invasive 
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harmless technique. Second, spatial resolution is high in fMRI compared to other 

techniques such as Electroencephalography (EEG) and Positron Emission 

Tomography (PET). Furthermore, fMRI examinations can be carried out using 

standard clinical MR scanners which are available at nearly all modern hospitals 

and the procedure is completely painless. 

 
With the establishment of fMRI as a brain activity mapping tool, the 

neuroscience field has also experienced a boost due to the possibility of studying 

human brain function in a harmless way. The relationship between brain activity 

and low level functions, such as basic sensory, visual and motor brain functions as 

well as higher cognitive functions such as language and memory have been 

tackled in many experiments. Another important application has been pre-surgical 

examinations, e.g. prior to the removal of a tumor, where the brain functions 

located in the regions surrounding the tumor can be mapped and the surgical 

approach can be optimized based on this information. The use of fMRI in 

presurgical applications is near its clinical validation (Sunaert, 2006). 

 

The fMRI technique relies on blood flow and blood oxygen concentration 

(jointly known as haemodynamics) as indicators of brain activity. Local blood flow 

changes in active brain areas were predicted already by the end of the 19th 

century (Roy and Sherrington, 1890). The physiological basis of fMRI and how 

brain activity can be detected in MR images are further described below. 

The BOLD signal 
 
Neurons in the brain consume oxygen that is attached to haemoglobin 

molecules in the blood. The flow of blood continuously provides new oxygen to the 

neurons. 

When neuronal activity increases, the demand of oxygen also rises. To 

meet this demand, an increased flow of blood is regionally supplied to the 

population of active neurons. Even though one would expect that the oxygenated 

blood rate would decrease when localized brain function appears, the situation is 

the opposite.  

Oxygen is transported from the interior of haemoglobin cells to the plasma, 

then to extra-vascular space, to the intra-cellular space, and finally reaches the 
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interior of the mitochondria via a pressure gradient (Buxton et al, 1998). To 

increase this pressure gradient it is necessary to increase the local concentration of 

oxygenated haemoglobin in the blood. Consequently, although there is an increase 

in oxygen consumption, there is a bigger increase in oxygen supply, creating a 

higher oxyhaemoglobin / deoxyhaemoglobin concentration than in rest state. This 

leads to an increase in the signal in BOLD images. 

 

 
Figure 2. The BOLD signal reflects the proportion of oxygenated haemoglobin (red 
circles) and deoxygenated haemoglobin (blue circles) that are present in the 
capillaries. When in an active state (b), neurons consume oxygen and more 
oxygen than needed is supplied. This results in an increased inflow of oxygenated 
blood (b) compared to baseline state (a). Red-coloured cells represent oxy-
haemoglobin while blue cells represent deoxy-haemoglobin. 

 

The mechanisms underlying this very local regulation of blood flow are not 

yet fully understood. An excess of oxygen is always supplied to the active neurons, 

leading to an increased concentration of oxygenated blood in the capillaries 

surrounding the active brain area. This process is illustrated in Figure 2. It is this 

difference in oxygenation concentration between a baseline state and an active 



 6 

state that can be measured with an MR scanner due to the different magnetic 

properties of oxygenated blood and deoxygenated blood. When oxygen is attached 

to the haemoglobin molecule an iron atom is shielded. In this state, the 

haemoglobin molecule is slightly diamagnetic and therefore almost magnetically 

inactive. Without oxygen attached, the haemoglobin’s iron is exposed and the 

molecule becomes paramagnetic, which means that it interacts with, and distorts, 

an applied magnetic field. The oxygen concentration in the blood therefore affects 

the magnetic environment of the hydrogen nuclei that exist in the water molecules. 

 
At low oxygen concentrations there are many paramagnetic haemoglobin 

molecules that locally modulate the main magnetic field B0 and as a consequence 

make the hydrogen nuclei excited by an RF-pulse dephase faster. Hence, the T2* 

relaxation time becomes shorter in areas with low oxygen concentration while it 

becomes longer in areas with high oxygen concentration. 

 

MR images reflecting the T2* effect are therefore slightly brighter (longer 

T2*) when a brain area is in an active state compared to the baseline state. This 

effect is referred to as the Blood Oxygen Level Dependent (BOLD) signal. The 

effect is however very small: An intensity change of around two to five percent is 

expected, so changes due to the BOLD signal are not detectable visually. 

 

The BOLD signal is an indirect indicator of brain activity and an important 

question is how well it corresponds to the electrical neuronal activity, generally 

taken as the definition of brain activity. In a seminal article, Logothetis and 

colleagues (Logothetis et al, 2001) showed by simultaneous measurements of 

electrical activity and blood oxygenation that these are intimately coupled. 

However, it is not possible to measure the activity of single neurons by means of 

fMRI due to: Firstly, a large population of neurons is required to evoke a 

measurable BOLD response. And secondly, the BOLD signal-to-noise ratio is 

higher the bigger the voxel, so signal change is measurable if voxels are at least 

approximately 1 mm3 (Menon and Goodyear, 1999). Typical voxel size in fMRI 

studies is about 10-30 mm3, though (in the studies presented in this PhD, voxel 

size is 14,8mm3). 
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Detecting brain activity 
 
To perform an fMRI experiment, an MR scanner with the ability to acquire 

EPI images is required. A subject, either patient or volunteer, is placed in the 

scanner and functional images covering a volume of the brain are then 

continuously acquired during a period of 5 to 10 minutes, usually (along the text of 

this thesis, scanning time is set to 5 minutes and 20 seconds). 

 

The in-plane size of the EPI images may be 64x64 or 128x128 voxels and 

a stack of 10-40 slices (128x128 matrix; 24 slices in the presented studies) are 

generally acquired. Around 100-200 (120 in this case) such image volumes are 

then repeatedly collected during the examination with a sampling period commonly 

between 1 and 5 seconds (repetition time is 2 seconds in the currently presented 

studies). 

While the images are acquired, the subject is either instructed to perform a 

task or presented with some form of stimuli. For example, a visual stimulus can be 

presented on a screen during a period of 20 seconds (an experimental block) and 

then a blank screen will be shown for 20 seconds (another block). Then the 

sequence of these two blocks is repeated throughout the whole imaging session. 

Due to the BOLD signal effect, there will be a BOLD response in brain areas that 

are activated by the presented visual stimulus. Such areas will presumably be 

located in the visual cortex. Hence, in an EPI image collected while a visual 

stimulus is being presented to the subject, higher image intensity values should be 

present in voxels covering active brain areas compared to the intensities in the 

same voxels in an image collected during the resting period. As the same image 

slice has been acquired repeatedly during the experiment, there is a time series of 

intensity values for each voxel, as shown in Figure 3. In a voxel covering a brain 

area participating in the processing of the presented visual stimulus, we expect a 

BOLD response, i.e. a variation in the time series following the pattern of the 

stimulus presentation. To locate and create a map of the active brain areas, voxels 

whose time series contain a BOLD response component must be identified. 
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Figure 3. The same image slice is repeatedly collected during a period of 5 to 10 
minutes. A time series of intensity values is therefore obtained in each voxel. Time 
series in active brain voxels contain a BOLD response while time series in non-
active voxels contain only noise (blue lines; time-courses correspond to voxels 
from acquired fMRI data). The rest and activity periods are indicated by the dotted 
lines. 

 
 

 
Figure 4. Basic steps in an fMRI examination. 
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The process in an fMRI examination (Figure 4) starts, in general, with the 

experiment design. The experimental paradigm can either be a blocked design or 

an event-related design. In a blocked design, sustained brain activity is evoked by 

presenting a stimulus for a longer period, and then a control or resting block is 

used to contrast the activity block. The visual stimulus example above is of a 

blocked form. The BOLD response to a blocked experiment has a form similar to a 

square-wave as shown in Figure 5. If the stimulation is applied in a square wave-

fashion (red dotted line), then we would expect to find the square wave convolved 

by an ideal canonical haemodynamic function (blue line). In an event-related 

design stimuli are briefly shown. For example, familiar and unfamiliar faces can be 

briefly shown with irregular time spacings. The event-related design offers more 

flexibility but in return the BOLD response is smaller and more complicated to 

analyze (Friston et al, 1999). 

 

 
Figure 5. An ideal hemodynamic response function. The red dotted line represents 
the stimuli presentation time line while the blue line represents the stimuli 
convolved with the ideal hemodynamic response function. 

 
The next steps in the fMRI examination process are the fMRI image 

acquisition and reconstruction. By means of the EPI sequence, images are 

acquired extremely fast, but the sequence is also prone to various artefacts that 

can affect the images, such as susceptibility to geometric distortions. Moreover, it 

is vital that the patient or volunteer does not perceptibly move the head during the 

minutes it takes to complete the examination. Brain activity is detected by inferring 

the presence of a BOLD response pattern in the voxel time series. If the subject 

moves his head during the acquisition, a voxel will cover different brain areas at 

different time points, and the possibilities to detect a BOLD response are likely to 
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be deteriorated or even spoiled (in fact, when movement goes over half of the 

voxel size at any moment during the acquisition, e.g. a movement of 2 mm3 when 

the voxel is 4 mm3 size, the examination is usually discarded). Small head 

movements are however inevitable and they must be corrected prior to BOLD 

response detection by aligning the acquired EPI images. After the realignment, or 

motion correction, the images are usually filtered in order to improve their Signal to 

Noise Ratio (SNR). Realignment, filtering and other processes that improve the 

acquired fMRI data are known as pre-processing. 

There are many available methods for the detection of active voxels. The 

main challenge in detecting activated voxels is the high level of noise that is 

present in the EPI images, and consequently also in the voxel time series, in 

combination with the small BOLD response effect. A straightforward detection 

approach is to average all images collected during the active condition and all 

images collected during the control/rest condition. A subtraction image should then 

reveal where the intensity is consistently higher during the active condition 

compared to the control condition. More advanced detection methods do in general 

apply a temporal model or reference time series to which each voxel time series is 

compared. The two main steps involved in the detection process are illustrated in 

Figure 6. For each voxel, a scalar measuring similarity between the reference time 

series and the voxel time series is calculated. The calculations are performed 

within the General Linear Model (GLM): 

 

y = β · X + ε (1) 

 

Where y represents the fMRI data (voxel-wise), X represents the design 

matrix (the expected haemodynamic response), β is the estimation of the amplitude 

of X and ε  encodes the residuals, the error, not modelled by X and β. 
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Figure 6. A Statistical Parametric Map (SPM) is obtained from the motion 
corrected EPI images (image stack represented on the left). Then the SPM is 
thresholded and most significant voxels are selected. 

 
The result is a map of similarity measures, commonly referred to as a 

Statistical Parametric Map (SPM) that includes the information about the estimation 

of activation and the error in the measure. High similarity (high β, low ε) is 

interpreted as an active voxel. The SPM is for this reason thresholded in order to 

classify voxels as being either active or inactive, answering the question, voxel-by-

voxel, of whether the null hypothesis is accepted or rejected. An extensive 

bibliography has been developed on how to select the correct threshold that deals 

appropriately with the multiple comparison problem, i.e. choosing which signals 

were significantly activated (see Worsley et al, 1996). 

 

An fMRI acquisition results in a 4D spatiotemporal data set (i.e. a 3D 

volume, or stack of 2D images, which is repeatedly collected over time). Even 

though it is the temporal behaviour of the voxel time series that indicates brain 

activity, a key to a robust detection of active brain areas is to exploit the spatial 

nature of the data, as it has already been studied by different successful 

multivariate (as opposed to univariate, i.e. voxel-wise temporal course statistical 



 12 

analysis) methods, such as Independent Components Analysis (McKeown et al, 

1998) and Canonical Correlation (Friman et al, 2001). 

 

Finally, in order to draw any neurological universal conclusion it is 

necessary to study groups of patients or healthy subjects. Locating brain areas 

consistently active over the whole group is complicated by the fact that there is a 

high degree of anatomical and localization-of-function variability between different 

brains, even in healthy subjects. Currently, the most commonly adopted solution is 

to spatially normalize the images by means of deformations or warping so that 

each individual brain fits a standard brain template as well as possible. Results 

from different subjects can then be compared in this standard brain space. 

 

Group studies are very common in neuroscience studies because they let 

us infer about the whole population, not only about the subjects of study. A similar 

procedure to the one shown in Figure 7 is followed. 

 

 
Figure 7. Outline of group studies. SPMs for each subject, in a normalized space, 
(left) are analyzed, generating a SPM representing the group. Then it is 
thresholded, selecting the most significant voxels from the group SPM. 
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In a group study, the features extracted per subject are combined in a 

second level so a new statistical map is generated that summarizes all the 

subjects’ brain activation. This is achieved by estimating β and ε in the GLM 

fashion, where x encodes the information about the group that each data has been 

extracted from. 

This two-step approach to the analysis (first feature-per subject extraction, 

then common inter-subject feature extraction) is, in a more general framework, 

known as Random-Effects Analysis, which is a conceptual class of the ANOVA 

statistical modelling. 

 

Results are finally assessed by the experts (radiologists, neurologists, 

neurosurgeons, psychiatrists, psychologists…) in order to check that the 

experiment is correct and that the results confirm or rebut the a priori hypothesis. 

 
 

1.c. Schizophrenia illness research 
 

Schizophrenia disorder 
 

Schizophrenia is a complex and variable, non-affective functional psychotic 

illness (Freeman and Garety, 2003). The age of onset is between 15 and 45 years 

of age, although it usually appears at the end of the teenage years.  

Schizophrenia is characterized by cognitive, social and emotional 

impairment, and by psychotic symptoms. Psychotic (positive) symptoms refer to 

the loss of contact with reality, and involve delusions (fixed, false beliefs), 

hallucinations (aberrant, false perceptions) or bizarre behaviours. Negative 

symptoms are deficit states in which basic emotional and behavioural processes 

are diminished or absent. Typically negative symptoms are divided into affective 

flattening (reduced emotional expression), alogia (poverty of speech), avolition 

(lack of persistence), anhedonia (task completion seen as pleasureless) and 

apathy (Andreasen, 1982). Negative symptoms are more persistent than psychotic 

symptoms and are strongly related to social dysfunction. Finally, the cognitive 

deficits concern shortage in attention, memory and executive functions such as 
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planning of behavior, set shifting ability and problem solving (see Aleman, Kahn, 

2005). 

A thrilling symptom in schizophrenia is auditory hallucinations as this 

symptom is the most common one. Hallucinations involve perceiving “(‘hearing’) 

internally generated words and sentences as if they originate externally” (Tracy, 

Shergill, 2006). Simple hallucinations such as hearing elementary non-word 

sounds are not common in psychosis. Therefore, it is assumed that auditory 

hallucinations are an abnormality of language processing. They are also an 

abnormality in emotion processing: the subject attributes inappropriate emotional 

salience to sensory stimuli in the environment, either real or imagined (Laviollete, 

2007). 

 

Schizophrenia. Functional Neuroimage 
 

With the advent of fMRI, functional neuroimaging studies about 

schizophrenia have increased dramatically (see Figure 8). Determining which 

areas in the brain have an abnormal functioning may help in the treatment of 

schizophrenia. 

 

 
Figure 8. PubMed manuscripts about fMRI and schizophrenia. Search performed 

with the sentence: (“fMRI” or “functional MRI”) and schizophrenia. 

Year 
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In recent years, there have been multiple experimental paradigms that 

have studied the activity in the healthy brain, with very different complexity. These 

have been divided according to the stimulus modality (motor or sensorial) or the 

type of cognitive task to be studied. The analysis of observable brain activation 

according to an emotional content stimulus has generated great interest. Because 

of the importance of emotional processing in schizophrenia, those studies are very 

noticeable in this context. In an extensive revision on the subject, Murphy and 

colleagues (Murphy et al, 2003) analyzed 106 neuroimaging studies that had 

focused on analyzing the differences on brain activation observed between 

emotional paradigms versus non-emotional ones in healthy subjects. Almost 90% 

(95 papers) of these studies used the visual stimulus modality, mainly with 

presentation of emotional expressions in faces or of emotional content images, the 

remaining experiments being distributed between auditory (11 studies), olfactory (5 

studies), tactile (2 studies), gustatory (2 studies) stimuli and even electric shock 

and saline injection (1 study each). The scarce number of studies with auditory 

modality is striking, especially considering the great importance of language and 

word processing in the priming of human emotions.  

In very general terms, some authors have stated that all the psychiatric 

disorders are tightly tied to alterations in the emotional activation (Lynam, Widiger, 

2007). Thus, the large amount of studies that use an emotional paradigm in 

subjects with psychiatric diseases (Philips, 2003) is hardly surprising. Focusing on 

schizophrenia, many studies have demonstrated deficits in the emotional 

processing in recognition of faces and in affective prosody. To the PhD candidate’s 

knowledge, no neuroimaging fMRI study that used the auditory modality in 

schizophrenic subjects with auditory hallucinations, that could be generalized to the 

whole population, existed in the literature prior to the ones presented in this 

dissertation (as according to the search for “auditory "fmri" emotion 

schizophrenia” in PubMed). 
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 2.  Thesis motivation and objectives 
 

"A handful of patience is worth more than a pound of brains." –Dutch 

Proverb 

 

2.a. - Assumptions 
 

Concerning the BOLD response and the fMRI data, after a bibliographical 

review, the main assumptions used in this thesis are: 

- The first assumption is that the BOLD response can be 

modelled as a linear system, i.e. the BOLD response evoked by 

two stimuli applied close in time can be superimposed or linearly 

added. The linearity assumption seems to hold reasonably well in 

most situations (Boynton et al., 1996) and the convolutive model 

is therefore frequently used in fMRI analysis, even though 

deviations from linearity have been reported in special cases 

(Vazquez, Noll, 1998; Birn et al., 2001). 

- When considering only one voxel timecourse at a time, all spatial 

dependencies that exist in an MR image are ignored (Zarahn et 

al, 1997). Sometimes spatial smoothing is applied to the fMRI 

data prior to statistical analysis, as a remedy to reduce noise and 

to introduce information from other voxels in the one considered. 

Spatial smoothing of the fMRI data is also needed when Random 

Field Theory is applied (Worsley et al, 1996). Hence, spatial 

smoothing has been kept as the mainly used filtering technique 

for fMRI data. There are different problems in the interpretation of 

spatial smoothed results, which have been lately described 

(Reimold et al, 2006; Walker et al, 2006; Wink AM, Roerdink, 

2004). The second assumption is that the precision in the 

spatial localization of activation areas is reduced by the spatial 

smoothing of the data. 
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Concerning schizophrenia illness and the experimental study, the main 

assumptions used along this study are: 

- The first assumption is that BOLD response can be actually 

studied in schizophrenic patients and it can be directly compared 

to the BOLD response in healthy subjects. 

- The second assumption is that subjects have been 

collaborative, in the sense of having paid attention to the stimuli. 

Therefore, the statistical maps are an approximate representation 

of the subjects’ response to the stimuli. 

- A deeper comprehension of the schizophrenia illness can be 

obtained by means of the study of the brain (function, 

morphometry, brain function-related genes …). Schizophrenia is 

a poorly understood illness because many different symptoms 

have been attributed to schizophrenia. The third assumption is 

that a specific symptom, such as predisposition to auditory 

hallucinations, should be selected and used as a biomarker to 

study brain function in schizophrenia illness. 

- The fourth assumption is that auditory stimulation can be a 

more direct way to replicate the emotional response to auditory 

hallucinations in schizophrenic subjects than other stimulation 

paths, such as the visual or the olfactory paths, as the most 

specific positive symptom in schizophrenia is the presence of 

auditory hallucinations. 
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2.b - Hypothesis 
 

The first hypothesis is that auditory verbal stimulation, both with 

emotional and neutral content, applied in an fMRI paradigm, will let us observe the 

brain activation due to auditory semantic emotional processing. Furthermore, it will 

let us observe the areas of activation separately in three groups of subjects: a) 

healthy subjects, b) schizophrenic patients with auditory hallucinations and c) 

schizophrenic patients without auditory hallucinations. 

The second hypothesis is that a novel filtering technique, the NL-Means 

filter, can enhance the localization of the fMRI BOLD-related response present in 

the data without appreciable resolution loss. 

2.c. - Thesis contributions 
- The study of brain activation in schizophrenia with a semantic emotional 

auditory paradigm has been developed and carried out. New knowledge 

about emotional response in the brain with schizophrenia has been 

achieved. 

 

- Activation has been studied and described: a) in healthy subjects and b) 

schizophrenic patients with and without auditory hallucinations. 

 

 

- A method that joins the areas found in a) structural MR volumetric analysis of 

areas with gray matter loss in schizophrenic patients with respect to 

controls; and in b) differences in fMRI activation between schizophrenic 

patients and controls. 

 

- General fMRI software phantom implementations are introduced. 

 

 

- The first application and adaptation of the NL-Means algorithm to fMRI data 

is achieved. An optimization of the original NL-Means is introduced. The 

NL-Means method has been applied to the acquired fMRI data from the 

three study groups. 
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2.d. – Thesis objectives 
 

1. To study brain activation in schizophrenia with a semantic emotional auditory 

paradigm. This study comprises the development of the paradigm and the 

study of emotional response in the brain with schizophrenia. 

 

2. To study and compare brain activation, with the paradigm stated above: a) in 

healthy subjects and b) in schizophrenic patients with and without auditory 

hallucinations. 

 

 

3. To develop a method to determine coincidence areas of two effects: a) areas 

with gray matter loss in schizophrenic patients compared to controls and b) 

areas with fMRI brain activation differences in response to the semantic 

emotional auditory paradigm between schizophrenic patients and controls. 

 

4. To adapt and to apply the NL-Means algorithm to fMRI data with the aim of 

removing noise without significant resolution loss, with the intention of 

improving results in the localization in the schizophrenia research project. 

 

2.d. - Thesis outline 
 

This dissertation presents a unique study of schizophrenia illness. Areas of 

the brain that are activated because of auditory emotional semantic processing are 

shown. It also presents the NL-Means filter and its application to fMRI, specifically 

to the fMRI study of schizophrenia auditory hallucinations. In chapter 3, the 

experimental paradigm, that will be the base for the study of schizophrenia that has 

been carried out, is presented. 

 

Chapter 4 evinces the study of the emotional response in a very 

homogeneous sample of schizophrenic patients with auditory hallucinations. The 

brain activation estimated by means of fMRI in schizophrenic subjects is compared 

to the one estimated in the healthy subjects population. 
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Chapter 5 presents the areas that coincide in the impaired functioning 

brain (measured by means of fMRI) and the impaired structural brain. Coincidence 

areas are shown stereotactically. These areas are very probably involved in the 

prognosis and diagnoisis of schizophrenia as they appear damaged both in their 

function and structure. 

 

Chapter 6 shows the application of the NL-Means filtering method to fMRI 

data, its implementation and optimization. It is also applied to the schizophrenia 

fMRI data, and its advantages are shown. The results are then compared to the 

ones obtained in the previous chapters so localization and signal amount 

estimation are reassessed with the data re-processed with the proposed filter. 

 

Chapter 7 states the main results, the conclusion and future lines of 

research. Specifically, it suggests what should be done next, after the initial results 

with NL-Means applied to fMRI have been shown, in order to take the maximum 

advantage of the filtering technique. Different approaches are presented that could 

make the algorithm faster and that would also increase its accuracy. Application of 

the filtering technique to the research of schizophrenia is also posed. 
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 3.  Emotional auditory paradigm in 
neuroimaging: a base for the study of psychosis 

 

"Great thoughts come from the heart" – Luc de Clapiers (1715-1747), 

Réflexions et maximes, 1746. 

 
The fMRI experimental paradigm that has been implemented for the 

schizophrenia research project is presented in this chapter. 

 

The aim is focused on the implementation and analysis of a paradigm that 

can be used in fMRI for detecting the areas of the brain that activate due to 

auditory emotional semantic processing and the areas that activate due to auditory 

neutral semantic processing. 

 

In the developed paradigm, there were two stimulation types, neutral and 

emotional, which were presented by the auditory path in a semantic processing 

task. Thus, at least detection of activation in the superior temporal lobe was 

expected (Binder et al, 2000) as a marker of successful acquisition. 

 

For this study, the fMRI acquisition sequence needed the initial 

optimization of the acquisition parameters. Bibliography research and experimental 

studies were therefore performed. Parameter optimization was achieved in two 

steps: First, a simple motor (hand movement) paradigm was developed and tested 

in two 1.5T scanners, with final parameters for successful fMRI data acquisition 

obtained: 24 slices with a GRE-EPI, TR=2000 ms, TE=50 ms, voxel size=1.72 x 

1.72 x 5 mm, 96x96 acquisition matrix, FOV=220 mm, no inter-slice gap (Lull et al, 

2004). Then, the finally implemented auditory paradigm was tested. 
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3.a. - Quality assessment of the acquired data 
 

Although not very commonly explained in the manuscripts, quality 

assessment of the acquired fMRI data is necessary before applying corrections to 

the images and statistics. There are different ways to check for common artefacts 

and excessive movement in the data. One way that is straightforward is manual 

observation of the fMRI data. Most acquisition problems such as the spin-history 

effect, excessive inhomogeneities or data transfer errors can be detected visually.  

 

Furthermore, summary images and plots can be generated that show 

possible outliers. As an example, Figure 9 shows a plot of the mean intensity per 

each volume from a subject’s fMRI data, within the schizophrenia research project. 

In the plot a dropout of intensity can be seen in the volume 39 that should be 

considered. 

 
Figure 9. Plot of the mean intensity value for every volume in each temporal 

position. As observable, there is a big change in the mean intensity of the volume 

39. 
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Another example is shown in Figure 10. K-space acquisition problems are 

present in one of the acquired volumes. In this case, careful inspection was 

necessary to detect the artefact, as it was present in some slices only. Therefore, 

an inspection of all temporal positions in one slice alone could have led to 

undetection of the artefact. 

 

 
Figure 10. Two contiguous volumes from an fMRI sequence, a) and b). c) Shows 

the subtraction between a) and b). K-space acquisition problems are present in b). 

 

 Figure 9 and Figure 10 show the importance of having a quality 

assessment technique for the acquired fMRI data, such as the one developed by 

the PhD candidate in direction of the Leonardo Da Vinci student Antonios 

Antonious, AQuA (IBIME Research Group, Valencia, Spain; the tool is accessible 

via http://www.ibime.upv.es/mi). 

3.b. - Data analysis 
 

The analysis included the pre-processing of the fMRI data for each subject, 

incorporating realignment of the data, registration of the high-resolution T1 volume 

to the EPI fMRI data and spatial normalization of the fMRI data to a standard 

template. These steps can be followed through the SPM interface, as shown in 

Figure 11. 
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Figure 11. Part of SPM2 interface, with a) realignment, b) coregistration and c) 

normalization buttons highlighted. a), b) and c) are the interface to the basic pre-

processing of the fMRI data. 

 

The realignment (i.e. movement correction) step, crucial to any fMRI 

activation study (Oakes et al, 2005), generated a mean volume of the fMRI data 

that was used as the source volume image for the co-registration. Co-registration is 

the process that matches two volumetric images that are possibly of different type 

because they have different acquisition parameters; they can also be from different 

subjects (Ashburner et al, 1997). 

 

Spatial normalization was finally applied. The spatial normalization 

consisted of linear and nonlinear (i.e. warping) spatial transformations (Ardekani et 

al, 2005; Friston et al, 1995; Woods et al, 1998) that matched each subject’s 

anatomical volumetric image to a standard template. The last pre-processing step 

consisted of spatially smoothing the fMRI data, as “spatial smoothing increases the 

relative power of low frequencies (including the assumed paradigm frequency)” 

(Aguirre et al, 1997). 

 

Statistics were performed by means of the General Linear Model (GLM), in 

a two-level analysis (also known as Random Effect Analysis). Firstly, in a GLM 

individual fMRI data are analyzed and parametric volume images are obtained by 

fitting the data to a linear model. Secondly, the parametric volume images from 
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each subject are taken to a group statistical test that will allow the detection of 

common patterns of activation in a group or differential patterns of activation 

between groups (Frackowiak et al, 2003). 

3.c. - General Linear Model 
 

As introduced in Chapter 1, the detection of activated voxels is carried out 

by means of statistical tests. Linear statistics (e.g. T-tests, ANOVA) can be 

performed in a GLM. 

 

A Linear Model explains the response variable y of length l in terms of a 

linear combination of explanatory variables plus an error term: 

 

y = X·β + ε (1) 

In this GLM, X is a matrix that contains j explanatory variables of length l. ε 

is the error term and β is a vector with j length that encodes the unknown variables. 

 

Linear statistic tests can be included in a GLM. The simplest case of a 

linear regression could be stated as: 

 

Y = μ + X·β + ε (2) 

 

Where the unknown parameters are: μ, a constant term in the model, the 

regression slope β and the error term ε ∼ N(0,σ2).  

 

A GLM could be stated that was identical to the linear regression: 

 

Y = X·(β+μ) + ε (3) 

 

In equation (3) the difference with equation (2) is that there is a new 

variable that has been encoded into X, which we set to 1 for all its values; 

furthermore, the notation has been changed to matrix notation (upper case bold 

indicates matrix while lower case bold indicates vector). Thus, the new column is a 

dummy variable that lets us state the linear regression as a GLM. In a similar 
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fashion we can perform different T-tests and Factorial (i.e. ANOVA) designs as 

GLM models. 

 

A SPM is the estimation of a combination of some parameters β for each 

voxel. The usual graphical representation shows the estimation for each voxel 

coding the statistical values into colour values, as observable in Figure 12. 

 
Figure 12. Results for a GLM design from real fMRI data, showing colour-coded 

parameters. Crosshairs mark the location of the highest value in a) a β map, b) the 

corresponding β-divided-by-error map (SPM map) and c) the SPM corresponding 

to high values from b), overlaid on the subject’s anatomical image. 

 

In an fMRI study, X and Y are known. Y represents the fMRI data. The 

values in X are the design matrix, usually represented colour-coded. As an 

example, we can have an fMRI study corresponding to a subject that has had two 

identical blocked-design fMRI sessions. The hemodynamic signal that we expect in 

one session would have a similar shape to the one seen in Figure 5 (Chapter 1). 

That haemodynamic signal corresponds to Figure 13,b), first column. In Figure 

13,b) two fMRI sessions have been encoded in the first two columns and the last 

two columns account for inter-session variability. The first rows of b) can be 

observed numerically in Figure 13, a). 
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Figure 13. fMRI Design matrix. a) Design matrix values and b) The same design 
matrix, colour-coded (gray values). Values in X needed in a specific GLM are partly 
listed in a) and drawn in b). 
 

 After having defined Y and X, the unknown variables (β parameters 

vector) have to be calculated. This can be done by estimating the parameters that 

best fit the data. The calculation of the β parameter vector has traditionally been 

done by means of a least squares fit. Nowadays models introduce corrections for 

non-normality of the error terms (e.g. drift terms in the fMRI, serial correlation in the 

data) that enlarge the least squares estimation by including deviations from 

normality such as serial correlations or drift terms, implicitly in the GLM. 

 

 Finally, the SPM map is usually thresholded and therefore highest 

significant voxels are selected. 

 

During the presented work, temporal characteristics of the BOLD signal 

were investigated (Buxton et al, 1998; Logothetis et al, 2001). Time to peak (time 

from the presentation of the stimulus to maximum hemodynamic change) is 

estimated to be around 4.7 s but the time to peak is variable among the normal 

population, the brain area that is involved in a task, age, etc. so a detailed study 

must be done to select the length of stimuli. 
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3.d. - Multiple comparison testing 
 

As the approach that has been followed in the presented work is a 

univariate approach (timecourse of each spatial voxel is analyzed independently), 

statistical values must be corrected so that multiplicity is taken into account. A 

variety of multiple comparison correction techniques have been proposed in the 

neuroimaging field. The most straight-forward is Bonferroni correction that 

corrects for multiple independent comparisons. The Bonferroni correction, in this 

context, states that if there are n voxels (therefore n statistical comparisons), the 

corrected p-value should be: 

 

nBF
αα =  (4) 

 

Where α is the desired statistical threshold (p-value) and BFα is the 

corrected statistical threshold. As an example, if we want a p<0.05 and there are 

300.000 voxels, the corrected threshold would be: ≈=
000.300
05.0

BFα 1.67e-7. 

However, Bonferroni correction is too conservative, mainly for two reasons. 

Firstly, the method is valid when the multiple comparisons are independent. 

Secondly, the correction deals with the probability that no voxel is estimated as 

activated by chance, i.e. that no false positives exist (instead of dealing with e.g. 

the proportion of false positives). Therefore a proportion of activated voxels will be 

estimated as not activated (false negatives) (Perneger, 1998). 

 

Both deficiencies in Bonferroni correction have been reviewed and new 

methods have been proposed for correcting for multiple comparison testing. 

 

The Family Wise Error (FWE) correction by means of estimating the 

Euler Characteristic deals with the first problem of Bonferroni correction. fMRI 

statistical tests are not independent. Activation does not appear spatially isolated in 

fMRI data. Furthermore, data can be seen as a set of Gaussian Random Fields 

(Worsley et al, 1992). Therefore, we could see an fMRI volumetric image as a 
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number of independent smooth clusters and the correction could be applied to the 

number of clusters instead of voxels. The independent smooth clusters that are 

present in an image are named Resolution Elements or ‘RESELS’ by Worsley 

(Worsley et al, 1992). If an image can be seen as a smooth random field, then the 

image will be composed of a number of such fields (see Chapter 14, Frackowiak et 

al, 2003). Figure 14 shows a random image and the same image that has been 

smoothed, leaving 128 resolution elements (b), from the original independent 128 x 

128 voxels (a). 

 

 
Figure 14. a) Uniformly random generated image with 128 x 128 pixels. b) Image 

from a), smoothed with a Gaussian kernel of FWHM 8 by 8 pixels. 

 

RESELS
FWE n

αα =  (5) 

 

Equation (5) states the basic idea of FWE with the Euler Characteristic (for 

a deep insight on the FWE technique, see Nichols, Hayasaka, 2003). The number 

of resels in an image is estimated by means of the Euler Characteristic (Worsley et 

al, 1992). 

 

A method that deals with the proportion of false positives instead of dealing 

with the chance of any false positive is False Discovery Rate (FDR, Benjamini, 

Hochberg, 1995). The FDR method was adapted to functional neuroimaging by 

Genovese in 2002 (Genovese et al, 2002). The concept remains the same as it 

was presented by Benjamini in 1995. In a typical fMRI experiment, thousands of 
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tests are performed and a threshold must be chosen that rejects the null 

hypothesis (i.e. voxels that are estimated as active). Selecting a threshold that 

takes into account how many false positives are introduced per each voxel 

estimated as active is more intuitive than controlling the probability of making one 

or more false positive over all hypothesis tests. Setting a rate of false positives per 

true positives has other advantages over FWE methods. The main advantage is 

that, compared to the other known methods, the error rate that is introduced in our 

estimation of voxels above the threshold remains always the same. However, any 

single choice of threshold (as opposed to rate) across data sets will result in an 

error rate that is too high for some data and too low for others. 

3.e. - Implementation of the data analysis 
 

The fMRI data was an auditory paradigm, including two sessions. Both 

sessions included stimuli distributed in a block design. The data were realigned, 

co-registered and spatially normalized. Afterwards, a design matrix was generated 

that included the GLM model for detecting which voxels were activated. The blocks 

of stimulation were distributed in an ON-OFF paradigm, as observable in Figure 5 

(Chapter 1). The ON level was achieved by words presented auditorily. The OFF 

level was achieved by silence. The subjects listened to the words passively, 

without emitting any judgment about the words. There were two sessions and 

stimuli were different in both sessions. The first session included neutral words as 

stimuli while the second session included high emotional words as stimuli. A design 

matrix that included both sessions was generated, taking into account the 

haemodynamic model (Chapter 11, Frackowiak et al, 2003), identical to the one 

represented in Figure 13. 

 

The beta parameters from the experiment were extracted for each 

individual subject in a Restricted Maximum Likelihood scheme (ReML). Maximum 

Likelihood (ML) estimation is a method that fits linear models assuming 

independent, identically distributed data. However, this is not the case in fMRI data, 

as temporal correlations exist in the data due to the persistence of neuronal 

activation, cyclical events (such as aliased cardiac and respiratory cycles), or other 

characteristics or artifacts of the measurement process, amongst others (Locascio 
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et al, 1997). ReML, as opposed to ML estimation, can produce unbiased estimates 

of variance and covariance components. The ReML estimates can then be used to 

whiten –removing the temporal correlation present in– the data giving ML 

estimators. Different methods have been proposed to whiten fMRI data. Locascio 

et al (1997) proposed to use a model based on the autoregressive moving average 

model. Zarahn et al (1997) observed 1/f noise profiles in fMRI data and therefore 

used a 1/f noise model to treat temporal correlations. More recently, Woolrich 

proposed the use of a Tukey taper, windowing the raw autocorrelation estimate, 

after high-pass filtering the data (Woolrich et al, 2001). In the current study, serial 

correlations were treated by incorporating an Autoregressive system (Box et al, 

1994) with one autoregressive term set to 0.2. Error covariance constraints were 

extracted and incorporated into the estimation of the beta parameters. 

A statistical parametric map was generated for each condition (i.e. a SPM 

for β1 that modeled the brain activation when neutral auditory stimuli were 

presented and β2 that modeled the brain activation when high emotional content 

words were presented as stimuli). 

FDR multiple comparison testing correction was selected as appropriate for 

the presented study as it enables the detection of signals present in the data 

without the introduction of any activation detection if there is no signal in the data. 

3.f. - SPM software 
 

Most of the work was developed based on a learning process about the 

use of the Statistical Parametric Mapping (SPM) method for detecting brain activity 

from neuroimaging data (Frackowiak et al, 2003). A free software tool that is used 

to a great extent in the neuroimaging community, also named SPM (FIL, Wellcome 

Trust Centre for Neuroimaging, London, UK), has also been very important. This 

training has been useful to different funded projects that have been carried out by 

the research group. It has also been useful in the application of the method to 

clinical cases. In the learning process, a significant tool has been the SPM mail list, 

where different experts in the neuroimaging field, such as John Ashburner, Karl 

Friston, William Penny, Klaas E. Stephan and Keith Worsley discuss and explain 

different questions, from mainly technical to state-of-the-art ones. The SPM mail list 

is an obliged source of information for the scientific community that researches 
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about functional neuroimaging, although the list is mainly focused on the SPM 

software package. 

 

3.g. - PhD candidate contributions 
 

The tasks carried out by the PhD candidate were: 

- Collaboration in the development of the paradigm, especially taking 

into account time restrictions necessary for optimal BOLD signal 

detection. 

- Collaboration in the estimation of the best parameters for the fMRI 

sequence. 

- Initial assessment of brain activity detection from the fMRI data. 

- Preparation of the fMRI data (also known as pre-processing).  This 

included image quality assurance and movement assessment 

while in the fMRI scanner. The pre-processing also incorporated 

movement correction, co-registration to the subject’s anatomical 

images and normalization to the standard brain template. 

- First level (subject-wise) and second-level (multi-subject) statistical 

analyses following the General Linear Model in a voxel-by-voxel 

(univariate) basis. 

- Generation of figures two and three in the article (Figures 15 and 16 

at the end of this chapter). 

- Collaboration in editing the manuscript, mainly the Methods and 

Results sections. 

- A fMRI data quality assessment toolbox was directed by the 

candidate and developed by the Leonardo Da Vinci student 

Antonios Antoniou. The toolbox has been published at the 

website: http://www.fil.ion.ucl.ac.uk/spm/ext. 
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cias en la respuesta emocional frente a la no emocional.
La mayoría de estos estudios utilizan la modalidad visual
(caras) y parten de los datos en sujetos normales. En el
presente estudio se presenta un nuevo paradigma para el
estudio de la respuesta emocional basado en la modali-
dad auditiva y diseñado específicamente para el estudio
de la psicosis.

Método. Se analizaron las palabras más frecuentes
que oían los pacientes psicóticos con alucinaciones audi-
tivas, se clasificaron según cinco categorías y a partir de
las mismas se diseñó un tren de 13 palabras emociona-
les, comparándose con 13 palabras con la misma com-
plejidad sintáctica y con una valencia emocional neutral.
Se aplicó este paradigma para ver la activación cerebral
mediante resonancia magnética funcional (RMNf) en 10 va-
rones sanos y diestros.

Resultados. En los análisis preliminares se observa
una clara diferenciación según el estímulo sea emocional
o no emocional, tanto en la intensidad de la activación
(córtex temporal derecho e izquierdo) como en la acti-
vación de áreas específicas (precentral y supramarginal
derecha).

Conclusiones. El paradigma presentado permite ob-
servar una diferenciación en la activación cerebral de la
respuesta a estímulos auditivos emocionales y podría ser
de utilidad en pacientes psicóticos.
Palabras clave:
RNMf. Paradigma auditivo. Procesamiento emocional. Palabras.

INTRODUCTION

Since the studies of Charles Darwin on the expression of
emotions in man and animals1, many investigators have
tried to analyze the biological bases of our emotional res-
ponse, both from animal research2 and from the search for
biological correlates to the different emotions3. Classic the-
ories tried to relate the peripheral changes to stimuli of dif-
ferent emotional content to establish a psychophysiology of
the emotions. The arrival of functional neuroimaging 
through magnetic resonance (fMRI) has opened a new and
exciting perspective in this field. 

Introduction. Since the arrival of neuroimaging nume-
rous studies have tried to analyze the differences between
emotional and non-emotional response. The majority of
these studies use visual approach (faces) and begin with da-
ta in normal subjects. The present study introduces a new
paradigm for the study of emotional response based on 
auditory approach and designed specifically for the study 
of psychoses.

Method. The most frequent words heard by psychotic pa-
tients with auditory hallucinations were analyzed. They were
classified according to five categories which were compared
with 13 other words with the same structure but with a neu-
tral emotional valency. This paradigm was applied to see the ce-
rebral activation with functional magnetic resonance imaging
(fMRI) in 10 right handed healthy males.

Results. In the preliminary analysis a clear differentia-
tion is observed depending on the type of stimulus applied
(emotional or non-emotional), both in the intensity of acti-
vation (right and left temporal cortex) as in the activation
of specific areas (right precentral and supramarginal gyrus)
only with the emotional stimulus. 

Conclusions. The present paradigm allows the observa-
tion of a differentiation in the cerebral activation to emo-
tional auditory stimulus and could be of utility in the study
of psychotic patients.

Key words: 
fMRI. Auditory paradigm. Emotional processing. Words.
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Functional neuroimaging studies can be divided into 
three sections: those that seek differences in the baseline
condition of the subject without subjecting him/her to any
stimuli, those that try to capture a specific and special mo-
ment of the brain functional activity (as, for example, pres-
sing a button when the subject experiences hallucinations)
and those others that try to measure brain functional acti-
vity while the subject undergoes a type of stimulus or task. 

Thus, within functional neuroimaging, «paradigm» is 
called the stimulus or task of experimental design in which
the subject is repeatedly subjected to two or more situa-
tions. During recent years, there have been multiple para-
digms for the study of brain activity with very different
complexity. These have been divided according to the sti-
mulus modality (motor or sensorial) or the type of cognitive
task to be studied. For the extraction of results, these situa-
tions normally include the performance of one or more spe-
cific functional tasks and the baseline rest situation4.

However, the analysis of the differences observed in
brain activation according to whether the stimulus has an
emotional content or is emotionally neutral is one of the
areas that generates the greatest interest. In an extensive
revision on the subject, Murphy5 analyzed 106 neuroima-
ging studies that had focused on analyzing the differences
on brain activation observed between emotional paradigms
versus non-emotional ones. Almost 90 % (95 papers) of the-
se studies have used the visual stimulus modality, mainly
with presentation of emotional expressions in faces or of
emotional content images6-9, the remaining experiments
being distributed in auditory (11 studies), olfactory (5 stu-
dies), tactile (2 studies), gustatory (2 studies) stimuli and
even electric shock and saline injection (1 study each).

The scarce number of studies with auditory modality is
striking, above all if we admit the great importance of lan-
guage and the word in awaking human emotions. The few
studies that use an auditory paradigm with emotional res-
ponse in normal subjects appear in table 1. As can be ob-
served in this table, some studies have sought to provoke
different emotions with music10-12, or noise13-15 while
others have used the presentation of words having different
emotional meaning10-26. The paradigms used in each one of
these studies have been very different and thus it is com-
plicated to compare the results. Some studies have sought
to analyze the capacity of identification of the emotional
tone (prosody)16-19 while others have studied the differen-
tiation in the activation pattern according to the type of
emotion related with the word20-26. In keeping with Mad-
dock24, the variables that influence the fact that a word
may arose an emotion is mainly associated with the emo-
tional value given to it by the subject, to the frequency of
its use and to the imagination it can evoke. The complexity
(number of syllables) of the word is another factor to con-
sider. These authors found activation in the upper part of
the left cingulate cortex in a sample of eigth right handed
subjects (six women and two men), without being able to

observe differences between pleasant stimuli versus unplea-
sant ones. 

All these investigations have great relevance for the
study of psychiatric disorders. In very general terms, some
authors have stated that all the psychiatric disorders are al-
terations in emotional activation27. Thus, the large amount
of studies that use this type of paradigm in subjects with
psychiatric diseases28 is hardly surprising.

Focusing on schizophrenia, many studies have demons-
trated deficits in the emotional processing in recognition of
faces29,30, and also some in affective prosody30. However,
here there are also many methodological problems that ma-
ke it difficult to compare the results and establish specifi-
city, extension and nature of the deficits30. There have also
been different functional neuroimaging studies that have
gone deeper into the study of these deficits, both in face
recognition31-35 as by pleasant and unpleasant visual stimu-
li36. We have not found any neuroimaging study that uses
the auditory modality in the literature. This is particularly
striking given that the perceptive disorders these subjects
suffer are mostly within this sensorial modality. 

This study presents a paradigm based on the audition of
words for the study of the differences in brain activation
when the content is emotional versus non-emotional. These
differences are analyzed with functional neuroimaging (fMRI)
and will be validated in healthy control subjects. Our final
objective is for this functional neuroimaging model with
emotional auditory stimulus to serve to deepen the kno-
wledge of the underlying conditions in patients with schi-
zophrenic psychosis who have auditory hallucinations. 

MATERIAL AND METHOD 

Elaboration of fMRI paradigm

Selection of words having emotional content for psychosis 

So that the selection of the words with emotional con-
tent to be specific for psychosis, 82 patients with schizo-
phrenia according to DSM-IV criteria and who had suffered
auditory hallucinations according to their clinical record
were chosen. All the patients were administered the Spanish
version of the PSYRATS scale37 for hallucinations and the
hallucination content were recorded on a tape recording
machine. These recordings were transcribed and the most
frequently appearing words were analyzed. Hallucinations
that were based on complex sentences or had a neutral
content were ruled out, selecting words that had meaning
by themselves. A total of 65 words were chosen and were
grouped according to content in five categories:

— Negative content with imperative tone (for example,
get out!, kill him!)

— Insults (for example: good for nothing!, jerk!)
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— Imperative tone (for example: do it!, listen!)

— Exclamations related with emotional conditions (for
example: fuck!, shit!)

— Positive content (for example: good!, wonderful!).

Attending to the frequency presented and given that the
stimulus pattern for the fMRI experiment should last 20 se-
conds for each block, a total of 13 words were chosen and we-
re distributed in the following way: 4 negative content impe-
rative words (get out, kill him, hurl yourself down, you will
die), 3 insults (whole, good for nothing, jerk), 2 with imperati-
ve tone (listen, do it), 2 exclamations related with emotions
(fuck, shit), and 2 having positive content (wonderful, good). 

Selection of words with neutral content and pairing 
with those of emotional content

The data published by S. Algarabel in which the indexes
of psycholinguistic interest of 1,917 Spanish words are ex-
plained was used38. This author analyzes different types of

indexes of these 1,917 words. These indexes are grouped in-
to two large categories: objective indexes: they refer to the
number of letters, number of syllables, written frequency,
number of meanings in the Royal Academy dictionary and
those called subjective indexes: imaginary, meaningfulness,
number of attributes, concreteness, categorizability, fami-
liarity, pleasantness. The first indexes are obtained from the
mentioned sources, the subjective ones were obtained from
a Valencian and Alicantinian sample of a total of 2,000 sub-
jects who had to evaluate the words on a 1 to 7 scale. The
item that interests us most here is that called pleasantness.
The subjects should respond to what degree this word arou-
sed feelings of complacence or unpleasant feelings, ranging
from 1, very unpleasant, to 7, very pleasant.

The neutral words chosen had to have a syntactic com-
plexity (number of syllables) similar to that of the emotio-
nal words, a similar use frequency and neutral or slightly
positive score on the pleasantness scale between 3 and 4.
We also added that they should never be words that could
refer to the subject if they were not common names of ob-
jects and simple concepts. The 13 words chosen were: table,
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Table 1 Studies that have used the auditory sensorial modality to analyze the emotional versus 
non-emotional response in normal subjects

Author and year (ref.) Technique N Paradigm

Music

Baker et al., 199710 PET 10 Different types of music

Blood and Zatorre, 200111 fRMI 10 Pleasant music

Blood et al., 199912 PET 10 Pleasant music/unpleasant music

Noises

Frey et al., 200013 PET 8 Pleasant sounds/unpleasant sounds

Hugdahl et al., 199514 PET 5 Noise/unpleasant tone

Royer et al., 200015 PET 12 Opinion of pleasant stimuli, including auditory

Words

Imaizumi et al., 199716 PET 6 Identification of the emotion spoken with

Morris et al., 199917 PET 6 Vocalization of emotions

Buchanan et al., 200018 fRMI 10 Voices with different emotional intonation

George et al., 199619 PET 13 Prosody of the words

Schirmer et al., 200420 RMf 24 They heard a series of verbs in which emotional valency was established, 

the stimulus varied one series with emotional tone and 

other without it

Philips et al., 199821 fRMI 6 Verbal expression of fear

Royet et al., 200015 PET 12 Opinion of pleasant stimuli, including auditory

Isenberg et al.22 PET 6 Neutral and emotional words

Maddock et al., 199723 RMf 7 Words having emotional and neutral content

Maddock et al., 200324 RMf 8 Words with emotional and non-emotional content, analyzing the valency 

of them. They heard only text, words in sequential form

Tracy et al., 200325 fRMI 15 Emotions, non-emotional words, text plus emotional words, text plus 

non-emotional words

Goel and Dolan,  200126 fRMI 14 Jokes with humor and without humor
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liter, case, lamp, wheel, terrace, shoe, mountain, datum,
park, meter, novel, drawing. The mean pleasantness index of
the neutral words was 3.8. The total number of syllables was
the same as in the emotions 33. Joining words whose asso-
ciation had a meaning was avoided. 

To make the recording, we used a specialized center, hir-
ing an actor to pronounce the words. The neutral words 
in neutral tone and the emotional ones with an emotional
tone, but with the same intensity of voice (65 bs).

During the fMRI experiment, four blocks with 20 second
long stimuli mixed with four more blocks with 20 seconds
of rest were presented to the subject. The order of both ac-
quisitions (emotional and neutral) was random to avoid in-
troducing biases (adaptation, tiredness, saturation surprise)
due to the order of the auditory stimulus without and with
emotional content. The subjects were warned before the
test that they would hear these types of words, simply 
asking them to pay attention to them.

Functional magnetic resonance 
imaging technique

Design

The neuroimaging test consisted in the acquisition of
fMRI images by Blood Oxygenation Level-Dependent (BOLD)
contrast, using the previously mentioned paradigm, and
structured brain images having high spatial resolution to
superimpose the activation maps on them.

The subjects were subjected to the block stimulation pa-
radigm, exchanging rest states with auditory stimulation
states. Figure 1 shows the distribution in time of the stimu-
lation blocks.

This scheme of blocks was repeated in two sessions for
each subject. The first acquisition was the auditory stimula-
tion paradigm with emotional content (sequence groups of
13 words with high emotional content), the second acquisi-
tion being without emotional content (groups of 13 words
with very low emotional content). Each session consisted in
80 acquisitions of tridimensional data (3D) of the total
brain volume, assigning 10 consecutive acquisitions to each
activation state (rest and auditory stimulation). finally, a
structural volumetric sequence of the anatomical content
of the brain was obtained in rest state.

Acquisition of MRI images

Data acquisition of magnetic resonance superconductor
1.5 teslas (Philips Intera 1.5, Holland) was performed by a cli-
nical team. The patients were given headphones connected
by air tubes with an audio CD reproducer. Using these head-
phones, the patients were isolated from the noise inherent
to the fMRI experiment while they received the auditory sti-

mulus. The auditory stimulus test that they were going to
hear was previously described to all the subjects. The studies
were acquired with the standard quadrature head coil.

For the acquisition of the functional images, the following
sequence was used: T2* weighted EPI dynamic sequence of
fMRI (multicut 2D sequence; TR: 2,000 ms; TE: 50 ms; 5 mm
cut thickness without separation between cuts, acquisition
matrix: 96 × 128; field of vision (FOV): 220 mm; excitation
angle: 65o). Voxel size was 3.27 × 1.72 mm. Sequence was
acquired with spectral suppression of fat to minimize arti-
facts by chemical displacement. Each one of these dynamics
had 24 contiguous cuts with a parallel orientation to the
anterior commissure-posterior commissure line, with a co-
verage of all the intracranial CNS. 

To study the functional activation, a total of 80 dynamics
were acquired (2 seconds long each one) with a global duration
of the sequence of 160 seconds. Every 10 ones of these dyna-
mics formed a block. During the experiment, four blocks in rest
state and four during activation were alternately studied. 

The anatomical structural image necessary for topographic
localization of the activation areas was obtained with the T1
weighted gradient echo sequence (volumetric 3D acquisition;
TR: 7 ms; TE: 1.88 ms; cut thickness: 1.2 mm without separa-
tion between cuts; acquisition matrix of 256 × 256; FOV: 220
mm). With this sequence, all the intracranial nervous system
is acquired with 96 cuts. The voxel size was 0.86 × 0.86 mm.
Duration time of this sequence was 280 seconds.

Data analysis

Based on the images obtained from the structural MRI
and fMRI, an initial preprocessing was performed to impro-
ve the images in order to adequately perform the statistical
analysis pixel to pixel.

The fMRI and structural images were coregistered in such
a way that the anatomical areas coincided in both image mo-
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Figure 1 Distribution in time of eigth blocks of sti-
muli (four activation and four rest).
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dalities. In the fMRI images, a realignment was also done
with correction of subvoxel movement to eliminate the ef-
fects associated with the involuntary movement of the head
during the fMRI study. Realignment of the dynamics was per-
formed according to a reference volume. After, the images
were transformed to a standard space by minimization of the
quadratic error that represents the difference between the
template image (MNI350, Montreal Neurological Institute)
and study image. This transformation was done beginning
with the structural image of each subject. The intensity of the
normalized images was softened based on a tridimensional
Gaussian nucleus to optimize the signal to noise ratio39, the
data approaching a convenient normalized distribution for
the statistical tests that were subsequently performed.

The statistical analysis consisted in the study of a single
subject and the intersubject comparison (extraction of data
and differences on the activation in the two paradigm
groups). The analysis of the parametric maps was done with
t-tests studies of a sample based on 10 healthy subjects
(analysis of groups of subjects, by an Random Effects Analy-
ses, voxel by voxel, to obtain the characteristics of common
activation, according to the MLG through the SPM2 (Statis-
tical Parametric Mapping, Wellcome Department of Ima-
ging Neuroscience)40.

The results were filtered with the False Discovery Rate
technique with a corrected p < 0.1 and minimum threshold
of a group of five voxels (groups less than five voxels were
eliminated).

The activation areas were defined by Automatic Area La-
beling41. Using the Wfu_pickatlas software42 mask images
were obtained of each one of the regions. These were filte-
red for the parametric images of the test for stimuli with
emotional content and the test for stimuli without emotio-
nal content, finally counting the number of active voxels.

RESULTS

Activation maps for each non-emotional/emotional para-
digm were obtained from the images of the group of 10 con-
trol subjects (figs. 2 and 3). It can be observed in figure 2 how
the activation is mainly located in the superior temporal gyrus
when stimuli with words without emotional content are used.
When the auditory stimulus is done using words with high
emotional content, areas of activation were obtained in simi-
lar regions, but with a greater extension than in the case of
the non-emotional paradigm, mainly in the middle and supe-
rior temporal gyrus. The meaning for the active areas in these
regions reached very significant values (corrected p < 0.001). 

When auditory stimuli were used with emotional con-
tent, a statistically significant supplementary activation was
seen in the right post-central area and in the right supra-
marginal gyrus that did not occur with stimuli without
emotional content.

DISCUSSION

This present article aims to present a new paradigm of
emotional versus non-emotional auditory stimulation for the
study of emotional reactivity in psychotic patients, showing
preliminary data of fMRI in normal subjects. As we mentio-
ned in the introduction, the studies reviewed on the subject
have very different methodologies and thus the results are
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Figure 2 Auditory activation in 10 controls with
stimulation of words without emotional content.

Figure 3 Auditory activation in 10 controls with
stimulatin of words with emotional content.
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not comparable. The paradigm that we present herein has
important differences in relationship with those previously
used by other authors. The selection method of the neutral
words (non-emotional) was similar to that performed by 
other authors, especially to that used by Maddock et al.24, al-
though the subjects were not asked to evaluate the neutrality
of these words, but rather they were selected from the data
of the general population. However, the emotional words
were selected based on the conversation of psychotic pa-
tients with auditory hallucinations and not from the general
population nor from the previous signaling of the  valency of
pleasantness given by the study subjects. This determined
that the words chosen had very specific characteristics. Thus,
compared with other studies, the emotional words of our pa-
radigm have the following differential characteristics: a) they
have a syntactic meaning by themselves; b) all refer to the
person; c) they express, without possibility of ambivalency, a
strong affective content that is reinforced by a clear emotio-
nal tone (prosody), and d) as in most of the studies, there is
no differentiation between whether the content of the words
is pleasant or unpleasant; it is aimed to analyze the emotio-
nal filter that may be done by the psychotic patient and this
may be altered both in positive and negative words.

We believe that this paradigm that is especially designed
to analyze the emotional response of the psychotic patients
may maximize the possible differences in emotional proces-
sing of language.

The initial results in normal subjects show a clear diffe-
rentiation in cerebral activation between emotional and
non-emotional words. The large increase in the activation
of the temporal areas, an increase that is more marked in
the right hemisphere, calls our attention in the first place. It
must also be stressed that the areas of the right hemisphere
as the supramarginal gyrus and the post-central area are
only activated with emotional stimuli. Although these re-
sults are only preliminary and require greater analysis, they
are coherent with the results of other authors18,23,25 and in-
dicate that the paradigm described may be useful for the
discrimination of the circuits involved in the emotional res-
ponse to auditory stimuli. 

If, as Maddock24 states, memory may play a very impor-
tant role in the activation of these circuits, it can be expec-
ted that when psychotic subjects with auditory hallucina-
tions listen to words that have a relationship with their
hallucinations, this differentiation would be more greater.
We hope to verify the certainty or non-certainty of this
hypothesis in future studies.
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Figures from the article are also reproduced in color in Figure 15 and 
Figure 16. 

 
Figure 15. Auditory activation in 10 

controls with stimulation of words without 

emotional content. 

 

 
Figure 16. Auditory activation in 10 

controls with stimulation of words with 

emotional content. 
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3.h. - Addendum 
As the manuscript is the main part of this chapter, some errors that have been 
found are transcripted here. The manuscript was not modified, as it is the one that 
has been already published. The addenda have been sent to the journal. Changes 
are presented in blue colour.  
 
p.2-3. For example is replaced by e.g. Some words were not correctly translated: 
 
A total of 65 words were chosen and were grouped according to 
content in five categories: 
— Negative content with imperative tone (e.g. get out!, kill him!) 
— Insults (e.g. jerk!, queer!) 
— Imperative tone (e.g. do it!, listen!) 
— Exclamations related with emotional conditions (for example: 
fuck!, shit!) 
— Of positive content (e.g. good!, wonderful!). 

 
Attending to the frequency presented and given that the stimulus 
pattern for the fMRI experiment should last 20 seconds for each 
block, a total of 13 words were chosen and were distributed in the 
following way: 4 negative content imperative words (get out, kill 
him, hurl yourself down, you will die), 3 insults (bitch, jerk, 
queer), 2 with imperative tone (listen, do it), 2 exclamations 
related with emotions (fuck, shit), and 2 having positive content 
(wonderful, good). 
 

p.4 The sentence about data acquisition equipment is wrong. It should state: 
Data acquisition was performed on a magnetic resonance 

superconductor 1.5 T scanner (Philips Intera 1.5, The 

Netherlands). 

 

p.4 The word “cuts” appeared instead of “slices”. 
For the acquisition of the functional images, the following sequence 

was used: T2* weighted EPI dynamic sequence of fMRI (multislice 2D 

sequence; TR: 2,000 ms; TE: 50 ms; 5 mm slice thickness without 

separation between slices; acquisition matrix: 96 x 128; field of 

view (FOV): 220 mm; flip angle: 65º). Voxel size was 3.27 x 1.72 mm. 

Sequence was acquired with spectral fat suppression to minimize 

artefacts by chemical displacement. Each one of these dynamics had 

24 contiguous slices with a parallel orientation to the anterior 

commissure-posterior commissure line, with a coverage of all the 

intracranial CNS. 

In the same page: 
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The anatomical structural image necessary for topographic 

localization of the activation areas was obtained with the T1 

weighted gradient echo sequence (volumetric 3D acquisition; TR: 7 

ms; TE: 1.88 ms; slice thickness: 1.2 mm without separation between 

slices; acquisition matrix of 256 x 256; FOV: 220 mm). With this 

sequence, all the intracranial nervous system is acquired with 96 

slices. The voxel size was 0.86 x 0.86 mm. Duration time of this 

sequence was 280 seconds. 

 

p.5. Kernel was wrongly stated as nucleus. Furthermore, MLG was written instead 

of GLM: 
The intensity of the normalized images was smoothed based on a 

tridimensional Gaussian kernel to optimize the signal to noise 

ratio39, approximating the data to a convenient normalized 

distribution for the statistical tests that were subsequently 

performed. 

The statistical analysis consisted in a single-subject analysis and 

an intersubject comparison (extraction of data and differences on 

the activation in the two paradigma groups). The analysis of the 

parametric maps was done with t-tests studies of a sample based on 

10 healthy subjects (analysis of groups of subjects, by an Random 

Effects Analyses, voxel by voxel, to obtain the characteristics of 

common activation, according to the GLM through the SPM2 

(Statistical Parametric Mapping, Wellcome Department of Imaging 

Neuroscience)40. 

 

p.36 References 40, 41 and 42 in the manuscript should have the following 

numbering: 

Maldjian et al, 2003 (40) 

Worsley et al, 1996 (41) 

Tzourio-Mazoyer et al, 2002 (42). 
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 4. Emotional Words Induce Enhanced 
Brain Activity in Schizophrenic Patients with 
Auditory Hallucinations 

 

"Affection is responsible for nine-tenths of whatever solid and durable 

happiness there is in our lives" – C. S. Lewis (1898 - 1963). 

 
The fMRI paradigm for neutral and emotional word processing (Sanjuán et 

al, 2005), applied to schizophrenic patients that have auditory hallucinations is 

presented in the following manuscript. The positive symptom (the definition of 

positive and negative symptoms has been presented in chapter 1) of auditory 

(verbal) hallucinations was selected to create a very homogeneous sample of 

patients with chronic auditory hallucinations. Figure 3 in the manuscript shows the 

large extent and amplitude in the activation that was obtained by means of the 

paradigm in the schizophrenic patients. The structure of this chapter is composed 

of an introduction to the auditory paradigm and its expected implications in the 

research applied to schizophrenia, and the published manuscript at last. 

 

4.a. - Auditory paradigm 
 

The auditory emotional speech processing paradigm was slightly outlined 

in Chapter 3. The development of the paradigm is described in the present chapter. 

The chosen paradigm was developed in the framework of the Schizophrenia 

Research Project (see Chapter 1) in 2003 and it was tested in volunteers and it 

was optimized. The final paradigm is presented in the manuscript included in this 

chapter. 

 

The main aim of the Project was to detect the areas of the brain that were 

most influenced by auditory semantic emotional processing and to detect 

differences in the activation of those areas between schizophrenic and healthy 
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control subjects. Words were presented auditorily. Many paradigms have studied 

visually presented words instead. 

 

As the stimulation was presented auditorily and the administered stimuli 

were words, the brain areas that can be of interest in the study are presented 

below. These areas are related to audition and to language processing. Firstly the 

main audition area is presented and then the language interpretation area is 

introduced. 

 

The Primary Auditory Cortex is located in the posteromedial part of the 

Heschl’s gyrus (Liegeois-Chauvel et al, 1991). The Heschl’s gyrus is an omega-

shaped small gyrus (see Figure 17, a) that is located in the Superior Temporal 

Gyrus (STG).  

 

 
Figure 17. (Right) Heschl’s gyrus identification (blue crosshairs) on an anatomical 

high-quality MR image, in a) Sagittal, b) Coronal and c) Axial views. The gyrus 

presents an omega-shape in the Sagittal view. 

 

 Primary auditory functions such as the response to pure tones and to 

acoustic frequency patterns map onto the medial two-thirds of the Heschl’s gyrus 

(Morosan et al, 2001; Lütkenhöner et al, 2003). When stimuli have semantic 

content, then they are further processed by the Wernicke Area (Geschwind, 1979), 

specifically in the Planum Temporale. The network of activation then differentiates 

depending on the content of the stimuli. 

 

 It has been demonstrated that the kind of auditory stimulation that is 

applied to a subject modulates the laterality of activation in the temporal lobe. 
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Human brain has a predisposition to process speech sounds in the left auditory 

cortex while music sounds tend to be processed in the right one (the left / right 

dominance depending on the function is known as functional lateralization; 

difference in shape between two homologous areas is known as structural 

lateralization). Different illnesses such as schizophrenia or specific language 

impairment have a different-from-normal lateralization in the temporal lobe, found 

both in structural and functional studies. Differences in hemispheric lateralization of 

function in the temporal lobe in professional musicians have also been found. 

These differences in lateralization indicate that both auditory processing 

impairments and auditory processing training generate a change in language 

function lateralization (for a review, see Tervaniemi and Hugdahl, 2003). The study 

of the activation of the brain areas that respond to auditory speech processing in 

healthy and schizophrenic subjects could therefore generate information about the 

different functionality between the healthy and the schizophrenic brains. 

 

 Audition function has been deeply explored in schizophrenia (for a review, 

see Shenton et al, 2001). The structure of the STG in schizophrenic subjects has 

also been investigated, and correlations have been found between thought 

disorder scores and grey matter reduction in the left posterior STG (e.g. Menon et 

al, 1994; Shenton et al, 1992). STG has recently been found to be altered in 

childhood-onset schizophrenia, demonstrating an impairment of language in non 

medicated subjects (Taylor et al, 2004). Gray matter deficits in STG in 

schizophrenic subjects have recently been found in schizophrenic patients with 

auditory hallucinations (Garcia-Marti et al, 2007). Furthermore, correlations 

between severity of auditory hallucinations and gray matter reductions in left 

inferior frontal gyrus and also in right postcentral gyrus were observed in that study. 
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4.b. - Emotion and schizophrenia 
 
 It has been proposed that medical treatments do not remove symptoms of 

schizophrenia, such as auditory hallucinations, but they rather regulate the 

salience given to emotional stimuli by psychotic patients (Kapur, 2003). This 

regulation of salience is achieved through medicines that regulate dopamine, a 

neurotransmitter related to several brain functions that plays a role in Parkinson 

disease and psychotic illnesses, amongst others (Schultz, 2007). The emotional 

response has been studied in schizophrenia with neuroimaging methods. A recent 

study (Plaze et al, 2006) found that severity of hallucinations negatively correlated 

with activation in the left temporal superior region when listening to neutral 

sentences. The finding supports the hypothesis that auditory hallucinations 

compete with normal external speech for processing sites within the temporal 

cortex in schizophrenia.  

 

Fakra and colleagues (2008) and Williams and colleagues (2007) explored 

emotional response in schizophrenia by presenting facial emotional stimuli. The 

first research group detected a failure in the activation of regions of the limbic 

system implicated in the automatic processing of emotions in schizophrenic 

patients when the subjects had to match emotional faces (Fakra et al, 2008). The 

study by Williams and colleagues found that schizophrenia patients displayed 

abnormally increased phasic arousal (measured by means of skin conductance 

response), with concomitant reductions in fMRI-measured activation in emotion-

specific regions and Medial Prefrontal cortex (MPFC) (Williams et al, 2007). Lee 

and colleagues (2006) also found different activation in schizophrenic subjects in 

the MPFC in a social cognition paradigm. Most of the fMRI studies about 

schizophrenia performed to date involved experimental designs traditionally used in 

neuropsychology (Niznikiewicz et al, 2003). The majority of studies that used 

sensory stimulation did so through the recognition of facial emotions (Murphy et al., 

2003). However, relatively few of them have used the auditory modality. Emotional 

response with regard to the neural basis of auditory hallucinations needs further 

attention (Allen et al, 2008). 

 



 51 

4.c. - Emotional words. An emotional semantic 
auditory paradigm 
 
 A paradigm that replicated the experience of emotions in schizophrenic 

subjects was developed. With this aim, emotional and neutral stimuli were selected 

that would be administered auditorily. Firstly, the psychiatry group obtained the 

most usual words a cohort of more than two hundred schizophrenic subjects 

usually heard. Then they selected the words in terms of emotional salience 

(Algarabel, 1996) and word complexity (only two and three syllable words were 

accepted). Thirteen high emotional words were finally chosen from the words 

schizophrenic patients heard, and thirteen neutral words were matched to the 

emotional ones, from the list generated by Algarabel. The words were recorded by 

a Spanish-dubbing professional. The two blocks of words were randomized 

separately in four different blocks of twenty seconds each. The distribution of words 

in one of the two sequences can be observed in Figure 18, where intensity of 

sound shows the distribution of words along time. 

 

 
Figure 18. Temporal distribution and sound intensity of the words presented in one 

sequence (emotional sequence is displayed). 

 

4.d. - Data analysis 
 

In addition to the data analysis presented in the manuscript, alternative 

methods were tested by the PhD candidate. Independent Component Analysis 

method (ICA) has been tested on the schizophrenic population fMRI data with help 

of S. Coello (Coello et al, 2004). 
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The discriminating power between schizophrenic subjects and healthy 

control subjects’ fMRI maps was also explored (Navarro et al, 2006). With this aim, 

the SPM for each subject was used as an input to an analysis of separability 

between groups. The SPM were separated by means of Principal Component 

Analysis (PCA) and Fisher’s Linear Discriminant (FLD). The dataset comprised 15 

right handed male schizophrenic patients with chronic auditory hallucinations (with 

DSM-IV schizophrenia) and 15 paired healthy control subjects. 

 

A Region of Interest (ROI) was drawn selecting only the temporal lobes in 

the spatially normalized data. An ROI was drawn by means of MRIcro, an open-

source useful tool by Christian Rorden (Rorden, Brett, 2000). The ROI was applied 

as a mask to the SPMs. Each masked SPM had 149.532 voxels. If each voxel was 

assumed to be an independent variable, the dimensionality became too high for 

timely comparisons with FLD; therefore a dimensionality reduction approach was 

used. PCA was used on a matrix X where rows were the number of subjects (n) 

and columns were the activation map voxels (m). A matrix D was constructed 

whose rows were subjects and whose columns were projections onto a selected 

number of principal components (PC). Selection was done by discarding the 

components with the smallest eigenvalues.  

 

An alternative robust PCA variation algorithm for the case where n is much 

less than m was used, as in (Ford et al, 2001). FLD analysis was performed in 

order to classify the subjects. 

 

A leave-one-out (LOO) approach was carried out to test the FLD classifier. 

 

Finally, for each LOO trial, the distance between the test subject projection 

and the training projections (separately for patients and controls, finding the 

minimal distance in each case) was used to predict whether a subject was a control 

or a patient. 

 

With the PCA and FLD method we found that discrimination between 

schizophrenic patients and control subjects by means of fMRI maps (70% of 
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subjects correctly classified) was possible by means of selecting the appropiate 

voxels, reducing the data dimensionality by PCA and using the FLD classifier. 

 

Optimal number of principal components to be taken to the FLD was 

explored experimentally. With this aim, FLD was tested once with each possible 

number of principal components (components were selected including the first one, 

then the two first components... until the ten first components). With one principal 

component (the most informative one), percentage of correctly classified subjects 

was around 35%, less than a random classifier would perform. When adding more 

components, the percentage of correctly classified subjects varied until the eight 

most informative components were selected, giving a 70 % of subjects correctly 

classified, as stated in the above paragraph. When more components were 

introduced the percentage of subjects correctly classified decreased. 

 

Areas with highest discriminant power are shown in Figure 19. These 

areas were selected as follows: First, voxels that have been most important in the 

separation of components in the data, performed by PCA, were selected. When 

selecting a number of components (eight in this case), the voxels that contain the 

most part of the information that constitute the components can be extracted. This 

is obtained by multiplying the component mixture by the data. Then a threshold 

was applied, with a 0.008 arbitrary threshold. Finally, clusters with fifty voxels or 

more were thresholded into the map shown in Figure 19. 
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Figure 19. Areas that discriminate best between chronic hallucinatory patients and 

healthy subjects, by means of the PCA-FLD approach, are shown in red and blue 

in axial slices. Red clusters show areas higher than 0.008 while blue clusters show 

areas lower than -0.008. 

 

4.e. - Process automation 
 

Finally, in addition to alternative analysis methods, as the number of 

subjects included in the study was by far higher than the number in the study 

presented in the previous chapter, automation was introduced in the processing of 

the fMRI data. An automation tool for preprocessing and statistical analysis was 

created and published on the Internet by the PhD candidate: 

http://www.fil.ion.ucl.ac.uk/spm/ext/#spm2batchJJ). 

 

fMRI data acquisition-quality assessment techniques were introduced (i.e. 

movement threshold assessment, detection of artefacts), by means of Matlab 

scripts. Even though maximum movement to be allowed in a subject during an 

fMRI session depends on the task to be evaluated, it is advisable to select a 

threshold, as movement correction algorithms reduce the movement but they can 

not take all movement out of the images. Movement that is correlated to the 

stimulation paradigm will introduce changes in the signal intensity that may be 
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detected as brain activation. Head motion introduces image shifts and field 

inhomogeneity variations which cause local changes in geometric distortions. 

Those distortions appear near junctions between air and tissue, especially 

prominent in the frontal sinuses and in the ear canals. Rigid body movement 

correction will not be able to remove such artefacts, as there exist movement-by-

inhomogeneity interactions (methods have been developed for correcting for such 

artefacts, mainly by “unwarping” the EPI images: see Andersson et al, 2001). 

Furthermore, movement is a source of false positives in the fMRI statistical 

analyses (Desmond, Atlas, 2000). Matlab code was generated by the PhD 

candidate that tested for difference in movement between slices higher than half of 

the voxel size. Mean and peak movement through each session was also 

assessed, by means of the reports that movement correction algorithms generate. 

fMRI data that surpassed the maximum allowed movement were discarded from 

the study. Automated labelling was also introduced for the classification of 

activation areas in the brain by means of the AAL software (Tzourio-Mazoyer et al, 

2002): Anatomical variability between subjects is high; therefore an automated 

labelling based on the MNI template helped in the identification of the activation 

areas. 
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4.f. - PhD candidate contributions 
 

The tasks carried out by the PhD candidate in the elaboration of the 

manuscript were: 

- Collaboration in the fMRI data acquisition. 

- Pre-processing of the fMRI data. Quality assessment for every 

subject’s fMRI data. 

- First level (subject-wise) and second-level (multisubject) statistical 

analyses following the General Linear Model in a voxel-by-voxel 

basis. 

- Generation of figures two and three in the article and Table 1 in the 

text. 

- Collaboration in the editing of the manuscript, mainly in the 

Methods and Results sections. 
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Abstract

Neuroimaging studies of emotional response in schizophrenia have mainly used visual (faces) paradigms and shown globally
reduced brain activity. None of these studies have used an auditory paradigm. Our principal aim is to evaluate the emotional response
of patients with schizophrenia to neutral and emotional words. An auditory emotional paradigm based on the most frequent words
heard by psychotic patients with auditory hallucinations was designed. This paradigmwas applied to evaluate cerebral activation with
functional magnetic resonance imaging (fMRI) in 11 patients with schizophrenia with persistent hallucinations and 10 healthy
subjects.We found a clear enhanced activity of the frontal lobe, temporal cortex, insula, cingulate, and amygdala (mainly right side) in
patients when hearing emotional words in comparison with controls. Our findings are consistent with other studies suggesting a
relevant role for emotional response in the pathogenesis and treatment of auditory hallucinations.
© 2006 Elsevier Ireland Ltd. All rights reserved.

Keywords: Schizophrenia; Functional MRI; Salience; Emotional paradigm; Auditory hallucinations

1. Introduction

Auditory hallucinations (AH) are nuclear symptoms in
psychoses. Recently, the whole range of functional
imaging techniques has been used to evaluate the
functional anatomy of the hallucinatory experience.
Several areas have been implicated including the auditory
cortex in functional magnetic resonance imaging (fMRI)

studies (Woodruff et al., 1995), Broca's area in a single
proton emission computed tomography (SPECT) study
(McGuire et al., 1993), and subcortical structures in a
positron emission tomography (PET) study (Silbersweig
et al., 1995). Neurobehavioral covariables such as the
response to outer auditory speech (Woodruff et al., 1997),
the monitoring of the inner verbal image (McGuire et al.,
1996) and the discrimination of inner–outer space
(Hunter et al., 2003) have also been evaluated through
functional imaging studies.

Although the underlying biological mechanisms
remain unclear, AH are thought to be related with
the activation of cerebral areas involved in normal
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processing of auditory stimuli. However, some studies
also suggest a broader activation of cortical and
subcortical areas (Woodruff, 2004). Several neuro-
cognitive models have been proposed to explain
auditory verbal hallucinations in schizophrenia: abnor-
mal auditory imagery, dysfunction in self-monitoring, or
abnormalities in storing and retrieving of memories
(Seal et al., 2004).

Emotional response has recently been implicated in
the pathogenesis of AH (Kapur, 2003). Moreover, the
emotional factor is crucial in cognitive therapy of
patients with AH (Freeman and Garety, 2003).

A wide range of neuroimaging paradigms have been
used to study emotional response in normal subjects.
They have included different sensory modalities and
cognitive tasks. Along with classical works in this field
(Ekman and Davidson, 1994), most of the studies have
used the visual sensory modality through the recogni-
tion of facial emotions (Murphy et al., 2003). However,
relatively few of them (Maddock and Buonocore, 1997;
Isenberg et al., 1999) have used the auditory modality,
despite the importance of language in human emotions.

Some studies have shown deficits in patients with
schizophrenia in regard to emotional processing in face-
recognition tasks, and also with affective prosody
(Mandal et al., 1998; Edwards et al., 2002). However,
several methodological problems make it difficult to
compare results and to identify the specificity, extension
and nature of these deficits (Edwards et al., 2002). Some
fMRI studies have used paradigms based on face
recognition (Schneider et al., 1998; Phillips et al.,
1999; Kosaka et al., 2002; Gur et al., 2002); emotionally
aversive and non-aversive pictures, including faces
(Taylor et al., 2002); and pleasurable or non-pleasurable
olfactory (Crespo-Facorro et al., 2001) or visual stimuli
(Paradiso et al., 2003). All these studies have generally
shown a widespread decrease of brain activation in
patients with schizophrenia compared with controls.

As far as we know, no emotion–induction auditory
paradigm has been used in a neuroimaging study in
patients with schizophrenia, despite the fact that AH are
present in 70–80% of such patients (Slade and Bentall,
1988). In this fMRI study, we compared brain activation
of patients with AH and healthy controls using a new
auditory emotional paradigm especially designed for
psychotic patients with AH. The principal aim is to
evaluate the response to neutral and emotional words. In
global terms, although patients usually experience fear
and perplexity towards AH, some comment on them as a
pleasurable experience (Sanjuan et al., 2004); further,
the familiarity and memory of the stimulus could be
important in emotional response. For these reasons, we

used a paradigm derived from voices and included some
positive-pleasant words.

We predicted an increased activation of limbic brain
regions in both the chronic hallucinators and the
controls, when exposed to emotional words compared
with when they were presented with neutral words. We
also expected a different pattern of activation between
patients and controls, reflecting underlying mechanisms
that could play a role in the emotional response to AH
and, therefore, in their pathogenesis itself.

2. Materials and methods

2.1. Subjects

A group of 22 male psychotic chronic hallucinators
were selected out of a sample of 106 patients with AH.
All subjects gave written informed consent to participate
in the research. The study was approved by the local
ethics committee. The characteristics of this sample are
described elsewhere (Sanjuan et al., 2004). All of the
patients met the following selection criteria for persis-
tent hallucinations:

(a) Voices were not modified in any way by treatment
over the course of a year.

(b) Voices were present at least once a day in the last
year.

(c) At least two antipsychotic drugs had been tried, at
doses equivalent to 600 mg/day of chlorproma-
zine, in the last year.

For this study, and in order to get a homogeneous
group, only patients who heard voices during data
acquisition at the end of the fMRI were included
(n=14). Three patients were excluded because of gross
movement during fMRI data acquisition. Healthy
controls were matched by age, gender (all males),
laterality (all right-handed) and educational level to the
patients. Subjects with a psychiatric history or presence
of perceptual abnormalities were not considered as
controls. No individual in either group suffered from
hearing loss.

The final sample included 11 patients with DSM-IV
schizophrenia (American Psychiatric Association,
1994) and 10 healthy controls from a similar ethnic
group and educational level. Patients' educational levels
were as follows: Illiterate=1 (9.1%), Primary=6
(54.5%), Secondary=3 (27.3%), University=1 (9.1%).
Only one patient was married (9.1%), another one was
divorced (9.1%), and nine were unmarried (81.8%). Their
ages ranged from 21 to 51 years (mean 38.3, S.D. 7.2),

22 J. Sanjuan et al. / Psychiatry Research: Neuroimaging 154 (2007) 21–29
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while ages at which patients began to hear AH ranged
from 15 to 43 years (mean 23.0, S.D. 10.0). The mean
duration of illness was 14.7 years (S.D.=8.1). All patients
were under antipsychotic treatment time of evaluation: 6
(55.5%) under second-generation antipsychotics, and 5
(44.5%) under combined treatment (first- and second-
generation antipsychotics).

All patients were clinically assessed with the Global
Assessment Scale (GAS) (Endicott et al., 1976), 24-
item Brief Psychiatric Rating Scale (BPRS) (Overall and
Gorham, 1962), Positive and Negative Syndrome Scale
(PANSS) (Kay et al., 1987), and Psychotic Symptom
Rating Scale (PSYRATS) for AH (Haddock et al., 1999)
over the last 24 h. The PSYRATS scale was adminis-
tered just before data acquisition. The BPRS mean score
was 55.2 (range 41–67, S.D. 7.4), the PANSS mean
score was 70.8 (range 53–94, S.D. 9.9), the PSYRATS
mean score was 28.6 (range 20–34, S.D. 4.4), and the
GAS mean score was 38.5 (range 20–45, S.D. 8.5).

At the end of the trial, every patient was asked to score
the frequency of voices during MRI, the resemblance of
the voices to his own voices, and the level of anxiety.
Control subjects were also asked the last question.

2.2. Selection of emotional and neutral words

An emotional response paradigm was designed to
replicate those emotions related to hallucinatory experi-
ences. Eighty-two patients with schizophrenia meeting
DSM-IV criteria with AH were selected in order to
choose words of emotional content specific to their
psychoses. All patients were administered the PSYRATS
and their discourses about the content of AH were
recorded on tape. The recordings underwent transcrip-
tion. Qualitative data were analyzed using the method-
ology proposed by Miles and Huberman (1994).
Hallucinations based on complex phrases or with neutral
content were ruled out. A total of 65 words were chosen
based on their frequency, including only those posses-
sing meaning by themselves. They were classified
according to the qualitative analysis of their content in
five categories: of negative content and imperative tone,
insults, of imperative tone, and exclamations related to
emotional states and of positive content.

Given that the stimuli pattern for the fMRI experiment
lasts 20 s for each block, a total number of 13 words were
selected according to their frequency in the recording, and
then grouped as follows: four imperative words of
negative content, three insults, two words with imperative
tone, two exclamations related to emotions, and two
words of positive content. For the selection of neutral
words, we used data published by Algarabel (1996) in

which the rate of psychological interest of 1917 Spanish
words was described. Subjective rates were obtained from
a group of 2000 subjects (from Valencia and Alicante,
Spain) who evaluated words on a scale from 1 to 7. The
most relevant item for this study was “pleasantness”.
Subjects had to answer towhich degree theword triggered
pleasant or unpleasant feelings, on a scale in which
1=very unpleasant and 7=very pleasant. The pleasantness
average rate of neutral words was 3.8. The pleasantness
average rate of emotional selected words was 1.4 for
words of negative content, 1.2 for insults, 1.5 for words
with imperative tone, 2.1 for exclamations related to
emotions, and 5.8 for words of positive content.
Emotional and neutral words' valences were significantly
different as shown by a paired t-test (t=−3.09, df=12,
P=0.009). Finally, the total number of syllables (n=33)
coincided with the number of syllables in the emotional
words (n=33).

For the recording procedure, a professional actor
from a specialized center was hired to pronounce the
words. He pronounced neutral words using a neutral
tone and emotional words using an emotional tone but
maintaining voice intensity constant (65 dB).

2.3. Image acquisition

The fMR images were obtained by means of BOLD
(Blood Oxygenation Level Dependent) (Ogawa et al.,
1992) contrast, applying the stimulation paradigm
described before. Subjects were binaurally stimulated
in two different sessions. Fig. 1 represents the
distribution of the blocks for both sessions in time.
The activation blocks in the first session consisted of 13
Spanish words containing high emotional content. The
second session had activation blocks containing 13
words having neutral or low emotional content.

Four blocks of stimuli, 20 s each, interleaved with
another four blocks of rest of 20 s each, were presented
to patients and controls (Fig. 1). The acquisition order
(emotional and neutral) was randomized to avoid biases
(habituation, fatigue, saturation and surprise). Subjects
were informed before the test about the two types of
words they were going to listen to, and were asked to
focus their attention on them. A MR 1.5-Tesla. (Philips
Medical Systems, Holland) was used for data acquisi-
tion. Patients had earphones adjusted to their heads.
These earphones were connected by a pair of air tubes to
an external audio CD player.

Images were performed applying a dynamic Echo
Planar Imaging T2⁎ weighted sequence (TR=2000 ms,
TE=50 ms, 5 mm slice thickness with no inter-slice gap,
acquisition matrix=96×128, field of view=220 mm
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and flip angle=65°). The voxel size was 3.27 mm×
1.72 mm. The sequence was obtained with spectral
suppression. Each dynamic acquisition consisted of 24
contiguous slices parallel to the anterior–posterior
commissural plane, covering the whole brain.

Additional high-resolution volumetric images were
acquired to have an anatomical template of the whole
brain. The anatomical high-resolution MR images,
necessary for the topographical localization of the
activation areas, were obtained with a Gradient Echo
T1- weighted sequence (3D volumetric acquisition,
TR=7 ms, TE=1.88 ms, slice thickness 1.25 mm
without inter-slice gap, 256×256 acquisition matrix,
FOV=220 mm). A total of 96 slices with a voxel size of
0.86 mm×0.86 mm were obtained.

2.4. Data analysis

Processing was carried out with the SPM2 (Statistical
Parametric Mapping Functional Imaging Laboratory,
London) (Friston et al., 1995). Automatic labeling was
applied to the following group maps: patients that were
presented high-emotional content, patients presented
neutral content control subjects presented high-emo-
tional content, and control subjects presented neutral
content.

MR images were initially processed to allow voxel-
based statistical analyses. Functional images were
realigned with subvoxel movement correction. Images

were co-registered for every subject so that structural
and functional images were situated in exactly the same
virtual space. Images were then transformed into
standard space, minimizing the least square error that
represents the difference between the template image
(MNI150, Montreal Neurological Institute) and the
subject's image.

Image intensity was smoothed by means of a
Gaussian three-dimensional 6-mm kernel, approaching
the data to a normal distribution necessary for later
statistical tests. Statistical analysis was performed first
on each individual subject and also through comparison
between subjects (extraction of information and
differences in activation between subject groups). The
voxel-based parametric maps analysis was performed
with one sample t-tests from the final sample of 10
control subjects and 11 patients (Random Effects
Analyses applied to each group comparison), extracting
common features, following the General Linear Model
(df=9 for controls, df=10 for patients; t-test values, see
Table 1).

The False Discovery Rate technique was applied,
using the whole brain to address the problem of multiple
comparisons, retaining voxels surviving with a value of
P<0.05 and a minimum cluster of five voxels.

Areas of activation were delimited with the atlas
proposed by Schmahmann et al. (1999). This atlas is
included in the software Automatic Area Labeling
(Tzourio-Mazoyer et al., 2002), which extracts a table

Fig. 1. Stimulation paradigm.
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with all local maxima of activation and the areas they
correspond to in the labeled atlas. If the voxel estimated
as active was not in any of the areas labeled, it was
assigned to the nearest labeled area. Voxels farther than
4 mm of a labeled area were discarded.

Maps of significant differences in BOLD signal in all
schizophrenic patients and controls between emotional
content stimuli and baseline, and also between non-
emotional content stimuli and baseline, were then
calculated (Figs. 2 and 3). Corrected values of P<0.05

Fig. 2. Activation maps in chronic schizophrenic patients with AH, under non-emotional content stimuli. Areas with functional response are mainly
the middle right cingulum, left superior and middle temporal gyri and left precentral area (after P value correction, no suprathreshold voxels were
found. Therefore, for illustrational purposes, a P<0.001 uncorrected was applied, with minimum voxel size per cluster 5).

Table 1
Areas of activation with emotional words, BOLD signal, in hallucinating patients with schizophrenia and controls ⁎

Controls (n=10) Patients with schizophrenia (n=11)

Region L/R x y z Z-score x y z Z-score

Superior temporal gyrus L −62 −16 6 4.71
R 48 0 −14 4.61 60 −24 −2 4.47

Middle temporal gyrus L −60 −38 10 4.63 −54 −12 −12 6.15
R 64 −48 12 3.83

Insula L −24 24 4 3.03
R 28 16 −12 4.29

Median cingulate and paracingulate gyri L
R 16 −8 38 3.32

Posterior cingulated gyrus L 2 −52 28 3.65
R 4 −36 30 3.04

Amygdala L
R 24 −4 −14 3.75

Inferior frontal gyrus, orbital part L −34 28 −12 4.07
R 52 38 −8 3.46

Middle frontal gyrus, orbital part L −4 56 −8 4.1
R 38 38 −14 3.73

Superior frontal gyrus, medial part L
R 8 54 34 4.24

⁎Coordinates are MNI.
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were applied for controls (emotional and non-emotional
paradigms) and patients (emotional paradigm).

3. Results

In regard to the questions asked immediately after
MR data acquisition, results were as follows:

a) Patients
– Frequency of voices during the MR experiment:
none=0, some=4 (36.4%), often=4 (36.4%),
almost continuously=2 (18.2%), all the time=1
(9.1%).

– Resemblance of voices to their own voices:
none=0, a little resemblance=5 (45.5%), some
resemblance=2 (18.2%), a lot of resemblance=4
(36.4%), identical=0.

– Level of anxiety: none=1 (9.1%), very little=2
(18.2%), slight anxiety=4 (36.4%), moderate
anxiety=3 (27.3%), severe anxiety=1 (9.1%).

b) Controls
– Level of anxiety: none=4 (40%), very little=3
(30%), slight anxiety=2 (20%), moderate anxi-
ety=1 (10%), severe anxiety=0.

Neutral words against rest baseline patients' group
map did not show any activation with the threshold
applied (P<0.05) when non-emotional words were

presented. After application of a less stringent P value
(P<0.001) in order to see activation trends, main areas
involved were left middle and left superior temporal
gyrus, middle cingulate gyrus and left inferior frontal
gyrus at the orbital part (Fig. 2). When patients were
presented high emotional content stimuli, activation
survived the P<0.05 corrected threshold and was
greater both in extent and in estimated activation
power. Middle left temporal gyrus was the main
involved area. Other areas included right superior
temporal gyrus, left and right insula, right median
cingulate, right and left posterior cingulate, right
amygdala, right and left middle frontal cortex at the
orbital part, right inferior frontal cortex at the orbital
area, and superior medial cortex (Table 1, Fig. 3).

Activation maps in control subjects did not show
striking differences between emotional and non-emo-
tional paradigms. In both conditions, the main areas
involved were right and left superior temporal gyri, and
right and left temporal gyri, while left inferior frontal
gyrus at the orbital part of left insula was activated only
with non-emotional paradigm (Table 1).

4. Discussion

The main result of our study is the clearly enhanced
activity of the orbitofrontal cortex, temporal cortex,
insula, cingulate, and amygdala (mainly right side) in

Fig. 3. Activation maps in schizophrenia patients with chronic auditory hallucinations under emotional auditory content. Note the larger activation
clusters in the left middle and right superior temporal lobes, right insula and thalamus, and middle and superior frontal lobes (Table 1) (P<0.05, FDR-
corrected, minimum voxel size per cluster 5).
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patients when hearing emotional words in comparison
with controls. Our finding that the left middle temporal
gyrus was the main involved area when patients were
presented high emotional content stimuli is concordant
with the hypothesis of a reversal of function in
schizophrenia in respect of prosody, which is usually
considered to rely on the right hemisphere in healthy
subjects (Woodruff, 2004). However, activation of the
right superior temporal gyrus is probably more related to
hallucinations and is concordant with previous reports
(Woodruff et al., 1995).

The activations of the insula and orbitofrontal cortex
were not surprising since these areas are key regions for
the emotional response (Woodruff, 2004) and have also
been related to hallucinations (Woodruff et al., 1995;
Shergill et al., 2004). Contrary to our predictions, right
middle cingulate, and right and left posterior cingulate
were activated, but not the anterior cingulate. The
activation of the posterior cingulate by threat-related
words has been hypothesized to engage episodic
memory processes in healthy volunteers (Maddock
and Buonocore, 1997). On the other hand, right
amygdala's activation has frequently been reported
associated with AH and could also be explained as an
evocation of the adverse emotional response to these
phenomena (Woodruff, 2004).

Recently, several articles have tried to clarify the
neural circuits responsible for the processing of personal
salience (significance of stimuli to the individual).
Bechara et al. (2003) proposed a neurobiological model
of endogenous salience by differentiating primary
(intrinsic) and secondary inducer processing, although
both can overlap. Phan et al. (2004) have supported and
extended their model in healthy subjects. Our results are
partially concordant with their conclusions. According
to these authors, the insula would be responsible for
converging both primary and secondary inducer proces-
sing. This would be congruent with the relevance of the
insula in our schizophrenic patients, since voices heard
by subjects probably behaved as primary and secondary
inducers in patients and just as primary inducers in
controls. It may be that activations in the posterior
cingulate and the amygdala reflect the retrieval of
emotional verbal memory during an experience similar
to the patients' hallucinations. In any case, the self-
relatedness of stimuli is probably crucial in emotional
processing in patients with schizophrenia. In our
paradigm, all the emotional words were self-related
and had a strong emotional content.

Most previous studies using emotional paradigms in
patients with schizophrenia show a decrease of
activation in comparison with controls (Schneider

et al., 1998; Phillips et al., 1999; Crespo-Facorro
et al., 2001; Gur et al., 2002; Kosaka et al., 2002;
Paradiso et al., 2003). Our results based on an auditory
emotional paradigm showed the opposite. There could
be two main reasons for these differences: differences in
the stimuli and in the samples.

Differences in the stimuli: Most previous studies have
used a visual modality with paradigms of emotional
faces (Phillips et al., 1999; Gur et al., 2002; Kosaka
et al., 2002) or pleasant and unpleasant pictures (Taylor
et al., 2002; Paradiso et al., 2003). Visual stimuli are
more likely to be influenced by attention bias, which is
frequent in patients with schizophrenia (Salgado-Pineda
et al., 2004). Moreover, auditory emotional stimuli
could be more appropriate to activate emotional
response in schizophrenia because of the symptom
profile. This could be especially true since in our study
the emotional words are taken from the most frequent
emotional voices.

Taylor et al. (2002) found that patients had greater
activation of the medial prefrontal cortex when viewing
pictures from the International Affective Picture System.
Reduced or enhanced activity could be related to the
emotional intensity of the stimuli. In other words, there
could be a trend to have polar responses: little activation
with normal social cognition tasks (Russell et al., 2000)
and too much activation if the intensity or self-
relatedness of the emotional stimuli is strong enough.

Differences in the samples: All the patients in our
study suffered chronic and persistent AH. All had a high
score on positive symptoms. Our patients' BPRS scores
(mean=56) are much higher than in other neuroimaging
emotional studies such as those of Phillips et al. (1999)
(mean=23) and Taylor et al. (2002) (mean=39).

Previous data in other studies are concordant with
Bleuler's cardinal feature of schizophrenia, blunted
affect (Lane, 2003), showing a decrease in brain ac-
tivation or anhedonia (Crespo-Facorro et al., 2001).
However, this decrease in brain activation cannot
explain positive symptoms. The functional enhanced
activation of our patients could be directly related to the
emotional response to positive symptoms. Our findings
suggest the importance of emotional response in the
development and treatment of psychotic symptoms
(Birchwood et al., 2000; Garety et al., 2001; Freeman
and Garety, 2003). They may explain the observation of
worsening psychoses in high expressed emotion fami-
lies in schizophrenia (Falloon, 1988).

Our data are of interest in light of Kapur's recent
proposal on the possible mechanism of action of
antipsychotics (Kapur, 2003). Kapur postulated that in
psychosis a dysregulated dopamine transmission leads
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to an aberrant assignment of salience to external objects
or internal representation. Antipsychotics are efficacious
in psychosis because they “dampen salience” of the
subjective experience of delusion and hallucinations. It
is noticeable that all the patients of our sample have
persistent AH in spite of having been treated with
antipsychotics for a long period. It could be possible that
patients stabilized with antipsychotics would not have
had this enhanced activation effect.

It was of interest that when neutral stimuli were
applied, no clear activation was found. A reason for this
could be that patients were being continuously activated
by their own voices. If we reduce the threshold of
significance, an activation of the left temporal lobe
appears. This attenuation of response to neutral auditory
stimuli had already been described in the study of David
et al. (1996).

A limitation of our study is that these results are
generalizable to schizophrenic patients with persistent
auditory hallucinations and not to schizophrenia or
psychosis as a whole group. It will be important to
replicate this study in less severely ill patients and those
who have never experienced hallucinations. Schizo-
phrenic patients with a clinical history of hallucinations
also need to be investigated using these paradigms
before and after stabilization of hallucinations.

In conclusion, our findings suggest an enhanced
activation of the limbic and frontal brain areas in
persistently hallucinatory patients using a specific self-
related auditory emotional paradigm. These findings
may help us in our understanding of the dysfunction of
the emotional response in schizophrenia.
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4.g. – Addendum 
 

There are two errors that have been detected in the manuscript (pages are referred 

to the manuscript numbering). 

 

p.21 The definition of SPECT was wrong. It should be: 
SPECT – Single Photon Emission Computed Tomography 

 

p.52 The word Holland appeared instead of ‘The Netherlands’. 
A MR 1.5 Tesla (Philips Medical Systems, The Netherlands) 
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4.h. – Supplementary results 
 

A direct comparison between control and schizophrenic groups was 

performed, selecting emotional processing. In the subject level, a contrast was 

generated that tested the subtraction between emotional condition and neutral 

conditions. This contrast was then submitted to a two sample t-test that compared 

the two study groups testing controls subjects > schizophrenic patients. Another 

two sample t-test compared schizophrenic patients > controls subjects. No voxels 

survived a 0.05 FDR multiple comparison correction in any of the two statistical 

maps. Therefore, a p<0.001 uncorrected threshold was set and results are 

considered as exploratory. 

 
Table 1. Two sample t-test between control subjects and schizophrenic patients, 
emotional processing. Control subjects > schizophrenic patients; emotional 
condition > neutral condition; p<0.001 uncorrected. 
 
x y z Area Hemisphere T p 
22 -18 -4 Thalamus R 4,31 8,35e-06 
-34 50 -2 Frontal Middle Orbital L 4,08 2,25e-05 
-40 -42 8 Temporal Superior L 4,01 3,00e-05 
-30 18 4 Insula L 3,98 3,38e-05 
46 4 -28 Temporal Middle R 3,93 4,16e-05 
10 -50 22 Precuneus R 3,91 4,54e-05 
22 20 32 Frontal Superior R 3,83 6,39e-05 
4 -46 -24 Vermis_1_2 R 3,72 9,77e-05 
10 -46 -38 Cerebelum_9 R 3,69 0,0001 
44 -32 16 Temporal Superior R 3,67 0,0001 
-22 -32 -6 Hippocampus L 3,65 0,0001 
-56 -60 34 Angular L 3,59 0,0002 
52 -50 2 Temporal Middle R 3,57 0,0002 
6 -38 4 Lingual R 3,46 0,0003 
16 -24 4 Thalamus R 3,43 0,0003 
44 28 18 Frontal_Inf_Tri R 3,32 0,0005 
14 -4 -18 Amygdala R 3,3 0,0005 
34 20 -12 Insula R 3,28 0,0005 
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Table 2. Two sample t-test: Control subjects < schizophrenic patients; emotional 
condition > neutral condition; p<0.001 uncorrected. 
 
x y z Area Hemisphere T p 
25 -68 14 Calcarine R 3.43 0.0001 
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 5. MR Analysis of the Coincidence 
between Functional and Morphological 
Abnormalities in Schizophrenic Patients with 
Chronic Auditory Hallucinations 

 

"Coincidences are spiritual puns" – G.K. Chesterton (1874-1936). 

 
A new method for extracting information on the areas of the brain with 

damage, both functional and anatomical, in the subjects with schizophrenia, has 

been developed. The method combines information from functional and structural 

brain imaging by mixing the mostly active regions nearby the ones with biggest 

gray matter decrease. Eight regions were selected with this method as very 

probably related to schizophrenia illness: left and right middle temporal and 

superior temporal gyri, left posterior and right anterior cingular gyri, left inferior 

frontal gyrus, and middle occipital gyrus. 

 

The principal results of this work have been published in Radiology. The 

published manuscript is the core of this chapter. In the first part of the chapter, the 

methodology that has been used to determine the brain areas where there is a 

coincidence between gray matter reduction (in the schizophrenic group compared 

to the healthy group) and a difference in brain activation in response to emotional 

semantic auditory stimuli between the same groups. Afterwards, in the second part 

of the chapter, an alternative approach to the search of coincidences between 

VBM and fMRI is explained. The final part consists of the manuscript.  

 

5.a. - Multimodal image analysis 
 

In the Schizophrenia Research Project, data from different MR techniques 

have been acquired, explored and published. By one side, fMRI differences 

between schizophrenic and healthy subjects have been found (Sanjuán et al, 
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2007). By the other side, differences in brain structure have been explored by 

means of the Voxel Based Morphometry (VBM) method (Garcia-Marti et al, 2008). 

In general, there is a relative lack of available multimodal image analysis 

methodologies (Casanova et al, 2007). Lastly, some methods have been proposed 

that deal with multimodal image analysis, such as Biological Parametric Mapping 

(Casanova et al, 2007), a tool that generally integrates different modalities into the 

GLM approach (as an example implementation, fMRI and VBM modalities are 

integrated in a GLM in the manuscript, in a study about dyslexia); pattern 

recognition techniques, such as the ones proposed by Fan et al (2007) in a study 

of brain abnormality by combining fMRI and structural MR data; and algorithms to 

display damaged areas observed in coinciding functional, anatomical and 

metabolic images (Sabbah et al, 2002). 

 

Our approach was similar to the work by Sabbah and colleagues (2002). 

Even though one possible explanation for common changes in function and 

structure in a specific area is that one is a consequence of the other one (i.e. 

structural changes change function, so function is abnormal), another possible 

explanation is inter-related changes in function and structure in the specific area. In 

the presented manuscript, this last approach is the one that has been investigated. 

Statistical group maps generated in the study of function (by means of fMRI) and 

structure (by means of VBM) have been collapsed in one summary map that has 

been called “coincidence map”. Differences in emotion semantic processing (as 

presented in Chapter 4) function between schizophrenic subjects and healthy 

control subjects were first encoded in a SPM (fMRI SPM) that showed the t values 

from a two-sample t test. Gray matter deficits in schizophrenic patients compared 

to healthy subjects were also introduced in a SPM (VBM SPM), with the higher the 

t values the higher the decrease in gray matter in patients compared to control 

subjects. The VBM SPM was produced by means of the optimized VBM method 

(Good et al, 2001; Ashburner, Friston, 2000).  

 

The fMRI SPM and the VBM SPM were then smoothed and a coincidence 

image was generated that accounted for both changes in function and in structure 

in schizophrenic patients compared to healthy subjects. The coincidence map was 

calculated by a multiplication of both SPM maps, so differences that were common 
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in both modalities would clearly appear while differences that only appeared in one 

modality would not be present in the final map. With this process, six areas of 

interest were found to have decreased gray matter density and impaired 

functioning in schizophrenia. 

 

5.b. - Other multimodality analysis experiments 
 

Reduced structural density and fMRI aberrant activation was also studied 

by means of joint fMRI and VBM-based ROI methods (Lull et al, 2006). Twenty four 

chronic male schizophrenia patients and controls (12 patients, 12 controls), group 

matched for age, were explored by means of fMRI and anatomical MRI (acquisition 

sequences as described in Chapters 3 and 4). fMRI analyses (SPM2) were 

restricted to 11 schizophrenic patients who reported hallucinations during the fMRI 

scan and 10 healthy controls. Random effects analysis of individual contrast 

images (emotional > neutral) revealed clusters of greater activation (p<.05, FDR) in 

schizophrenic patients in temporal lobe structures including the middle temporal 

gyrus (MTG; 50,-48, 2), hippocampus (26, -32, 4), and fusiform gyrus (-22,-38,-12). 

These areas can be observed in Figure 20, in axial slices. To investigate structural 

integrity of the hyper-activated area of the MTG, a spherical region of interest (ROI) 

was created around the corresponding to the largest-estimated activation voxel 

(radius=15 mm), as observable in Figure 21. 

 

 
Figure 20. Middle Temporal Gyrus maximum in the fMRI SPM (contrast: estimated 

activation in schizophrenic subjects > healthy subjects; emotional > neutral). 

 



 72 

 
Figure 21. ROI generated around the maximum estimated activation in the MTG. 

ROI is shown in pale red on axial slices. 

 

Each subjects' segmented gray matter image (following normalization and 

segmentation using VBM optimized protocol) was masked using the generated 

ROI, and cumulative gray matter concentration values (within the ROI) were 

submitted to an ANOVA revealing significant reductions in schizophrenic subjects 

(F(1,34) =4.55, p<.05). These results suggested that fMRI hyper activation may be 

strongly associated with the presence of structural alterations. 

 

The MTG was also detected in the results presented in the manuscript as an area 

with both changes in gray matter density and in activation between groups. The 

temporal lobe is a region that is very important in schizophrenia, with both 

subcortical and neocortical areas consistently reported as altered in their structure 

(Shenton et al, 2001). Many areas have been found to act abnormally in the 

schizophrenic brain, depending on the stimulation type that was applied and on the 

selection criteria of schizophrenic subjects. The observation of widespread 

activation changes is consistent with the existence of a subtle change in the 

synaptic organization of the brain in schizophrenia (Harrison, 2005). A thorough 

study of the interrelation between temporal lobe structure changes and functional 

activation differences is proposed as a follow-up of this study. 
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5.c. - PhD candidate contributions 
 

The tasks carried out by the PhD candidate in the elaboration of the 

manuscript, as stated in the text at p.75, were: 

- Collaboration in fMRI data acquisition. 

- Pre-processing of the fMRI data. Quality assessment for every 

subject’s fMRI data. 

- Collaboration in literature research. 

- First level (subject-wise) and second-level (multisubject) 

statistical analyses following the General Linear Model in a voxel-

by-voxel basis to the fMRI data. 

- Generation of figures two and three in the article and Table 1 in 

the text. 

- Collaboration in the editing of the manuscript. 
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Chronic Auditory Hallucinations
in Schizophrenic Patients: MR
Analysis of the Coincidence between
Functional and Morphologic
Abnormalities1

Luis Martı́-Bonmatı́, MD
Juan José Lull, MD
Gracián Garcı́a-Martı́, MD
Eduardo J. Aguilar, MD
David Moratal-Pérez, MD
Cecilio Poyatos, MD
Montserrat Robles, MD
Julio Sanjuán, MD

Purpose: To prospectively evaluate if functional magnetic resonance
(MR) imaging abnormalities associated with auditory
emotional stimuli coexist with focal brain reductions in
schizophrenic patients with chronic auditory hallucina-
tions.

Materials and
Methods:

Institutional review board approval was obtained and all
participants gave written informed consent. Twenty-one
right-handed male patients with schizophrenia and persis-
tent hallucinations (started to hear hallucinations at a
mean age of 23 years � 10, with 15 years � 8 of mean
illness duration) and 10 healthy paired participants (same
ethnic group [white], age, and education level [secondary
school]) were studied. Functional echo-planar T2*-
weighted (after both emotional and neutral auditory stim-
ulation) and morphometric three-dimensional gradient-
recalled echo T1-weighted MR images were analyzed using
Statistical Parametric Mapping (SPM2) software. Brain
activation images were extracted by subtracting those
with emotional from nonemotional words. Anatomic dif-
ferences were explored by optimized voxel-based mor-
phometry. The functional and morphometric MR images
were overlaid to depict voxels statistically reported by
both techniques. A coincidence map was generated by
multiplying the emotional subtracted functional MR and
volume decrement morphometric maps. Statistical analy-
sis used the general linear model, Student t tests, random
effects analyses, and analysis of covariance with a correc-
tion for multiple comparisons following the false discovery
rate method.

Results: Large coinciding brain clusters (P � .005) were found in
the left and right middle temporal and superior temporal
gyri. Smaller coinciding clusters were found in the left
posterior and right anterior cingular gyri, left inferior
frontal gyrus, and middle occipital gyrus.

Conclusion: The middle and superior temporal and the cingular gyri
are closely related to the abnormal neural network in-
volved in the auditory emotional dysfunction seen in
schizophrenic patients.

� RSNA, 2007
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Schizophrenia is a heterogeneous
disorder affecting almost 1% of
the world’s population (1). Cur-

rently, there is no magnetic resonance
(MR) imaging finding specific to or
strongly suggestive of schizophrenia.

Understanding the neural network
hypothetically responsible for the patho-
genesis of schizophrenia requires a pre-
cise determination of the extent and dis-
tribution of abnormalities in brain anat-
omy and function (2). Functional imaging
has been informative for understanding
individual symptoms: Negative symptoms
correlate with decreased activity in the
dorsolateral prefrontal cortex (3,4), and
auditory hallucinations correlate with an
increased blood flow in the Broca area in
the left hemisphere (5).

The use of brain activation maps to
detect brain areas with a different func-
tional response is heavily dependent on
the stimulus itself. Although a wide
range of paradigms, including different
senses (mainly visual but also olfactory)
with distinctive features for each para-
digm, has been used to study the emo-
tional response with functional MR im-
aging, most of the studies in psychoses
have used the visual sensory modality
through the recognition of facial emo-
tions (6–9). However, language impair-
ment is one of the “core” phenomeno-
logical characteristics of patients with

schizophrenia, emphasizing the depth of
the evaluation, so auditory stimuli with
and without emotional charge seem
more adequate in this context. Further-
more, schizophrenic patients have a re-
duction in size in different cortical ar-
eas, as demonstrated with the morpho-
logic analysis of T1-weighted MR images
(10).

Although many brain regions have
been implicated in schizophrenia by
means of MR, no single region has been
consistently reported as abnormal to
date. Differences between samples (clini-
cal heterogeneity) and in methods among
studies (sequences, paradigm, and post-
processing heterogeneity) may explain
the lack of consistency in the results ob-
tained in this field. Developing a clear un-
derstanding of the pathologic details of
specific schizophrenic phenotypes is one
of the greatest challenges in psychiatry.
The purpose of our study was to prospec-
tively evaluate if MR functional abnormal-
ities associated with auditory emotional
stimuli coexist with focal brain reductions
in schizophrenic patients with chronic au-
ditory hallucinations.

Materials and Methods

Patient and Control Participant
Characteristics
All patients and control participants
gave written informed consent to partic-
ipate in the research, which was ap-
proved by the local ethics committee.
The ability of psychiatric patients to
provide informed consent to participate
in clinical research applies more to pa-
tients with conceptual disorganization
and poor attention than to those experi-
encing mainly hallucinations (11). All
patients in our series were experiencing
hallucinations; however, all participants
could read and understand the consent
form, none were admitted to the hospi-
tal or underwent outpatient commit-
ment at the time, and all were legally
competent.

A group of 21 right-handed male pa-
tients with schizophrenia and persistent
hallucinations (according to the Diag-
nostic and Statistical Manual of Mental
Disorders, fourth edition) were studied.

Right-handed men were selected to
avoid bias due to differences in brain
structure and because schizophrenia af-
fects men and women differently. Their
ages ranged from 21 to 51 years
(mean � standard deviation, 39 years �
10); all had a secondary school educa-
tion level. These patients were selected
from a sample of 160 patients with audi-
tory hallucinations confirmed by their
psychiatrist and clinical assessment
(12).

All 21 patients in our series met the
following selection criteria for persis-
tent hallucinations: persistence of hallu-
cinations despite pharmacologic treat-
ment was present in all patients. Two
antipsychotic drugs were tried at doses
equivalent to at least 600 mg/d of chlor-
promazine in the last year, but the
voices heard were not modified in any
way by treatment and were present at
least once per day in the past year. All
patients were being treated with anti-
psychotic medications at time of evalua-
tion, 16 with second-generation and five
with combined first- and second-gener-
ation antipsychotic drugs. The duration
of treatment was 14.3 years � 6.9. All
patients heard voices during the func-
tional MR data acquisition.

Schizophrenic patients began to
hear hallucinations at a mean age of 23
years � 10 (range, 15–43). The mean
duration of illness was 15 years � 8. All
patients were clinically assessed by two
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Advances in Knowledge

� Functional MR imaging abnormal-
ities associated with auditory
emotional stimuli coexist with fo-
cal brain density reductions in
schizophrenic patients experienc-
ing chronic auditory hallucina-
tions.

� Large coinciding brain clusters
were found in the left and right
middle temporal and superior
temporal gyri; smaller coinciding
clusters were found in the left
posterior and right anterior cingu-
lar gyri, left inferior frontal gyrus,
and middle occipital gyrus; these
areas are related to the abnormal
neural network involved in the
auditory emotional dysfunction
seen in these patients.
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of the authors (E.J.A. and J.S., each with
more than 16 years experience in clinical
psychiatry) by consensus. Scores from
both the Positive and Negative Syndrome
Scale (13) and Psychotic Symptom Rating
Scales were obtained during the 24-hour
period before MR examination (14).

Ten healthy control participants
were selected by matching the schizo-
phrenic patients with respect to ethnic
group (white), age (35 years � 7 for
controls vs 39 years � 10 for patients),
and education level (secondary school).
Control participants were also right-
handed men. None of them had a per-
sonal or family history of mental disor-
ders or perceptual abnormalities, as as-
sessed with a brief mental health
questionnaire. No individual in either
group had from hearing loss.

MR Acquisition
Both functional and morphologic MR
images were acquired with a 1.5-T scan-
ner (Intera; Philips Medical Systems,
Best, the Netherlands) with a quadra-
ture volume head coil. The imaging
plane was transverse and oriented par-
allel to the inferior limit of the rostrum
and the genu of the corpus callosum.

The functional MR images were ob-
tained by means of blood oxygen level
dependent contrast material–enhance-
ment. An emotional auditory stimula-
tion-response paradigm was designed to
replicate those emotions related to the
patient’s hallucinatory experiences (15).
Words were grouped into two classes,
one with highly emotional and the other
with neutral content, and recorded on a
compact disc. The same set of emotional
and neutral Spanish words was used for
each patient. Given that the stimuli pat-
tern of functional MR lasts 20 seconds for
each block, the most relevant 13 words
were selected. The emotional words were
defined according to the words most fre-
quently heard by psychotic patients with
auditory hallucinations. A total of 65
words were chosen based on their fre-
quency and meaning. The words were
classified according to the qualitative
analysis of their content in five categories:
negative content and imperative tone, in-
sult, imperative tone, exclamation related
to emotional state, and positive content.

Neutral words were selected from a
Spanish emotional valence database (15).
At the end of the trial every participant
was asked to score their level of anxiety.
Emotional and neutral words were signif-
icantly different in both groups as shown
by using a paired Student t test (P �
.001).

Patients had earphones adjusted to
their heads and connected by a pair of
air tubes to an external audio compact
disc player. All participants underwent
two functional MR studies, one session
with the high-emotion and the other with
the neutral-emotion content words. Neu-
tral and emotional content sessions
were randomly presented to avoid ha-
bituation confounding effects. For each
session, the voice stimuli consisted of
four periods of activation alternated
with four periods of rest with a block
design. Both sessions were separated by
no less than 40 seconds.

A dynamic echo-planar T2*-weighted
functional MR sequence (repetition time
msec/echo time msec, 2000/50; section
thickness, 5 mm, with no intersection
gap; matrix, 96 � 128; field of view, 220
mm; flip angle, 65°) was obtained in each
session. The pixel size was 3.27 � 1.72 �
5 mm, with a voxel volume of 28.12 mm3.
Each dynamic acquisition consisted of 24
contiguous sections covering the whole
brain. The emotional and neutral func-
tional MR session order was randomized
for both patients and controls.

For the morphologic analysis, a high
spatial resolution three-dimensional (3D)
spoiled gradient-echo T1-weighted MR
sequence (96 partitions, 7/1.9; section
thickness, 1.25 mm, with no intersection
gap; matrix, 256 � 256; field of view, 220
mm; flip angle, 8°) was acquired after the
functional MR examinations. These ana-
tomic images of the whole brain had a
voxel size of 0.86 � 0.86 � 1.25 mm,
giving a voxel volume of 0.9245 mm3.

During the acquisition, patients
were under direct observation by psy-
chiatrists and interviewed about their
experiences immediately after the MR
procedure.

Postprocessing Analysis
Whole-brain postprocessing analysis,
including functional MR, voxel-based

morphometry (VBM), and maps of coin-
cidence, was performed jointly by three
of the authors (J.J.L., G.G., and L.M.,
more than 5 years experience in MR
postprocessing each).

Functional MR methods.—MR im-
ages were realigned with a subvoxel
movement correction to avoid spurious
signals (16). Functional and morpho-
logic images were coregistered and
transformed into a standard space
named MNI152 (Montreal Neurological
Institute, Montreal, Canada). Voxels
were resampled to 2 � 2 � 2 mm and
spatially smoothed with a 3D Gaussian
6 � 6 � 6-mm kernel filter to increase
the signal-to-noise ratio, reduce the an-
atomic variability between participants,
and approximate the voxel distribution
to the normal distribution (17).

SPM2 (Statistical Parametric Map-
ping, Functional Imaging Laboratory,
London, England) analysis was per-
formed for each patient and control par-
ticipant and by comparing groups. In
the individual analysis, a design matrix
was defined for each participant. Both
an ideal hemodynamic response func-
tion and the mean value of each func-
tional MR session were included in the
design matrix.

Images of subtraction between emo-
tional and nonemotional content words
(both against the rest task) were then
extracted for every schizophrenic pa-
tient and control subject. These images
were considered to be maps of emo-
tional activation associated with the au-
ditory response. A paired sample t test
map was calculated by using the control
participants and patients to test the dif-
ferences in activation between emo-
tional and nonemotional sessions. t
Tests were performed by means of the
general linear model (16), applying a
random effects analysis that accounts
for within- and between-subject differ-
ences. Common features were ex-
tracted by using the general linear
model over the subtraction of contrasts.

VBM method.—SPM2 was used to
perform the structural image processing
and the comparison analyses. Statisti-
cally significant anatomical differences
in gray matter volume among patients
and control volunteers were explored
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by means of optimized VBM (18), which
involves using specific gray matter tem-
plates to warp the gray matter seg-
mented maps. Although volume loss is a
more familiar term to radiologists, we
will use gray matter density because
neuropathlogic studies in schizophrenia
have found not neuronal loss or gliosis,
but smaller neurons, dendrites with a
lower density of spines, and less exten-
sive arborization (19).

Custom templates were created to
avoid the presence of errors due to dif-
ferences in the contrast of the images
and to specific nonuniformities of each
MR acquisition and demographic differ-
ences in the sample. The process in-
volved the translation of each image into
the same Talairach stereotactic space,
applying a 12-parameter affine transfor-
mation by using the standard MNI 152
(Montreal Neurological Institute) tem-
plate as a reference. The normalized
images were averaged and smoothed by
using a 3D 8 mm3 Gaussian kernel to
obtain the custom template used in the
next step. In addition, a priori gray mat-
ter, white matter, and cerebrospinal
fluid probabilistic maps were obtained
at this stage by averaging and smooth-
ing the segmentation output of normal-
ized images.

The VBM process started with the
normalization of the T1-weighted im-
ages (with affine functions) to the self-
generated template, obtaining a set of
images in the same stereotaxic space,
and applying a trilinear interpolation
with a final voxel size of 1 � 1 � 1 mm.
These images were segmented into gray
matter, white matter, and cerebrospi-
nal fluid. In addition, a cleaning process
was performed, removing nonbrain tis-
sue such as scalp, skull, and dural ve-
nous sinus (20). Estimation parameters
from nonlinear spatial normalization
(21) between segmented images and a
priori probabilistic maps were created
and employed to reconstruct a normal-
ized version in MNI space of the original
T1-weighted images. Finally, warped T1
images were segmented by obtaining
gray matter maps, which were smoothed
by using a 12 � 12 � 12 mm 3D Gaussian
filter.

A parametric map was created to

help show the differences between
schizophrenic patients and control sub-
jects for the gray matter in the whole
brain.

Functional MR and VBM: Maps of
coincidence.—Activation clusters iden-
tified on the functional MR parametric
map with an uncorrected P of less than
.005 uncorrected were selected with a
small extent threshold (� � 5). Differ-
ences in structural images were given a
threshold of P less than .005 corrected
for multiple comparisons and a large
extent threshold (� � 200). Both
threshold maps were overlaid to depict
the common differences found by using
both techniques.

The coincidence map was then gen-
erated voxel-by-voxel by multiplying the
emotional subtracted functional MR im-
ages by the gray matter concentration
differences. Both contrasts are defined
as positive since both represent t val-
ues. The sign of the product was main-
tained. The coincidence analysis showed
high activity in low gray matter density
areas: the higher the activity, the higher
the t value; the lower the density, the
higher the t value. Therefore, the higher
activation area and concentration de-
crease allowed more highlighted area to
appear. Clusters of coincidence were
grouped into large (�100 voxels) and
small (�100 voxels) clusters; larger clus-
ters are probably more relevant to the
phenomenologic analysis.

To allow the direct overlay of the
different data sets, both functional and
morphometric MR images were normal-
ized to the same space by means of the
MNI template and coordinates, which
are also in the Talairach space. VBM
volumes were normalized to the MNI
space by creating a self-generated tem-
plate to avoid segmentation artifacts.

Functional MR and VBM need dif-
ferent assumptions to minimize impor-
tant missing findings. Functional MR im-
aging techniques indirectly measure
brain activity. Both individual emotional
and neutral versus rest responses are
comparisons measuring emotional and
neutral content words related to activa-
tion. To detect group differences be-
tween emotional and neutral words, a
new comparison was generated by test-

ing emotional as larger than the neutral
comparison. VBM technique does not
test for individual intrasubject varia-
tions but for between-subject variations
instead. Our approach to functional,
morphometric, and coincidence mul-
tiparametric comparison analysis was
designed to select only those differenti-
ated areas between patients and control
subjects under the particular paradigm.

Statistical Analysis
Both functional MR and VBM statistical
measurements were made under the
general linear model framework and t
tests were carried out to acquire the
difference maps. Additionally, random
effects analyses were applied to obtain
functional maps. The statistical model
included a group condition (patient vs
control) and a covariate of interest
(age). Since age is known to be a cause
of change in brain structure (20,22), a
regression study was performed to eval-
uate the relationship between this effect
and the amount of gray matter.

A regression study showed linear
correlation between age and brain tis-
sue volume. Therefore, age was mod-
eled in order to minimize its effect on
the results maps.

Statistical parametric maps were
acquired by performing independent t
tests for each voxel across groups, using
SPM2 one-tailed comparisons to mea-
sure the gray matter difference (pa-
tients � controls) and minimize the age
effect in probabilistic maps by using
analysis of covariance. A P of less than
.005 was used to establish a significance
threshold and a correction for multiple
comparisons by using the false discov-
ery rate method (23). Additionally, a
cluster filtering (�) was applied only for
reporting clusters with 200 or more
voxels.

Anatomic areas that showed changes
among study groups were labeled with
the Talairach coordinates and Broadman
areas by using Automated Area Labeling
software (Cyceron; Centre d’Imagerie
Cerebrale et de Recherche en Neuro-
sciences, Paris, France) (24). Coordi-
nates for identifying each area were de-
termined by using the maximum t value in
the corresponding area.
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Results

Clinical Evaluation

The Positive and Negative Syndrome
Scale mean score was 71 (range, 53–94;
standard deviation [SD], 10) while the
Psychic Symptom Rating Scale mean
score was 30 (range, 24–36; SD, 4),
reflecting a homogeneous sample of
schizophrenic treatment–resistant pa-
tients with persistent auditory halluci-
nations.

MR Evaluation
MR image analysis revealed that the
most relevant areas with an increase in
the auditory-triggered emotional activa-
tion were (Talairach coordinates x, y,
and z, in millimeters) the right temporal
middle (52, 2, �18; t � 7.59), left tem-
poral middle (�60, �48, 6; t � 6.03),
right superior temporal and Heschl (54,
�18, 8; t � 5.35), right superomedial
frontal (2, 50, 34; t � 5.36), right angu-
lar (44, �66, 28; t � 5.63), right poste-
rior cingulum (10, �36, 28; t � 5.44),
left middle cingulum (�8, �14, 44; t �
5.31), and right thalamus (4, �12, 4;
t � 4.89).

The morphometric analysis showed
a main local density reduction in the left
insula (�42, 16, �9; t � 7.19), right
lingual (13, �45, �2; t � 7.02), left
postcentral (�60, �11, 24; t � 6.82),
right precuneus (12, �50, 5; t � 6.52),
right insula (47, 15, �6; t � 6.52), right
superomedial frontal (10, 59, �1; t �
6.38), left lingual (�11, �52, 1; t �
6.29), and left middle temporal (�62,
�62, �3; t � 6.17).

Coincidence Map Evaluation

The coincidence analysis selected differ-
ent regions (Table) and showed that the
regions had either large or small clus-
ters of both emotional activation and
volume loss (Figure). As shown, larger
clusters were found in the left and right
middle temporal and left and right supe-
rior temporal gyri. Smaller clusters
were found in the left posterior and
right anterior cingular gyri, left inferior
opercular frontal gyrus, and right mid-
dle occipital gyrus.

Discussion

A recent meta-analysis of 15 VBM stud-
ies found that the left superior temporal
gyrus and the left medial temporal lobe
are the key regions of structural differ-
ence between patients with schizophre-
nia and control subjects (10). The hu-
man voice contains in its acoustic struc-
ture information on the speaker’s
emotional state which is easily per-
ceived with remarkable accuracy. The
neural basis of the perception of speak-
er-related vocal features was found bi-
laterally in the upper bank of the supe-
rior temporal sulcus (25).

The coexistence of functional and
morphologic abnormalities behaves as a
filter selecting areas that could be spe-
cifically related to the schizophrenic
phenotype under study. Our data con-
firm the left middle temporal gyrus as
the most important structural and func-
tional area implicated in the pathogene-
sis of auditory hallucinations.

Auditory hallucinations activate the
left and right superior and middle tem-
poral gyri. Structures activated during
the perception of external voices are
also activated during auditory hallucina-
tions with the additional activation
found in areas responsible for the pro-
cessing of emotion (26). A clear overac-
tivation of the temporal cortex, frontal
lobe, insula, cingulate, and amygdala
was found in patients when hearing
emotional words compared with control

subjects. However, when studying the
effect of the auditory-triggered emotion
on schizophrenic patients with chronic
auditory hallucinations, an overactiva-
tion of both middle temporal, right su-
perior temporal, and Heschl gyri; left
frontal superomedial and right angular;
cingulum; and thalamus is depicted.
This overactivation of the limbic and
frontal brain areas in persistent halluci-
natory patients using a specific auditory
emotional paradigm may partially re-
flect the dysfunction of the emotional
response to auditory stimuli in schizo-
phrenia. Some of these activated areas
may reflect a true hemodynamic abnor-
mality related to functional changes,
while others may express the adoption
of a modified strategy to perform ade-
quately by using different cognitive
skills and engaging different brain re-
gions. The coexistence of gray matter
deficits with activated areas may differ-
entiate a true abnormality from an
adopted strategy.

Voxel-based gray matter reduction
implies a decrease in the optical density
of a region. Although no neural loss has
been found in patients with schizophre-
nia, a decreased cortical volume due to
smaller neurons and dendrites with a
lower density of spines and less exten-
sive arborization is observed in patho-
logic studies (19). Postmortem studies
in patients with schizophrenia have
shown a substantial frontal gray matter
volume reduction when compared with

Most Relevant Regions Showing Differences in Schizophrenic Patients with Chronic
Auditory Hallucinations

Coincidence Area

Functional MR

t Value

Morphologic MR

t Value

Talairach

Coordinates (mm)

Brodman

Areas

Left temporal middle 4.81 4.98 �54, �30, 0 21–22
Left temporal superior 4.26 4.92 �57, �16, 9 48
Right temporal middle 4.47 4.30 60, �15, �12 21
Right temporal superior 3.96 4.07 57, 3, �11 38
Left frontal inferior opercular 4.54 4.18 �50, 10, 14 44
Right anterior cingulate 3.96 4.35 5, 45, 12 33
Left posterior cingulate 4.62 4.01 �3, �42, 31 23
Right occipital middle 3.91 4.04 41, �70, 10 37

Note.—As observed in functional, voxel-based morphometry, and coincidence MR analysis.

NEURORADIOLOGY: Functional and Morphologic Abnormalities in Schizophrenia Martı́-Bonmatı́ et al

Radiology: Volume 244: Number 2—August 2007 553



 79 

controls (27), the magnitude of the volu-
metric decrease is proportional to the
functional deficits. In vivo studies in-
volving whole-brain morphometric anal-
ysis performed by using nonlinear de-
formation functions have also shown a
reduction in the hippocampus, cingu-
late, orbitofrontal, frontotemporal, pa-
rietotemporal, and occipital areas near
the lingual gyrus (10,28,29). Other
studies have reported a reduced gray
matter volume in the ventral and medial
prefrontal regions; the orbitofrontal,
superotemporal, and occipitotemporal
regions; the right medial frontal lobe;
and the left middle and left superior
temporal gyri (28,30). Areas of gray
matter volume reduction that corre-
lated negatively with hallucinations
were found in the left superior (trans-
verse) temporal gyrus, left thalamus,
and left and right cerebellum (31). In
our series, we have been able to demon-
strate a gray matter volume reduction
mainly in the right precentral, left rolan-
dinc gyrus, left inferior opercular fron-
tal, left superomedial frontal, bilateral
orbitomedial frontal, right posterior
cingular, bilateral anterior cingular,
both medial temporal gyri, both supe-
rior temporal gyri, right parahippocam-

pus, right insula, and right precuneum
regions.

The ventromedial prefrontal cortex
and the amygdala are involved in the
normal processing of emotional signals.
The temporolimbic and fronto-orbital
network have also been implicated in
regulating emotion, and the medial
limbic system, specifically, has been
related to the emotion-processing def-
icits of schizophrenia. The lingual gy-
rus at the inferior occipital region was
observed to be reduced in these pa-
tients (28). Although the reduced vol-
umes in the temporal regions were
more marked on the left side (28), we
observed a quasi-symmetrical pattern
of neuronal reduction. Our different
depiction of abnormalities may be re-
lated to differences in the phenome-
nology of schizophrenia studied, the
homogeneous series evaluated, the
whole-brain morphometric approach,
and the appropriate analysis of the
confounders (ie, age, gender, handed-
ness and education level).

The VBM approach provides details
regarding the specific points of maximal
density change. However, many of the
morphologic structural abnormalities
are relatively subtle and have pronounced

interindividual variability, making their
use as diagnostic markers of schizophre-
nia less sensitive.

A neurophysiologic interaction among
psychopathology (auditory hallucinations),
brain function (increased hemodynamic
response in the temporal lobe) and
structure (gray matter deficits) has
been previously hypothesized (26). It is
generally accepted that areas of de-
creased perfusion parallel decreases in
gray matter concentration. An example
of this is the age-related brain reduction
most probably associated with a de-
crease in blood flow and metabolism in
those areas (32). However, our findings
show that in schizophrenic patients ab-
normal activation may be found in spe-
cific areas of maximal neural density
decrement. These areas of coincidence
where the same voxels have hemody-
namic functional changes associated
with the emotional auditory-triggered
response and focal decreased volume
could possibly express a compensation
phenomenon in which regions with de-
creased volume need a larger hemody-
namic dysfunctional response to a de-
fined paradigm.

The different areas found in the re-
sults of the coincidence maps have rela-

Functional MR coincidence maps. Highlighted areas indicate increased activation associated with emotional auditory stimuli and decreased gray matter volume. Yellow
areas represent greater values for functional and morphometric statistical source images. Selected clusters can appear in white matter by means of partial volume effects
after spatial smoothing.
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tionships with both emotion and schizo-
phrenia, and are probably part of the
auditory hallucination phenotype. The
bilateral middle temporal gyri are also
being involved in emotion (33). The
right superior temporal gyrus is mainly
involved with hearing, emotion, and
changes in the aural sensory environ-
ment (34,35). The posterior cingular
gyrus is involved with the association of
recognized words (36), the threat of
emotional words, and unpleasant words
(37). The anterior cingular gyrus is in-
volved with attention, while the opercu-
lar frontal gyrus has traditionally been
affected in schizophrenic patients (or-
bital prefrontal cortex) and involved
with decision-making (38).

The study had study limitations. As
all patients had auditory hallucinations
at MR, a subtraction strategy was devel-
oped to depict only those voxels acti-
vated during the emotional stimuli but
not from the neutral voices. This way,
emotion-related auditory activation ar-
eas can be better delineated.

The voxel size of the functional and
morphometric MR images was approxi-
mately 30 times larger than the func-
tional voxel (28.12 vs 0.9245 mm3).
Since partial volume effect may exist, it
is possible that one functional MR voxel
will not be activated while part of it is
depicted during the morphometric anal-
ysis. This means that our approach is
conservative, depicting only the coinci-
dence voxels at the price of losing small
contributions, making the results easily
reproducible. Changes in the volume
and activation of these brain areas can
result from the medication, not just the
symptoms, in schizophrenic patients.
However, smaller volumes of gray mat-
ter in similar regions as those observed
in this study have also been found in
neuroleptic-naive patients and in first-
episode schizophrenic patients, thus
giving more relevance to the disease
than to medication (9,29).

As schizophrenia affects men and
women differently, the selected popula-
tion consisted only of men to avoid this
bias in the analysis of the temporolimbic
structures (39). Also, factors of ethnic-
ity, gender, hand dominance, age, and
education level were minimized. We

recognize that the results obtained from
a defined homogeneous sample, only in-
cluding schizophrenic patients with
chronic resistant auditory hallucina-
tions, can not be generalized to schizo-
phrenia as a whole. The clinical hetero-
geneity of schizophrenia is beyond the
scope of this paper.

Also, we have used a 1.5-T imager
with high (�99%) mean specificity in
our study, and we recognize that field
magnets with higher specificity will
probably produce better results by in-
creasing the signal-to-noise and repro-
ducibility in the functional MR study.
This also allows a decrease in the voxel
size (40). These improvements deserve
further evaluation.

In summary, coincidence analysis
grouping functional MR abnormalities
with focal brain density reductions in
schizophrenic patients with chronic au-
ditory hallucinations are largely de-
picted at the middle, superior temporal,
and cingular gyri. The possibility that
coincidence maps could be used for fol-
low-up of these patients after treatment
should be evaluated.
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5.d. - Comment to the manuscript and addendum 
 

The objective of the article was the integration of two different viewpoints 

about schizophrenia. The integration of neuroimaging data was considered as 

valuable. In the case of the neuroimaging data from schizophrenic patients and 

healthy control subjects, some brain areas were detected as a start to study their 

function and structure in schizophrenic patients. However, in the applied 

methodology to obtain coincidence areas, some potential problems have not been 

taken into account. As presented in the manuscript, fMRI data and structural data 

were spatially normalized prior to the group comparison statistics performed on 

each type of data.  

 

There are different approaches to spatial normalization, as brains differ 

largely in structure from subject to subject, even in the case of healthy subjects 

with similar characteristics (such as age, gender or total brain volume). Differences 

also exist at the microscopic level (Devlin and Poldrack, 2007). Spatial 

normalization applied in the study that is presented along the thesis included affine 

and nonlinear transformations of the images (Ashburner and Friston, 1999). Other 

authors propose to directly observe each subject’s anatomy and manually observe 

correspondences between brain structures (Devlin and Poldrack, 2007); Dale (Dale 

et al, 1999) proposed to observe the cortical surface instead of observing the brain 

volume, by means of automated procedures; Van Essen also proposed to work on 

the subjects’ cortical surface data instead of cortical volume data (Essen Van et al, 

2001). 

 

Automatic spatial normalization involves the possibility of incorrect 

registration between subjects’ anatomy, that could lead to the extraction of wrong 

conclusions from the analysed data (in the case of VBM, see Bookstein, 2000). 

Results derived from spatially normalized data should be concisely reviewed and 

scrutiny of the data from each subject’s activation or volume characteristics should 

be carried out (Ashburner, Friston, 2001). 
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Results in this chapter could be biased because of mis-registration 

between subjects’ anatomy, that could have led to systematic errors in both 

techniques. The objective of detecting areas of interest, with possible mis-function 

and volume differences in schizophrenic patients, is still considered of interest by 

the PhD candidate. The detected areas have been a start point for further 

analyses. 

 

The following sentences were detected that contained mistakes in the 

manuscript (page numbers correspond to the manuscript): 

p.552. There was a mistake in the Gaussian kernel size, that stated it was 8 mm3. 

It should be: 
 

The normalized images were averaged and smoothed by 

using a 3D 8 x 8 x 8 mm Gaussian kernel to obtain the custom 

template used in the next step. 

 

p.555 – The sentence that reads “The voxel size of the functional and …” 

could be re-stated with the word volumes. It was also somewhat confusing. 
 

Acquired voxel volumes were different in functional 

data (28.12 mm3), compared to morphometric data (0.9425 mm3). 

Voxel volumes that had been acquired by means of fMRI were 

approximately 30 times bigger than anatomical data acquired 

for the VBM procedure. 
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 6. fMRI activation localization enhanced 
by Non Local Means filtering 
 

"Anyone who has never made a mistake has never tried anything new" – 

Albert Einstein (1879-1955). 

 
In this chapter, the NL-Means is introduced, in a manuscript that has 

already been sent for publication. In the article, the adaptation of a new filter 

named NL-Means to fMRI and its behaviour in the denoising of fMRI data are 

shown. Tests, both on synthetic and clinical data, are presented in the manuscript, 

demonstrating the improved localization power of the proposed method. The 

proposed method has been applied to the fMRI data with the auditory paradigm, in 

one of the subjects previously studied, as shown in the manuscript. The structure 

of this chapter introduces first the PhD candidate work in the manuscript. 

Afterwards the manuscript is presented; and finally supplementary results are 

shown that support new research guidelines. 

 

 The work presented in the manuscript consisted in adapting the NL-Means 

method to fMRI and testing the NL-Means filter on fMRI real and synthetic data. 

The adaptation of the NL-Means was generated in C code for Matlab, based on the 

implementation by J.V. Manjón for structural images (Manjón et al, in press). The 

implemented method was firstly optimized so the optimal filtering parameters were 

selected. This included the testing of many possible selections of noise level 

control and sizes of the search and the similarity windows. The optimization started 

with the parameters chosen by Manjón et al for structural MR images, in synthetic 

data. 
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 The NL-Means filtering method showed, both in clinical and real fMRI data, 

a very high performance in the denoising process. Thus, studies about inter-subject 

analysis with NL-Means denoised data will be introduced. 

 

6.a. - PhD candidate contributions 
 

  The tasks carried out by the PhD candidate in the elaboration of the 

manuscript were: 

- Writing of the manuscript, all sections. Figure generation. 

- Literature research. 

- Software phantom generation. 

- Adaptation of the proposed filtering method to fMRI.   

- Theoretical conception. 

- Experimental tests on the clinical and the synthetic datasets.  

- Editing and supervision of the manuscript, in all sections. 
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ABSTRACT 
 

One of the main problems in Functional Magnetic Resonance Imaging 

(fMRI) is that the signal amplitude from activated voxels is similar to the amplitude 

of the random noise naturally present in the images. Weakly activated voxels may 

therefore pass statistical tests undetected. Typically, the Gaussian filtering method 

is applied to restore the fMRI signal as part of the pre-processing used before 

statistical analysis of the data. This filter increases the functional signal at the 

expense of a sub-optimal signal enhancement and a reduction in resolution and 

accuracy in spatial localization. Recently, advanced filtering methods have been 

proposed for reducing noise from the fMRI data. In the present work, a new method 

for restoring fMRI signals is presented which is able to reduce random noise 

without affecting significantly the original image resolution. The proposed method is 

based on the Non-Local Means (NL-Means) filter. This paper addresses the 

problem of accurate spatial localization of brain activated areas, comparing the 

Gaussian Filter, the Adaptive Bilateral Filter and the NL-Means Filter using both 

synthetic and real fMRI data.  

 

NL-Means is a special neighbourhood filter that reduces the noise in each 

voxel by averaging similar voxels non-locally, i.e. any region in the image can help 

denoising one particular region, not only nearby regions. 

 

The results showed that the NL-Means method enhanced the fMRI signal, 

by decreasing the noise level, without introducing noticeable blurring effects, as 

demonstrated by its better specificity and sensitivity in detecting activated voxels, 

especially of brain activation in areas of bordering sharp transitions, compared to 

both the Gaussian Filter and the Adaptive Bilateral Filter. Due to the excellent 

behaviour of the NL-means filter we suggest its use as part of the pre-processing in 

fMRI studies. 

 

Key words 

fMRI; Image Quality Enhancement; Brain; Gaussian Distribution; noise filtering. 
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INTRODUCTION 
 
The application of the fMRI technique is becoming wider everyday. Its 

ability to detect changes in function in the healthy and unhealthy brain makes this 

non-invasive technique suitable to study brain activity in-vivo. Recent studies show 

that fMRI mapping can successfully locate the functional areas of interest pre-

operatively aiding in tumour resection operations. fMRI enables a better 

identification of the sensorimotor cortex by means of fMRI than traditional 

identification of the motor areas in MR anatomical images (Pujol et al, 2008); fMRI 

has proved a reliable measure of the language lateralization when language is to 

be preserved in tumour surgery (Ruff et al, 2008); it provides a high coincidence 

with intraoperative cortical stimulation in localizing the motor centers (95% 

coincidence in the exact location; 33 patients; see Majos et al, 2005). Successful 

fMRI mapping can be obtained routinely in most patients with cerebral tumors 

(Vlieger et al, 2004). Clinical validation of the application of fMRI to tumour 

resection is currently being conducted (Geerts et al, 2007; Petrella et al, 2006). 

 

Although fMRI is already being successfully applied in many studies of 

brain function, such as brain tumour pre-operative explorations, there have lately 

appeared issues related to the exact spatial localization of the fMRI activation 

areas, related to spatial smoothing (Reimold et al, 2006; Walker et al, 2006; Wink 

AM et al, 2004). Some localization issues are directly related to the use of 

Gaussian smoothing, a process that is often applied to increase the Signal to Noise 

Ratio (SNR), which is inherently low in fMRI. Reimold et al. (2006) demonstrated 

that, in addition to the loss of resolution that is inherent in spatial smoothing, it can 

also lead to counterintuitive artifacts, such as a displacement of the detected peak 

of activation, which could lead to a spatially narrowing in a way that a region may 

be mistakenly identified as an additional finding. 

 

Many reasons make the accurate detection of spatial activation areas 

necessary: Delimitation of functional areas surrounding tumors and other brain 

malformations must be precisely delineated to aid in the operative planning. 

Increasing spatial resolution of fMRI data is a critical topic nowadays (Bandettini, 
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2007). Even though a higher resolution is being achieved in acquisition, typically 

used filters, such as spatial smoothing, reduce the resolution present in the fMRI 

data. 

 

Alternative methods to Gaussian smoothing have been proposed for fMRI. 

The earliest one was proposed by Descombes et al. (1998). Descombes proposed 

to restore the fMRI data by using spatiotemporal Markov Random Fields (MRF). 

The method was based on the interaction between neighboring voxels. This 

method had several drawbacks: Even though MRFs do not smooth the fMRI data 

as much as spatial Gaussian filtering, the influence from the neighbours is critical. 

Therefore, if there was no good connection from one voxel to its neighbours (e.g. 

connection by one only voxel), then the activation would not be detected in that 

voxel. Besides, the influence of MRF on further statistics is not well known yet. One 

last drawback of the method proposed by Descombes is that temporal Gaussian 

filtering is not used at present. Instead, temporal correlations are treated by means 

of autoregressive models (Purdon, Weisskoff, 1998). 

 

More recently, Solé et al. (2001) proposed to separate active voxels from 

non-active voxels iteratively by diffusion averaging. The method however needed 

some clearly distinguishable activated voxels. If the signal was low compared to 

noise throughout the whole brain, then the method would not be successful. The 

method also expected a periodicity in the signal, which is not always present, and 

assumed that all voxels activated with the same temporal pattern. 

 

Multivariate approaches have also been explored through Independent 

Components Analysis (McKeown et al, 1998), Canonical Correlation Analysis 

(Friman et al, 2001) and Wavelets (Desco et al, 2001). These techniques have not 

been extensively applied to fMRI because their impact on subsequent statistical 

analyses is usually unclear (Petersson et al, 1999). 

 

A number of hierarchical Bayesian models have been proposed (Gössl et 

al, 2001; Penny et al, 2005; Woolrich et al, 2004; Flandin, Penny, 2007), that 

model the noise instead of removing it from the fMRI data. Modeling the noise is 
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computational intensive so the aforementioned studies also deal with diverse ways 

of speeding up the estimations. Woolrich (2004) and Penny and Flandin (2005, 

2007) proposed a Variational Bayes framework, that sped up the original 

algorithms hundreds of times. However, the selection of spatial a priori probability 

values still remains problematic. 

 

Kim et al. (2005) also proposed a method, the RADSPM, that would 

estimate the SPM from the noisy fMRI, compute the diffusion coefficients in the 

SPM space, and then perform the diffusion in the structural information-removed 

fMRI data using the coefficients previously computed (Kim et al, 2005). These 

steps were iterated until convergence. The processing time was the weak point of 

RADSPM, as it needed to compute a new SPM per iteration of the method, and 

tens of iterations were usually needed. 

 

A method which could overcome such problems is the Non-Local Means 

(NL-Means) filter, an algorithm that was introduced by Buades et al. in 2005 

(Buades et al, 2005). This method is a special kind of Neighbourhood filter that 

reduces the noise in every voxel by averaging its value with the values of other 

similar voxels around the specific voxel. Different filters have been proposed based 

on the same principle, i.e. the SUSAN Filter (Smith and Brady, 1997) and the 

Bilateral Filter (Tomasi and Manduchi, 1998), amongst others. 

 

The Bilateral filter, which has shown to respect anatomical edges, is 

especially suited for detecting fMRI activations near brain tumour lesions, 

minimizing the blurring of apparent brain activity across anatomical boundaries and 

into regions of non-activation (Walker et al, 2006). However, such a filter does not 

perform optimally when noise level becomes significant. 

 

The NL-Means filter introduces two important differences compared to 

other Neighbourhood filters: First, the similarity measure between voxels has been 

made robust. Second, spatial distance between voxels is not restricted to be local 

(thus, the method is non-local). By one hand, the similarity between two voxels x 

and y in NL-means is measured by the grey level differences in a whole Gaussian 
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neighborhood of x and y. By the other hand, the spatial distance between voxels, 

that was restricted to be local in other filtering schemes, needs no more to be local, 

as the robust measure of similarity lets the algorithm find distant voxels with similar 

neighbourhoods to the one being filtered. For example, a couple of pixels x and y 

such that their intensity levels are equal, can have a very small or nearly zero 

weight in the restoration of each other, since the configurations around x and y can 

be very different. 

 

NL-means has excellent properties that could make the filter suitable for 

fMRI denoising. Firstly, its similarity measure is very robust to the noise power and 

therefore it is well suited to remove noise from typically low contrast activations. 

Secondly, the non-local means filter accomplishes the "noise-to-noise principle" 

which is not achieved by other methods, such as the Gaussian filter or other 

classical Neighbourhood filters. The noise-to-noise principle states that a denoising 

algorithm must transform a white noise image into a white noise image (with lower 

variance). Therefore, after the application of a filter the remaining noise should not 

change its nature. This is achieved by NL-Means, as demonstrated by Buades et 

al. (2007). 

 

The NL-Means has been applied successfully to anatomical MRI (Coupé et 

al, 2007; Manjón et al, 2008), Diffusion-weighted and Diffusion-tensor MRI (Wiest-

Dasslé et al, 2007). The filter has also been applied to picture and movie denoising 

(Mahmoudi, Sapiro, 2005) and texture restoration (Brox, Cremers, 2007). 

 

Our objective in this study was to test an optimized version of the NL-

Means method adapted to fMRI filtering, in both real and synthetic fMRI data, in 

order to find out if this filter would improve the localization and detectability of 

functional patterns in fMRI studies. 
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MATERIAL AND METHODS 

 
To judge the influence of the NL-Means filter on the localization and 

detection of functional patterns in fMRI, it was compared with two methods typically 

used in this framework: Gaussian filtering (Friston et al, 2000) and the Adaptive 

Bilateral Filter (Walker et al, 2006). Other filtering methods were not introduced in 

the comparison, as they are more complex in nature and therefore comparisons 

results could be easily biased. Furthermore, proposed methods that have been 

presented in bibliography are usually compared to Gaussian filtering, so results 

from other filtering schemes could be compared with this one easily. The 

assessment was performed in both real and synthetic data. 

 

Gaussian Filter 

 
The Gaussian Filter consists of the convolution of a 3D image volume with 

a 3D Gaussian kernel. Usually, this Gaussian kernel is defined by its Full-Width-

Half-Maximum (FWHM), directly related to the parameter standard deviation, σ: 

 

                               FWHM = )2log(8 ⋅σ    (1) 

 

Therefore, given an image volume I, the Gaussian filtered volume F is 

computed as: 

    

                               ∑
∈∀

−=
Sq

qpqp GIF )(σ        Ip∈∀   (2) 

 

Where S is a 3D local region defined by σ, surrounding the processed 

voxel, G is a Gaussian kernel: 
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p and q represent different voxel coordinates in the volume. 

 

Adaptive Bilateral Filter 

 
The Bilateral Filter (Tomasi and Manduchi, 1998) is an extension of the 

Gaussian filter. It adds an edge-stopping function, such as Gauss, Tukey or 

Lorentz edge-stopping functions (Durand and Dorsey, 2002). The Bilateral Filter 

smoothes voxels that are near one another and that are similar in intensity, while 

preserving the data. Sharp changes in intensity are detected by means of the 

edge-stopping function. 

 

qp II
Sq

qpqp GGIF −
∈∀

−∑= )()( θσ        Ip∈∀     (4) 

 

In this function there are two Gaussian weighting factors defined by σ and 

θ, which are related to the proximity of the current voxel geometrically in the first 

case, and in intensity level in the second one. The first term ( qpG −)(σ ) is devoted 

to restrict locally the averaging process while the second term (
qp IIG −)(θ ) adapts 

the weighting function to the underlying anatomical information. 
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NL-means filter 

 
The NL-Means filter, proposed by Buades et al. (Buades et al, 2005) is an 

evolution of the Neighbourhood filter (Yaroslavsky, 1985), which averages similar 

voxels according to their intensity distance. The main difference between the NL-

Means and previous methods is that the similarity measure between voxels has 

been made more robust to the noise level by using a region comparison strategy 

rather than voxel comparison. Furthermore, the pattern redundancy is not restricted 

to be local (therefore, non-local).  The NL-means filter can be applied in 3D (as it 

has been applied in MR anatomical image filtering) or, in the case of fMRI, 4D 

(along all acquired volumes), as the method accomplishes the noise to noise 

principle (it does not add serial correlations).  

 

 
Figure 1. The NL-means principle. The voxel in restoration p is characterised by its  
neighbourhood N(p), which is compared to every possible neighbourhood (N(q)) in 
a bigger window around the voxel p, the Search Window. 

 
The NL-means method is described below in more detail. 
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where Fp is the voxel being filtered and Iq represents each other voxel in the image 

volume and S is the Search Window around each voxel in restoration. The weights 

w(Np,Nq) are based on the similarity between the neighbourhoods of the voxels in 

coordinates p and q (Np and Nq). In general, Ni is defined as a square 

neighbourhood window around voxel i with a user-defined “radius” Rsim. The 

similarity function w(Np,Nq) is calculated as: 
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Zp is the normalizing constant, h is an exponential decay control parameter 

and d is a Gaussian weighted squared Euclidian distance of all the voxels of each 

neighbourhood: 
2

)()(),(
Rsimqpqpqp NNGNNd −= −ρ      (8) 

 

G(ρ) is a normalized Gaussian weighting function with zero mean and ρ 

standard deviation (usually set to 1) that penalizes voxels far from the center of the 

neighbourhood window giving more weight to voxels near the center of the window 

in the distance computation. 

 

Figure 1 represents the voxel in restoration, characterised in the 

comparisons by its neighbourhood, Np, and the different neighbourhoods that are 

compared to the one being restored, Nq. 

 

In Equation (8) there is a special case when q=p. As the distance from a 

voxel to itself is zero, it can produce an over-weighting effect. To solve this problem 

in the original NL-Means method, d(Np,Np) is calculated as: 

 
                                      d(Np,Np) = 

qp≠∀
min ( d(Np,Nq)),          (9) 
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Method optimizations 
 

A number of optimizations can be used that increase the accuracy of the 

results of the method and that specially reduce the computational time. Two 

optimizations were introduced in the study and they are presented below. 

 

1) Management of singular points  

 

In equation (9) the distance assigned to the voxel being processed to itself 

is set to the minimum of the other distances in the search window. Equation (9) 

avoids overweighting effects and allows more noise removal. However, that 

correction has the disadvantage of blurring singular points (i.e. voxels with no 

similar patches, such as image corners and peaks or valleys) by averaging them 

with voxels from non-similar patches. To overcome this situation, a modification to 

equation (9) is proposed: The distance from the voxel to itself is only calculated by 

means of the surrounding voxels if the distance is above a fixed threshold. We 

experimentally fixed this value to 4σ 2 (with σ  the estimated noise standard 

deviation) which corresponds to the maximum distance that a similar voxel can 

have.     

 
                          d(Np,Np) = min(4σ 2 , 

pq≠∀
min (d(Np,Nq)))     (10) 

 
2) Voxel pre-selection 
 

Another useful improvement is to perform a voxel pre-selection in order to 

avoid useless computations and to improve filtering results by excluding non similar 

voxels in the averaging process (Mahmoudi, Sapiro, 2005; Coupe et al, 2007). 

 

In the present work, the speedup was implemented by means of selecting 

those voxels that their first local moment μ (mean value of a 3x3x3 volume patch) 

was not located farther away than kσ / n  (n being the number of pixels used to 

compute the mean, 27 in this case). 
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A value of k=3 was used to set the pre-selection threshold, which 

corresponds to the third quartile of a standard normal distribution. Mean value 

differences higher than this threshold have a very low probability to be similar to 

the voxel being filtered and its context. We did not include second order moments 

in the voxel pre-selection process in contrast with what Coupé et al. (2007) 

proposed, as we found that it was a too restrictive selection criterion. 

 

Implementation 
 

The adaptive bilateral filter was implemented with a Gaussian edge-

stopping function. The NL-Means filter was implemented in 3D. One dimension 

corresponded to time while the other two dimensions corresponded to the slice 

data (i.e. image plane plus time) to achieve reasonable processing time; but a 4D 

implementation (i.e. 3D volume plus time) could also be used to increase the 

quality of the filtering at the expense of increasing the computational burden and 

thus the processing time. In this study, all the filtering methods were applied after 

movement correction. The isotropic 3D implementation of the filter processed one 

fMRI slice at a time and all the temporal positions for that slice. In each 

comparison, only windows around the selected voxel were used (as a result, time 

is used in the filtering, but only nearby temporal points are included, so the method 

can be used to filter blocked and event-related design fMRI data). 

 

Parameter settings 
 

Optimum parameters were selected for each filtering method. That is, for 

Gaussian kernel filtering, FWHM was set to 3 voxels, an extent similar to that in the 

shapes in the activation mask (σ was 1.274 voxels); S was 7x7. For the Adaptive 
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Bilateral Filtering, σ and S were the same as in the Gaussian filter, while θ was 

calculated directly from the data as the local standard deviation of a squared 

window of size 3 x 3 surrounding the current pixel; for NL-Means, after an 

exhaustive search of possible parameters and tuning to maximize the quality of the 

results over usual noise levels in fMRI data, Rsim was 1 (size of the similarity 

Neighbourhood 3x3x3), S was 7x7x7 and h = nσ2 , with nσ the standard 

deviation of noise.  

 

Synthetic data 
 

To evaluate the different filtering schemes, a software phantom was 

generated with activation structures similar in shape to the ones present in Friman 

et al. (2003). The structures for the phantom were encoded in a mask of activation. 

Shapes in the mask had different intensity values, with higher intensity in the center 

of each shape and a decreasing intensity toward the bounds of the shape. 

Structures consisted of 3D boxes, spheres and arrows. One volume was generated 

as the mean of three real fMRI volumes, obtained while a healthy subject was at 

rest. The volume was replicated 99 times, thus obtaining 100 identical volumes, 

representing the fMRI data. 

 

An ideal hemodynamic response function (hrf) (5% amplitude) was 

introduced. The hrf was created with a TR = 2 seconds and a block size of 20 

seconds. Two conditions were encoded in the hrf: Activation and Rest. The hrf was 

replicated five times. Thus, it consisted of 100 temporal positions. The fMRI data 

volumes were convolved with the hrf only in the spatial voxels that were included in 

the mask of activation. 

 

Afterwards, the volumes were convolved with simulated trends and drifts 

from the scanner, typically observed in fMRI. These were introduced by convolving 

the volumes with a smooth third-order polynomial that simulated slow local 

changes in the MR signal. 



 100 

As the magnitude of the MRI signal is the square root of the sum of the 

squares of Gaussian distributed real and imaginary parts, the acquired fMRI data 

follow a Rician distribution (Sijbers, Dekker, 2004). Therefore, Rician noise was 

finally added including 1%, 3%, 5%, 7% and 10% levels of the mean intensity of 

the fMRI volumes. Noise was introduced by adding Gaussian noise to both real 

and imaginary parts and then computing the magnitude volume image. 

 

The different filtering methods were compared using well-known 

quantitative measures. The first measure was Root Mean Square Error (RMSE) 

that compared the original (before Rician noise added) signal to the filtered signal. 

A second measure was the functional Signal-to-Noise Ratio (fSNR) at each 

activated voxel. For extracting a measure of the fSNR, a Statistical Parametric Map 

was generated for each filtering technique and each noise level. Then the fSNR 

was calculated as the estimation of the contrast divided by its noise estimation, in a 

voxel-wise basis, where only activated voxels were taken into account. The fSNR 

was at last summarized as the mean of the fSNR value of all activated voxels. 

 

Finally, false positive and true positive rates for the detection of activated 

voxels, and therefore sensitivity and specificity, were assessed for the different 

noise levels. 

 

Clinical data 
 

As a corpus of real clinical data for the comparison of the methods, 

experimental fMRI data was obtained from a study that analyzed auditory 

emotional response in schizophrenia. fMRI volumetric images were acquired every 

two seconds in a block design, where two blocks of 20 seconds were sequentially 

presented: one rest block (no sound) and one block consisting of 13 high emotional 

words selected from those that a schizophrenic cohort of patients usually heard. 

fMRI was acquired in both schizophrenic patients (n=11) and healthy subjects 

(n=10). The study is described in detail in Sanjuán et al. 2007. 
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Images were performed applying a dynamic Echo Planar Imaging T2* 

weighted sequence (TR=2000 ms, TE=50 ms, 5 mm slice thickness with no inter-

slice gap, 24 slices, acquisition matrix=96x128, field of view=220 mm and flip 

angle=65º). The voxel size was 3.27 mm x 1.72 mm x 5 mm. 

 

To compare the described filtering methods, the same process was 

performed to correct the fMRI images and to statistically analyse them, except for 

the noise filtering step. Movement correction was applied by means of SPM5 

(Wellcome Trust Centre for Neuroimaging, London, UK) realignment procedure the 

fMRI data. Then the fMRI images were noise filtered by either by NL-Means, 

Gaussian Filter of Adaptive Bilateral Filter. They were finally normalized to the MNI 

template (Montreal Neurological Institute, Montreal, Canada) with the same 

normalization parameters as in Sanjuán et al. 2007. 

 

The Gaussian Filter was applied with FWHM = 6 x 6 x 6 mm. The Adaptive 

Bilateral filter was applied with S = 7 x 7 x 7 and FWHM = 6 x 6 x 6 mm. Finally the 

NL-Means filter was applied with parameters: S = 7 x 7 x 7, Rsim = 1 x 1 x 1 and h 

= nσ2 , where nσ was the estimated standard deviation of noise. 

 

Noise was estimated from the standard deviation of the difference (SDD) of 

2 consecutive fMRI volume images at regions with non-null signal where the noise 

distribution could be approximated by a Gaussian distribution:  

 
=nσ SDD/ 2           (12) 

 
 

Clinical validation of the methods was performed visually and by inspection 

of the temporal curves in voxels estimated as highly activated (after the generation 

of a parametric map for each filtering method). There is no ground truth as to what 

voxels are active, when real fMRI data is considered. Thus, visual inspection was 

used to detect differences in the cluster sizes and the functional patterns in voxels 

that survived a p<0.05, Bonferroni corrected. 
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EXPERIMENTS AND RESULTS 
 
Results were assessed for both synthetic and clinical data and are 

presented in the following subsections. 

 

Synthetic data  
 

Firstly, the original and the optimized versions of the NL-Means filter were 

evaluated. In figure 2 RMSE results for both versions are shown. The optimized 

version improved the accuracy of the classic method while requiring significant less 

time to process the data (a speed factor of approximately two was achieved in the 

optimized version of the filter). The subsequent results in this study regarding the 

NL-Means method are referred to its optimized version. 
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Figure 2. RMSE corresponding to the original NL-Means filter applied to synthetic 
data and RMSE corresponding to the Optimized NL-Means filter. 

 
RMSE is shown for each compared filtering method and noise level in 

Figure 3. When the noise present in the fMRI data was low (e.g. 1%) Gaussian 

smoothing and Adaptive Bilateral filtering methods showed a higher RMSE value 

than in the unfiltered data, due to their spatial blurring of the fMRI data. However, 

when noise was higher (i.e. above 3% for Adaptive Bilateral and 6% for Gaussian), 
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the filtering methods showed lower RMSE values than the RMSE for the unfiltered 

data. In the case of the NL-Means filter, both original and optimized versions 

produced a lower RMSE than that in the unfiltered images for all noise levels. 

Finally, normalized fSNR (summarized fSNR of the filtered signal divided by the 

summarized fSNR of the original signal) was higher for the NL-Means filter 

compared to the other filters (Figure 4). 
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Figure 3. RMSE value comparing the original (without noise) and the filtered fMRI 
volumes. RMSE value for NL-means filter was lower for all noise levels. 
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Figure 4. Normalized fSNR for the three compared filtering methods. Notice that 
NL-Means filtered normalized fSNR is higher for all the tested noise levels. 
 

The computational time was around 4 minutes for the complete data set 

when the Gaussian filter was applied, while it was approximately one hour and 20 

minutes with the Adaptive Bilateral filter and 5 minutes with the optimized NL-

Means filter (computing times obtained on a 2.4 GHz Pentium 4 with 2 GB RAM 

using MATLAB 2006b, running Windows 2000). 

 

Sensitivity and specificity in the detection of activated voxels were also 

assessed for the three filtering methods. Figure 5 visually demonstrates the 

recovery properties of the three methods, for a 3% noise (activation maps obtained 

with a multiple comparison Bonferroni correction, p<0.05). The NL-Means filter 

allowed the detection of the dotted line shape of activation (left-most axial slice), 

the Adaptive Bilateral Filter and the unfiltered data let the detection of some of the 

voxels and finally no voxel in the dotted line shape was detected when the 

Gaussian Filter had been applied. The recovery by the three methods of other 

shapes: spheres, cubes and lines is also shown in Figure 5, demonstrating the 

highest resemblance between the activation mask and the activation 

corresponding to the NL-Means filtered data. 
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Figure 5. Visual comparison of the different filtering methods, noise 3%, fMRI 
signal 5%. a) Pattern of activation introduced (similar to the masks in Friman et al, 
2003), shown in three axial slices (notice spatial gradient of activation). b)-e) 
Detected activation in the same three slices, with colour-coded maps: b) Activation 
detection without any filtering applied to the noisy images. c-e) activation detection 
after applying, respectively, Gaussian, Bilateral and NL-Means filtering methods. 
Colour gradient indicates t-value, as shown in the bottom colour-bar. 
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Figure 6 shows the Sensitivity and Specificity characteristics in the 

detection of activated voxels, represented by their ROC curves, for a 1% noise 

level, for each filtering method. The original signal had an elevated ratio of true 

positives against false positives. Few voxels are typically detected in the original 

signal but these are usually true positives. However the filtering methods introduce 

not only true but false positives when restoring the data. Gaussian filtering 

obtained the lowest area under the ROC curve, because the method created false 

positives around the areas of activation. Adaptive Bilateral filtering had a higher 

area under the ROC curve, due to its respectful treatment of edges. Finally, NL-

Means had the highest area under the ROC curve, with curve that was very similar 

to the one in the original data. 

 
Figure 6. ROC curves, showing the sensitivity and specificity in the detection of 
activated voxel, for the different filtering methods and the original image without 
filtering (noise = 1%; signal = 5%). A close-up in the region of high specificity is 
also shown. 

 

Clinical data 
 

Four maps from a single subject were obtained by means of SPM5, one for 

each filtering technique and one for the unfiltered data, with an estimation of signal 

by means of a General Linear Model. Serial correlations were taken into account 
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by means of an autoregressive model (Purdon and Weisskoff, 1998). A region was 

selected that was only detected by NL-Means in the Superior Temporal Gyrus, a 

key gyrus in the study of schizophrenia. With a Bonferroni threshold corresponding 

to a p<0.05 (T>5.48), no voxel was detected as activated in the region around (38,-

26,20) when data had been Gaussian filtered. No voxels were detected as 

activated in the original data without filtering, nor after Adaptive Bilateral Filter was 

applied. Finally, 23 connected voxels around (38,-26,20) were statistically detected 

with the same Bonferroni threshold when NL-Means filtering was applied. 

 

 
Figure 7. Voxel (38,-26,20) -MNI coordinates- activation localization in blue 
crosshairs, over the subject’s anatomical saggital, axial and coronal images for (a) 
the original unfiltered fMRI data, (b) the Gaussian filtered data, (c) the Adaptive 
Bilateral filtered data and (d) NL-Means filtered data, respectively. Two more axial 
slices show the ability of restoring the fMRI data by the shapes and statistical 
power (color-coded). Notice how NL-Means activations have higher statistical 
values and show shapes that follow the sulcal anatomy. Colour gradient in a)-d) 
indicates t-value, as shown in the bottom colour-bar. Coordinate (38, -26, 20) was 
selected here as it represented a cluster that was only detected after applying the 
NL-Means filter. 

 
The temporal signal in the voxel with coordinates (38,-26,20) was also 

observed (Figure 8). The ideal hemodynamic signal for the voxel was plot along 

with the data after each filtering method or unfiltered. As it can be appreciated, the 

signal restored with the NL-Means method was similar to the ideal expected hrf in 
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the specific voxel, while it was not so well appreciated in the other filtering 

methods.  
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Figure 8. Restored and unfiltered fMRI signal in the voxel with MNI coordinates 
(40,-26,20). Haemodynamic filtered signal (blue) and ideal response (magenta, 
thick line) for (a) the original unfiltered fMRI, (b) the Gaussian kernel filtered, (c) the 
Adaptive Bilateral filtered and (d) the NL-Means filtered fMRI data, respectively, are 
shown. T value corresponding to the mentioned voxel is also shown for each 
method. 
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DISCUSSION 
 
According to our results and to some recent studies (Coupé et al, 2007; 

Manjon et al, 2008; Wiest-Daesslé et al, 2007), NL-Means has shown to be an 

excellent filter for MRI denoising. Filtering with NL-Means provided enhanced 

activation localization without mixing intensities in the edges of structures nor in the 

edges of functional patterns, especially preserving brain activation in areas of 

bordering sharp transitions (see Figure 5). To the best of our knowledge, this is the 

first time that the NL-Means filter has been proposed for fMRI data restoration. 

 

While the Gaussian Filter has been the selected choice in many fMRI 

research and clinical studies because it enhances fSNR at the expense of very low 

computational cost, it also generates false positives outside of the brain and in the 

interfaces between tissues. The Adaptive Bilateral method, recently adapted to 

fMRI filtering, is more respectful with the data than the Gaussian kernel method. 

However, it is effectively non-linear, and it does not recover the fMRI signal near 

the edges of anatomical structures. Besides, its performance decreases rapidly as 

the noise levels increases due to the low robustness of its similarity function (point 

based instead of region based). Other filtering methods introduce complex 

frameworks that make the data and the noise interact in a way that is not exactly 

understood. 

 

NL-means filtering denoises the fMRI data before the statistical decision 

process, respecting the structure of the noise. Thus, it is a different approach to 

that of modelling the noise inside the statistical decision-on-activation process. 

Advantages and drawbacks can be attributed to both approaches. The main 

advantage that statistical model-independent filtering methods have is that different 

statistical and exploratory techniques can be applied on the data after filtering. 

 

Some drawbacks to the NL-Means filter should be finally mentioned. 

Firstly, as the method does not transform the data, not-normally or coloured-noise 

distributed noise will remain coloured. Therefore, the Random Field Theory (RFT) 

could not be applied to images filtered by NL-Means. RFT lets us define a 
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threshold less conservative than Bonferroni. The validity of this thresholding 

method, under normal data distribution assumptions, is assured (Worsely, 1992; 

Worsley, 1996). However, we believe that the application of non parametric 

statistical methods is the natural choice when feasible. Other fMRI activation 

statistical or exploratory procedures could also be explored with fMRI data that had 

been filtered by NL-means, such as the ones based on advanced spatial 

normalization: Freesurfer (Athinoula A. Martinos Center, Massachusetts General 

Hospital, Massachusetts, USA), Caret (Van Essen Lab, Washington University in 

St. Louis, St. Louis, USA), etc. 

 

Secondly, another known drawback to the method is the computational 

burden associated to this filter. There have been approaches to reduce the time 

used by NL-Means, such as Coupé et al, 2007, by blockwise processing and 

multithreading / multicore approaches. Time could also be highly reduced by the 

use of a Graphics Processing Unit (GPU) or GRID (Blanquer et al, 2006) 

technologies, due to the possibility of decomposing the data filtering and due to the 

parallel processing characteristics of the GPUs and GRID. 

 

 In contrast with the two mentioned drawbacks, fSNR is improved by NL-

Means fMRI filtering while sensitivity and specificity in detecting activated voxels 

are enhanced by means of this filtering method. These two properties make the 

NL-Means filter interesting for clinical fMRI data processing, as it has the ability to 

detect fMRI signal in “difficult” areas (see Figure 7). Areas of activation in the 

interface between gray matter, white matter and / or CSF could pass undetected 

with other filtering methods. We found an activation area that could not be detected 

with the rest of the filtering methods. Areas of activation near tumours and 

malformations will more likely be detected with NL-Means too, as they also 

represent an interface between tissues. 
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Conclusion 
 
We have demonstrated the ability of NL-means filter to reduce the noise 

and enhance the localization of the activation areas. It has also been shown that a 

better specificity and sensitivity in the localization of activated voxels is obtained 

with the application of the NL-Means filter. These properties make the filter a 

directly applicable tool for fMRI pre-processing. 

 

The main future optimization for fMRI of the NL-Means method should be 

the 4D implementation of the algorithm; this will require the application of parallel 

techniques and the use of technologies such as GPU processing (Novotny et al, 

2007). 
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6.b. – Addendum 
 

As the manuscript is the main part of this chapter, some errors that have 

been found are transcripted here. The manuscript was not modified, as it is the one 

that has been already published. Changes are presented in blue colour. Pages are 

referred here in the thesis document, as the paper is still in the revision stage. 

 

p.83 Introduction. fMRI as an aid to tumour resection is introduced but the 

focus of the paper is schizophrenia. This was not clearly explained in the 

manuscript. This will be changed in the final manuscript, which will start with: 

 

The application of the fMRI technique is becoming wider 

everyday. Its ability to detect changes in function in the healthy 

and unhealthy brain makes this non-invasive technique suitable to 

study brain activity in-vivo. Even though this paper centres on the 

application of NL-Means to a better localization of activation areas 

in schizophrenia fMRI, the application of fMRI as a clinical test of 

functional localization in tumour resection clearly shows the 

advances of fMRI during the last years. The developed method could 

also clearly aid in these cases. 

 

 

p.86 Equation (3) should read: 
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p.88 Equation (8) should read: 

 

2
)()(),(

Rsimqpqp NNGNNd −= ρ  (8) 

 

Before it read: G(ρ)p-q instead of G(ρ). The Gaussian kernel G(ρ) is a fixed 

kernel that gives more weight to central voxels in the neighbourhoods being 

compared than the weight given to voxels away of the center of the 

neighbourhoods. 

 

p.90. Parameter settings. σ could have been stated in units of mm as 

voxels are anisotropic: 

Optimum parameters were selected for each filtering method. 

That is, for Gaussian kernel filtering, FWHM was set to 3 voxels in 

each axis, an extent similar to that in the shapes in the activation 

mask (σ was 1.274 voxels in each axis, i.e. 4.16598 x 2.19128 mm); 

 

p.91 Parameters are restated in mm units: 

The Gaussian Filter was applied with FWHM = 6 x 6 x 6 mm. The 

Adaptive Bilateral filter was applied with S = 7 x 7 x 7 voxels, 

i.e. 22.89 x 12.04 x 35 mm, and FWHM = 6 x 6 x 6 mm.  

Finally the NL-Means filter was applied with parameters: S = 

7 x 7 x 7 voxels (22.89 mm x 12.04 mm x 14 s), Rsim = 1 x 1 x 1 

voxels (3.27 mm x 1.72 mm x 2 s) and h = nσ2 , where nσ was the 

estimated standard deviation of noise. 
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6.c. - Supplementary results 
 

 NL-Means has shown to be a powerful, while respectful, filtering method. 

Clinical tests that have been conducted with fMRI data from the schizophrenia 

research project with the NL-Means method were presented in the manuscript. In 

addition to those results, spatial smoothing filtered and NL-Means filtered data is 

presented here for two schizophrenic patients and for a healthy subject. 

Preliminary results show that localization of activation to emotional semantic 

auditory stimulation is closer to gyral anatomy in the case of NL-Means filtering, 

supporting the results presented in the manuscript. By the other side, results lead 

us to the conclusion that the specific localization of activation areas after the 

application of NL-Means will pose inter-subject analysis challenges. Activation 

clusters follow better the shapes of the gyri with respect to spatial smoothing, while 

maintaining the detectability of the signal. Those results are shown bellow, in 

Figures 22 to 24, in addition to the clinical data results shown in the submitted 

manuscript. The axial slices in Figure 22 and Figure 23 demonstrate a better 

localization power in NL-Means, specially shown by the shapes of the clusters of 

activation that follow naturally the sulcal anatomy.  
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Figure 22. Schizophrenic patient with auditory hallucinations. Activation areas 

estimation is shown when a) Spatial smoothing and b) NL-Means methods have 

been applied. Red circles show activation areas that, in the case of the NL-Means, 

follow gyral structures more accurately than Spatial smoothing. 

 

 
Figure 23. Healthy subject. Activation estimated areas overlaid on two axial slices. 

Red circles show the recovery of the activation areas with spatial smoothing and 

NL-Means. Gray circles highlight a difference in activation localization after spatial 

smoothing (outside the brain) and NL-Means (in the border of the brain). 

 

a) Smoothing 

b) NL-Means 

a) Smoothing b) NL-Means 
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 A cluster of activation is shown in Figure 24 in saggital, coronal and axial 

planes. Better localization and higher contrast estimation is obtained by means of 

the NL-Means method. However, localization enhancements pose new problems to 

inter-subject statistical analyses. Basically, two are the main difficulties that should 

be faced in order to perform group statistics over NL-Means filtered data: 

- Inter-subject anatomical differences. 

- Inter-subject functional localization differences. 

 

 Both problems are avoided when smoothing is applied by spatially blurring 

the data, at the expense of a loss in resolution. As an example, the Heschl’s Gyrus 

(HG) is a structure transverse to the Superior Temporal Lobe. Even though HG is 

described as the functional center of the Primary Auditory Cortex, its shape is 

highly variable between healthy subjects. Furthermore, the HG bifurcates into more 

than one gyrus in many healthy subjects (Devlin, Poldrack, 2007). Localization of 

the primary auditory function is also variable inside the gyrus between subjects, 

even though restricted to its posterior-medial part (Liegeois-Chauvel et al, 1991). 

Thus, the application of group analyses to NL-Means filtered fMRI data should be 

carefully studied and methods for these analyses should be proposed, that are the 

future research guidelines presented in the following chapter. 
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Figure 24. Schizophrenic subject, saggital, coronal and axial views, respectively. 

Estimated activation areas overlaid on the subject’s anatomical MR images, after 

a) Spatial smoothing and b) NL-Means. Blue crosshairs show the localization of 

one single voxel. NL-Means detected the narrow (see axial slice) activation while 

Spatial smoothing would mask the activation in the location of the voxel. 

a) Smoothing 

b) NL-Means 
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 7.  Concluding remarks and future 
research direction 

 

"A man paints with his brains and not with his hands" – Michelangelo 

Buonarroti (1475 - 1564) 

 

7.a. – Compilation of results 
 

Chapter 3 to Chapter 6 show results from the PhD thesis separately. This 

section presents a compendium of the results obtained in the thesis. 

 

1. Data analysis was applied to the fMRI data obtained with the emotional / non-

emotional semantic auditory paradigm, in ten healthy control subjects. 

 

1.1. Clear differentiation was observed in the group activation maps depending 

on the type of stimulus applied (emotional or non-emotional) in the 

intensity of activation (right and left temporal cortex), with higher intensity 

for the activation due to emotional content (see Figure 25). 

 

1.2. In the same sample of subjects, the activation of specific areas (right 

precentral and supramarginal gyri; see Figure 25) was only present with 

the emotional stimuli, when the emotional semantic auditory paradigm 

was applied, but it was not present when the applied stimuli were non-

emotional. 

 

2. The same emotional / non-emotional semantic auditory paradigm was applied 

to evaluate cerebral activation by means of fMRI in 11 patients with 

schizophrenia with persistent hallucinations and 10 healthy subjects.  
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2.1. Non-emotional-words-against-rest-baseline patients' group map did not 

show any activation with the common threshold applied (corrected 

P<0.05) when non-emotional words were presented. After application of a 

less stringent P value (P<0.001) in order to see activation trends, main 

areas involved were left middle and left superior temporal gyrus, middle 

cingulate gyrus and left inferior frontal gyrus at the orbital part (see Figure 

26). 

 

2.2. When patients were presented emotional content stimuli, activation 

survived the P<0.05 corrected threshold and was greater both in extent 

and in estimated intensity. Middle left temporal gyrus was the main 

involved area. Other areas included right superior temporal gyrus, left and 

right insula, right median cingulate, right and left posterior cingulate, right 

amygdala, right and left middle frontal cortex at the orbital part, right 

inferior frontal cortex at the orbital area, and superior medial cortex. 

 

2.3. Differences in activation in control subjects (see 1) were less marked than 

those in schizophrenic patients (2.1 and 2.2). 

 

3. In a larger sample of 21 auditory hallucinating schizophrenic patients and 10 

healthy paired subjects, differences in activation between healthy subjects and 

schizophrenic patients, and between non-emotional and emotional content, 

were estimated and encoded in a parametric map (fMRI map). Gray matter 

density decrement was also assessed comparing gray matter density between 

healthy and schizophrenic subjects (VBM map). 

 

3.1. The fMRI map included right temporal middle, left temporal middle, right 

superior temporal and Heschl, right superomedial frontal, right angular, 

right posterior cingulum, left middle cingulum, and right thalamus. 

 

3.2. The VBM map included left insula, right lingual, left postcentral, right 

precuneus, right insula, right superomedial frontal, left lingual and left 

middle temporal. 
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3.3. All areas that appeared in the fMRI map and in the VBM map were 

reported. Large coinciding brain clusters in the fMRI map and in the VBM 

gray matter decreases maps (P < 0.005) were found in the left and right 

middle temporal and superior temporal gyri. Smaller coinciding clusters 

were found in the left posterior and right anterior cingular gyri, left inferior 

frontal gyrus, and middle occipital gyrus (see Figure 27). 

 

4. NL-Means method, which was evaluated in synthetic and clinical data, 

enhanced the fMRI signal, by decreasing the noise level, without introducing 

noticeable blurring effects, as demonstrated by its better specificity and 

sensitivity in detecting activated voxels, especially of brain activation in areas 

of bordering sharp transitions, compared to the Gaussian Filter and the 

Adaptive Bilateral Filter. 

 

 
Figure 25. Brain rendering with functional brain areas delineated (coronal, axial 
and sagittal planes). Areas in 7.a.1 appear marked with dotted circles. Temporal 
cortex, red circle (Superior: orange; Middle: dark purple; Inferior: bright purple). 
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Precentral gyrus, blue circle (blue colour; marked in axial and sagittal views). 
Supramarginal gyrus, black circle (black color; marked in axial and sagittal views). 
 
 

 
Figure 26. Brain rendering with functional brain areas delineated (coronal, axial, 
sagittal and sagittal-with-cutout planes). Areas in 7.a.2 section appear marked with 
dotted circles. Superior temporal gyrus, red circle (area with orange colour). Middle 
cingulate gyrus, blue circle (navy blue colour area). Inferior frontal orbital gyrus, 
black circle (golden colour area). 
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Figure 27. Brain rendering with functional brain areas delineated (coronal, axial, 
sagittal and sagittal-with-cutout planes). Areas in 7.a.3.3 section appear marked 
with dotted circles. Superior and middle temporal gyrus, red circle (areas with 
orange and dark purple colour, respectively). Inferior frontal gyrus, orange circle 
(opercular, triangular and orbital correspond to black, light yellow and golden 
colours, respectively). Middle occipital gyrus, green dotted circle (black colour 
area). Cingulate areas are shown marked with black (posterior) and blue (anterior) 
dotted circles. 
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7.b. – Conclusion 
 

The main outcomes from this thesis let us conclude: 

 

- Length and temporal distribution of the stimuli in the fMRI 

paradigm have been optimized to observe auditory semantic 

emotional processing in the schizophrenia research project. 

 

- The fMRI paradigm was successfully applied to a) healthy 

subjects, b) schizophrenic patients with auditory hallucinations 

and c) schizophrenic patients without auditory hallucinations. The 

processing in each subject’s fMRI data, including fMRI data 

quality assurance, pre-processing and individual statistical 

analysis, let us perform group statistical tests that led us to find 

differences between groups of subjects a), b) and c). 

 

- Areas of activation for auditory semantic emotional processing 

were detected for each one of the three groups in a Random 

Effects fashion. Thus, the results are extensible to the 

populations respective of each group of subjects that have been 

analyzed. 

 

- Coincidence maps showing gray matter density decreases and 

activation differences (emotional compared to non-emotional) in 

auditory hallucinating schizophrenic patients and in healthy 

subjects were obtained. Areas with both a decrease in gray 

matter density in schizophrenic patients and functional 

differences were obtained. The detected areas show differences 

between healthy subjects and schizophrenic patients. Eight 

areas were detected to be different both by means of VBM and 

fMRI. Those areas may be of relevant interest in the study of 

schizophrenia. 
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- A new filtering method has been proposed for fMRI data filtering. 

Its main advantage is that it is respectful with the noise 

distribution present in the data and it obtains better signal 

recovery properties than nowadays commonly used filtering 

methods. The NL-Means filter has proved to decrease the noise 

level without suffering noticeable blurring effects, as 

demonstrated by its high specificity and sensitivity in detecting 

activated voxels, especially in bordering sharp transitions of brain 

activation areas. 
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7.b. - Future research direction 
 

The future work will be centred on the following topics: 

 

- Genetic and fMRI data crossing for the schizophrenia research 

project. Genetic characterization in a subject is known to mark 

his predisposition to schizophrenia illness. Studies about 

interaction of schizophrenia symptoms and genetic 

characteristics are a future research direction that has been 

already started (see Publications section). The union between 

genomics and biomedical imaging has been called imaging 

genomics by Hariri and Weinberger, and it is a very promising 

research field. 

 

- Further analyses with schizophrenia fMRI data. The three 

groups, a) healthy subjects, b) schizophrenic patients with 

auditory hallucinations and c) schizophrenic patients without 

auditory hallucinations, will be submitted to analyses of 

differences of activation between them that could explain the 

relation of inclination to auditory hallucinations and differential 

auditory semantic emotion processing. 

 

- The NL-Means filtering method will be further developed by: 

o Increasing its speed by means of parallel GPU programming 

o Studying the advantages of the NL-Means method in multi-

subject fMRI analyses. Studying other kinds of spatial 

normalization (e.g. surface-based models) that could preserve 

the resolution in study groups, such as Freesurfer, ANIMAL, 

CARET, etc. 

 

- Exploration of multitechnique data, acquired in the schizophrenia 

research project. Diffusion, fMRI, Magnetic Transfer, structural 
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images and MR spectroscopy from the same subjects are 

currently present and pose a challenge for conjoint studies. 
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 Annex i.  Abbreviations 
 

Abbreviations  
3D Three-dimensional 
AH Auditory Hallucinations 
BOLD Blood Oxygen Level Dependent 
BPRS Brief Psychiatric Rating Scale 
DSM-IV Diagnostic and Statistical Manual of Mental Disorders – Volume IV 
EEG Electroencelography 
EM Expectation Maximization 
EPI Echo Planar Imaging 
FDR False Discovery Rate 
FLD Fisher’s Linear Discriminant 
fMRI  functional Magnetic Resonance Imaging 
fSNR functional SNR 
GAS Global Assessment Scale 
GPU Graphical Processing Unit 
hrf hemodynamic response function 
HG Heschl’s Gyrus 
ML Maximum Likelihood estimation 
MNI Montreal Neurological Institute 
MNI152 Montreal Neurological Institute brain template 
MPFC Medial Prefrontal Cortex 
MRI  Magnetic Resonance Imaging 
NL-Means Non-Local Means 
PANSS Positive and Negative Syndrome Scale 
PC Principal Component 
PCA Principal Component Analysis 
PET Positron Emission Tomography 
PSYRATS Psychotic Symptom Rating Scale 
ReML Restricted Maximum Likelihood estimation 
RFT Random Field Theory 
RMSE Root Mean Square Error 
ROI Region of Interest 
SD Standard Deviation 
SDD Standard Deviation of the Difference 
SNR Signal-to-Noise Ratio 
SPECT Single Photon Emission Computed Tomography 
SPM Statistical Parametric Map 
VBM Voxel-based morphometry 
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Peer reviewed journal publications 
García-Martí, G, Aguilar, EJ, Lull, JJ, Martí-Bonmatí, L, Escartí, María J, 

Manjón, JV, Moratal, D, Robles, M, Sanjuán, J. “Schizophrenia with auditory 
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International congress contributions 
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