
2014, pages 1–3
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btu553

Sequence analysis Advance Access publication August 20, 2014

Acceleration of short and long DNA read mapping without loss

of accuracy using suffix array
Joaqu�ın T�arraga1,2, Vicente Arnau3, H�ector Mart�ınez4, Raul Moreno5, Diego Cazorla5,
Jos�e Salavert-Torres6, Ignacio Blanquer-Espert6,7, Joaqu�ın Dopazo1,2,8,* and
Ignacio Medina1,*,y

1Department of Computational Genomics, Centro de Investigaci �on Pr�ıncipe Felipe (CIPF), 2Functional Genomics Node,
(INB) at CIPF 46012, 3Departamento de Inform�atica, Universidad de Valencia, 46100 Valencia, 4Departamento de
Ingenier�ıa y Ciencia de Computadores, Universitat Jaume I, 12071 Castell �on de la Plana, 5Instituto de Investigaci�on en
Inform�atica de Albacete, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, 6Universitat
Politècnica de València, Instituto de Instrumentaci �on para Imagen Molecular, 46022 Valencia, 7Grupo de Investigaci �on
Biom�edica de Imagen (GIBI 2^30), La Fe Polytechnic University Hospital, 46022 Valencia and 8Bioinformatics of Rare
Diseases (BIER), CIBER de Enfermedades Raras (CIBERER), Valencia, Spain

Associate Editor: Inanc Birol

ABSTRACT

HPG Aligner applies suffix arrays for DNA read mapping. This imple-

mentation produces a highly sensitive and extremely fast mapping of

DNA reads that scales up almost linearly with read length. The ap-

proach presented here is faster (over 20� for long reads) and more

sensitive (over 98% in a wide range of read lengths) than the current

state-of-the-art mappers. HPG Aligner is not only an optimal alterna-

tive for current sequencers but also the only solution available to cope

with longer reads and growing throughputs produced by forthcoming

sequencing technologies.

Availability and implementation: https://github.com/opencb/hpg-

aligner.

Contact: jdopazo@cipf.es or imedina@ebi.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on April 1, 2014; revised on July 29, 2014; accepted on

August 12, 2014

1 INTRODUCTION

Among the many applications of the high-throughput sequen-

cing (HTS) technologies, DNA resequencing is probably the

most extensively used because of its important clinical implica-

tions (Biesecker, 2010). The most time-consuming step in HTS

data processing is the mapping process, for which many tools are

already available (Fonseca et al., 2012). However, while accuracy

of short reads mapping process is quite reasonable, speed still

remains to be an issue. And, moreover, given the way in which

available mappers implement current state-of-the-art mapping

algorithms, such as Burroughs-Wheeler Transform, accuracy

usually falls down as read length increases because of the accu-

mulation of errors. Therefore, there is an obvious need of new

approaches that overcome these current and future problems,

given that the trend in HTS technologies is to increase read

length and throughput (Watson, 2014). Suffix array (SA) has

recently started to be applied to accelerate DNA (Bussotti

et al., 2011; Chen et al., 2013) or RNA (Dobin et al., 2013)

read mapping. Here, we propose an approach, based on SA

(Mamber and Myers, 1993), that enormously increases the map-

ping speed without sacrificing accuracy for an ample range of

read lengths.

2 METHODS

Our approach combines the performance of uncompressed SAs with the

sensitivity of the Smith-Waterman (SW) algorithm (Smith and

Waterman, 1981). SAs are data structures designed for efficient searching

within a large text. Each suffix is a string starting at a certain position in

the large text and ending at the end of the text. Searching within a text

can be performed by binary search using the SA. Applying SA in DNA

mapping, the large text is the reference genome, and the query text is the

read sequence. This approach achieves an ultrafast read mapping, even in

noisy scenarios with high numbers of mismatches and indels. Our map-

ping strategy (Fig. 1) consists of three major steps. Firstly, in the seed

searching step the reads are split into a number of seeds distributed uni-

formly along the read (Supplementary Fig. S1A). HPG Aligner uses an

uncompressed SA to map each of these seeds into the reference genome

(Supplementary Fig. S1B). To speed up the binary search in SA, the

program implements a pre-indexing strategy with a prefix table that con-

tains all possible prefixes of length 18 (user-defined parameter). The

number of all possible prefixes of length 18 exceeds by far the memory

of current computers. To save memory, a compressed row storage has

been implemented, where only existing prefixes are stored efficiently. For

the human genome, 510GB of memory is needed. This allows HPG

Aligner to use longer prefixes to speed up searches. Secondly, in the

seed extension and clustering step (Supplementary Fig. S1C), each

mapped seed is extended in both forward and reverse directions of the

read until reaching a maximum number of mismatches. Clusters of the

extended seeds define the candidate alignment locations (CALs), i.e. re-

gions that correspond to highly probable mappings of a read. CALs are

formed by extended seeds within a given range of distance and longer

than a threshold. Only the best CALs (that better cover the read) are

*To whom correspondence should be addressed.
yPresent address: European Bioinformatics Institute (EMBL-EBI),
European Molecular Biology Laboratory, Wellcome Trust Genome
Campus, Hinxton, Cambridge CB10 1SD, UK.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

 Bioinformatics Advance Access published September 1, 2014
 at U

PV
A

 on Septem
ber 12, 2014

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

https://github.com/opencb/hpg-aligner
https://github.com/opencb/hpg-aligner
mailto:jdopazo@cipf.es
mailto:imedina@ebi.ac.uk
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu553/-/DC1
their 
t
 mapping algorithms
 (BWT)
,
ve
suffix array (
)
suffix array
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu553/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu553/-/DC1
-
In order 
 (CSR)
less than 
are 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu553/-/DC1
,
,
which 
XPath error Undefined namespace prefix
http://bioinformatics.oxfordjournals.org/


selected for the next step. Finally, in the mapping completion step, a

high-performance computing (HPC) implementation of SW attempts to

fill all the gaps left in the previous step (Supplementary Fig. S1D). This

implementation exploits the multiple cores of the CPUs and, within them,

the Streaming SIMD Extensions (SSE) registers to achieve two levels of

parallelization: (i) inter-core parallelization, by distributing batches of

pairs of query sequence and reference gap sequence to be aligned

among multiple cores/threads in the processor, and (ii) intra-core paral-

lelization (Rognes and Seeberg, 2000), by processing a batch of sequence

pairs using the SSE registers within a core. The use of SSE 4.2 instruc-

tions allows processing simultaneously up to four sequence alignments

within each single core. Once gaps in a CAL are mapped, a score for that

CAL based on user-defined penalties for mismatches and indels is

calculated.

3 RESULTS

We have compared the proposed aligner to the most extensively

used DNA-seq mappers, BWA 0.7.5a MEM (Li, 2013) and
Bowtie 2 2.1.0 (Langmead and Salzberg, 2012). Benchmarks

were performed in a high-end machine with two hexa-core
Intel Xeon E5645 2.40GHz CPUs and 48GB of memory. All

executions were done using the 12 cores available and memory
use was monitored. HPG Aligner showed a memory peak of
32GB.

3.1 Simulated data

The program dwgsim 0.1.10 from the SAMtools (http://source

forge.net/apps/mediawiki/dnaa/index.php?title=Whole_Genome_
Simulation) was used to simulate single-end reads from the human

genome (Ensembl73 built upon GRCh37). The program dwgsim
was run in ‘Illumina’ mode to generate datasets with 40 million

reads of lengths of 100, 150, 400, 800, 2000 and 5000bp. We
generated a high-quality dataset containing 0.1% of mutations
(option ‘-r 0.001’) and a second dataset with higher proportion of

mutations (1% per read with option ‘-r 0.01’). In both

configurations, 10% of these mutations were indels (option ‘-R

0.1’), and 30% of these indels are extended with option–X 0.30’.

In addition to the mutation rate, dwgsim reproduces errors of the

sequencer [-e FLOATper base/color/flow error rate of the first read

(from 0.020 to 0.020 by 0.000)]. Finally, the maximum of N’s was

set to 2 (option ‘-n 2’).
Table 1 shows a comparative of HPG Aligner with BWA

MEM and Bowtie 2. Reads are considered correctly mapped if

chromosome, strand and position (�5bp) are coincident with the

mapping coordinates, otherwise is incorrectly mapped. While

percentages of correctly mapped reads were quite similar, HPG

Aligner runtimes were significantly lower than BWAMEM ones,

especially when read length increases, arriving to 18� for

long reads (5000bp). Bowtie 2 runtimes were even slower and

the program was unable to end the mapping of reads

over 800 bp. Despite other programs have been optimized for

speed, like bowtie3 (Liu et al., 2012) or Isaac (Raczy et al.,

2013), they can only deal with low error reads. Percentages

of unmapped reads and incorrectly mapped reads are low for

all the programs (Supplementary Table S1). The results were

similar for the equivalent pair-end benchmark (Supplementary

Table S2).

Additionally, the effect of indels was studied in other

simulated datasets containing gaps of increasing size (minimum

gap size of: 5, 7, 10 and 20bp) for increasingly longer reads (100,

150, 400 and 800bp). In the most difficult scenario (reads 800 bp

long with gaps of �20bp), runtimes of HPG Aligner and

BWA MEM are comparable; however, HPG Aligner

sensitivity is clearly higher (80.12% versus 63.73%). General per-

formance of Bowtie 2 is comparatively poorer (Supplementary

Table S3).

3.2 Real datasets

We have tested the aligners in a real scenario: Drosophila gen-

omic sequences obtained using the PacBio technology, with� 1

million long reads (Supplementary Table S4). With long reads,

programs often report unrealistic alignments in which only a few

tens of nucleotides were aligned while thousands were annotated

as deletions. Therefore, here we consider a read correctly mapped

when the mapping covers a minimum of 80% of its length. HPG

Aligner was capable of mapping 93.21% of the reads, which,

after removing reads below the minimal accepted covering

threshold, constituted an effective 92.95% of correctly mapped

reads. BWA MEM initially mapped 99.95% of the reads.

However, when poorly covered reads were excluded, the effective

mapping was only of 90.22%. Moreover, while HPG Aligner

completed the mapping in only 27.51min, BWA MEM required

130.34min. This constitutes almost 5� speed-up in a real dataset,

with improved alignment. Bowtie 2 could not finish the mapping,

reporting systematically an out of memory error (signal 9 kill).

BLASR (Chaisson and Tesler, 2012) did a good job at mapping

(99.81%) but with extremely long runtime (342min). For short

read lengths, we have used a dataset of 32.7 million reads, 100 bp

long, from the 1000 genomes. The relative runtimes for this

length are similar to what is described in Table 1 (1.5�: HPG

Aligner 14min versus BWA MEM 21min), as well as the map-

pings (96.30% HPG Aligner versus 97.13% BWA MEM, see

Supplementary Table S4).

Table 1. Benchmark results comparing HPGAligner to BWAMEM and

Bowtie 2

RL MR (%) HPG Aligner BWA MEM Bowtie 2

CM Time CM Time CM Time

100 0.1 98.77 20.57 96.99 29.34 94.67 29.40

1 98.22 19.66 96.65 33.34 92.98 29.15

2 97.45 17.46 96.11 37.62 90.52 29.04

150 0.1 99.54 22.90 98.09 43.35 96.71 47.61

1 99.29 22.09 97.96 49.12 95.93 46.50

2 98.96 18.13 97.72 54.03 94.73 46.36

400 0.1 99.93 31.35 99.12 124.16 98.82 209.26

1 99.78 30.49 99.06 142.81 98.71 221.92

2 99.58 26.30 98.95 157.65 98.56 200.11

800 0.1 99.95 35.57 99.42 279.54 99.29 4604.90

1 99.74 35.00 99.38 312.55 99.24 2750.26

2 99.47 34.70 99.28 340.46 99.18 2894.38

Notes: Percentages of correct mapping (CM) and runtimes in min (Time) are dis-

played for different read length in base pairs (RL) and percentages of mutation rate

[MR(%)]. For RLs,4800bp Bowtie2 was unable to finish in 3 days.

2

J.T �arraga et al.

 at U
PV

A
 on Septem

ber 12, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu553/-/DC1
a
b
http://sourceforge.net/apps/mediawiki/dnaa/index.php?title=Whole_Genome_Simulation
http://sourceforge.net/apps/mediawiki/dnaa/index.php?title=Whole_Genome_Simulation
http://sourceforge.net/apps/mediawiki/dnaa/index.php?title=Whole_Genome_Simulation
http://sourceforge.net/apps/mediawiki/dnaa/index.php?title=Whole_Genome_Simulation
base pairs (
s)
-
(
[
]
+/-
s
x
s
s
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu553/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu553/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu553/-/DC1
s
s
s
s
vs 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu553/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu553/-/DC1
about 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu553/-/DC1
utes
utes
x
very 
utes
x
utes
vs 
utes
vs 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu553/-/DC1
http://bioinformatics.oxfordjournals.org/


3.3 Other technical advantages

HPG Aligner has additional advantages. The program can dir-

ectly read the FASTQ file gzipped, saving in this way both disk
space and the time required for the decompression. In addition,
users can specify several FASTQ files in a single command line.
The mappings of each FASTQ file are concatenated in a single

output file. By default, the output file is saved in the SAM
format, but HPG Aligner can directly generate a BAM format
file by using the option ‘- -bam-format’, saving the step of SAM

to BAM conversion. HPG Aligner also performs an indel re-
alignment of mappings with the option ‘- -realignment’, and a
base quality score recalibration with the option ‘- -recalibration’.

HPC implementations of GATK recalibrator and indel realign-
ment algorithms (McKenna et al., 2010) have been included in
HPG Aligner (see an example in Supplementary Fig. S2).

3.4 Program availability

Source code and development process has been opened to the
community and released in GitHub at https://github.com/
opencb/hpg-aligner. Contributions to HPG Aligner are welcome.

Documentation and software are available at http://wiki.opencb.
org/projects/hpg/doku.php?id=aligner:overview.

Funding: This work is supported by BIO2011-27069 and PRI-

PIBIN-2011-1289 (Spanish Ministry of Economy and
Competitiveness), the HPC4G initiative (http://www.hpc4g.org)
and the Bull-CIPF Chair for Computational Genomics.

Conflict of interest: none declared.

REFERENCES

Biesecker,L.G. (2010) Exome sequencing makes medical genomics a reality. Nat.

Genet., 42, 13–14.

Bussotti,G. et al. (2011) BlastR—fast and accurate database searches for non-

coding RNAs. Nucleic Acids Res., 39, 6886–6895.

Chaisson,M.J. and Tesler,G. (2012) Mapping single molecule sequencing reads

using basic local alignment with successive refinement (BLASR): application

and theory. BMC Bioinformatics, 13, 238.

Chen,Y. et al. (2013) CGAP-align: a high performance DNA short read alignment

tool. PLoS One, 8, e61033.

Dobin,A. et al. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics,

29, 15–21.

Fonseca,N.A. et al. (2012) Tools for mapping high-throughput sequencing data.

Bioinformatics, 28, 3169–3177.

Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with Bowtie 2.

Nat. Methods, 9, 357–359.

Li,H. (2013) Aligning sequence reads, clone sequences and assembly contigs with

BWA-MEM. arXiv, 1303.3997.

Liu,C.M. et al. (2012) SOAP3: ultra-fast GPU-based parallel alignment tool for

short reads. Bioinformatics, 28, 878–879.

Mamber,U. and Myers,G. (1993) Suffix arrays: a new method for on-line string

searches. SIAM J. Comput., 22, 935–948.

McKenna,A. et al. (2010) The genome analysis toolkit: a mapreduce framework

for analyzing next-generation DNA sequencing data. Genome Res., 20,

1297–1303.

Raczy,C. et al. (2013) Isaac: ultra-fast whole-genome secondary analysis on Illumina

sequencing platforms. Bioinformatics, 29, 2041–2043.

Rognes,T. and Seeberg,E. (2000) Six-fold speed-up of Smith-Waterman sequence

database searches using parallel processing on common microprocessors.

Bioinformatics, 16, 699–706.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular subse-

quences. J. Mol. Biol., 147, 195–197.

Watson,M. (2014) Illuminating the future of DNA sequencing. Genome Biol., 15,

108.

3

Acceleration of short and long DNA read mapping

 at U
PV

A
 on Septem

ber 12, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

,
.
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu553/-/DC1
https://github.com/opencb/hpg-aligner
https://github.com/opencb/hpg-aligner
http://wiki.opencb.org/projects/hpg/doku.php?id=aligner:overview
http://wiki.opencb.org/projects/hpg/doku.php?id=aligner:overview
http://wiki.opencb.org/projects/hpg/doku.php?id=aligner:overview
grants 
(
)
http://www.hpc4g.org
http://bioinformatics.oxfordjournals.org/

