
Research Article
GRCBox: Extending Smartphone Connectivity in
Vehicular Networks

Sergio M. Tornell, Subhadeep Patra, Carlos T. Calafate,
Juan-Carlos Cano, and Pietro Manzoni

Departamento de Informática de Sistemas y Computadores, Universitat Politècnica de València, Camino de Vera S/N,
46022 Valencia, Spain

Correspondence should be addressed to Sergio M. Tornell; sermarto@upv.es

Received 7 August 2014; Accepted 24 October 2014

Academic Editor: Dongkyun Kim

Copyright © 2015 Sergio M. Tornell et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The low penetration of connectivity-enabled OBUs is delaying the deployment of vehicular networks (VNs) and therefore the
development of vehicular delay tolerant network (VDTN) applications, among others. In this paper we present GRCBox, an
architecture based onRaspberryPi that allows integrating smartphones inVNs.GRCBox is based on a low-cost device that combines
several pieces of software to provide ad hoc and multi-interface connectivity to smartphones. Using GRCBox each application can
choose the interface for its data flows, which increases flexibility and will allow developers to easily implement applications based
on ad hoc connectivity, such as VDTN applications.

1. Introduction

Intelligent transportation systems (ITS) include a set of dif-
ferent technologies that aims at improving the efficiency and
security of transportation by combining vehicular networks
(VNs) and advanced logistics. VNs combine different com-
munication technologies such as cellular networks, vehicular
ad hoc networks (VANETs) [1], or 802.11 infrastructure net-
works to provide communication between vehicles (vehicle-
to-vehicle (V2V)) and between vehicle and road infrastruc-
ture (vehicle-to-infrastructure (V2I)). The core of VNs is the
802.11p standard [2], which modifies the 802.11a standard to
meet low delay requirements for safety applications.

Although this technology is ready for deployment, it is
expected that car manufacturers will introduce it gradually,
starting at high-level models, which, coupled with the low
renovation rate of the vehicle fleet, will slow down the
deployment of VNs. In addition, while dashboard-integrated
on board units (OBUs) become technologically obsolete after
a couple of years, they are usually not designed to be updated
or replaced during the whole life of the vehicle, which leads
to unsatisfied users.

Recently, part of the industry has realized these OBU
problems and proposed alternatives to integrated OBUs

based on smartphones. Thus, the car connectivity consor-
tium (CCC), which is formed by several automotive and
communication companies, released Mirrorlink [3], which is
a standard technology that connects the user’s smartphone
with the OBU, moving the computing tasks from the OBU to
the smartphone, displaying the information on the OBU dis-
play, and allowing the driver to interact with the smartphone
through the dashboard elements. Besides, this technology
enables users to follow the pace of technology throughout
the vehicle lifetime by updating their phone. Google and
Apple, two of the most important technology companies,
have also released their own proposals for smartphone-in-
vehicle integration, named Android Auto [4] and CarPlay
[5], respectively. While their solutions are technically similar
to MirrorLink, they have focused on the user interface,
improving its quality and design.

Although these smartphone-oriented proposals solve
some of the problems related to user interaction with
dashboard-integrated OBU, they are limited by the smart-
phone’s OS design. Smartphone OSs were not designed for
peer-to-peer (P2P) ad hoc communication, focusing solely on
Internet communication. Therefore, they lack of an Ad-hoc
communications interface, and applications always use the

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2015, Article ID 478064, 13 pages
http://dx.doi.org/10.1155/2015/478064

http://dx.doi.org/10.1155/2015/478064

2 International Journal of Distributed Sensor Networks

default Internet-connected interface without the possibility
of selecting another interface. Moreover, current smart-
phones cannot be extended by adding new communication
interfaces. This hardware and software issues limit the full
integration of smartphones in ITS.

In this paper we present the GRCBox architecture, which
allows users to enjoy sophisticated ITS solutions by using
their smartphones in current vehicles, avoiding the invest-
ment on expensive OBUs. In the GRCBox architecture, the
user interacts with the smartphone interface while the com-
munication is delegated to the GRCBox hardware module,
which is placed in the vehicle and has multiple network
interfaces, including ad hoc communication capabilities. The
GRCBox architecture includes both the GRCBox hardware
module and a set of libraries to allow application developers
to easily create compatible smartphone applications.With the
introduction of GRCBox we expect boosting the adoption of
ITS and that users realize their benefits, starting a virtuous
circle which leads to more applications and more services.

Ad hoc and multi-interface communication are a must
for vehicular delay tolerant network (VDTN) protocols,
since they rely onopportunistic contacts between nodes.
Without ad hoc communication, these contacts are limited to
infrastructure networks which are expected to be rare inVNs.
Our GRCBox will also enable smartphones to take part in the
VANETs created, thus empowering applications running on
smartphones.

The rest of this paper is organized as follows. In Section 2
we survey other proposals in the literature previously pre-
sented. In Section 3,wewill present theGRCBox architecture,
by describing its modules, while in Section 4 we will detail its
implementation. In Section 5, we evaluate the performance of
the GRCBox hardware module, detailing how it impacts the
performance of applications. Finally, Section 6 presents some
features that will be added to the GRCBox in the near future
and concludes this paper summarizing our contributions.

2. State of the Art

The works pertaining to testbed developments and imple-
mentation of vehicular networks that we have found can
be classified according to their chronology, the proposed
architecture, and the type of communication used or on the
basis of the characteristics being studied. In this section we
review the previous works chronologically.

The earliest works in real implementation and testing
of VANETs started in the early 2000 when Singh et al.
[6] presented one of the first works in this field. They
experimented with link quality throughput and connectivity
range.Their work involved just two vehicles with laptops and
WLAN communications; thus it was a single hop network.
Later, Wu et al. [7] and Hui and Mohapatra [8] used car
mounted laptops with 802.11b compatible wireless cards and
GPS receivers to study multihop communications in VANET
and TCP/UDP performance, respectively.

Thereafter, VANETs began to draw more attention from
the research community. In 2007 Jerbi et al. [9] studied the
communication characteristics like SNR, jitter, and packet
loss to evaluate the effect of the wireless channel and the

environment on deliveringmultimedia applications in highly
mobile networks. de la Fortelle et al. [10], on the other hand,
developed a local cooperative trafficmanagement system and
Lee et al. [11], during the same period, developed a testbed for
VANETs that was designed for testing an implementation of
the CarTorrent protocol [11].

A year later, Pinart et al., in their work named DRIVE
[12], presented a testbed that mainly consists of infras-
tructure element in the cars that would enable both V2V
and V2I communications. It also includes human machine
interfaces (HMIs) like a touch screen monitor for the GUI,
a microphone, several speakers for the voice HMI, and
a car area network- (CAN-) based HMI. Also, an open
research platform forVANETs called C-VeT [13, 14] came into
light in 2008 and was further improved in 2010. The C-Vet
networkwas formed of cars equippedwith industrial strength
Cappucino PC, GPS receiver, 802.11b/g MIMO wireless card,
and a radio modem. It was tested by monitoring the network,
file sharing using P2P, and video streaming applications.

Another example of a VANET testbed constructed using
real cars is [15]. The hardware used in [15] is an embed-
ded computer equipped with a mini-PCI 802.11 wireless
transceiver and a compact flash hard disk, in each of the three
cars used in the testbed. For sending and receiving of data, a
source or sink in the form of a laptop had to be connected to
these embedded computers used as mobile routers within the
cars. A couple of years later, in 2011, Paula et al. [16] developed
a real worldVDTN testbed thatwas designed and tested using
warning messages, and the test site was the Brazilian Fiat
Automobile manufacturing plant.

Recently with the rise in smartphone popularity, many
researchers have tried to investigate the integration of smart-
phones and vehicular networks [17]. Examples are works like
[18–20]. Vandenberghe et al. [18] studied the feasibility of
integrating smartphones with vehicular networks. In [19],
the authors concentrated on the rapid dissemination of
information among vehicles within the designated area. The
application described in [19] is to form an ad hoc network
using the WiFi available in smartphones and was tested on
iPhones. In a similar way, an Android application that creates
an ad hoc network to warn drivers of approaching emergency
vehicles using an intelligent message dissemination protocol
was proposed in [20].

Even though efforts have been made to integrate smart-
phones with vehicular networks, this integration will not
be possible unless smartphones are equipped with 802.11p
compatible hardware. Also, nowadays smartphones have
different operating systems and, therefore, the difficulty of
configuring them to create an ad hoc network depends on
the running operating system. To overcome these problems,
we have developed an architecture called GRCBox that
consists of a low-cost device placed in the vehicle which
provides V2X connectivity to associated smartphones. The
smartphones are provided with the flexibility to connect to
any of the networks supported by the GRCBox, including
ad hoc networks, and 802.11p when available. As far as we
know, the GRCBox architecture is the only proposal which
aims to completely integrate smartphones into VNs, while

International Journal of Distributed Sensor Networks 3

also allowing deploying VDTN applications based on peer-
to-peer neighbor discovery mechanisms.

3. GRCBox Architecture

The GRCBox architecture provides both a low-cost hard-
ware module with multiple network interfaces placed in the
vehicle and a software library based on a remote applica-
tion programming interface (API) to allow applications to
communicate with the different outer networks through it.
The GRCBox hardware module allows applications running
on the users’ smartphones to select which network interface
to use in a per connection basis, providing flexibility and
enabling developers to effectively implement new commu-
nication paradigms such as VDTN. The GRCBox also allow
developers to use the more suitable technology for their
applications; for example, they can use 3G or LTE when a
very stable connection is needed, theWiFi connectionwhen a
high throughput is required, or ad hoc communicationswhen
direct communication between vehicles, that is, without
infrastructure, is required.

In this section we present the GRCBox architecture.
First, we detail the different software components that run
in the GRCBox hardware module. Second, we introduce
the information exchanged between the GRCBox hardware
module and the applications. Finally, we enumerate the
features of the client library that allow developers to use the
services offered by the GRCBox hardware module.

3.1. GRCBox Hardware Module Components. The GRCBox
hardware module, which has to be placed into the vehicle,
must have at least one inner interface to which smartphones
are connected to, and at least two outer interfaces connected
to several networks such as a cellular network, a WiFi infras-
tructure network, or a WiFi ad hoc network. Figure 1 shows
a GRCBox with one inner interface and two outer interfaces
placed in a car. The GRCBox hardware module is composed
of several services which communicate with each other and
with the user. These services are the discovery service, the
routing and headers modification service, the multicast and
broadcast proxy service, the interfacemonitoring service, and
the core service. A scheme of their connections and the paths
traversed by data flows is presented in Figure 2.The functions
of each service are as follows.

3.1.1. Discovery Service. This service provides clients with a
mechanism to detect and connect to theGRCBox core service
without any previous knowledge.

3.1.2. Routing and Headers Modification Service. This service
forwards packets between inner and outer networks accord-
ing to connection rules defined by the applications. It also
modifies the packet header when necessary.

3.1.3. Multicast and Broadcast Proxy Service. Since the rout-
ing module is limited to unicast packets, a new service is
defined for broadcast and multicast packets. The multicast
and broadcast proxy service listens for multicast and broad-
cast packets on all the interfaces and forwards them between

Figure 1: A GRCBox hardware module formed by a RaspberryPi
and 3WiFi interfaces: one in access pointmode, one in stationmode,
and one in ad hoc mode.

Discovery
service

Core service

Iface
monitoring

Rules
database

Routing

Control
Data

Inner If

Outer Ifs

Multi/broadcast proxy

Figure 2: GRCBox hardware module architecture.

the inner interface and the outer interfaces according to the
defined rules. It extends the broadcast domain of the outer
interfaces to the inner interface and vice versa.

3.1.4. Interface Monitoring Service. This service provides the
updated information about the status of the outer interfaces.
This information is needed to configure the routing service
and the multicast proxy service, as well as to inform applica-
tions about the characteristics of the different interfaces.

3.1.5. Core Service. The core service is in charge of com-
municating with applications, validating connection rules,
maintaining the rules’ database, and configuring the routing
service and the multicast proxy services according to the
interface configuration.

3.2. Interaction between Applications and the GRCBox Hard-
ware Module. TheGRCBox hardware module creates a WiFi
access point to which smartphones, tablets, or any other
user device in the vehicle will associate. Once the user
devices connect to the “GRCBox” wireless network, they can
communicate with each other to share contents or commu-
nicate with any of the outer networks to which the GRCBox
hardware module is connected. Figure 3 shows a vehicle with

4 International Journal of Distributed Sensor Networks

Internet

VANET
Wave

Cellular
4G/3G/GPRS

WiFi
AP

GRC

Figure 3: GRCBox hardware module connected to three different
networks.

a GRCBox hardware module and several smartphones that
are able to exchange information with the outer networks. In
this example, an application in the smartphone may choose
to reach the Internet using either the cellular network or
the WiFi network. In case the application intends to use ad
hoc communications, it would choose the ad hoc wireless
interface instead.

The GRCBox architecture is based on rules which enable
applications to choose the outgoing interface for a certain
connection or to register as listeners for a defined incoming
connection. A rule is a packet filter defined by the following
elements.

(i) Rule type: the GRCBox platform defines three differ-
ent kinds of rules, incoming, outgoing, andmulticast.

(ii) Interface name: it is the name of the interface towhich
the rule applies.

(iii) Transport protocol: it is the transport protocol of
the connection. At this moment GRCBox supports
UDP and TCP, though we expect implementing more
protocols in the future.

(iv) Source port: it is the source port of the connection.
(v) Source address: it is the source IP address of the

connection.
(vi) Destination port: it is the destination port of the

connection.
(vii) Destination address: it is the destination IP address of

the connection.

According to these elements, the GRCBox routing service
either waits for incoming connections on outer interfaces,
routes outgoing connections to the specific outgoing inter-
face, or forwardsmulticast packets in both directions between
inner and outer interfaces. For incoming connections there
are two extra elements stored in the rules database: the for-
warding destination address and the forwarding destination
port. The GRCBox routing service uses this information to
modify the packet header and to forward the connection to
the target user device.

In GRCBox, before being able to define a new connection
rule, an applicationmust register itself on the GRCBox server
to get a private secret key. This key is then used for later
client/server interactions to guarantee that only the “owner”
of a rule renews, modifies, or removes it. After obtaining its
secret, an application is able to register new rules. To register a
new rule the application must send a request to the GRCBox
core service, which checks that the rule definition does not
collide with a previously defined rule, and configures the rule
on the routing service. Once the rule has been configured,
the GRCBox core service confirms it to the application. The
application can then initiate the connection that will be
routed according to the defined rule. Once the application
has finished using this rule, the application must notify to
the GRCBox core service that this rule will not be used again,
so the GRCBox core service can remove it from the system.
Figure 4 illustrates both how a GRCBox application interacts
with the GRCBox hardware module and how a non-GRCBox
application is transparently routed. More details about how
this communication is done and how the GRCBox hardware
module is configured are presented in Section 4.

3.3. Client Features. To allow developers to easily use the
services offered by the GRCBox hardware module, we pro-
vide a programing-language-independent remote API, a set
of software libraries, and a management application that
allows the smartphone users to define rules for third party
applications that do not support GRCBox. In particular, we
provide the following software modules.

3.3.1. Remote API. The remote API allows defining rules
remotely.

3.3.2. Client Library. The client library provides an almost-
transparent way to use the GRCBox capabilities through the
remote API.

3.3.3. Management Application. The management applica-
tion allows users of a smartphone connected to a GRCBox
hardware module to define rules for third party applications.
Therefore, the user may request, for example, all the VoIP
traffic to be routed through the cellular network or delay
tolerant network (DTN) messages to be routed through the
WiFi ad hoc network, and this configuration will affect all the
applications running on the specific smartphone.

4. GRCBox Implementation Details

In this section we present the implementation details of the
GRCBox architecture. First, we present the details of the
different components of the GRCBox hardware module and
how they communicate. Second, we detail the set of libraries
we have implemented to enable developers to easily create
GRCBox-aware applications. Finally, we describe in detail
three different cases to illustrate the use of GRCBox in typical
scenarios: when an application connects to an external server
and when the application sends and receives UDP messages.

International Journal of Distributed Sensor Networks 5

if0
if1
if2
if3

Server

Register rule ifN

Confirm

Remove rule
Confirm

GRCBox app

NAT
Iface

GRCBox
hardware module

App registration

Confirmation

Remove app

GRC

Confirmation

ifN

(a)

GRCBox
hardware module

ServerNon-GRCBox
app

NAT
def Iface

if0
if1
if2
if3

GRC

(b)

Figure 4: Connection phases of a GRCBox app (a) and a non-GRCBox app (b).

4.1. GRCBox Hardware Module Details. To implement the
different services that run in the GRCBox hardware module,
we took advantage of some well-known open source software
solutions, creating a core service that coordinates them to
configure a system that meets our requirements.

4.1.1. Hardware. To implement the first version of our
GRCBox hardware module we have chosen an embedded
computer called RaspberryPi [21]. The RaspberryPi is a
credit-card size computer whose cost is only 35$ but that
has enough power to perform low-scale network routing. In
this computer we have installed a Raspbian [22] distribution,
which is a general-purpose Linux distribution based on
Debian and optimized for the RaspberryPi. Raspbian sup-
ports most current networking hardware, avoiding common
problems of other embedded operating systems.

4.1.2. Discovery Service. To allow the GRCBox applications
to discover which node in the network is the GRCBox
hardware module, we decided to use both the domain name
system (DNS) and the dynamic host configuration protocol
(DHCP).The dnsmasq [23] service provides DNS and DHCP
services to the inner network. When a new device connects
to the GRCBox network, its connectivity is configured using
DHCP; these connectivity settings include the default DNS
server IP, which points to the GRCBox hardware module.
Therefore, every DNS query will be resolved by the GRCBox
hardware module. When a GRCBox application is started it
tries to connect to the “grcbox” node, since the DNS server
is configured to always resolve the name “grcbox” to the IP
address of the GRCBox hardware module, thus allowing the
application to connect to it without knowing its actual IP
address.

4.1.3. Routing and NAT. Themain reason to choose a Linux-
based operating system is the flexibility this OS offers for
packet routing configuration.TheGRCBox hardwaremodule
is configured using iptables [24] to perform source network
address translation (SNAT) on every public interface. The
GRCBox core uses the routing policy data base (RPDB)
feature from the LinuxKernel [25] to redirect the connections
defined by the applications to the selected interface.

For every public interface, the GRCBox core defines a
specific routing table applicable to all the packets marked
with a certain label. This routing table contains only one
default entry that redirect the packets to the specific interface
independently of the routing entries defined in the default
routing table. Specifically, using the command “iptables-t
mangle,” the GRCBox core marks the packets to match the
outgoing interface defined by the application. Moreover the
forwarding destination port and the forwarding destination
address are used to perform destination address network
translation (DNAT) for incoming connections.

In Section 4.3we introduce some examples that clarify the
operation of the routing system.

4.1.4. Interface Monitoring. To maintain the routing and
marking rules updated, the GRCBox core needs to monitor
the status of the interfaces. To do so, we have created a
set of classes that interact with the NetworkManager [26]
system service through the command line tool nmcli. These
classes allow obtaining the IP address and the gateway of each
interface, as well as the type of the interface. In addition,
they check whether an interface is connected to the Internet
in order to provide clients with meaningful information for
interface selection.

4.1.5. GRCBox Core Server. We implemented the GRCBox
core server following a representational state transfer (REST)

6 International Journal of Distributed Sensor Networks

[27] architecture. REST is a way to create, read, update, or
delete information from a server using simple HTTP calls. To
implement it, we have used the RESTlet [28] Java framework
that provides a set of classes to quickly implement a REST
architecture. The REST architecture allows us to abstract
from communication protocol issues and focus solely on
functionality. To implement our service we have defined
several resources accessible from the inner network through
“http://grcbox:8080/.” This API allows clients to register a
new application, to check the status of the server and its
interfaces, and to register new rules. Appendix A describes
it in detail.

4.1.6. Multicast and Broadcast Proxy. To provide multicast
and broadcast forwarding between the outer networks and
the inner network we have designed a multicast proxy
that listens on specific outer interfaces, forwarding to the
inner network only those packets with multicast addresses
registered by a client inside the network.

We have implemented the proposed proxy using Rock-
Saw [29], a Java library that allow us to completely define
the low-level content of IP packets, including their headers.
This multicast proxy also acts as a broadcast UDP proxy for
registered directed-broadcast forwarding rules.

A new instance of this proxy is started by the core service
for every new multicast or broadcast forwarding rule.

4.2. Client Library. Although we have designed the GRCBox
architecture to be client/OS independent, in this first ver-
sion we have focused on Android [30] based smartphones.
We have created a Java library that allows the developer
to easily implement GRCBox compatible applications. The
implemented library integrates with Java networking classes,
and its details are covered in Appendix B.

In the next subsection we present an example of several
cases where these libraries are used by applications to define
routing rules transparently.

4.3. Examples. In this subsection we present three different
cases of GRCBox-aware applications.

In both cases we consider the same configuration: the
GRCBox hardware module has 3 interfaces, a WiFi interface
configured as a WiFi station, another WiFi interface oper-
ating in the ad hoc mode, and a 4G interface. In the first
case, the application wants to connect to a remote server
located on the Internet using a specific interface. In the
second case, the application wants to send and receive UDP
packets through a specific interface. In the last example, the
application performs multicast communication for neighbor
discovering and relies on TCP peer-to-peer communications
for information exchanging. Notice that most DTN applica-
tions can become integrated into the GRCBox framework in
a similar way.

4.3.1. TCP Client Example. In this example, an applica-
tion running on the smartphone wants to connect to host
google.com through the station-mode WiFi interface, while a
different interface is configured as the default one. In order to
do so, the application needs to perform the following steps.

(i) Create a new instance of our GrcBoxClient class.
(ii) Call the GrcBoxClient.isServerAvailable() function

to check GRCBox availability. In case the GRCBox
hardware module is not available, the application can
chose to use the standard networking libraries.

(iii) Register itself as a new application by calling GrcBox-
Client.register(“Name”). After the new application is
registered, a new thread is started for periodic keep-
alive notifications to the server.

(iv) Get a list of the available interfaces by calling GrcBox-
Client.getInterfaces().Then the client will iterate over
the interfaces list and choose the desired one.

(v) Create a new socket by calling GrcBoxClient. create-
Socket(dstAddr, dstPort, iface). At this moment, the
library will notify the GRCBox core service about the
new connection, and the GRCBox core service will
create a new routing rule.The librarywill return a new
GrcBoxSocket already connected to the remote host.

(vi) At this step the application can already send and
receive data to/from the server. The packets will be
routed through the specific interface.

(vii) Once the application has finished exchanging data
with the remote host, it should close the GrcBox-
Socket instance. This call will remove the rule, and
special-purpose routing will be stopped.

(viii) If the application has finished communicating with
the GRCBox core service, it should deregister itself
from the GRCBox hardware module, which will stop
the keep-alive thread.

Figure 5 represents the process described above.

4.3.2. Hybrid UDP Example. In this example, a VoIP appli-
cation wants to use the 3G interface because it is usually
more stable thanWiFi, and its throughput is enough for VoIP
communication. In order to do so, the application needs to
perform the following steps:

(i) Create a new instance of the GrcBoxClient class.
(ii) Call the GrcBoxClient.isServerAvailable() to check

GRCBox availability. In case the the GRCBox hard-
ware module is not available, the application can
choose to use the normal networking libraries.

(iii) Register itself as a new application by calling GrcBox-
Client.register(“Name”). After the new application is
registered, a new thread is started for periodic keep-
alive notifications to the server.

(iv) Get a list of the available interfaces by calling GrcBox-
Client.getInterfaces().Then the client will iterate over
the interface list and choose the desired one.

(v) Since the application uses an external library for SIP
communication, it must use the low-level method
registerNewRule() to define a new rule according to
the characteristics of the SIP protocol. When it is
called, a new routing rule is created at the GRCBox
hardware module.

International Journal of Distributed Sensor Networks 7

ServerGRCBox app
code

GRCBox
hardware module

RESTLet
calls

Restlet
GRC

(ii) gbc.isServerAvailable() GET http://grcbox/

(iii) gbc.register(“AppName”)

(iv) gbc.getIfaces()

(v) gbc.createSocket()

(vi) sock.send()

(vii) sock.close()

(viii) gbc.deRegister()

POST gb/apps∗

GET gb/ifaces
(Id, Secret)

POST
gb/apps/{id}/rules

(Id)

([]ifaces)

DELETE
gb/apps/{id}/rules/{id}

DELETE gb/apps/{id}∗∗

∗ The keep-alive thread is started
∗∗ The keep-alive thread is stopped

Figure 5: Example of a client application using GRCBox.

(vi) At this step the application can runnormally, listening
to data coming from the remote host, or sending data.

(vii) After negotiating using the SIP protocol, if the appli-
cation wants to establish an RTP connection it must
register a new rule.

(viii) All the rules must be removed from the GRCBox
hardware module after the application finishes using
them.

(ix) If the application no longer needs to communicate
using GRCBox, it should deregister itself from the
GRCBox hardware module.

Figure 6 represents the different steps involved in the process
described above.

4.3.3. Multicast and TCP Example. In this example, a DTN
application wants to use the WiFi ad hoc interface to send
multicast packets to discover newneighbors and to establish a
TCP connectionwith them in order to exchange information.
The steps involved are the following.

(i) Create a new instance of the GrcBoxClient class.
(ii) Call the GrcBoxClient.isServerAvailable() to check

GRCBox availability. In case the the GRCBox hard-
ware module is not available, the application can
choose to use the normal networking libraries.

(iii) Register itself as a new application by calling GrcBox-
Client.register(“Name”). After the new application is
registered, a new thread is started for periodic keep-
alive notifications to the server.

(iv) Get a list of the available interfaces by callingGrcBox-
Client.getInterfaces(). Then the client will iterate over
the interface list and choose the desired one.

(v) Create a new GrcBoxServerSocket by calling the
method GrcBoxClient.createServerSocket(port, outI-
face). This will register a new incoming rule for
connections made by discovered neighbors.

(vi) Create a new GrcBoxMulticastSocket by calling
the method GrcBoxClient.createMulticastSocket(port,
iface), and then join the desired multicast group.This
will start a multicast proxy in the GrcBox hardware
module. At this time the application becomes able to
receive new connections from neighbors, as well as to
discover neighbors from outside networks.

(vii) If the local IP address is included in the payload of
the discovery packets (beacons), it should be replaced
with the corresponding IP address of the public
GRCBox interface; in such case, this information
should be adapted to reference the public address of
the chosen GrcBox interface instead.

(viii) If a neighbor is discovered a new GrcBoxSocket
must be created by calling GrcBoxClient.create-
Socket(addr/host, port, iface, localPort). This will
register a new outgoing rule through the ad hoc
interface.

(ix) Once the application has finished using the GrcBox-
Socket it can be closed.This will remove the outgoing
rule from the GrcBox.

(x) Themulticast rule and the incoming rule are expected
to be useful as long as the application is running.

(xi) If the application no longer needs to communicate
using GRCBox, it should deregister itself from the
GRCBox hardware module. This will also remove all
the rules associated with this application.

Figure 7 represents the different steps involved in the process
described above.

5. Performance Evaluation

As we stated in the previous section, a GRCBox-aware
application must cover several steps before being able to
communicate through the desired interface with the outside
networks. In this sectionwe evaluate the overhead introduced
by the GRCBox architecture by measuring the average time
required to perform each of these steps and the delay
introduced by the GRCBox architecture itself.

5.1. Test Configuration. Tomeasure the times associated with
the different steps, we have configured a GRCBox hard-
ware module with three wireless interfaces: a TP-Link TL-
WN727N usb adapter (chipset rt5370 from Ralink); a Linksys
WUSB600N usb adapter (chipset rt2870 from Ralink); and a
genericWiFi usb adapter with an rt5370 chipset from Ralink.
The first interface is configured as an access point, while the
other two are connected to an infrastructure access point

8 International Journal of Distributed Sensor Networks

GRCBox app
code

GRCBox
hardware module

RESTLet
calls

GET http://grcbox/

(Id, Secret)
GET gb/ifaces

([]ifaces)

gbc.registerNewRule()
POST

(Id)

SIP negotiation

rule

rule

rule

SIP phone

gbc.registerNewRule()
POST

(Id)

RTP flow

Call finished

gbc.removeRule()
DELETE

(ii) gbc.isServerAvailable()

(iii) gbc.register(“AppName”)

(iv) gbc.getIfaces()

(v) Register SIP

(vi)

(vii) Register RTP

(viii) Remove RTP

(ix) gbc.deRegister()

GRC

POST gb/apps∗

gb/apps/{id}/rules

gb/apps/{id}/rules

gb/apps/{id}/rules/{id}

DELETE gb/apps/{id}∗∗

Restlet

∗ The keep-alive thread is started
∗∗ The keep-alive thread is stopped

Figure 6: Example of a client application using GRCBox.

connected to the Internet using the university infrastructure.
We have performed two different experiments, the first one
using a laptop as a user terminal and the second one using a
smartphone. The user terminal will connect to a host located
in our university network through the GRCBox hardware
module to download a file. All the devices (including the
Internet-connected access point) are placed in the same
room. Figure 8 shows how the different devices are connected
for this test, while Figure 9 shows the real devices we have
used to run this test.

5.2. Time Required to Control the GRCBox Hardware Module.
To get conclusive results, we have repeated each experiment
100 times. To check if the computation power of the user
terminal affects the average delay added by the GRCBox
architecture, we performed the same set of experiments using

both the notebook and the smartphone. The steps measured
are the following:

(i) time to check the status of the GRCBox core (check
time),

(ii) time to get the information about the interfaces
available on the server (Ifaces time),

(iii) time to register a new application (Reg. app time),
(iv) time to register a new rule with the desired output

interface (Reg. rule time),
(v) time to download the file from the Internet (down-

load time),
(vi) time to remove a rule (Rm rule time),
(vii) time to remove an application (Rm app time).

International Journal of Distributed Sensor Networks 9

GRCBox app
code

GRCBox
hardware module

RESTLet
calls

GET http://grcbox/

(Id, Secret)
GET gb/ifaces

([]ifaces)

gbc.createMulticastSocket() POST

(Id)
socket and join a group

DTN
neighbor

gbc.createGrcBoxServerSocket() POST

(Id)

(ii) gbc.isServerAvailable()

(iii) gbc.register(“AppName”)

(iv) gbc.getIfaces()

(vi) Create a multicast

(v) Create
GrcBoxServerSocket

(vii) Multicast beacons

(xi) gbc.deRegister()

mcs.joinGroup(addr)

Proxy forwards

DTN
neighbor 2

Proxy forwards

gbc.createSocket() POST

(Id)

(viii) Beacon received

sock.write()

DELETE

Connect to a remotely
discovered neighbor

New NAT
rule

connect()NAT Fwdsock.rcvd()

sock.write()
Receive connections

from remote neighbors

(ix) sock.close()

GRC

POST gb/apps∗

gb/apps/{id}/rules

gb/apps/{id}/rules

gb/apps/{id}/rules

[Hello my Ip is {Neigh2.Ip}]

[Hello my Ip is {Iface.Ip}]

DELETE gb/apps/{id}∗∗

gb/apps/{id}/rules/{id}

Restlet

∗ The keep-alive thread is started
∗∗ The keep-alive thread is stopped

Figure 7: Example of a DTN application using multicast in a GRCBox client.

As a reference, we have also downloaded the same files
through the GRCBox hardware module without using the
GRCBox features. Table 1 summarizes the obtained results,
where all the values presented represent time in seconds.The
average time required for every step ranges from 0.2 s to 2.4 s.
These values are tolerable when the user wants to perform a
long lasting action, such asbrowsingor a VoIP call. According
to the values we obtained, an application should be able to
check if the GRCBox core service is available, get the list
of interfaces, register itself in the GRCBox core service, and
register a new rule to route the expected traffic through the
desired out interface, transparently to the user, while it starts
and configures the application (write a website address or dial
a phone number).

Concerning noninteractive autonomous applications, such
as a DTN services, or ad hoc warning notification systems,
which usually run continuously for hours or even days,
they only need to communicate with the GRCBox at the
moment they start running.Therefore, the impact of the delay
introduced by the GRCBox architecture is insignificant.

By examining the confidence interval of the first step
(check the status of the server), we realized that its variability
was very high. To find an explanation to this fact, we
inspected the individual values, whose histogram is repre-
sented in Figure 10, and realized that the server took up to
8 s to resolve the request. By revising our code, we detected a
problem in the interface monitoring module IV-A that blocks
the processing of requests involving interface information

10 International Journal of Distributed Sensor Networks

University
network

WLAN0

WLAN2WLAN1

Access
point

GRC

Figure 8: Test configuration.

Figure 9: A picture of the devices used for the test.

during the interface updating process, which takes about 10 s.
In the next section we will shortly present how we propose
solving this problem.

5.3. Delay Introduced by the GRCBox. To measure the delay
introduced by the GRCBox architecture, we have used the
well-known ping tool to measure the round trip time (RTT)
between the user device and a server on the Internet in two
different conditions: connected through the GRCBox and
connected directly to the access point in our lab. To get a
wide set of results we pinged 100 times 3 different hosts under
different domains. Table 2 contains the results we obtained.
The first important thing we notice is the high value of the
standard deviation, which means that the network, in all the
cases, was very unstable. Given this condition, it is hard,
or even impossible, to conclude that there is a difference
between the RTT experienced when using GRCBox and
when connected directly to the access point acting as Internet
gateway. In addition and despite the fact that it is obvious that
adding an extra hop to the path between the user device and

0

20

40

60

80

1 2 3 4 5 6 7 8
Time to check status (s)

C
ou

nt

Figure 10: Time to check status of the GRCBox core service
histogram when using a smartphone as user device.

the Internet server increases theRTT, the obtaineddata shows
that this increment is negligible if we compare it to the effects
of network instability.

6. Conclusions and Future Work

In this paper we presented the GRCBox architecture, which
allows smartphones to be completely integrated in vehicular
network (VN) environments. The GRCBox architecture is
composed of a low-cost hardware module that is installed in
the vehicle and a set of libraries that allow developers to use
it. The GRCBox architecture will be released under an open-
source license andwill be available for downloading from our
GitHub page [31].

We should highlight that our GRCBox architecture still
has some issues which we expect to solve in the near future.
The main issues we are currently focusing on are the slow
interface monitoring service and the remote configuration
application. Below we detail how we intend to solve these
problems.

6.1. Interface Monitoring. As we described in Section 4.1, the
GRCBox core service interacts with the NetworkManager
daemon through a command line tool. Moreover, our service
needs to repeatedly poll the NetworkManager daemon to
check if there were changes in the interfaces’ configuration.
These two issues are associated not only with long blocking
times when waiting for values to be returned but also with
a waste of resources due to polling. In the future, we will
migrate from the NetworkManager command line interface
to its DBUS interface [32]. The DBUS interface allows
accessing all the information needed by the GRCBox core
service through shared memory objects and also provides a
subscriber-publisher interface that will make polling unnec-
essary, thus saving resources.

6.2. Remote Configuration. Wealso perceived that it would be
interesting to allow smartphone users to configure the outer
network interfaces through an application on their mobile
phones.This application may also be used to perform certain
actions on the GRCBox, such as defining the default outgoing

International Journal of Distributed Sensor Networks 11

Table 1: Time overhead for the different tasks involved when downloading a 5MB file.

GRCBox notebook GRCBox smartphone No-GRCBox notebook No-GRCBox smartphone
Average Conf. int. 95% Average Conf. int. 95% Average Conf. int. 95% Average Conf. int. 95%

Check 1.46 ±0.24 1.55 ±0.22 — — — —
Ifaces 1.12 ±0.13 1.25 ±0.03 — — — —
Reg. app 1.08 ±0.05 0.96 ±0.03 — — — —
Reg. rule 1.21 ±0.09 1.29 ±0.03 — — — —
Download 6.28 ±0.39 6.34 ±0.3 6.82 ±0.89 7 ±0.4

Rm rule 0.19 ±0.02 0.21 ±0.02 — — — —
Rm app 1.11 ±0.02 1.22 ±0.02 — — — —
Total 12.5 ±0.54 12.83 ±0.41 — — — —

Table 2: Round trip times measured using Ping.

http://www.upv.es/ http://google.com/ http://www.yahoo.com/
Average Std dev. Average Std dev. Average Std dev.

GRCBox 16.96 23.97 40.222 54.584 108.899 89.240
Directly conn. 14.210 35.9 24.402 34.101 113.774 111.254

interface, establishing global rules for non-GRCBox enabled
applications, or rebooting the GRCBox.

As an open source development, we want to invite the
research community to download, use, and improve our
GRCBox architecture.

Appendices

A. REST API

(i) Root resource “/”:

(a) Method GET: information about the status of
the server and the number of rules already
registered in the database.

(ii) Ifaces resource “/ifaces”:

(a) Method GET: a simplified list of all the available
outgoing interfaces.

(iii) Iface resource “/ifaces/{ifId}”:

(a) Method GET: information of a specific inter-
face.

(b) Method POST: at this moment this is not
implemented, but we expect allowing autho-
rized applications to remotely configure certain
interface parameters such as the SSID or the
password for wireless interfaces.

(iv) Applications resource “/apps”:

(a) Method GET: a list of the currently registered
applications in the system.

(b) Method POST: register a new application and
return a secret password for later authentication.

(v) Application resource “/apps/{appId}”: when a new
application is registered a new specific resource is
created. Access to the POST and DELETE methods
is restricted to the original application.

(a) Method GET: information about the specific
application, its name, and its last-seen value.

(b) Method POST: a call to this method is inter-
preted as a keep-alive signal by the server.
If an application does not post to its ID for
a certain amount of time, the application is
deregistered and its defined rules are deleted
from the database and from the system.

(c) MethodDELETE: remove an application and all
its rules from the database and from the system.

(vi) Rules resource “/apps/{appId}/rules”: each registered
application can access to its list of rules. Access to
the POST method is restricted to the owner of the
resource.

(a) Method GET: a list of the rules defined by this
application.

(b) Method POST: create a new rule.

(vii) Rule resource “/apps/{appId}/rules/{ruleId}”: this
resource is accessible when a new rule is created.

(a) Method GET: details of the rule.
(b) Method DELETE: remove a rule from database

and system.

B. Client Library Classes and Methods

The client library includes the following classes.

12 International Journal of Distributed Sensor Networks

(i) GrcBoxSocket: this class extends the Java Socket
class. It removes the associated routing rule from the
GRCBox routing service after the socket is closed.

(ii) GrcBoxServerSocket: this class extends the Java
ServerSocket class. It removes the associated routing
rule from theGRCBox routing service after the socket
is closed.

(iii) GrcBoxDatagramSocket: this class extends the Java
DatagramSocket class. It adds a new close()method to
remove the associated routing rule from the GRCBox
routing service.

(iv) GrcBoxMulticastSocket: this class extends the Java
MulticastSocket class. It adds or removes the specific
routing rules to theGRCBox routing service when the
joinGroup() and leaveGroup() methods are used.

(v) GrcBoxClient: this class manages the registration
process with the GRCBox core service, and it is in
charge of socket creation.

The GrcBoxClient implements the following methods.

(i) GrcBoxClient(): initialize a GrcBoxClient object.
(ii) isServerAvailable(): check if the GRCBox core service

is accessible by obtaining the root resource described
in the previous appendix.

(iii) register(name): register a new application with name
“name.” Receive and store the secret password for
future interaction with the server. When this method
is called, a new thread is started to perform keep-alive
signaling to the server.

(iv) deregister(): remove the registered application and all
its defined routing rules from the GRCBox routing
service. When this method is called, the keep-alive
thread is stopped.

(v) getInterfaces(): contact the server and get a list of the
available outer interfaces and their characteristics.

(vi) createServerSocket(port, outIface): register a new
incoming routing rule on interface outIface and local
port “port.” It returns a GrcBoxServerSocket object
ready to be used.

(vii) createSocket(addr/host, port, iface): register an out-
going routing rule to the destination address or
host addr/host and destination port port through
the interface iface. It returns a GrcBoxSocket object
already connected to the remote host.

(viii) createSocket(addr/host, port, iface, localPort): regis-
ter an outgoing routing rule to the destination address
or host addr/host and destination port port from the
local port localPort through the interface iface. It
returns a GrcBoxSocket object already connected to
the remote host.

(ix) createDatagramSocket(iface): register a new incom-
ing routing rule and a newoutgoing routing rule using
any available local port on the specified interface
in the GRCBox hardware module. It returns a new
GrcBoxDatagramSocket object ready to be used.

(x) createDatagramSocket(port, iface): register a new
incoming routing rule and a new outgoing routing
rule using the local port port on the specified interface
in the GRCBox hardware module. It returns a new
GrcBoxDatagramSocket object ready to be used.

(xi) createDatagramSocket(port, remotePort, iface): reg-
ister a new incoming routing rule and a new out-
going routing rule using the local port port and the
remote port remotePort on the specified interface
in the GRCBox hardware module. It returns a new
GrcBoxDatagramSocket object ready to be used.

(xii) createDatagramSocket(port, remoteAddr,
remotePort, iface): register a new incoming routing
rule and a new outgoing routing rule using the local
port port, the remote address remoteAddr, and the
remote port remotePort on the specified interface
in the GRCBox hardware module. It returns a new
GrcBoxDatagramSocket object already “connected”
to the remote address ready to be used.

(xiii) createMulticastSocket(port, iface): prepare a mul-
ticast rule to be register when the method join-
Group(address) of the returned GrcBoxMulticast-
Socket is called. It returns a GrcBoxMulticastSocket
associated with the specific local port port.

(xiv) registerNewRule(⋅ ⋅ ⋅): register a new routing rulewith
its properties defined in the argument list. This low-
level method is useful when an external library is
used to manage high-level protocols, such as JSIP for
session initiation protocol (SIP) communication.The
user must remove the rule after using it.

(xv) removeRule(id): remove a routing rule from the
database. It should only be used after calling the
registerNewRule() method. If the removed rule does
not exist, it does not have any effect on the status of
the GRCBox hardware module.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was partially supported by the Ministerio de
Economı́a y Competitividad, Spain, under Grants TIN2011-
27543-C03-01 and BES-2012-052673, and by the European
Commission under Svagata.eu, the Erasmus Mundus Pro-
gramme, Action 2 (EMA2).

References

[1] H. Hartenstein and K. P. Laberteaux, “A tutorial survey on
vehicular ad hoc networks,” IEEE Communications Magazine,
vol. 46, no. 6, pp. 164–171, 2008.

[2] IEEE Standards, “IEEE Standard for Information Technology—
telecommunications and information exchange between
systems—local and metropolitan area networks—specific

International Journal of Distributed Sensor Networks 13

requirements part 11: wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications amendment
10: mesh networking,” Tech. Rep., 2011.

[3] Car Connectivity Consortium (CCC), “MirrorLink,” http://
www.mirrorlink.com/, June 2014.

[4] Google Inc, “Android Auto,” 2014, http://www.android.com/
auto/.

[5] Apple, “CarPlay,” 2014, https://www.apple.com/ios/ carplay/.
[6] J. P. Singh, N. Bambos, B. Srinivasan, and D. Clawin, “Wireless

LAN performance under varied stress conditions in vehicular
traffic scenarios,” inProceedings of the 56thVehicular Technology
Conference (VTC ’02), pp. 743–747, IEEE, September 2002.

[7] H. Wu, M. Palekar, R. Fujimoto et al., “An empirical stud y
of short range communications for vehicles,” in Proceedings
of the 2nd ACM International Workshop on Vehicular Ad Hoc
Networks (VANET ’05), pp. 83–84, ACM, 2005.

[8] F. Hui and P. Mohapatra, “Experimental characterization of
multi-hop communications in vehicular ad hoc network,” in
Proceedings of the 2nd ACM International Workshop on Vehicu-
lar Ad Hoc Networks (VANET ’05), pp. 85–86, ACM, September
2005.

[9] M. Jerbi, S. M. Senouci, andM. Al Haj, “Extensive experimental
characterization of communications in vehicular ad hoc net-
workswithin different environments,” inProceedings of the IEEE
65th Vehicular Technology Conference (VTC ’07), pp. 2590–
2594, IEEE, April 2007.

[10] A. de la Fortelle, C. Laurgeau, P.Muhlethaler et al., “Com2react:
v2v communication for cooperative local traffic management,”
in Proceedings of the ITS World Congress, 2007.

[11] K. C. Lee, S.-H. Lee, R. Cheung, U. Lee, and M. Gerla, “First
experience with CarTorrent in a real vehicular ad hoc network
testbed,” in Proceedings of the Mobile Networking for Vehicular
Environments (MOVE ’07), pp. 109–114, Anchorage, Alaska,
USA, May 2007.

[12] C. Pinart, P. Sanz, I. Lequerica, D. Garcı́a, I. Barona, and D.
Sánchez-Aparisi, “Drive: a reco nfigurable testbed for advanced
vehicular services and communications,” in Proceedings of the
4th International Conference on Testbeds and Research Infras-
tructures for the Development of Networks & Communities, p.
16, Institute for Computer Sciences, Social-Inf ormatics and
Telecommunications Engineering, 2008.

[13] E. Giordano, A. Tomatis, A. Ghosh, G. Pau, and M. Gerla, “C-
VeT an open research platform for VANETs: evaluation of peer
to peer applications in vehicular networks,” in Proceedings of the
68th Vehicular Technology Conference (VTC ’08), pp. 1–2, IEEE,
Calgary, Canada, September 2008.

[14] M. Cesana, L. Fratta, M. Gerla, E. Giordano, and G. Pau, “C-
VET the UCLA campus vehicular testbed: integration of vanet
and mesh networks,” in Proceedings of the European Wireless
Conference (EW ’10), pp. 689–695, IEEE, April 2010.

[15] J. Santa, M. Tsukadat, T. Emstt, and A. F. Gómez-Skarmeta,
“Experimental analysis of multi-hop routing in vehicular ad-
hoc networks,” inProceedings of the 5th International Conference
on Testbeds and Research Infrastructures for the Development of
Networks and Communities and Workshops (TridentCom ’09),
pp. 1–8, April 2009.

[16] M. C. G. Paula, J. N. Isento, J. A. Dias, and J. J. P. C. Rodrigues,
“A real-world VDTN testbed for advanced vehicular services
and applications,” in Proceedings of the IEEE 16th International
Workshop on Computer Aided Modeling and Design of Com-
munication Links and Networks (CAMAD ’11), pp. 16–20, IEEE,
June 2011.

[17] A. Campbell and T. Choudhury, “From smart to cognitive
phones,” IEEE Pervasive Computing, vol. 11, no. 3, pp. 7–11, 2012.

[18] W. Vandenberghe, I. Moerman, and P. Demeester, “On the
feasibility of utilizing smartphones for vehicular ad hoc net-
working,” in Proceedings of the 11th International Conference on
ITS Telecommunications (ITST ’11), pp. 246–251, St. Petersburg,
Russia, August 2011.

[19] D. Sawada, M. Sato, K. Uehara, and J. Murai, “IDANS: a
platform for disseminating information on aVANET consisting
of smartphone nodes,” in Proceedings of the 11th International
Conference on ITS Telecommunications (ITST ’11), pp. 252–257,
St. Petersburg, Russia, August 2011.

[20] S. M. Tornell, C. T. Calafate, J. C. Cano, P. Manzoni, M.
Fogue, and F. J. Martinez, “Evaluating the feasibility of using
smartphones for ITS safety applications,” in Proceedings of the
IEEE 77th Vehicular Technology Conference (VTC ’13), pp. 1–5,
IEEE, June 2013.

[21] G. Mitchell, “The Raspberry Pi single-board computer will
revolutionise computer science teaching [For Against],” Engi-
neering Technology, vol. 7, p. 26, 2012.

[22] M. Thompson and P. Green, Raspbian, http://www.rasp-
bian.org/, June 2014.

[23] S. Kelley, “Dnsmasq, network services for small networks,” 2014,
http://www.thekelleys.org.uk/dnsmasq/doc.html.

[24] Netfilter Core Team, “The netfilter.org iptables project,” 2014,
http://www.netfilter.org/projects/iptables/.

[25] M. G. Marsh, Policy Routing Using Linux, Sams Professional
Series, Sams, 2001.

[26] The GNOME Project, “Networkmanager homepage at gnome
wiki,” 2014, https://wiki.gnome.org/action/show/Projects/
NetworkManager.

[27] R. T. Fielding, Architectural styles and the design of network-
based software architectures [Ph.D. thesis], University of Califor-
nia, 2000.

[28] J. Louvel, T. Templier, and T. Boileau, Restlet in Action:
Developing RESTful Web APIs in Java, Manning Publications,
Greenwich, Conn, USA, 2012.

[29] Savarese Software Research Corporation, “RockSaw Home
Page,” 2014, https://www.savarese.com/software/rock- saw/.

[30] “Android website,” 2014, http://www.android.com.
[31] GRC, “GRC GitHub Account,” https://github.com/GRCDEV,

August 2014.
[32] TheGNOMEProject, “NetworkManagerDBUS Interface Spec-

ification,” 2014, https://developer.gnome.org/NetworkManager/
unstable/spec.html.

